Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations

Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less...

Full description

Saved in:
Bibliographic Details
Published inPLoS computational biology Vol. 6; no. 5; p. e1000767
Main Authors Mendez, Raul, Fritsche, Miriam, Porto, Markus, Bastolla, Ugo
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.05.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1553-7358
1553-734X
1553-7358
DOI10.1371/journal.pcbi.1000767

Cover

Loading…
Abstract Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.
AbstractList Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.
Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. The Guanine plus Cytosine (GC) content of bacterial genomes varies from 20% to 80%. This variation is attributed to the mutation bias produced by replication and repair machinaries. However, the evolutionary forces that act on these very different machinaries have remained elusive. It is known that the GC content of genes strongly influences the resulting proteins' hydrophobicity, which is the main determinant of folding stability. This may lead to expectation that the GC content is strongly selected at its optimal value, since proteins that are too hydrophylic face unfolding problems and proteins that are too hydrophobic face misfolding and aggregation problems. In this work, using a realistic model of genotype (DNA sequence) to phenotype (protein folding stability) to fitness mapping and a standard population genetics model, we find that the optimal GC usage depends on population size. In particular, very small populations prefer small GC usage, intermediate populations prefer large GC usage, and large populations prefer no bias. Our results may explain why most intracellular bacteria, evolving with small effective populations, tend to adopt small GC usage. To test this hypothesis, we estimated the effective population size of several bacterial species, finding that those that evolve with 50% GC usage are characterized by significantly larger populations, although several exceptions exist.
  Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.
Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction.
Audience Academic
Author Mendez, Raul
Porto, Markus
Fritsche, Miriam
Bastolla, Ugo
AuthorAffiliation 2 Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany
1 Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
Harvard University, United States of America
AuthorAffiliation_xml – name: 1 Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
– name: 2 Institut für Festkörperphysik, Technische Universität Darmstadt, Darmstadt, Germany
– name: Harvard University, United States of America
Author_xml – sequence: 1
  givenname: Raul
  surname: Mendez
  fullname: Mendez, Raul
– sequence: 2
  givenname: Miriam
  surname: Fritsche
  fullname: Fritsche, Miriam
– sequence: 3
  givenname: Markus
  surname: Porto
  fullname: Porto, Markus
– sequence: 4
  givenname: Ugo
  surname: Bastolla
  fullname: Bastolla, Ugo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20463869$$D View this record in MEDLINE/PubMed
BookMark eNqVkktv1DAUhSNURB_wDxBkh1jM4EdsJywqlaoDIxWomLK2bpybqUeeeIidEf33eB6tOiyQUBa2rr9zfK9zTrOjzneYZa8pGVOu6IeFH_oO3HhlajumhBAl1bPshArBR4qL8ujJ_jg7DWFBSNpW8kV2zEgheSmrk-z26xAhWt_lnyyEfAJr34f8pvcRbZdPvGtsN89nEWrrbLzPUzHeYX619m7Yynybz5bgXH7jV4PbWoWX2fMWXMBX-_Us-zm5ur38Mrr-_nl6eXE9MlIVcYSmEIyoulYFBSGYaYSsCOdctamsamxkCwVpgDU1ojSY-gdZVaQERBCGn2Vvd74r54PeP0jQlKdPcV7SREx3RONhoVe9XUJ_rz1YvS34fq6hj9Y41C1FokpSNAiyMBVCY8AwyQgp080Kktf5_rahXmJjsIs9uAPTw5PO3um5X2tWSiFIkQze7Q16_2vAEPXSBoPOQYd-CDq1LKiiUiRyvCPnkDqzXeuTYWoHGlxak3LQ2lS_YKwsuGBsM-f7A0FiIv6OcxhC0NPZj_9gvx2yb57O_DjsQ4ASUOwA0_sQemwfEUr0JqcPv0Vvcqr3OU2yj3_JjN3lMA1q3b_FfwCUavDt
CitedBy_id crossref_primary_10_1093_bioinformatics_btt530
crossref_primary_10_3389_fevo_2023_1172785
crossref_primary_10_1186_1471_2148_10_178
crossref_primary_10_1371_journal_pcbi_1002839
crossref_primary_10_1093_gbe_evx075
crossref_primary_10_1016_j_sbi_2016_10_020
crossref_primary_10_1039_C4CS00351A
crossref_primary_10_1016_j_celrep_2014_04_057
crossref_primary_10_1002_jez_b_22565
crossref_primary_10_1093_dnares_dss039
crossref_primary_10_1073_pnas_1012918108
crossref_primary_10_1074_jbc_M111_327577
crossref_primary_10_7717_peerj_5549
crossref_primary_10_1093_molbev_msv085
crossref_primary_10_1098_rstb_2013_0091
crossref_primary_10_1002_prot_22964
crossref_primary_10_1371_journal_pgen_1001104
crossref_primary_10_1186_s12862_019_1365_8
crossref_primary_10_1371_journal_pcbi_1007238
crossref_primary_10_1016_j_sbi_2014_05_005
crossref_primary_10_1093_gbe_evv063
crossref_primary_10_1186_s12915_020_00870_9
crossref_primary_10_1098_rsif_2016_0139
crossref_primary_10_1371_journal_pone_0069878
crossref_primary_10_1371_journal_pcbi_1002572
crossref_primary_10_1016_j_ygeno_2013_02_008
crossref_primary_10_3390_biom4010291
crossref_primary_10_3390_life5021301
crossref_primary_10_1111_2041_210X_13341
crossref_primary_10_1186_1756_0500_5_359
crossref_primary_10_1086_677571
Cites_doi 10.1016/S1359-0278(97)00037-0
10.1093/genetics/142.4.1379
10.1371/journal.pgen.0030231
10.1111/j.1420-9101.2008.01672.x
10.1073/pnas.95.8.4458
10.1002/pro.5560041016
10.1073/pnas.95.10.5545
10.1371/journal.pgen.1000520
10.1103/PhysRevE.69.061909
10.1006/jmbi.2001.5226
10.1038/217624a0
10.1007/s00239-002-2323-3
10.1103/PhysRevLett.89.208101
10.1002/prot.1075
10.1063/1.475435
10.1002/prot.10016
10.1103/PhysRevLett.79.3530
10.1038/nrg1672
10.1128/JVI.01394-08
10.1186/1741-7007-5-29
10.1073/pnas.0501865102
10.1073/pnas.0235981100
10.1073/pnas.24.9.372
10.1073/pnas.84.1.166
10.1371/journal.pcbi.1000187
10.1016/j.bbrc.2006.06.054
10.1016/0040-5809(76)90019-8
10.1007/BF02099946
10.1073/pnas.0406744102
10.1073/pnas.192449699
10.1006/jmbi.2001.4949
10.1006/bulm.2002.0314
10.1073/pnas.96.19.10689
10.1093/molbev/msi145
10.1007/BF00623322
10.1007/s00018-003-3096-6
10.1007/s00239-003-0013-4
10.1093/nar/gki242
10.1016/j.jmb.2004.08.086
10.1016/j.jtbi.2005.08.037
10.1073/pnas.96.17.9716
10.1073/pnas.0307827100
10.1371/journal.pgen.1000565
10.1093/nar/gkh834
10.1038/417398a
10.1073/pnas.95.9.4976
10.1186/1471-2148-6-43
10.1534/genetics.109.106492
10.1007/BF02101694
10.1126/science.1098469
10.1016/S0022-2836(02)00442-4
10.1128/MMBR.00035-08
10.1086/280418
10.1016/0301-4622(89)80058-4
10.1017/CBO9780511623486
10.1016/j.tig.2004.07.001
10.1073/pnas.47.8.1141
10.1007/978-1-4757-6285-3
10.1103/PhysRevB.24.2613
10.1080/07391102.2006.10507079
10.1016/S0065-3233(08)60608-7
10.1073/pnas.0705366104
10.1186/1471-2156-5-25
10.1111/j.1365-2958.2006.05150.x
10.1073/pnas.89.13.6015
10.1093/oxfordjournals.molbev.a003857
10.1186/1471-2148-4-42
10.1534/genetics.106.061754
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Mendez et al. 2010
2010 Mendez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mendez R, Fritsche M, Porto M, Bastolla U (2010) Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations. PLoS Comput Biol 6(5): e1000767. doi:10.1371/journal.pcbi.1000767
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Mendez et al. 2010
– notice: 2010 Mendez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mendez R, Fritsche M, Porto M, Bastolla U (2010) Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations. PLoS Comput Biol 6(5): e1000767. doi:10.1371/journal.pcbi.1000767
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1000767
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE



MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Mutation Bias, Protein Stability, Population Size
EISSN 1553-7358
ExternalDocumentID 1313173381
oai_doaj_org_article_f1e07804dea64c9eadcac262008ce07a
PMC2865504
A228435221
20463869
10_1371_journal_pcbi_1000767
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
7X8
5PM
PUEGO
3V.
AAPBV
ABPTK
M0N
M~E
ID FETCH-LOGICAL-c674t-ec45207bb741a552cd56903337f2077bed6fa40da2dbee6ce035a69908aeea5c3
IEDL.DBID M48
ISSN 1553-7358
1553-734X
IngestDate Sun Oct 01 00:20:28 EDT 2023
Wed Aug 27 01:25:40 EDT 2025
Thu Aug 21 14:11:10 EDT 2025
Fri Jul 11 08:16:12 EDT 2025
Tue Jun 10 20:24:20 EDT 2025
Fri Jun 27 05:14:29 EDT 2025
Fri Jun 27 04:21:22 EDT 2025
Mon Jul 21 06:08:29 EDT 2025
Tue Jul 01 04:23:43 EDT 2025
Thu Apr 24 23:06:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Proteins
Genetic Fitness
Species Specificity
Base Composition
Computer Simulation
Bacteria
Models, Genetic
Mutation
Protein Stability
Protein Folding
Bacterial Proteins
Evolution, Molecular
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c674t-ec45207bb741a552cd56903337f2077bed6fa40da2dbee6ce035a69908aeea5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
a: Current address: Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Conceived and designed the experiments: MP UB. Performed the experiments: RM MF UB. Analyzed the data: RM MF MP UB. Wrote the paper: MP UB. Wrote the simulation code: UB.
b: Current address: Institut für Theoretische Physik, Universität zu Köln, Köln, Germany
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pcbi.1000767
PMID 20463869
PQID 733517165
PQPubID 23479
ParticipantIDs plos_journals_1313173381
doaj_primary_oai_doaj_org_article_f1e07804dea64c9eadcac262008ce07a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2865504
proquest_miscellaneous_733517165
gale_infotracacademiconefile_A228435221
gale_incontextgauss_ISR_A228435221
gale_incontextgauss_ISN_A228435221
pubmed_primary_20463869
crossref_primary_10_1371_journal_pcbi_1000767
crossref_citationtrail_10_1371_journal_pcbi_1000767
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References N Petit (ref43) 2009; 22
HJ Muller (ref4) 1932; 66
LA Mirny (ref36) 1998; 95
VN Uversky (ref24) 2003; 60
M Kimura (ref1) 1968; 217
B Derrida (ref74) 1981; 24
PM Sharp (ref45) 2005; 33
Kettler (ref69); 3
U Bastolla (ref30) 2003; 57
M Nilsson (ref52); 64
DM Taverna (ref60) 2002; 315
MA Fares (ref15) 2002; 417
U Bastolla (ref72) 2001; 44
G Parisi (ref38) 2001; 18
SY Ho (ref47) 2005; 22
U Bastolla (ref25) 2006; 6
KB Zeldovich (ref56) 2007; 104
T Itoh (ref10) 2002; 99
EI Shakhnovich (ref75) 1989; 34
V Daubin (ref46) 2004; 306
FLatorre Silva (ref26) 2008
U Bastolla (ref29) 2002; 89
Y Brumer (ref53) 2004; 69
JP McCutcheon (ref68) 2009; 5
S Govindarajan (ref31) 1998; 95
JD Bloom (ref61) 2007; 5
H Musto (ref67) 2006; 347
EP Rocha (ref48) 2006; 239
JW Drake (ref55) 2009; 5
A Babajide (ref33) 1997; 2
JD Bloom (ref62) 2007; 175
NA Moran (ref9) 1996; 95
DJ Lambert (ref11) 1998; 95
M Eigen (ref63) 1971; 58
A Godzik (ref41) 1995; 4
A Muto (ref18) 1987; 84
W Kauzmann (ref23) 1959; 14
CO Wilke (ref59) 2004; 5
DM Taverna (ref3) 2002; 46
E Loh (ref51) 2010
R Guerois (ref73) 2002; 320
NV Dokholyan (ref37) 2001; 312
E van Nimwegen (ref58) 1999; 96
H Naya (ref64) 2002; 55
RA Fisher (ref6) 1958
G D'Onofrio (ref22) 1999; 238
HJ Bussemaker (ref34) 1997; 79
J Berg (ref16) 2004; 4
G Tiana (ref35) 1998; 108
T Banerjee (ref71) 2006; 23
GI Peterson (ref49) 2009
U Bastolla (ref12) 2004; 343
M Hasegawa (ref28) 1985; 22
MA Fares (ref66) 2004; 20
M Kimura (ref2) 1983
MA DePristo (ref39) 2005; 6(9)
OG Berg (ref42) 1996; 142
T Ohta (ref7) 1976; 10
P Chen (ref57) 2009; 183
E Bornberg-Bauer (ref32) 1999; 96
SG Wright (ref5) 1938; 24
E Duarte (ref13) 1992; 89
RC van Ham (ref65) 2003; 100
G Bernardi (ref21) 1985; 24
D Graur (ref8) 2000
M dos Reis (ref44) 2004; 32
E Denamur (ref50); 60
Scanlan (ref70); 73
N Sueoka (ref20) 1961; 47
IS Novella (ref14) 2008; 82
JD Bloom (ref40) 2005; 102
SL Chen (ref19) 2004; 101
J Clune (ref54) 2008; 4
G Sella (ref17) 2005; 102
R Durrett (ref27) 2002
References_xml – volume: 2
  start-page: 261
  year: 1997
  ident: ref33
  article-title: Neutral networks in protein space.
  publication-title: Fol Des
  doi: 10.1016/S1359-0278(97)00037-0
– volume: 142
  start-page: 1379
  year: 1996
  ident: ref42
  article-title: Selection Intensity for Codon Bias and the Effective Population Size of Escherichia coli.
  publication-title: Genetics
  doi: 10.1093/genetics/142.4.1379
– volume: 3
  start-page: e231
  ident: ref69
  article-title: Patterns and implications of gene gain and loss in the evolution of Prochlorococcus.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030231
– volume: 22
  start-page: 515
  year: 2009
  ident: ref43
  article-title: Selection efficiency and effective population size in Drosophila species.
  publication-title: J Evol Biol
  doi: 10.1111/j.1420-9101.2008.01672.x
– volume: 95
  start-page: 4458
  year: 1998
  ident: ref11
  article-title: Deleterious mutations destabilize ribosomal RNA in endosymbiotic bacteria.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.8.4458
– volume: 4
  start-page: 2107
  year: 1995
  ident: ref41
  article-title: Are proteins ideal mixtures of amino acids? Analysis of energy parameter sets.
  publication-title: Protein Sci
  doi: 10.1002/pro.5560041016
– volume: 95
  start-page: 5545
  year: 1998
  ident: ref31
  article-title: On the thermodynamic hypothesis of protein folding.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.10.5545
– year: 2010
  ident: ref51
  article-title: Optimization of DNA polymerase mutation rates during bacterial evolution.
  publication-title: Proc Natl Acad Sci U.S.A.
– volume: 5
  start-page: e1000520
  year: 2009
  ident: ref55
  article-title: Avoiding dangerous missense: thermophiles display especially low mutation rates.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000520
– volume: 69
  start-page: 061909
  year: 2004
  ident: ref53
  article-title: Host-parasite coevolution and optimal mutation rates for semiconservative quasispecies.
  publication-title: Phys Rev E Stat
  doi: 10.1103/PhysRevE.69.061909
– volume: 315
  start-page: 479
  year: 2002
  ident: ref60
  article-title: Why are proteins so robust to site mutations?
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.5226
– volume: 217
  start-page: 624
  year: 1968
  ident: ref1
  article-title: Evolutionary rate at the molecular level.
  publication-title: Nature
  doi: 10.1038/217624a0
– volume: 55
  start-page: 260
  year: 2002
  ident: ref64
  article-title: Aerobiosis increases the genomic guanine plus cytosine content (GC%) in prokaryotes.
  publication-title: J Mol Evol
  doi: 10.1007/s00239-002-2323-3
– volume: 89
  start-page: 208101
  year: 2002
  ident: ref29
  article-title: Lack of self-averaging in neutral evolution of proteins.
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.89.208101
– volume: 44
  start-page: 79
  year: 2001
  ident: ref72
  article-title: How to guarantee optimal stability for most representative structures in the protein data bank.
  publication-title: Proteins
  doi: 10.1002/prot.1075
– volume: 108
  start-page: 757
  year: 1998
  ident: ref35
  article-title: Folding and misfolding of designed proteinlike chains with mutations.
  publication-title: J Chem Phys
  doi: 10.1063/1.475435
– volume: 46
  start-page: 105
  year: 2002
  ident: ref3
  article-title: Why are proteins marginally stable?
  publication-title: Proteins
  doi: 10.1002/prot.10016
– volume: 79
  start-page: 3530
  year: 1997
  ident: ref34
  article-title: Thermodynamic stability of folded proteins against mutations.
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.79.3530
– volume: 6(9)
  start-page: 678
  year: 2005
  ident: ref39
  article-title: Missense meanderings in sequence space: a biophysical view of protein evolution.
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1672
– year: 2000
  ident: ref8
  article-title: Fundamentals of molecular evolution
– year: 2008
  ident: ref26
  article-title: Genomic Changes in Bacteria: From Free-Living to Endosymbiotic Life. Structural Approaches to Sequence Evolution.
– volume: 238
  start-page: 3
  year: 1999
  ident: ref22
  article-title: The correlation of protein hydropathy with the base composition of coding sequences.
  publication-title: Gene 1999
– volume: 82
  start-page: 12589
  year: 2008
  ident: ref14
  article-title: A linear relationship between fitness and the logarithm of the critical bottleneck size in vesicular stomatitis virus populations.
  publication-title: J Virol
  doi: 10.1128/JVI.01394-08
– year: 2009
  ident: ref49
  article-title: Quantitative prediction of molecular clock and Ka/Ks at short timescales.
  publication-title: Mol Biol Evol
– volume: 5
  start-page: 29
  year: 2007
  ident: ref61
  article-title: Evolution favors protein mutational robustness in sufficiently large populations.
  publication-title: BMC Biology
  doi: 10.1186/1741-7007-5-29
– volume: 102
  start-page: 9541
  year: 2005
  ident: ref17
  article-title: The application of statistical physics to evolutionary biology.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0501865102
– volume: 100
  start-page: 581
  year: 2003
  ident: ref65
  article-title: Reductive genome evolution in Buchnera aphidicola.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0235981100
– volume: 24
  start-page: 372
  year: 1938
  ident: ref5
  article-title: The distribution of gene frequencies in populations of polyploids.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.24.9.372
– volume: 84
  start-page: 166
  year: 1987
  ident: ref18
  article-title: The guanine and cytosine content of genomic DNA and bacterial evolution.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.1.166
– volume: 4
  start-page: e1000187
  year: 2008
  ident: ref54
  article-title: Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes.
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1000187
– volume: 347
  start-page: 1
  year: 2006
  ident: ref67
  article-title: Genomic GC level, optimal growth temperature, and genome size in prokaryotes.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2006.06.054
– volume: 10
  start-page: 254
  year: 1976
  ident: ref7
  article-title: Role of very slightly deleterious mutations in molecular evolution and polymorphism.
  publication-title: Theor Pop Biol
  doi: 10.1016/0040-5809(76)90019-8
– volume: 24
  start-page: 1
  year: 1985
  ident: ref21
  article-title: Codon usage and genome composition.
  publication-title: J Mol Evol
  doi: 10.1007/BF02099946
– volume: 102
  start-page: 606
  year: 2005
  ident: ref40
  article-title: Thermodynamic prediction of protein neutrality.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0406744102
– volume: 99
  start-page: 12944
  year: 2002
  ident: ref10
  article-title: Acceleration of genomic evolution caused by enhanced mutation rate in endocellular bacteria. Proc.
  publication-title: Natl Acad Sci USA
  doi: 10.1073/pnas.192449699
– volume: 312
  start-page: 289
  year: 2001
  ident: ref37
  article-title: Understanding hierarchical protein evolution from first principles.
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2001.4949
– volume: 64
  start-page: 1033
  ident: ref52
  article-title: Optimal mutation rates in dynamic environments.
  publication-title: Bull Math Biol
  doi: 10.1006/bulm.2002.0314
– volume: 96
  start-page: 10689
  year: 1999
  ident: ref32
  article-title: Modeling evolutionary landscapes: Mutational stability, topology, and superfunnels in sequence space.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.19.10689
– volume: 22
  start-page: 1561
  year: 2005
  ident: ref47
  article-title: Time dependency of molecular rate estimates and systematic overestimation of recent divergence times.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msi145
– volume: 58
  start-page: 465
  year: 1971
  ident: ref63
  article-title: Selforganization of matter and the evolution of biological macromolecules.
  publication-title: Naturwissenschaften
  doi: 10.1007/BF00623322
– volume: 60
  start-page: 1852
  year: 2003
  ident: ref24
  article-title: Protein folding revisited. A polypeptide chain at the folding – misfolding – nonfolding cross-roads: Which way to go?
  publication-title: Cell Mol Life Sci
  doi: 10.1007/s00018-003-3096-6
– volume: 57
  start-page: S103
  year: 2003
  ident: ref30
  article-title: Statistical properties of neutral evolution.
  publication-title: J Mol Evol
  doi: 10.1007/s00239-003-0013-4
– volume: 33
  start-page: 1141
  year: 2005
  ident: ref45
  article-title: Variation in the strength of selected codon usage bias among bacteria.
  publication-title: Nucl Ac Res
  doi: 10.1093/nar/gki242
– volume: 95
  start-page: 4458
  year: 1996
  ident: ref9
  article-title: Accelerated evolution and Muller's ratchet in endosymbiotic bacteria.
  publication-title: Proc Natl Acad Sci USA
– volume: 343
  start-page: 1451
  year: 2004
  ident: ref12
  article-title: Genomic determinants of protein folding thermodynamics.
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2004.08.086
– volume: 239
  start-page: 226
  year: 2006
  ident: ref48
  article-title: Comparisons of dN/dS are time dependent for closely related bacterial genomes.
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2005.08.037
– volume: 96
  start-page: 9716
  year: 1999
  ident: ref58
  article-title: Neutral evolution of mutational robustness.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.17.9716
– volume: 101
  start-page: 3480
  year: 2004
  ident: ref19
  article-title: Codon usage between genomes is constrained by genome-wide mutational processes.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0307827100
– volume: 5
  start-page: e1000565
  year: 2009
  ident: ref68
  article-title: Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000565
– volume: 32
  start-page: 5036
  year: 2004
  ident: ref44
  article-title: Solving the riddle of codon usage preferences: A test for translational selection.
  publication-title: Nucl Ac Res
  doi: 10.1093/nar/gkh834
– volume: 417
  start-page: 398
  year: 2002
  ident: ref15
  article-title: Endosymbiotic bacteria: GroEL buffers against deleterious mutations.
  publication-title: Nature
  doi: 10.1038/417398a
– volume: 95
  start-page: 4976
  year: 1998
  ident: ref36
  article-title: How evolution makes proteins fold quickly.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.95.9.4976
– year: 1958
  ident: ref6
  article-title: The genetical theory of natural selection
– volume: 6
  start-page: 43
  year: 2006
  ident: ref25
  article-title: A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-6-43
– volume: 183
  start-page: 639
  year: 2009
  ident: ref57
  article-title: Lethal mutagenesis in viruses and bacteria.
  publication-title: Genetics
  doi: 10.1534/genetics.109.106492
– volume: 22
  start-page: 160
  year: 1985
  ident: ref28
  article-title: Dating the human-ape splitting by a molecular clock of mitochondrial DNA.
  publication-title: J Mol Evol
  doi: 10.1007/BF02101694
– volume: 306
  start-page: 978
  year: 2004
  ident: ref46
  article-title: Comment on “The Origins of Genome Complexity”.
  publication-title: Science
  doi: 10.1126/science.1098469
– volume: 320
  start-page: 369
  year: 2002
  ident: ref73
  article-title: Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations.
  publication-title: J Mol Biol
  doi: 10.1016/S0022-2836(02)00442-4
– volume: 73
  start-page: 249
  ident: ref70
  article-title: Ecological Genomics of Marine Picocyanobacteria.
  publication-title: Microbiology and Molecular Biology Reviews
  doi: 10.1128/MMBR.00035-08
– volume: 66
  start-page: 118
  year: 1932
  ident: ref4
  article-title: Some Genetic Aspects of Sex.
  publication-title: American Naturalist
  doi: 10.1086/280418
– volume: 34
  start-page: 187
  year: 1989
  ident: ref75
  article-title: Formation of unique structure in polypeptide chains. Theoretical investigation with the aid of a replica approach.
  publication-title: Biophys Chem
  doi: 10.1016/0301-4622(89)80058-4
– year: 1983
  ident: ref2
  article-title: The neutral theory of molecular evolution
  doi: 10.1017/CBO9780511623486
– volume: 20
  start-page: 413
  year: 2004
  ident: ref66
  article-title: GroEL and the maintenance of bacterial endosymbiosis.
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2004.07.001
– volume: 47
  start-page: 469
  year: 1961
  ident: ref20
  article-title: Correlation between base composition of the deoxyribonucleic acid and amino acid composition of proteins.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.47.8.1141
– year: 2002
  ident: ref27
  article-title: Probability models for DNA sequence evolution
  doi: 10.1007/978-1-4757-6285-3
– volume: 24
  start-page: 2613
  year: 1981
  ident: ref74
  article-title: Random Energy Model: an exactly solvable model of disordered systems.
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.24.2613
– volume: 23
  start-page: 547
  year: 2006
  ident: ref71
  article-title: Gene expression level shapes the amino acid usages in Prochlorococcus marinus MED4.
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2006.10507079
– volume: 14
  start-page: 1
  year: 1959
  ident: ref23
  article-title: Some factors in the interpretation of protein denaturation.
  publication-title: Adv Protein Chem
  doi: 10.1016/S0065-3233(08)60608-7
– volume: 104
  start-page: 16152
  year: 2007
  ident: ref56
  article-title: Protein stability imposes limits on organism complexity and speed of molecular evolution.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0705366104
– volume: 5
  start-page: 25
  year: 2004
  ident: ref59
  article-title: Molecular clock in neutral protein evolution.
  publication-title: BMC Genetics
  doi: 10.1186/1471-2156-5-25
– volume: 60
  start-page: 820
  ident: ref50
  article-title: Evolution of mutation rates in bacteria.
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2006.05150.x
– volume: 89
  start-page: 6015
  year: 1992
  ident: ref13
  article-title: Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet.
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.13.6015
– volume: 18
  start-page: 750
  year: 2001
  ident: ref38
  article-title: Structural constraints and emergence of sequence patterns in protein evolution.
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003857
– volume: 4
  start-page: 42
  year: 2004
  ident: ref16
  article-title: Adaptive evolution of transcription factor binding sites.
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-4-42
– volume: 175
  start-page: 255
  year: 2007
  ident: ref62
  article-title: Thermodynamics of neutral protein evolution.
  publication-title: Genetics
  doi: 10.1534/genetics.106.061754
SSID ssj0035896
Score 2.1223276
Snippet Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine...
  Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1000767
SubjectTerms Analysis
Bacteria
Bacteria - genetics
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Composition
Biophysics/Protein Folding
Codon
Computational Biology/Evolutionary Modeling
Computer Simulation
Evolution
Evolution, Molecular
Evolutionary Biology/Evolutionary and Comparative Genetics
Genetic aspects
Genetic Fitness
Models, Genetic
Molecular Biology/Molecular Evolution
Mutation
Mutation (Biology)
Physiological aspects
Population
Prokaryotes
Protein Folding
Protein Stability
Proteins
Proteins - chemistry
Proteins - genetics
Species Specificity
Studies
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA6yIPgi_r7qKUEEn-q1TdJ0H0_xOAXvQe9g30KSTnVhbZfr7sH99zeTtOUqyr1I35IpZSbTzDdk8g1j76QSHlFqkdYl6FQ6oVILdZFCk9dCAsXAUCB7Vp5eyK8rtbrV6otqwiI9cDTcUZNDRiQ5NdhS-iUq7q0nFvWs8jgToBHGvDGZinuwUFXozEVNcVIt5Gq4NCd0fjSs0Yetd2uqEcBEXs-CUuDun3boxXbT9X-Dn39WUd4KSyeP2MMBT_LjqMdjdg_aJ-x-7DB5_ZSdf9vHs3bu1rbnjb3qLnseyBnWLW_i0RNHhBhqZK85DiIi5HA1eCTvGt7_tpsN306dvvpn7OLk8_mn03RopJD6UstdCl6qItPOIXywShW-VpgUCyF0g8PaQV02Vma1LWoHUFILMWVLjFOVBbDKi-ds0XYtHDCegVegMweNxkTKeodCHveMKlsCYhGVMDFa0viBZZyaXWxMODrTmG1Ewxiyvxnsn7B0emsbWTbukP9IizTJEkd2GEDPMYPnmLs8J2FvaYkNsWC0VGbz0-773nz5cWaOC4zaBE3zfwp9nwm9H4SaDpXFz8SrDWgyYteaSR6QP41K9agiPlogbkoYH33M4C9O5za2hW7fG5xWxGqExn0RXW5SvCDCt6pcJkzPnHFmmflMu_4VWMTDleRMvvwfpnzFHoxVFVl-yBa7yz28RrC2c2_Cf3kDtas-yg
  priority: 102
  providerName: Directory of Open Access Journals
Title Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations
URI https://www.ncbi.nlm.nih.gov/pubmed/20463869
https://www.proquest.com/docview/733517165
https://pubmed.ncbi.nlm.nih.gov/PMC2865504
https://doaj.org/article/f1e07804dea64c9eadcac262008ce07a
http://dx.doi.org/10.1371/journal.pcbi.1000767
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBdtymAvY9_1PoIYgz25OJZkOQ9jJFuzbtAwugbyJmRZbgOencVJWf773ckfzKNlI-CAdHZ855PvlJN-P0LecsEMZKmhn0ZW-jxhwtc2DX2bjVLGLcZAt0B2Hp0t-NelWB6QlrO1MWB169QO-aQWm_zk18_9Bxjw7x1rgxy1J52sTbLCqj9MzeUhOYLYJJHM4Zx3dQUmYsfYhWQ5vmR82Wymu-sqvWDlMP27N_dgnZfVbWnp36sr_whXs4fkQZNn0kntGI_IgS0ek3s18-T-Cbk839U1eJqsdEUzfVNuKupAG1YFzeqSFIXM0a2d3VNohEyR2pvGU2mZ0eqHznO67hjAqqdkMTu9_HjmNwQLvokk3_rWcBEGMkkgrdBChCYVMFlmjMkMmmVi0yjTPEh1mCbWRkgtJnQE8SvW1mph2DMyKMrCHhMaWCOsDBKbSZhgaZOAkIF3SRyMLeQowiOstaQyDfo4kmDkypXUJMxCasMotL9q7O8RvztrXaNv_EN-ig-pk0XsbNdQbq5UMxRVNrIBwi6lVkfcjGEoGW0Qlx_uGHq0R97gI1aIjlHg8psrvasq9eX7XE1CiOaYso7uFLroCb1rhLISlIWfqbc8gMkQdasneYz-1CpVgYrwkQzyKY_Q1scUDH2s5-jClrtKQbdAtCMw7vPa5TrFQwSCi6OxR2TPGXuW6fcUq2uHLu62Kgf8xf8o-JLcb1dTBKNXZLDd7OxrSNK2yZAcyqWEYzz7PCRHk-mn6Qy-p6fzbxdD98fH0I3M33yEQrg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutation+bias+favors+protein+folding+stability+in+the+evolution+of+small+populations&rft.jtitle=PLoS+computational+biology&rft.au=Mendez%2C+Raul&rft.au=Fritsche%2C+Miriam&rft.au=Porto%2C+Markus&rft.au=Bastolla%2C+Ugo&rft.date=2010-05-01&rft.pub=Public+Library+of+Science&rft.issn=1553-734X&rft.volume=6&rft.issue=5&rft_id=info:doi/10.1371%2Fjournal.pcbi.1000767&rft.externalDBID=ISR&rft.externalDocID=A228435221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon