Using probabilistic genotypes in linkage analysis of polyploids

Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in...

Full description

Saved in:
Bibliographic Details
Published inTheoretical and applied genetics Vol. 134; no. 8; pp. 2443 - 2457
Main Authors Liao, Yanlin, Voorrips, Roeland E., Bourke, Peter M., Tumino, Giorgio, Arens, Paul, Visser, Richard G. F., Smulders, Marinus J. M., Maliepaard, Chris
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato ( Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.
AbstractList Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato ( Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.
In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.KEY MESSAGEIn polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.
Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.
In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.
Key message
Key messageIn polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps.Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.
Audience Academic
Author Visser, Richard G. F.
Arens, Paul
Liao, Yanlin
Voorrips, Roeland E.
Tumino, Giorgio
Bourke, Peter M.
Smulders, Marinus J. M.
Maliepaard, Chris
Author_xml – sequence: 1
  givenname: Yanlin
  surname: Liao
  fullname: Liao, Yanlin
  organization: Wageningen University and Research Plant Breeding
– sequence: 2
  givenname: Roeland E.
  surname: Voorrips
  fullname: Voorrips, Roeland E.
  organization: Wageningen University and Research Plant Breeding
– sequence: 3
  givenname: Peter M.
  surname: Bourke
  fullname: Bourke, Peter M.
  organization: Wageningen University and Research Plant Breeding
– sequence: 4
  givenname: Giorgio
  surname: Tumino
  fullname: Tumino, Giorgio
  organization: Wageningen University and Research Plant Breeding
– sequence: 5
  givenname: Paul
  surname: Arens
  fullname: Arens, Paul
  organization: Wageningen University and Research Plant Breeding
– sequence: 6
  givenname: Richard G. F.
  surname: Visser
  fullname: Visser, Richard G. F.
  organization: Wageningen University and Research Plant Breeding
– sequence: 7
  givenname: Marinus J. M.
  surname: Smulders
  fullname: Smulders, Marinus J. M.
  organization: Wageningen University and Research Plant Breeding
– sequence: 8
  givenname: Chris
  orcidid: 0000-0002-7319-5270
  surname: Maliepaard
  fullname: Maliepaard, Chris
  email: chris.maliepaard@wur.nl
  organization: Wageningen University and Research Plant Breeding
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34032878$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhS1URKeFP8ACRWIDixS_7WyoqopHpUpIQNeWndjBxWOHOEEz_x6HKS1ToSIvLNnfudc-9xyBg5iiBeA5gicIQvEmQ4gwriFGNSSS0HrzCKwQJbjGmOIDsIKQwpoJhg_BUc7XEELMIHkCDgmFBEshV-D0KvvYV8OYjDY--Dz5tuptTNN2sLnysQo-fte9rXTUYZt9rpKrhhS2Q0i-y0_BY6dDts9u9mNw9f7d1_OP9eWnDxfnZ5d1ywWdats4xGXrLOLadUQYIbhzHTOma5CFjaENFEwYyh1zSFpmsG5k-RRiwkpuyDF4u6s7zGZtu9bGadRBDaNf63GrkvZq_yb6b6pPP5XEpRWSpcCrmwJj-jHbPKm1z60NQUeb5qwwJ5xiLBn6P8pIMZhJuqAv76HXaR6LUwvFYMMQF_iO6nWwykeXyhPbpag641xSgTBZqJN_UGV1du3bMnrny_me4PWeoDCT3Uy9nnNWF18-77Mv_vbv1rg_SSgA3gHtmHIerbtFEFRL3NQubqrETf2Om9oUkbwnav2kJ5-WGfjwsJTspLn0ib0d75x7QPULMMrnRQ
CitedBy_id crossref_primary_10_1007_s00122_023_04485_w
crossref_primary_10_3389_fpls_2021_793679
crossref_primary_10_1093_gigascience_giad092
Cites_doi 10.1093/bioinformatics/bty371
10.1534/g3.118.200913
10.1186/s12859-019-2703-y
10.1534/genetics.115.181008
10.1371/journal.pone.0062355
10.1534/g3.119.400378
10.1007/s00122-013-2166-x
10.1371/journal.pone.0030906
10.1007/s00122-015-2593-y
10.3835/plantgenome2019.01.0002
10.1186/1471-2105-13-248
10.1007/s00122-016-2845-5
10.1038/s41588-020-00717-7
10.1371/journal.pone.0019379
10.1038/nature10158
10.1007/s00122-016-2761-8
10.1534/genetics.118.301405
10.1534/genetics.117.300627
10.1186/1471-2105-12-172
10.1534/g3.120.401433
10.1007/s00122-016-2768-1
10.3389/fpls.2018.00513
10.32614/CRAN.package.netgwas
10.1007/s00122-016-2734-y
10.1093/jhered/esx022
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
COPYRIGHT 2021 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: COPYRIGHT 2021 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7SS
7TK
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
7S9
L.6
5PM
DOI 10.1007/s00122-021-03834-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health & Medical Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
ProQuest Biological Science
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE


AGRICOLA
ProQuest Central Student
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1432-2242
EndPage 2457
ExternalDocumentID PMC8277618
A668471232
34032878
10_1007_s00122_021_03834_x
Genre Journal Article
GrantInformation_xml – fundername: TKI
  grantid: BO-68-001-001
– fundername: Chinese Student Scholarship
  grantid: 201707720073
– fundername: TKI
  grantid: BO-26.03-009-004; BO-50-002-022
– fundername: TKI
  grantid: BO-50-002-022
– fundername: TKI
  grantid: BO-26.03-009-004
– fundername: ;
  grantid: BO-68-001-001
– fundername: ;
  grantid: 201707720073
– fundername: ;
  grantid: BO-26.03-009-004; BO-50-002-022
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IFM
IHE
IHR
IJ-
IKXTQ
INH
INR
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAS
LK8
LLZTM
M0L
M1P
M4Y
M7P
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RRX
RSV
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7S
Z7U
Z7V
Z7W
Z7Y
Z83
Z85
Z87
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8W
Z8Z
Z91
ZMTXR
ZOVNA
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7SS
7TK
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c674t-e9f168cfe16afd37b776ffd5bbd91e09b490757b46f5f18e5b2a98383157e86b3
IEDL.DBID 7X7
ISSN 0040-5752
1432-2242
IngestDate Thu Aug 21 14:32:20 EDT 2025
Tue Aug 05 09:49:25 EDT 2025
Thu Jul 10 21:56:01 EDT 2025
Mon Aug 25 14:14:51 EDT 2025
Tue Jun 17 21:12:44 EDT 2025
Tue Jun 10 20:27:27 EDT 2025
Fri Jun 27 04:40:59 EDT 2025
Wed Feb 19 02:09:51 EST 2025
Tue Jul 01 04:36:24 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Fri Feb 21 02:48:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c674t-e9f168cfe16afd37b776ffd5bbd91e09b490757b46f5f18e5b2a98383157e86b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Communicated by Jeffrey Endelman.
ORCID 0000-0002-7319-5270
OpenAccessLink https://doi.org/10.1007/s00122-021-03834-x
PMID 34032878
PQID 2550951672
PQPubID 54040
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8277618
proquest_miscellaneous_2636422851
proquest_miscellaneous_2532245841
proquest_journals_2550951672
gale_infotracmisc_A668471232
gale_infotracacademiconefile_A668471232
gale_incontextgauss_ISR_A668471232
pubmed_primary_34032878
crossref_primary_10_1007_s00122_021_03834_x
crossref_citationtrail_10_1007_s00122_021_03834_x
springer_journals_10_1007_s00122_021_03834_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle International Journal of Plant Breeding Research
PublicationTitle Theoretical and applied genetics
PublicationTitleAbbrev Theor Appl Genet
PublicationTitleAlternate Theor Appl Genet
PublicationYear 2021
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
References SpindelJWrightMChenCCobbJGageJHarringtonSLorieuxMAhmadiNMcCouchSBridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populationsTheor Appl Genet201312611269927161:CAS:528:DC%2BC3sXht1emsLnN10.1007/s00122-013-2166-x
Behrouzi P, Arends D, Wit EC (2017) Netgwas: an R package for network-based genome-wide association studies
SerangOMollinariMGarciaAAFEfficient exact maximum a posteriori computation for bayesian SNP genotyping in polyploids”PLoS ONE20127211310.1371/journal.pone.0030906
GerardDFerrãoLFVGarciaAAFStephensMGenotyping polyploids from messy sequencing dataGenetics2018210114810.1534/genetics.118.301405
Yamamoto E, Shirasawa K, Kimura T, Monden Y, Tanaka M, Isobe S (2020) Genetic mapping in autohexaploid sweet potato with low-coverage NGS-based genotyping data. G3 Genes Genom Genet 10(8):2661–2670
Matias FI, Meireles KGX, Nagamatsu ST, Barrios SCL, do Valle CB, Carazzolle MF, Fritsche-Neto R, Endelman JB (2019) Expected genotype quality and diploidized marker data from genotyping-by-sequencing of Urochloa spp. tetraploids. Plant Genome 12(3):190002
Potato Genome Sequencing ConsortiumGenome sequence and analysis of the tuber crop potatoNature2011475735518919510.1038/nature10158
Van OoijenJWJoinMap ® 4 software for the calculation of genetic linkage maps in experimental populations2006Wageningen, NetherlandsJoinMap Kyazma BV
UitdewilligenJGAMLWoltersAMAD’hoopBBBormTJAVisserRGFvan EckHJA next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potatoPLoS ONE201385e623551:CAS:528:DC%2BC3sXnvVyisL0%3D10.1371/journal.pone.0062355
VoorripsREMaliepaardCAThe simulation of meiosis in diploid and tetraploid organisms using various genetic models”BMC Bioinform20121324810.1186/1471-2105-13-248
Zych K, Gort G, Maliepaard CA, Jansen RC, Voorrips RE (2019) FitTetra 2.0: improved genotype calling for tetraploids with multiple population and parental data support. BMC Bioinform 20(1):148
HackettCABoskampBVogogiasAPreedyKFMilneITetraploidSNPMap: software for linkage analysis and QTL mapping in autotetraploid populations using SNP dosage dataJ Hered201710844384421:CAS:528:DC%2BC1MXjtVaqu70%3D10.1093/jhered/esx022
VoorripsREGortGVosmanBGenotype calling in tetraploid species from bi-allelic marker data using mixture modelsBMC Bioinform20111217210.1186/1471-2105-12-172
Mollinari M, Garcia AAF (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden markov models. G3 Genes Genom Genet 9(10):3297–3314
PreedyKFHackettCAA rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scalingTheor Appl Genet2016129211721321:STN:280:DC%2BC2s3oslKntQ%3D%3D10.1007/s00122-016-2761-8
BourkePMVoorripsREVisserRGFMaliepaardCTools for genetic studies in experimental populations of polyploidsFront Plant Sci2018951310.3389/fpls.2018.00513
Clark L, Lipka A, Sacks E (2019) PolyRAD: genotype calling with uncertainty from sequencing data in polyploids and diploids. G3 Genes Genom Genet 9(3):663–73
Bourke PM, Van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C (2018a) PolymapR: linkage analysis and genetic map construction from F1populations of outcrossing polyploids.  Bioinformatics 34(20):3496–3502
SchmitzCCariACoombsJJDouchesDSBethkePCPaltaJPNovyRGEndelmanJBAutomated tetraploid genotype calling by hierarchical clusteringTheor Appl Genet2017130471772610.1007/s00122-016-2845-5
VosPGUitdewilligenJGAMLVoorripsREVisserRGFvan EckHJDevelopment and analysis of a 20K SNP array for potato (Solanum Tuberosum): an insight into the breeding historyTheor Appl Genet201512812238724011:CAS:528:DC%2BC2MXhtlOhtLjP10.1007/s00122-015-2593-y
Zhou C, Olukolu B, Gemenet D, Wu S, Gruneberg W, Cao MD, Fei Z, Zeng ZB, George A, Khan A, Yencho C, Coin L (2020) Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outcrossed mapping populations. Nat Genet 52(11):1256–1264
BiltonTPSchofieldMRBlackMAChagnéDWilcoxPLDoddsKGAccounting for errors in low coverage high-throughput sequencing data when constructing genetic maps using biparental outcrossed populationsGenetics20182091657610.1534/genetics.117.300627
TuminoGVoorripsRERizzaFBadeckFWMorciaCGhizzoniRGermeierCUPauloMJTerziVSmuldersMJMPopulation structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratiosTheor Appl Genet20161299171117241:CAS:528:DC%2BC28XhtVWntr7J10.1007/s00122-016-2734-y
ElshireRJGlaubitzJCSunQPolandJAKawamotoKBucklerESMitchellSEA robust, simple genotyping-by-sequencing (GBS) approach for high diversity speciesPLoS ONE201165e193791:CAS:528:DC%2BC3MXmtVKru7Y%3D10.1371/journal.pone.0019379
BourkePMVoorripsREKranenburgTJansenJVisserRGFMaliepaardCIntegrating haplotype-specific linkage maps in tetraploid species using SNP markersTheor Appl Genet201612911221122261:CAS:528:DC%2BC28XhsVWmtrvK10.1007/s00122-016-2768-1
BourkePMVoorripsREVisserRGFMaliepaardCThe double-reduction landscape in tetraploid potato as revealed by a high-density linkage mapGenetics201520185386310.1534/genetics.115.181008
O Serang (3834_CR16) 2012; 7
C Schmitz (3834_CR15) 2017; 130
PM Bourke (3834_CR5) 2018; 9
CA Hackett (3834_CR10) 2017; 108
PG Vos (3834_CR23) 2015; 128
JW Van Ooijen (3834_CR20) 2006
3834_CR24
3834_CR25
3834_CR26
RE Voorrips (3834_CR21) 2012; 13
KF Preedy (3834_CR14) 2016; 129
PM Bourke (3834_CR3) 2015; 201
3834_CR1
G Tumino (3834_CR18) 2016; 129
3834_CR7
3834_CR6
PM Bourke (3834_CR4) 2016; 129
3834_CR11
D Gerard (3834_CR9) 2018; 210
3834_CR12
Potato Genome Sequencing Consortium (3834_CR13) 2011; 475
JGAML Uitdewilligen (3834_CR19) 2013; 8
RE Voorrips (3834_CR22) 2011; 12
RJ Elshire (3834_CR8) 2011; 6
J Spindel (3834_CR17) 2013; 126
TP Bilton (3834_CR2) 2018; 209
References_xml – reference: Matias FI, Meireles KGX, Nagamatsu ST, Barrios SCL, do Valle CB, Carazzolle MF, Fritsche-Neto R, Endelman JB (2019) Expected genotype quality and diploidized marker data from genotyping-by-sequencing of Urochloa spp. tetraploids. Plant Genome 12(3):190002
– reference: VoorripsREMaliepaardCAThe simulation of meiosis in diploid and tetraploid organisms using various genetic models”BMC Bioinform20121324810.1186/1471-2105-13-248
– reference: Van OoijenJWJoinMap ® 4 software for the calculation of genetic linkage maps in experimental populations2006Wageningen, NetherlandsJoinMap Kyazma BV
– reference: SerangOMollinariMGarciaAAFEfficient exact maximum a posteriori computation for bayesian SNP genotyping in polyploids”PLoS ONE20127211310.1371/journal.pone.0030906
– reference: Zych K, Gort G, Maliepaard CA, Jansen RC, Voorrips RE (2019) FitTetra 2.0: improved genotype calling for tetraploids with multiple population and parental data support. BMC Bioinform 20(1):148
– reference: VosPGUitdewilligenJGAMLVoorripsREVisserRGFvan EckHJDevelopment and analysis of a 20K SNP array for potato (Solanum Tuberosum): an insight into the breeding historyTheor Appl Genet201512812238724011:CAS:528:DC%2BC2MXhtlOhtLjP10.1007/s00122-015-2593-y
– reference: VoorripsREGortGVosmanBGenotype calling in tetraploid species from bi-allelic marker data using mixture modelsBMC Bioinform20111217210.1186/1471-2105-12-172
– reference: Zhou C, Olukolu B, Gemenet D, Wu S, Gruneberg W, Cao MD, Fei Z, Zeng ZB, George A, Khan A, Yencho C, Coin L (2020) Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outcrossed mapping populations. Nat Genet 52(11):1256–1264
– reference: BourkePMVoorripsREKranenburgTJansenJVisserRGFMaliepaardCIntegrating haplotype-specific linkage maps in tetraploid species using SNP markersTheor Appl Genet201612911221122261:CAS:528:DC%2BC28XhsVWmtrvK10.1007/s00122-016-2768-1
– reference: BourkePMVoorripsREVisserRGFMaliepaardCTools for genetic studies in experimental populations of polyploidsFront Plant Sci2018951310.3389/fpls.2018.00513
– reference: UitdewilligenJGAMLWoltersAMAD’hoopBBBormTJAVisserRGFvan EckHJA next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potatoPLoS ONE201385e623551:CAS:528:DC%2BC3sXnvVyisL0%3D10.1371/journal.pone.0062355
– reference: BourkePMVoorripsREVisserRGFMaliepaardCThe double-reduction landscape in tetraploid potato as revealed by a high-density linkage mapGenetics201520185386310.1534/genetics.115.181008
– reference: Bourke PM, Van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C (2018a) PolymapR: linkage analysis and genetic map construction from F1populations of outcrossing polyploids.  Bioinformatics 34(20):3496–3502
– reference: PreedyKFHackettCAA rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scalingTheor Appl Genet2016129211721321:STN:280:DC%2BC2s3oslKntQ%3D%3D10.1007/s00122-016-2761-8
– reference: ElshireRJGlaubitzJCSunQPolandJAKawamotoKBucklerESMitchellSEA robust, simple genotyping-by-sequencing (GBS) approach for high diversity speciesPLoS ONE201165e193791:CAS:528:DC%2BC3MXmtVKru7Y%3D10.1371/journal.pone.0019379
– reference: BiltonTPSchofieldMRBlackMAChagnéDWilcoxPLDoddsKGAccounting for errors in low coverage high-throughput sequencing data when constructing genetic maps using biparental outcrossed populationsGenetics20182091657610.1534/genetics.117.300627
– reference: TuminoGVoorripsRERizzaFBadeckFWMorciaCGhizzoniRGermeierCUPauloMJTerziVSmuldersMJMPopulation structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratiosTheor Appl Genet20161299171117241:CAS:528:DC%2BC28XhtVWntr7J10.1007/s00122-016-2734-y
– reference: Behrouzi P, Arends D, Wit EC (2017) Netgwas: an R package for network-based genome-wide association studies
– reference: Potato Genome Sequencing ConsortiumGenome sequence and analysis of the tuber crop potatoNature2011475735518919510.1038/nature10158
– reference: Mollinari M, Garcia AAF (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden markov models. G3 Genes Genom Genet 9(10):3297–3314
– reference: GerardDFerrãoLFVGarciaAAFStephensMGenotyping polyploids from messy sequencing dataGenetics2018210114810.1534/genetics.118.301405
– reference: SpindelJWrightMChenCCobbJGageJHarringtonSLorieuxMAhmadiNMcCouchSBridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populationsTheor Appl Genet201312611269927161:CAS:528:DC%2BC3sXht1emsLnN10.1007/s00122-013-2166-x
– reference: SchmitzCCariACoombsJJDouchesDSBethkePCPaltaJPNovyRGEndelmanJBAutomated tetraploid genotype calling by hierarchical clusteringTheor Appl Genet2017130471772610.1007/s00122-016-2845-5
– reference: HackettCABoskampBVogogiasAPreedyKFMilneITetraploidSNPMap: software for linkage analysis and QTL mapping in autotetraploid populations using SNP dosage dataJ Hered201710844384421:CAS:528:DC%2BC1MXjtVaqu70%3D10.1093/jhered/esx022
– reference: Yamamoto E, Shirasawa K, Kimura T, Monden Y, Tanaka M, Isobe S (2020) Genetic mapping in autohexaploid sweet potato with low-coverage NGS-based genotyping data. G3 Genes Genom Genet 10(8):2661–2670
– reference: Clark L, Lipka A, Sacks E (2019) PolyRAD: genotype calling with uncertainty from sequencing data in polyploids and diploids. G3 Genes Genom Genet 9(3):663–73
– ident: 3834_CR6
  doi: 10.1093/bioinformatics/bty371
– ident: 3834_CR7
  doi: 10.1534/g3.118.200913
– ident: 3834_CR26
  doi: 10.1186/s12859-019-2703-y
– volume: 201
  start-page: 853
  year: 2015
  ident: 3834_CR3
  publication-title: Genetics
  doi: 10.1534/genetics.115.181008
– volume: 8
  start-page: e62355
  issue: 5
  year: 2013
  ident: 3834_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0062355
– volume-title: JoinMap ® 4 software for the calculation of genetic linkage maps in experimental populations
  year: 2006
  ident: 3834_CR20
– ident: 3834_CR12
  doi: 10.1534/g3.119.400378
– volume: 126
  start-page: 2699
  issue: 11
  year: 2013
  ident: 3834_CR17
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-013-2166-x
– volume: 7
  start-page: 1
  issue: 2
  year: 2012
  ident: 3834_CR16
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0030906
– volume: 128
  start-page: 2387
  issue: 12
  year: 2015
  ident: 3834_CR23
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-015-2593-y
– ident: 3834_CR11
  doi: 10.3835/plantgenome2019.01.0002
– volume: 13
  start-page: 248
  year: 2012
  ident: 3834_CR21
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-13-248
– volume: 130
  start-page: 717
  issue: 4
  year: 2017
  ident: 3834_CR15
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2845-5
– ident: 3834_CR25
  doi: 10.1038/s41588-020-00717-7
– volume: 6
  start-page: e19379
  issue: 5
  year: 2011
  ident: 3834_CR8
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0019379
– volume: 475
  start-page: 189
  issue: 7355
  year: 2011
  ident: 3834_CR13
  publication-title: Nature
  doi: 10.1038/nature10158
– volume: 129
  start-page: 2117
  year: 2016
  ident: 3834_CR14
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2761-8
– volume: 210
  start-page: 1
  issue: 1
  year: 2018
  ident: 3834_CR9
  publication-title: Genetics
  doi: 10.1534/genetics.118.301405
– volume: 209
  start-page: 65
  issue: 1
  year: 2018
  ident: 3834_CR2
  publication-title: Genetics
  doi: 10.1534/genetics.117.300627
– volume: 12
  start-page: 172
  year: 2011
  ident: 3834_CR22
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-12-172
– ident: 3834_CR24
  doi: 10.1534/g3.120.401433
– volume: 129
  start-page: 2211
  issue: 11
  year: 2016
  ident: 3834_CR4
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2768-1
– volume: 9
  start-page: 513
  year: 2018
  ident: 3834_CR5
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.00513
– ident: 3834_CR1
  doi: 10.32614/CRAN.package.netgwas
– volume: 129
  start-page: 1711
  issue: 9
  year: 2016
  ident: 3834_CR18
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2734-y
– volume: 108
  start-page: 438
  issue: 4
  year: 2017
  ident: 3834_CR10
  publication-title: J Hered
  doi: 10.1093/jhered/esx022
SSID ssj0002503
Score 2.3776746
Snippet Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it...
In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the...
Key message
Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it...
Key messageIn polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it...
KEY MESSAGE: In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2443
SubjectTerms Agriculture
Alleles
Analysis
Biochemistry
Biomedical and Life Sciences
Biotechnology
chromosome mapping
Chromosome Mapping - methods
Chromosomes
Chromosomes, Plant - genetics
Computer Simulation
computer software
data quality
Diploids
diploidy
Dosage
Gene Expression Regulation, Plant
Gene mapping
Genetic aspects
Genetics
Genomes
Genotype
Genotype & phenotype
Genotypes
Genotyping
heterozygosity
homozygosity
Information management
Life Sciences
Linkage analysis
Original
Original Article
Plant Biochemistry
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Proteins - genetics
Plant Proteins - metabolism
Polymorphism, Single Nucleotide
Polyploidy
Potatoes
Quantitative Trait Loci
single nucleotide polymorphism arrays
Single-nucleotide polymorphism
Software packages
Solanum tuberosum
Solanum tuberosum - genetics
Solanum tuberosum - growth & development
uncertainty
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhIdAeQpq-No-ilkIPrcGyXvYpLEtDEmgPbQO5CcmW0oXFXuJdSP59ZrxaN17aQM_65MdImoc0-oaQj9xJ57kNSWqDSITIRGK1rpLgQPdJ5tPc4X7Ht-_q_EpcXsvrSJODd2E2zu-R7JNBuISJBCkEUyIBf3FHMq6xTMNETXqtC6a8z5ADFySLF2T-_oyBEdpUxY9s0Wae5MZhaWeDzvbJXnQe6Xg12i_Ilq8PyPPxzW0k0PAHZHdVXPL-JTntsgEoVozpWHSRkJkiJSvuurZ0WlM8vAV1Qm0kJqFNoPNmdj-fNdOqfUWuzr7-mpwnsVxCUiotFokvAlN5GTxTNlRcO61VCJV0ripA6IUTEAhL7YQKMrDcS5fZIgeBMKl9rhx_TbbrpvZvCbUYlehClToLIrUYxaa8SoXWIWWV5yPC1vIzZeQSx5IWM9OzIHcyNyBz08nc3I3I577PfMWk8ST6Aw6LQYqKGnNgbuyybc3Fzx9mrBSaVHAFR-RTBIUGXl_aeKUAfgJZrQbI4wES1lA5bF6PvolruDUQbKH_qTQ0v--bsSfmpdW-WSIGFCIeNbMnMIorJFqTgHmzmlC9ALhAPkOdj4geTLUegOzfw5Z6-rtjAc8zGF8GPb-sJ-WfT_-3XA__D35EnmXdusGMx2Oyvbhd-hPwwhbuXbf8HgCQKSZf
  priority: 102
  providerName: Springer Nature
Title Using probabilistic genotypes in linkage analysis of polyploids
URI https://link.springer.com/article/10.1007/s00122-021-03834-x
https://www.ncbi.nlm.nih.gov/pubmed/34032878
https://www.proquest.com/docview/2550951672
https://www.proquest.com/docview/2532245841
https://www.proquest.com/docview/2636422851
https://pubmed.ncbi.nlm.nih.gov/PMC8277618
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExI8IBhfgTEFhMQDWMuHYydPU1q1DBAVGlQqT5Gd2KNSlZSllbb_njvXzUgl-tI8-Kw05_N9-M6_I-RdrBKlY2loIA2jjEWMSiEqahToviTUQarwvOPbhJ9P2ZdZMnMHbq0rq9zqRKuoq6bEM_JTcH3RG-AiOlv-odg1CrOrroXGXXKI0GUo1WLWBVxo3ruqOXBLIndpxl6dszkligUKAQRpjF73DNOuev7HPu3WTu4kUK1dGj8iD51D6ecbCXhM7uj6iDzIL68cqIY-Ivc2DSdvnpAzWyHgYxcZi6yLIM0-wrTiSWzrz2sfE7qgYnzpwEr8xvjLZnGzXDTzqn1KpuPRz-E5dS0UaMkFW1GdmZCnpdEhl6aKhRKCG1MlSlUZLESmGATHiVCMm8SEqU5UJLMUGBImQqdcxc_IQd3U-gXxJUYqIuOliAwLJEa2QVwFTAgThJWOPRJu-VeUDl8c21wsig4Z2fK8AJ4XlufFtUc-dHOWG3SNvdRvcVkKhK2osS7mUq7btvj846LIOUczC-6hR947ItPA60vprhnARyDSVY_yuEcJ-6rsD29Xv3D7ui1updAjb7phnIm1arVu1kgDShLTz-EeGh5zBF9LgOb5RqA6BsQMMQ5F6hHRE7WOABHB-yP1_LdFBk8jWN8QZn7cCuXtX_8_X1_u_9JX5H5k9wlWPR6Tg9XVWr8GT2ylTux2OyGH-XgwmODz06-vI3gORpPvFzA65EP4nUb5X61PM6I
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEJRXoEBAIA4QkYdjJwdUrYBqlz4O0Ep7M3Fil5VWydLsiu6f4jcy401SshJ769njPMbjeXjG3wC8jlSsdJQZz88M8xgLmZcJUXhGoe6LA-0nis47jo758JR9HcfjLfjT3oWhsspWJ1pFXVQ5nZF_QNeXvAEuwr3ZL4-6RlF2tW2hsRKLA738jSFb_XH0Gdf3TRjufzn5NPSargJezgWbezo1AU9yowOemSISSghuTBErVaT4baliGC_GQjFuYhMkOlZhliYYyAWx0AlXET73GlxHw-tTsCfGXYBH7kRXpYduUNhc0rFX9WwOy6OCCB-fxbyLniFcNwf_2MP1Ws21hK21g_t34U7jwLqDlcTdgy1d7sDtwdl5A-Khd-DGqsHl8j7s2YoEl7rWWCRfAoV2CRaWTn5rd1K6lEBGleZmDTiKWxl3Vk2Xs2k1KeoHcHolzH0I22VV6sfgZhQZiZTnIjTMzyiS9qPCZ0IYPyh05EDQ8k_mDZ45tdWYyg6J2fJcIs-l5bm8cOBdN2e2QvPYSP2KlkUSTEZJdThn2aKu5ej7NzngnMw6uqMOvG2ITIWvz7PmWgP-BCFr9Sh3e5S4j_P-cLv6stEjtbyUegdedsM0k2rjSl0tiAaVMqW7gw00POIE9hYjzaOVQHUMiBhhKorEAdETtY6AEMj7I-Xkp0UiT0Jc3wBnvm-F8vLT_8_XJ5v_9AXcHJ4cHcrD0fHBU7gV2j1DFZe7sD0_X-hn6AXO1XO79Vz4cdV7_S-DzGqR
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiB4QDC-CgMCAvEA0fLh2OkDmgpbtTKoprFJezNxYo9KVVKWVqz_Gn8dd6mTkUr0bc8-5-N8n_b5dwBvQhUpHSbG9RLDXMYC5iZCZK5RaPsiX3uxov2ObyN-cMq-nEVnG_CnvgtDZZW1TawMdVaktEe-g6EvRQNcBDvGlkUc7Q12p79c6iBFJ611O42liBzqxW9M38qPwz1c67dBMNg_-Xzg2g4DbsoFm7m6Z3wep0b7PDFZKJQQ3JgsUirr4Xf2FMPcMRKKcRMZP9aRCpJejEmdHwkdcxXic2_ApqCsqAObn_ZHR8eNH8DgoqnZw6AosFd2qot71YmWS-URHj6NuZctt7jqHP7xjquVmyvHt5VXHNyDuzacdfpL-bsPGzrfgjv98wsL6aG34Oay3eXiAexW9QkO9bCpcH0JItohkFjaBy6dce7QcTIaOCexUClOYZxpMVlMJ8U4Kx_C6bWw9xF08iLXT8BJKE8SPZ6KwDAvobzaCzOPCWE8P9NhF_yafzK16ObUZGMiG1zmiucSeS4rnsvLLrxv5kyX2B5rqV_TskgCzchJ_M6TeVnK4fdj2eecnDwGp114Z4lMga9PE3vJAX-CcLZalNstStTqtD1cr760VqWUVzrQhVfNMM2kSrlcF3OiQRNNh9_-GhoecoJ-i5Dm8VKgGgaEjBAWRdwF0RK1hoDwyNsj-fhnhUseB7i-Ps78UAvl1af_n69P1__pS7iFei6_DkeHz-B2UKkMlV9uQ2d2MdfPMSScqRdW9xz4cd3q_hftanAs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+probabilistic+genotypes+in+linkage+analysis+of+polyploids&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Liao%2C+Yanlin&rft.au=Voorrips%2C+Roeland+E&rft.au=Bourke%2C+Peter+M&rft.au=Tumino%2C+Giorgio&rft.date=2021-08-01&rft.pub=Springer&rft.issn=0040-5752&rft.volume=134&rft.issue=8&rft.spage=2443&rft_id=info:doi/10.1007%2Fs00122-021-03834-x&rft.externalDBID=ISR&rft.externalDocID=A668471232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon