Using probabilistic genotypes in linkage analysis of polyploids
Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in...
Saved in:
Published in | Theoretical and applied genetics Vol. 134; no. 8; pp. 2443 - 2457 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Key message
In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps.
Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (
Solanum tuberosum
L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage. |
---|---|
AbstractList | Key message
In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps.
Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (
Solanum tuberosum
L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage. In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage.KEY MESSAGEIn polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage. Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage. In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps. Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage. Key message Key messageIn polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the construction of polyploid linkage maps.Marker genotypes are generally called as discrete values: homozygous versus heterozygous in the case of diploids, or an integer allele dosage in the case of polyploids. Software for linkage map construction and/or QTL analysis usually relies on such discrete genotypes. However, it may not always be possible, or desirable, to assign definite values to genotype observations in the presence of uncertainty in the genotype calling. Here, we present an approach that uses probabilistic marker dosages for linkage map construction in polyploids. We compare our method to an approach based on discrete dosages, using simulated SNP array and sequence reads data with varying levels of data quality. We validate our approach using experimental data from a potato (Solanum tuberosum L.) SNP array applied to an F1 mapping population. In comparison to the approach based on discrete dosages, we mapped an additional 562 markers. All but three of these were mapped to the expected chromosome and marker position. For the remaining three markers, no physical position was known. The use of dosage probabilities is of particular relevance for map construction in polyploids using sequencing data, as these often result in a higher level of uncertainty regarding allele dosage. |
Audience | Academic |
Author | Visser, Richard G. F. Arens, Paul Liao, Yanlin Voorrips, Roeland E. Tumino, Giorgio Bourke, Peter M. Smulders, Marinus J. M. Maliepaard, Chris |
Author_xml | – sequence: 1 givenname: Yanlin surname: Liao fullname: Liao, Yanlin organization: Wageningen University and Research Plant Breeding – sequence: 2 givenname: Roeland E. surname: Voorrips fullname: Voorrips, Roeland E. organization: Wageningen University and Research Plant Breeding – sequence: 3 givenname: Peter M. surname: Bourke fullname: Bourke, Peter M. organization: Wageningen University and Research Plant Breeding – sequence: 4 givenname: Giorgio surname: Tumino fullname: Tumino, Giorgio organization: Wageningen University and Research Plant Breeding – sequence: 5 givenname: Paul surname: Arens fullname: Arens, Paul organization: Wageningen University and Research Plant Breeding – sequence: 6 givenname: Richard G. F. surname: Visser fullname: Visser, Richard G. F. organization: Wageningen University and Research Plant Breeding – sequence: 7 givenname: Marinus J. M. surname: Smulders fullname: Smulders, Marinus J. M. organization: Wageningen University and Research Plant Breeding – sequence: 8 givenname: Chris orcidid: 0000-0002-7319-5270 surname: Maliepaard fullname: Maliepaard, Chris email: chris.maliepaard@wur.nl organization: Wageningen University and Research Plant Breeding |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34032878$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhS1URKeFP8ACRWIDixS_7WyoqopHpUpIQNeWndjBxWOHOEEz_x6HKS1ToSIvLNnfudc-9xyBg5iiBeA5gicIQvEmQ4gwriFGNSSS0HrzCKwQJbjGmOIDsIKQwpoJhg_BUc7XEELMIHkCDgmFBEshV-D0KvvYV8OYjDY--Dz5tuptTNN2sLnysQo-fte9rXTUYZt9rpKrhhS2Q0i-y0_BY6dDts9u9mNw9f7d1_OP9eWnDxfnZ5d1ywWdats4xGXrLOLadUQYIbhzHTOma5CFjaENFEwYyh1zSFpmsG5k-RRiwkpuyDF4u6s7zGZtu9bGadRBDaNf63GrkvZq_yb6b6pPP5XEpRWSpcCrmwJj-jHbPKm1z60NQUeb5qwwJ5xiLBn6P8pIMZhJuqAv76HXaR6LUwvFYMMQF_iO6nWwykeXyhPbpag641xSgTBZqJN_UGV1du3bMnrny_me4PWeoDCT3Uy9nnNWF18-77Mv_vbv1rg_SSgA3gHtmHIerbtFEFRL3NQubqrETf2Om9oUkbwnav2kJ5-WGfjwsJTspLn0ib0d75x7QPULMMrnRQ |
CitedBy_id | crossref_primary_10_1007_s00122_023_04485_w crossref_primary_10_3389_fpls_2021_793679 crossref_primary_10_1093_gigascience_giad092 |
Cites_doi | 10.1093/bioinformatics/bty371 10.1534/g3.118.200913 10.1186/s12859-019-2703-y 10.1534/genetics.115.181008 10.1371/journal.pone.0062355 10.1534/g3.119.400378 10.1007/s00122-013-2166-x 10.1371/journal.pone.0030906 10.1007/s00122-015-2593-y 10.3835/plantgenome2019.01.0002 10.1186/1471-2105-13-248 10.1007/s00122-016-2845-5 10.1038/s41588-020-00717-7 10.1371/journal.pone.0019379 10.1038/nature10158 10.1007/s00122-016-2761-8 10.1534/genetics.118.301405 10.1534/genetics.117.300627 10.1186/1471-2105-12-172 10.1534/g3.120.401433 10.1007/s00122-016-2768-1 10.3389/fpls.2018.00513 10.32614/CRAN.package.netgwas 10.1007/s00122-016-2734-y 10.1093/jhered/esx022 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). COPYRIGHT 2021 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: COPYRIGHT 2021 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7SS 7TK 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 5PM |
DOI | 10.1007/s00122-021-03834-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Entomology Abstracts (Full archive) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) ProQuest Biological Science Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA ProQuest Central Student |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1432-2242 |
EndPage | 2457 |
ExternalDocumentID | PMC8277618 A668471232 34032878 10_1007_s00122_021_03834_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: TKI grantid: BO-68-001-001 – fundername: Chinese Student Scholarship grantid: 201707720073 – fundername: TKI grantid: BO-26.03-009-004; BO-50-002-022 – fundername: TKI grantid: BO-50-002-022 – fundername: TKI grantid: BO-26.03-009-004 – fundername: ; grantid: BO-68-001-001 – fundername: ; grantid: 201707720073 – fundername: ; grantid: BO-26.03-009-004; BO-50-002-022 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IFM IHE IHR IJ- IKXTQ INH INR ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 Y6R YLTOR Z45 Z7S Z7U Z7V Z7W Z7Y Z83 Z85 Z87 Z8N Z8O Z8P Z8Q Z8S Z8W Z8Z Z91 ZMTXR ZOVNA ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7SS 7TK 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c674t-e9f168cfe16afd37b776ffd5bbd91e09b490757b46f5f18e5b2a98383157e86b3 |
IEDL.DBID | 7X7 |
ISSN | 0040-5752 1432-2242 |
IngestDate | Thu Aug 21 14:32:20 EDT 2025 Tue Aug 05 09:49:25 EDT 2025 Thu Jul 10 21:56:01 EDT 2025 Mon Aug 25 14:14:51 EDT 2025 Tue Jun 17 21:12:44 EDT 2025 Tue Jun 10 20:27:27 EDT 2025 Fri Jun 27 04:40:59 EDT 2025 Wed Feb 19 02:09:51 EST 2025 Tue Jul 01 04:36:24 EDT 2025 Thu Apr 24 22:57:14 EDT 2025 Fri Feb 21 02:48:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c674t-e9f168cfe16afd37b776ffd5bbd91e09b490757b46f5f18e5b2a98383157e86b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by Jeffrey Endelman. |
ORCID | 0000-0002-7319-5270 |
OpenAccessLink | https://doi.org/10.1007/s00122-021-03834-x |
PMID | 34032878 |
PQID | 2550951672 |
PQPubID | 54040 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8277618 proquest_miscellaneous_2636422851 proquest_miscellaneous_2532245841 proquest_journals_2550951672 gale_infotracmisc_A668471232 gale_infotracacademiconefile_A668471232 gale_incontextgauss_ISR_A668471232 pubmed_primary_34032878 crossref_primary_10_1007_s00122_021_03834_x crossref_citationtrail_10_1007_s00122_021_03834_x springer_journals_10_1007_s00122_021_03834_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | International Journal of Plant Breeding Research |
PublicationTitle | Theoretical and applied genetics |
PublicationTitleAbbrev | Theor Appl Genet |
PublicationTitleAlternate | Theor Appl Genet |
PublicationYear | 2021 |
Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V |
References | SpindelJWrightMChenCCobbJGageJHarringtonSLorieuxMAhmadiNMcCouchSBridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populationsTheor Appl Genet201312611269927161:CAS:528:DC%2BC3sXht1emsLnN10.1007/s00122-013-2166-x Behrouzi P, Arends D, Wit EC (2017) Netgwas: an R package for network-based genome-wide association studies SerangOMollinariMGarciaAAFEfficient exact maximum a posteriori computation for bayesian SNP genotyping in polyploids”PLoS ONE20127211310.1371/journal.pone.0030906 GerardDFerrãoLFVGarciaAAFStephensMGenotyping polyploids from messy sequencing dataGenetics2018210114810.1534/genetics.118.301405 Yamamoto E, Shirasawa K, Kimura T, Monden Y, Tanaka M, Isobe S (2020) Genetic mapping in autohexaploid sweet potato with low-coverage NGS-based genotyping data. G3 Genes Genom Genet 10(8):2661–2670 Matias FI, Meireles KGX, Nagamatsu ST, Barrios SCL, do Valle CB, Carazzolle MF, Fritsche-Neto R, Endelman JB (2019) Expected genotype quality and diploidized marker data from genotyping-by-sequencing of Urochloa spp. tetraploids. Plant Genome 12(3):190002 Potato Genome Sequencing ConsortiumGenome sequence and analysis of the tuber crop potatoNature2011475735518919510.1038/nature10158 Van OoijenJWJoinMap ® 4 software for the calculation of genetic linkage maps in experimental populations2006Wageningen, NetherlandsJoinMap Kyazma BV UitdewilligenJGAMLWoltersAMAD’hoopBBBormTJAVisserRGFvan EckHJA next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potatoPLoS ONE201385e623551:CAS:528:DC%2BC3sXnvVyisL0%3D10.1371/journal.pone.0062355 VoorripsREMaliepaardCAThe simulation of meiosis in diploid and tetraploid organisms using various genetic models”BMC Bioinform20121324810.1186/1471-2105-13-248 Zych K, Gort G, Maliepaard CA, Jansen RC, Voorrips RE (2019) FitTetra 2.0: improved genotype calling for tetraploids with multiple population and parental data support. BMC Bioinform 20(1):148 HackettCABoskampBVogogiasAPreedyKFMilneITetraploidSNPMap: software for linkage analysis and QTL mapping in autotetraploid populations using SNP dosage dataJ Hered201710844384421:CAS:528:DC%2BC1MXjtVaqu70%3D10.1093/jhered/esx022 VoorripsREGortGVosmanBGenotype calling in tetraploid species from bi-allelic marker data using mixture modelsBMC Bioinform20111217210.1186/1471-2105-12-172 Mollinari M, Garcia AAF (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden markov models. G3 Genes Genom Genet 9(10):3297–3314 PreedyKFHackettCAA rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scalingTheor Appl Genet2016129211721321:STN:280:DC%2BC2s3oslKntQ%3D%3D10.1007/s00122-016-2761-8 BourkePMVoorripsREVisserRGFMaliepaardCTools for genetic studies in experimental populations of polyploidsFront Plant Sci2018951310.3389/fpls.2018.00513 Clark L, Lipka A, Sacks E (2019) PolyRAD: genotype calling with uncertainty from sequencing data in polyploids and diploids. G3 Genes Genom Genet 9(3):663–73 Bourke PM, Van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C (2018a) PolymapR: linkage analysis and genetic map construction from F1populations of outcrossing polyploids. Bioinformatics 34(20):3496–3502 SchmitzCCariACoombsJJDouchesDSBethkePCPaltaJPNovyRGEndelmanJBAutomated tetraploid genotype calling by hierarchical clusteringTheor Appl Genet2017130471772610.1007/s00122-016-2845-5 VosPGUitdewilligenJGAMLVoorripsREVisserRGFvan EckHJDevelopment and analysis of a 20K SNP array for potato (Solanum Tuberosum): an insight into the breeding historyTheor Appl Genet201512812238724011:CAS:528:DC%2BC2MXhtlOhtLjP10.1007/s00122-015-2593-y Zhou C, Olukolu B, Gemenet D, Wu S, Gruneberg W, Cao MD, Fei Z, Zeng ZB, George A, Khan A, Yencho C, Coin L (2020) Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outcrossed mapping populations. Nat Genet 52(11):1256–1264 BiltonTPSchofieldMRBlackMAChagnéDWilcoxPLDoddsKGAccounting for errors in low coverage high-throughput sequencing data when constructing genetic maps using biparental outcrossed populationsGenetics20182091657610.1534/genetics.117.300627 TuminoGVoorripsRERizzaFBadeckFWMorciaCGhizzoniRGermeierCUPauloMJTerziVSmuldersMJMPopulation structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratiosTheor Appl Genet20161299171117241:CAS:528:DC%2BC28XhtVWntr7J10.1007/s00122-016-2734-y ElshireRJGlaubitzJCSunQPolandJAKawamotoKBucklerESMitchellSEA robust, simple genotyping-by-sequencing (GBS) approach for high diversity speciesPLoS ONE201165e193791:CAS:528:DC%2BC3MXmtVKru7Y%3D10.1371/journal.pone.0019379 BourkePMVoorripsREKranenburgTJansenJVisserRGFMaliepaardCIntegrating haplotype-specific linkage maps in tetraploid species using SNP markersTheor Appl Genet201612911221122261:CAS:528:DC%2BC28XhsVWmtrvK10.1007/s00122-016-2768-1 BourkePMVoorripsREVisserRGFMaliepaardCThe double-reduction landscape in tetraploid potato as revealed by a high-density linkage mapGenetics201520185386310.1534/genetics.115.181008 O Serang (3834_CR16) 2012; 7 C Schmitz (3834_CR15) 2017; 130 PM Bourke (3834_CR5) 2018; 9 CA Hackett (3834_CR10) 2017; 108 PG Vos (3834_CR23) 2015; 128 JW Van Ooijen (3834_CR20) 2006 3834_CR24 3834_CR25 3834_CR26 RE Voorrips (3834_CR21) 2012; 13 KF Preedy (3834_CR14) 2016; 129 PM Bourke (3834_CR3) 2015; 201 3834_CR1 G Tumino (3834_CR18) 2016; 129 3834_CR7 3834_CR6 PM Bourke (3834_CR4) 2016; 129 3834_CR11 D Gerard (3834_CR9) 2018; 210 3834_CR12 Potato Genome Sequencing Consortium (3834_CR13) 2011; 475 JGAML Uitdewilligen (3834_CR19) 2013; 8 RE Voorrips (3834_CR22) 2011; 12 RJ Elshire (3834_CR8) 2011; 6 J Spindel (3834_CR17) 2013; 126 TP Bilton (3834_CR2) 2018; 209 |
References_xml | – reference: Matias FI, Meireles KGX, Nagamatsu ST, Barrios SCL, do Valle CB, Carazzolle MF, Fritsche-Neto R, Endelman JB (2019) Expected genotype quality and diploidized marker data from genotyping-by-sequencing of Urochloa spp. tetraploids. Plant Genome 12(3):190002 – reference: VoorripsREMaliepaardCAThe simulation of meiosis in diploid and tetraploid organisms using various genetic models”BMC Bioinform20121324810.1186/1471-2105-13-248 – reference: Van OoijenJWJoinMap ® 4 software for the calculation of genetic linkage maps in experimental populations2006Wageningen, NetherlandsJoinMap Kyazma BV – reference: SerangOMollinariMGarciaAAFEfficient exact maximum a posteriori computation for bayesian SNP genotyping in polyploids”PLoS ONE20127211310.1371/journal.pone.0030906 – reference: Zych K, Gort G, Maliepaard CA, Jansen RC, Voorrips RE (2019) FitTetra 2.0: improved genotype calling for tetraploids with multiple population and parental data support. BMC Bioinform 20(1):148 – reference: VosPGUitdewilligenJGAMLVoorripsREVisserRGFvan EckHJDevelopment and analysis of a 20K SNP array for potato (Solanum Tuberosum): an insight into the breeding historyTheor Appl Genet201512812238724011:CAS:528:DC%2BC2MXhtlOhtLjP10.1007/s00122-015-2593-y – reference: VoorripsREGortGVosmanBGenotype calling in tetraploid species from bi-allelic marker data using mixture modelsBMC Bioinform20111217210.1186/1471-2105-12-172 – reference: Zhou C, Olukolu B, Gemenet D, Wu S, Gruneberg W, Cao MD, Fei Z, Zeng ZB, George A, Khan A, Yencho C, Coin L (2020) Assembly of whole-chromosome pseudomolecules for polyploid plant genomes using outcrossed mapping populations. Nat Genet 52(11):1256–1264 – reference: BourkePMVoorripsREKranenburgTJansenJVisserRGFMaliepaardCIntegrating haplotype-specific linkage maps in tetraploid species using SNP markersTheor Appl Genet201612911221122261:CAS:528:DC%2BC28XhsVWmtrvK10.1007/s00122-016-2768-1 – reference: BourkePMVoorripsREVisserRGFMaliepaardCTools for genetic studies in experimental populations of polyploidsFront Plant Sci2018951310.3389/fpls.2018.00513 – reference: UitdewilligenJGAMLWoltersAMAD’hoopBBBormTJAVisserRGFvan EckHJA next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potatoPLoS ONE201385e623551:CAS:528:DC%2BC3sXnvVyisL0%3D10.1371/journal.pone.0062355 – reference: BourkePMVoorripsREVisserRGFMaliepaardCThe double-reduction landscape in tetraploid potato as revealed by a high-density linkage mapGenetics201520185386310.1534/genetics.115.181008 – reference: Bourke PM, Van Geest G, Voorrips RE, Jansen J, Kranenburg T, Shahin A, Visser RGF, Arens P, Smulders MJM, Maliepaard C (2018a) PolymapR: linkage analysis and genetic map construction from F1populations of outcrossing polyploids. Bioinformatics 34(20):3496–3502 – reference: PreedyKFHackettCAA rapid marker ordering approach for high-density genetic linkage maps in experimental autotetraploid populations using multidimensional scalingTheor Appl Genet2016129211721321:STN:280:DC%2BC2s3oslKntQ%3D%3D10.1007/s00122-016-2761-8 – reference: ElshireRJGlaubitzJCSunQPolandJAKawamotoKBucklerESMitchellSEA robust, simple genotyping-by-sequencing (GBS) approach for high diversity speciesPLoS ONE201165e193791:CAS:528:DC%2BC3MXmtVKru7Y%3D10.1371/journal.pone.0019379 – reference: BiltonTPSchofieldMRBlackMAChagnéDWilcoxPLDoddsKGAccounting for errors in low coverage high-throughput sequencing data when constructing genetic maps using biparental outcrossed populationsGenetics20182091657610.1534/genetics.117.300627 – reference: TuminoGVoorripsRERizzaFBadeckFWMorciaCGhizzoniRGermeierCUPauloMJTerziVSmuldersMJMPopulation structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratiosTheor Appl Genet20161299171117241:CAS:528:DC%2BC28XhtVWntr7J10.1007/s00122-016-2734-y – reference: Behrouzi P, Arends D, Wit EC (2017) Netgwas: an R package for network-based genome-wide association studies – reference: Potato Genome Sequencing ConsortiumGenome sequence and analysis of the tuber crop potatoNature2011475735518919510.1038/nature10158 – reference: Mollinari M, Garcia AAF (2019) Linkage analysis and haplotype phasing in experimental autopolyploid populations with high ploidy level using hidden markov models. G3 Genes Genom Genet 9(10):3297–3314 – reference: GerardDFerrãoLFVGarciaAAFStephensMGenotyping polyploids from messy sequencing dataGenetics2018210114810.1534/genetics.118.301405 – reference: SpindelJWrightMChenCCobbJGageJHarringtonSLorieuxMAhmadiNMcCouchSBridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populationsTheor Appl Genet201312611269927161:CAS:528:DC%2BC3sXht1emsLnN10.1007/s00122-013-2166-x – reference: SchmitzCCariACoombsJJDouchesDSBethkePCPaltaJPNovyRGEndelmanJBAutomated tetraploid genotype calling by hierarchical clusteringTheor Appl Genet2017130471772610.1007/s00122-016-2845-5 – reference: HackettCABoskampBVogogiasAPreedyKFMilneITetraploidSNPMap: software for linkage analysis and QTL mapping in autotetraploid populations using SNP dosage dataJ Hered201710844384421:CAS:528:DC%2BC1MXjtVaqu70%3D10.1093/jhered/esx022 – reference: Yamamoto E, Shirasawa K, Kimura T, Monden Y, Tanaka M, Isobe S (2020) Genetic mapping in autohexaploid sweet potato with low-coverage NGS-based genotyping data. G3 Genes Genom Genet 10(8):2661–2670 – reference: Clark L, Lipka A, Sacks E (2019) PolyRAD: genotype calling with uncertainty from sequencing data in polyploids and diploids. G3 Genes Genom Genet 9(3):663–73 – ident: 3834_CR6 doi: 10.1093/bioinformatics/bty371 – ident: 3834_CR7 doi: 10.1534/g3.118.200913 – ident: 3834_CR26 doi: 10.1186/s12859-019-2703-y – volume: 201 start-page: 853 year: 2015 ident: 3834_CR3 publication-title: Genetics doi: 10.1534/genetics.115.181008 – volume: 8 start-page: e62355 issue: 5 year: 2013 ident: 3834_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0062355 – volume-title: JoinMap ® 4 software for the calculation of genetic linkage maps in experimental populations year: 2006 ident: 3834_CR20 – ident: 3834_CR12 doi: 10.1534/g3.119.400378 – volume: 126 start-page: 2699 issue: 11 year: 2013 ident: 3834_CR17 publication-title: Theor Appl Genet doi: 10.1007/s00122-013-2166-x – volume: 7 start-page: 1 issue: 2 year: 2012 ident: 3834_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0030906 – volume: 128 start-page: 2387 issue: 12 year: 2015 ident: 3834_CR23 publication-title: Theor Appl Genet doi: 10.1007/s00122-015-2593-y – ident: 3834_CR11 doi: 10.3835/plantgenome2019.01.0002 – volume: 13 start-page: 248 year: 2012 ident: 3834_CR21 publication-title: BMC Bioinform doi: 10.1186/1471-2105-13-248 – volume: 130 start-page: 717 issue: 4 year: 2017 ident: 3834_CR15 publication-title: Theor Appl Genet doi: 10.1007/s00122-016-2845-5 – ident: 3834_CR25 doi: 10.1038/s41588-020-00717-7 – volume: 6 start-page: e19379 issue: 5 year: 2011 ident: 3834_CR8 publication-title: PLoS ONE doi: 10.1371/journal.pone.0019379 – volume: 475 start-page: 189 issue: 7355 year: 2011 ident: 3834_CR13 publication-title: Nature doi: 10.1038/nature10158 – volume: 129 start-page: 2117 year: 2016 ident: 3834_CR14 publication-title: Theor Appl Genet doi: 10.1007/s00122-016-2761-8 – volume: 210 start-page: 1 issue: 1 year: 2018 ident: 3834_CR9 publication-title: Genetics doi: 10.1534/genetics.118.301405 – volume: 209 start-page: 65 issue: 1 year: 2018 ident: 3834_CR2 publication-title: Genetics doi: 10.1534/genetics.117.300627 – volume: 12 start-page: 172 year: 2011 ident: 3834_CR22 publication-title: BMC Bioinform doi: 10.1186/1471-2105-12-172 – ident: 3834_CR24 doi: 10.1534/g3.120.401433 – volume: 129 start-page: 2211 issue: 11 year: 2016 ident: 3834_CR4 publication-title: Theor Appl Genet doi: 10.1007/s00122-016-2768-1 – volume: 9 start-page: 513 year: 2018 ident: 3834_CR5 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.00513 – ident: 3834_CR1 doi: 10.32614/CRAN.package.netgwas – volume: 129 start-page: 1711 issue: 9 year: 2016 ident: 3834_CR18 publication-title: Theor Appl Genet doi: 10.1007/s00122-016-2734-y – volume: 108 start-page: 438 issue: 4 year: 2017 ident: 3834_CR10 publication-title: J Hered doi: 10.1093/jhered/esx022 |
SSID | ssj0002503 |
Score | 2.3776746 |
Snippet | Key message
In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it... In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it for the... Key message Key message In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it... Key messageIn polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate it... KEY MESSAGE: In polyploids, linkage mapping is carried out using genotyping with discrete dosage scores. Here, we use probabilistic genotypes and we validate... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2443 |
SubjectTerms | Agriculture Alleles Analysis Biochemistry Biomedical and Life Sciences Biotechnology chromosome mapping Chromosome Mapping - methods Chromosomes Chromosomes, Plant - genetics Computer Simulation computer software data quality Diploids diploidy Dosage Gene Expression Regulation, Plant Gene mapping Genetic aspects Genetics Genomes Genotype Genotype & phenotype Genotypes Genotyping heterozygosity homozygosity Information management Life Sciences Linkage analysis Original Original Article Plant Biochemistry Plant Breeding/Biotechnology Plant Genetics and Genomics Plant Proteins - genetics Plant Proteins - metabolism Polymorphism, Single Nucleotide Polyploidy Potatoes Quantitative Trait Loci single nucleotide polymorphism arrays Single-nucleotide polymorphism Software packages Solanum tuberosum Solanum tuberosum - genetics Solanum tuberosum - growth & development uncertainty |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhIdAeQpq-No-ilkIPrcGyXvYpLEtDEmgPbQO5CcmW0oXFXuJdSP59ZrxaN17aQM_65MdImoc0-oaQj9xJ57kNSWqDSITIRGK1rpLgQPdJ5tPc4X7Ht-_q_EpcXsvrSJODd2E2zu-R7JNBuISJBCkEUyIBf3FHMq6xTMNETXqtC6a8z5ADFySLF2T-_oyBEdpUxY9s0Wae5MZhaWeDzvbJXnQe6Xg12i_Ilq8PyPPxzW0k0PAHZHdVXPL-JTntsgEoVozpWHSRkJkiJSvuurZ0WlM8vAV1Qm0kJqFNoPNmdj-fNdOqfUWuzr7-mpwnsVxCUiotFokvAlN5GTxTNlRcO61VCJV0ripA6IUTEAhL7YQKMrDcS5fZIgeBMKl9rhx_TbbrpvZvCbUYlehClToLIrUYxaa8SoXWIWWV5yPC1vIzZeQSx5IWM9OzIHcyNyBz08nc3I3I577PfMWk8ST6Aw6LQYqKGnNgbuyybc3Fzx9mrBSaVHAFR-RTBIUGXl_aeKUAfgJZrQbI4wES1lA5bF6PvolruDUQbKH_qTQ0v--bsSfmpdW-WSIGFCIeNbMnMIorJFqTgHmzmlC9ALhAPkOdj4geTLUegOzfw5Z6-rtjAc8zGF8GPb-sJ-WfT_-3XA__D35EnmXdusGMx2Oyvbhd-hPwwhbuXbf8HgCQKSZf priority: 102 providerName: Springer Nature |
Title | Using probabilistic genotypes in linkage analysis of polyploids |
URI | https://link.springer.com/article/10.1007/s00122-021-03834-x https://www.ncbi.nlm.nih.gov/pubmed/34032878 https://www.proquest.com/docview/2550951672 https://www.proquest.com/docview/2532245841 https://www.proquest.com/docview/2636422851 https://pubmed.ncbi.nlm.nih.gov/PMC8277618 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExI8IBhfgTEFhMQDWMuHYydPU1q1DBAVGlQqT5Gd2KNSlZSllbb_njvXzUgl-tI8-Kw05_N9-M6_I-RdrBKlY2loIA2jjEWMSiEqahToviTUQarwvOPbhJ9P2ZdZMnMHbq0rq9zqRKuoq6bEM_JTcH3RG-AiOlv-odg1CrOrroXGXXKI0GUo1WLWBVxo3ruqOXBLIndpxl6dszkligUKAQRpjF73DNOuev7HPu3WTu4kUK1dGj8iD51D6ecbCXhM7uj6iDzIL68cqIY-Ivc2DSdvnpAzWyHgYxcZi6yLIM0-wrTiSWzrz2sfE7qgYnzpwEr8xvjLZnGzXDTzqn1KpuPRz-E5dS0UaMkFW1GdmZCnpdEhl6aKhRKCG1MlSlUZLESmGATHiVCMm8SEqU5UJLMUGBImQqdcxc_IQd3U-gXxJUYqIuOliAwLJEa2QVwFTAgThJWOPRJu-VeUDl8c21wsig4Z2fK8AJ4XlufFtUc-dHOWG3SNvdRvcVkKhK2osS7mUq7btvj846LIOUczC-6hR947ItPA60vprhnARyDSVY_yuEcJ-6rsD29Xv3D7ui1updAjb7phnIm1arVu1kgDShLTz-EeGh5zBF9LgOb5RqA6BsQMMQ5F6hHRE7WOABHB-yP1_LdFBk8jWN8QZn7cCuXtX_8_X1_u_9JX5H5k9wlWPR6Tg9XVWr8GT2ylTux2OyGH-XgwmODz06-vI3gORpPvFzA65EP4nUb5X61PM6I |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQcEJRXoEBAIA4QkYdjJwdUrYBqlz4O0Ep7M3Fil5VWydLsiu6f4jcy401SshJ769njPMbjeXjG3wC8jlSsdJQZz88M8xgLmZcJUXhGoe6LA-0nis47jo758JR9HcfjLfjT3oWhsspWJ1pFXVQ5nZF_QNeXvAEuwr3ZL4-6RlF2tW2hsRKLA738jSFb_XH0Gdf3TRjufzn5NPSargJezgWbezo1AU9yowOemSISSghuTBErVaT4baliGC_GQjFuYhMkOlZhliYYyAWx0AlXET73GlxHw-tTsCfGXYBH7kRXpYduUNhc0rFX9WwOy6OCCB-fxbyLniFcNwf_2MP1Ws21hK21g_t34U7jwLqDlcTdgy1d7sDtwdl5A-Khd-DGqsHl8j7s2YoEl7rWWCRfAoV2CRaWTn5rd1K6lEBGleZmDTiKWxl3Vk2Xs2k1KeoHcHolzH0I22VV6sfgZhQZiZTnIjTMzyiS9qPCZ0IYPyh05EDQ8k_mDZ45tdWYyg6J2fJcIs-l5bm8cOBdN2e2QvPYSP2KlkUSTEZJdThn2aKu5ej7NzngnMw6uqMOvG2ITIWvz7PmWgP-BCFr9Sh3e5S4j_P-cLv6stEjtbyUegdedsM0k2rjSl0tiAaVMqW7gw00POIE9hYjzaOVQHUMiBhhKorEAdETtY6AEMj7I-Xkp0UiT0Jc3wBnvm-F8vLT_8_XJ5v_9AXcHJ4cHcrD0fHBU7gV2j1DFZe7sD0_X-hn6AXO1XO79Vz4cdV7_S-DzGqR |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiB4QDC-CgMCAvEA0fLh2OkDmgpbtTKoprFJezNxYo9KVVKWVqz_Gn8dd6mTkUr0bc8-5-N8n_b5dwBvQhUpHSbG9RLDXMYC5iZCZK5RaPsiX3uxov2ObyN-cMq-nEVnG_CnvgtDZZW1TawMdVaktEe-g6EvRQNcBDvGlkUc7Q12p79c6iBFJ611O42liBzqxW9M38qPwz1c67dBMNg_-Xzg2g4DbsoFm7m6Z3wep0b7PDFZKJQQ3JgsUirr4Xf2FMPcMRKKcRMZP9aRCpJejEmdHwkdcxXic2_ApqCsqAObn_ZHR8eNH8DgoqnZw6AosFd2qot71YmWS-URHj6NuZctt7jqHP7xjquVmyvHt5VXHNyDuzacdfpL-bsPGzrfgjv98wsL6aG34Oay3eXiAexW9QkO9bCpcH0JItohkFjaBy6dce7QcTIaOCexUClOYZxpMVlMJ8U4Kx_C6bWw9xF08iLXT8BJKE8SPZ6KwDAvobzaCzOPCWE8P9NhF_yafzK16ObUZGMiG1zmiucSeS4rnsvLLrxv5kyX2B5rqV_TskgCzchJ_M6TeVnK4fdj2eecnDwGp114Z4lMga9PE3vJAX-CcLZalNstStTqtD1cr760VqWUVzrQhVfNMM2kSrlcF3OiQRNNh9_-GhoecoJ-i5Dm8VKgGgaEjBAWRdwF0RK1hoDwyNsj-fhnhUseB7i-Ps78UAvl1af_n69P1__pS7iFei6_DkeHz-B2UKkMlV9uQ2d2MdfPMSScqRdW9xz4cd3q_hftanAs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+probabilistic+genotypes+in+linkage+analysis+of+polyploids&rft.jtitle=Theoretical+and+applied+genetics&rft.au=Liao%2C+Yanlin&rft.au=Voorrips%2C+Roeland+E&rft.au=Bourke%2C+Peter+M&rft.au=Tumino%2C+Giorgio&rft.date=2021-08-01&rft.pub=Springer&rft.issn=0040-5752&rft.volume=134&rft.issue=8&rft.spage=2443&rft_id=info:doi/10.1007%2Fs00122-021-03834-x&rft.externalDBID=ISR&rft.externalDocID=A668471232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-5752&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-5752&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-5752&client=summon |