Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective

The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be de...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroengineering and rehabilitation Vol. 15; no. 1; pp. 46 - 15
Main Authors Gassert, Roger, Dietz, Volker
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 05.06.2018
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.
AbstractList The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.
Abstract The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.
The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation. Keywords: Robot-assisted therapy, Neurorehabilitation technology, Assist-as-needed, Stroke, Spinal cord injury, Locomotion, Upper limb function, Sensorimotor neurophysiology, Neuroplasticity
The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.
The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.
The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.
ArticleNumber 46
Audience Academic
Author Gassert, Roger
Dietz, Volker
Author_xml – sequence: 1
  givenname: Roger
  orcidid: 0000-0002-6373-8518
  surname: Gassert
  fullname: Gassert, Roger
– sequence: 2
  givenname: Volker
  surname: Dietz
  fullname: Dietz, Volker
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29866106$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JaR7tD-imGLrJxqlkPSx3UQihj0CgUNq1kK-vZzR4rKkkh-Tf905mGjKhFC0kpO8c6YhzWhxNYcKieMvZBedGf0i8bo2sGDcVE0ZUdy-KE95IUTHGxNGT9XFxmtKKFpIp-ao4JpnWnOmTovuBS9f50WeXfZjKGLqQUzmEWOYlljmiy2ucchmGMuGUQvTrkOm0x8GDz-lj6coJ5xg2y_vkwxgWHtxYbjCmDUL2t_i6eDm4MeGb_XxW_Pry-efVt-rm-9frq8ubCnQjcwUtk53uG8nBoQGpAE2tKGHX67o3gteUUWnUQg0CBiWkUw0IA061fQOtOCuud759cCu7oYe6eG-D8_ZhI8SFdTF7GNEO0mkEbroWtOQKDALKtkXkTsq-MeT1aee1mbs19kA_EN14YHp4MvmlXYRbq1rTKKPI4HxvEMPvGVO2a58Ax9FNGOZka6aYNEZqRuj7Z-gqzHGir9pS2mjWPhjuqYWjAH4aAt0LW1N7qaQ2RgtZE3XxD4pGj2sP1J7B0_6B4N3ToI8J_zaEAL4DIIaUIg6PCGd220K7a6GlFtptC-0daZpnGtj3i17jx_8o_wBgGeID
CitedBy_id crossref_primary_10_1109_TMECH_2022_3148032
crossref_primary_10_3389_fnagi_2023_1193292
crossref_primary_10_3389_fneur_2020_00934
crossref_primary_10_3390_app122412574
crossref_primary_10_3390_app9153106
crossref_primary_10_3390_s23063281
crossref_primary_10_1109_TNSRE_2023_3326777
crossref_primary_10_3390_biomimetics9100638
crossref_primary_10_1016_j_bspc_2021_103101
crossref_primary_10_1186_s12984_024_01365_2
crossref_primary_10_1038_s41563_020_0679_7
crossref_primary_10_3389_fnins_2020_600059
crossref_primary_10_3390_brainsci13081143
crossref_primary_10_1016_j_rehab_2019_09_009
crossref_primary_10_1115_1_4056007
crossref_primary_10_17587_mau_25_101_107
crossref_primary_10_1016_j_pmrj_2018_10_001
crossref_primary_10_1080_17434440_2020_1733408
crossref_primary_10_1097_NPT_0000000000000295
crossref_primary_10_4103_1673_5374_301030
crossref_primary_10_18857_jkpt_2021_33_2_69
crossref_primary_10_1111_dmcn_14795
crossref_primary_10_1142_S0219519421500329
crossref_primary_10_1007_s12652_020_02405_0
crossref_primary_10_3233_NRE_220027
crossref_primary_10_3390_machines9100224
crossref_primary_10_3390_brainsci11050587
crossref_primary_10_1002_rcs_2298
crossref_primary_10_3233_NRE_220025
crossref_primary_10_1109_MRA_2020_3044965
crossref_primary_10_3233_IES_230157
crossref_primary_10_1186_s12984_020_00739_6
crossref_primary_10_1016_j_matpr_2020_04_017
crossref_primary_10_3389_fneur_2025_1506889
crossref_primary_10_3389_fnins_2024_1398459
crossref_primary_10_3389_frobt_2021_612415
crossref_primary_10_3390_s21185991
crossref_primary_10_1080_01691864_2020_1749926
crossref_primary_10_35940_ijpmh_B1005_091421
crossref_primary_10_1109_TNSRE_2024_3432661
crossref_primary_10_17816_PAVLOVJ96752
crossref_primary_10_3390_su13042183
crossref_primary_10_1007_s10439_020_02611_z
crossref_primary_10_1109_TMRB_2021_3064412
crossref_primary_10_1007_s11055_021_01109_y
crossref_primary_10_17979_ja_cea_2024_45_10961
crossref_primary_10_1016_j_msard_2020_102177
crossref_primary_10_2196_45458
crossref_primary_10_3389_fnbot_2022_913748
crossref_primary_10_1080_10749357_2021_1967657
crossref_primary_10_1186_s12984_022_01043_1
crossref_primary_10_1109_TMRB_2021_3100625
crossref_primary_10_1136_bmjopen_2020_045051
crossref_primary_10_1038_s41598_021_01959_z
crossref_primary_10_1186_s12984_022_00993_w
crossref_primary_10_51764_smutgd_1523487
crossref_primary_10_1109_TRO_2022_3189231
crossref_primary_10_1177_1045389X241263878
crossref_primary_10_3389_fneur_2021_691444
crossref_primary_10_4081_ejtm_2021_9360
crossref_primary_10_1016_j_nicl_2018_08_026
crossref_primary_10_1016_j_pmr_2019_09_002
crossref_primary_10_3389_fpsyg_2020_584869
crossref_primary_10_1109_LRA_2024_3460412
crossref_primary_10_3389_fnbot_2022_964720
crossref_primary_10_3389_fneur_2020_588285
crossref_primary_10_4103_digm_digm_14_18
crossref_primary_10_1186_s12984_023_01158_z
crossref_primary_10_3390_s23063089
crossref_primary_10_1007_s11042_023_15653_x
crossref_primary_10_1177_09544062241230223
crossref_primary_10_3389_fnbot_2024_1351700
crossref_primary_10_52054_FVVO_15_4_11
crossref_primary_10_3390_app9040626
crossref_primary_10_3390_s25051322
crossref_primary_10_3390_s23115054
crossref_primary_10_1186_s12984_024_01510_x
crossref_primary_10_1007_s41315_024_00369_4
crossref_primary_10_3390_machines11080787
crossref_primary_10_1109_TBME_2024_3384939
crossref_primary_10_1186_s12984_019_0630_9
crossref_primary_10_2478_ahem_2023_0012
crossref_primary_10_51483_IJAIML_4_1_2024_94_121
crossref_primary_10_1088_2516_1091_acc70a
crossref_primary_10_1186_s12984_020_00763_6
crossref_primary_10_3390_s21217342
crossref_primary_10_1016_j_cobme_2021_100291
crossref_primary_10_1145_3659058
crossref_primary_10_2196_59556
crossref_primary_10_1109_JBHI_2021_3112201
crossref_primary_10_1007_s10916_019_1193_9
crossref_primary_10_1111_1440_1630_12602
crossref_primary_10_1016_j_gaitpost_2020_07_018
crossref_primary_10_1186_s13634_021_00757_z
crossref_primary_10_1080_10400435_2023_2202713
crossref_primary_10_54105_ijpmh_B1005_091421
crossref_primary_10_1186_s12984_024_01347_4
crossref_primary_10_1186_s40648_019_0142_1
crossref_primary_10_1109_LRA_2019_2931607
crossref_primary_10_2196_12010
crossref_primary_10_5937_jaes0_44644
crossref_primary_10_3390_sports12100276
crossref_primary_10_3389_fnbot_2021_748196
crossref_primary_10_1109_TNSRE_2021_3121204
crossref_primary_10_3390_app10196976
crossref_primary_10_1097_MD_0000000000037214
crossref_primary_10_3390_disabilities2020021
crossref_primary_10_3390_robotics11050098
crossref_primary_10_1186_s12984_022_01065_9
crossref_primary_10_1155_2020_8810867
crossref_primary_10_3389_fnbot_2020_00019
crossref_primary_10_1007_s11370_023_00459_5
crossref_primary_10_3390_act11040111
crossref_primary_10_23736_S1973_9087_20_05926_2
crossref_primary_10_1097_MRR_0000000000000325
crossref_primary_10_1038_s42256_022_00495_3
crossref_primary_10_1080_01691864_2023_2197968
crossref_primary_10_3390_app9245357
crossref_primary_10_1038_s41598_022_11806_4
crossref_primary_10_1080_10749357_2021_1943797
crossref_primary_10_1080_17483107_2024_2378057
crossref_primary_10_3390_app10155323
crossref_primary_10_3389_fneur_2024_1449729
crossref_primary_10_1016_j_bspc_2021_103066
crossref_primary_10_3390_app14041363
crossref_primary_10_3390_app9153183
crossref_primary_10_1109_TNSRE_2023_3273990
crossref_primary_10_3390_app11010340
crossref_primary_10_3390_brainsci12121678
crossref_primary_10_1126_scirobotics_abo1966
crossref_primary_10_1186_s12984_022_01009_3
crossref_primary_10_3390_app11199245
crossref_primary_10_3389_fnbot_2022_837494
crossref_primary_10_61189_673672yizrwd
crossref_primary_10_1186_s41983_023_00640_8
crossref_primary_10_1109_TNSRE_2022_3175224
crossref_primary_10_1016_j_compbiomed_2024_108839
crossref_primary_10_3390_medicina55040098
crossref_primary_10_1002_aisy_202400266
crossref_primary_10_1177_2151459320956960
crossref_primary_10_1016_j_praneu_2021_03_016
crossref_primary_10_1007_s13534_023_00262_2
crossref_primary_10_1089_soro_2019_0105
crossref_primary_10_1007_s00170_024_14830_y
crossref_primary_10_1177_20552076241228928
crossref_primary_10_3390_app12041996
crossref_primary_10_1371_journal_pone_0300574
crossref_primary_10_1371_journal_pone_0245874
crossref_primary_10_1093_braincomms_fcab171
crossref_primary_10_3390_ijerph19084445
crossref_primary_10_1097_PHM_0000000000002412
crossref_primary_10_1080_09638288_2021_1989503
crossref_primary_10_3389_frobt_2024_1335147
crossref_primary_10_3390_machines12050288
crossref_primary_10_4236_ojo_2021_1112035
crossref_primary_10_1186_s10033_022_00749_6
crossref_primary_10_1186_s12984_020_00762_7
crossref_primary_10_55813_gaea_jessr_v4_n1_87
crossref_primary_10_3389_fnins_2021_678909
crossref_primary_10_1155_2022_3015645
crossref_primary_10_1109_LRA_2025_3527307
crossref_primary_10_3390_healthcare11030326
crossref_primary_10_1016_j_sna_2023_114473
crossref_primary_10_4028_p_v03hy7
crossref_primary_10_1080_10255842_2021_1938009
crossref_primary_10_1177_02692155231172299
crossref_primary_10_3390_machines12040230
crossref_primary_10_1155_2021_9962905
crossref_primary_10_1186_s12984_024_01371_4
crossref_primary_10_1186_s12984_024_01439_1
crossref_primary_10_3389_fresc_2023_1069269
crossref_primary_10_1109_MCS_2018_2866602
crossref_primary_10_1109_TMRB_2023_3310086
crossref_primary_10_3390_brainsci14101002
crossref_primary_10_3390_s23020911
crossref_primary_10_1109_ACCESS_2020_3036435
crossref_primary_10_1038_s41394_024_00630_9
crossref_primary_10_3389_fpubh_2024_1445099
crossref_primary_10_1097_MD_0000000000019517
crossref_primary_10_1016_j_bspc_2024_106896
crossref_primary_10_1055_a_2122_5548
crossref_primary_10_1186_s12984_019_0634_5
crossref_primary_10_5014_ajot_2021_038232
crossref_primary_10_3390_s23156953
crossref_primary_10_3390_s21062084
crossref_primary_10_14775_ksmpe_2020_19_07_041
crossref_primary_10_17116_jnevro202012008273
crossref_primary_10_3390_ijerph17186557
crossref_primary_10_1109_THMS_2022_3211164
crossref_primary_10_3389_fnbot_2021_753924
crossref_primary_10_1016_j_pmr_2023_06_026
crossref_primary_10_1080_09638288_2021_1980915
crossref_primary_10_1155_2023_7991765
crossref_primary_10_3389_fnagi_2020_594810
crossref_primary_10_3390_machines9120367
crossref_primary_10_3390_jpm11100953
crossref_primary_10_1155_2022_4799248
crossref_primary_10_1155_2022_9987313
crossref_primary_10_3390_app11125635
crossref_primary_10_1109_TNSRE_2022_3221308
crossref_primary_10_24075_brsmu_2021_039
crossref_primary_10_3390_healthcare11233055
crossref_primary_10_1109_TNSRE_2022_3147260
crossref_primary_10_1186_s12984_021_00815_5
crossref_primary_10_1109_LRA_2024_3446270
crossref_primary_10_1017_S0263574722000923
crossref_primary_10_2196_60374
crossref_primary_10_3389_fbioe_2020_00113
crossref_primary_10_1080_10790268_2023_2273587
crossref_primary_10_3390_robotics12010018
crossref_primary_10_1109_ACCESS_2024_3418452
crossref_primary_10_1109_TMRB_2024_3503998
crossref_primary_10_1109_TNSRE_2020_3018649
crossref_primary_10_3390_act12110406
crossref_primary_10_1016_j_apmr_2023_12_013
crossref_primary_10_3390_act12070268
crossref_primary_10_47183_mes_2023_054
crossref_primary_10_57197_JDR_2024_0031
crossref_primary_10_5194_ms_14_503_2023
crossref_primary_10_1002_acr_24103
crossref_primary_10_3233_THC_235009
crossref_primary_10_3390_ijerph17145233
crossref_primary_10_5194_ms_13_949_2022
crossref_primary_10_1186_s40814_022_01086_0
crossref_primary_10_3390_jcm13061545
crossref_primary_10_3390_ijerph19159713
crossref_primary_10_1109_OJCS_2024_3465661
crossref_primary_10_1007_s11517_023_03014_7
crossref_primary_10_1016_j_jor_2024_10_036
crossref_primary_10_1016_j_heliyon_2023_e18308
crossref_primary_10_1109_TNSRE_2024_3486173
crossref_primary_10_3390_app10196684
crossref_primary_10_3390_asi7060125
Cites_doi 10.1002/ana.410370506
10.1007/PL00005693
10.1016/S1474-4422(06)70522-1
10.1177/1545968310397705
10.1161/STROKEAHA.107.505313
10.1177/1545968307305457
10.3233/NRE-130930
10.1177/1545968309338190
10.1177/1545968309345268
10.1371/journal.pone.0087987
10.1093/cercor/bht285
10.1177/1545968314562115
10.1007/s00221-009-2026-8
10.1152/japplphysiol.00510.2012
10.1016/j.apmr.2017.02.020
10.1093/brain/awf273
10.1038/sc.2011.104
10.1186/1743-0003-8-63
10.1177/1545968306295556
10.1002/mus.1104
10.1007/BF02629836
10.1682/JRRD.1991.04.0033
10.1186/1743-0003-11-3
10.1161/01.STR.31.10.2390
10.1023/A:1024436732030
10.1056/NEJMoa0911341
10.1016/S1474-4422(14)70160-7
10.1016/S1474-4422(13)70305-3
10.1186/1743-0003-11-154
10.1155/2011/759764
10.1109/BIOROB.2016.7523716
10.1177/1545968308331148
10.1016/j.apmr.2004.08.004
10.1901/jeab.1994.61-281
10.1016/S0140-6736(94)90751-X
10.1097/PHM.0b013e31826bcedb
10.1109/10.1352
10.1093/brain/awt262
10.1007/978-3-319-28603-7_10
10.1146/annurev.neuro.27.070203.144308
10.1161/hs0202.102365
10.1109/TOH.2013.72
10.1161/STROKEAHA.116.016020
10.1682/JRRD.2005.02.0046
10.1186/s12984-017-0232-3
10.1109/TMECH.2007.901928
10.1093/brain/awh255
10.1109/ICORR.2009.5209509
10.1089/neu.2016.4555
10.1186/1743-0003-9-65
10.1109/MRA.2014.2362863
10.1080/096382800297097
10.1007/BF02447435
10.1097/WCO.0000000000000025
10.1186/s12984-016-0162-5
10.1016/S0004-9514(06)70003-4
10.1146/annurev.neuro.31.060407.125547
10.1002/14651858.CD006876.pub4
10.1017/S0140525X00041467
10.1016/S0004-9514(05)70040-4
10.1016/S0140-6736(98)09477-X
10.1007/s11517-011-0797-0
10.3233/NRE-2008-23104
10.1089/neu.2016.4643
10.1682/JRRD.2010.04.0055
10.1161/STROKEAHA.114.004695
10.1002/mus.20817
10.1177/1545968313481279
10.1152/jn.1994.71.6.2074
10.1089/neu.2007.0468
10.1177/1545968315608448
10.1186/1743-0003-10-112
10.1097/WCO.0b013e32833e99a4
10.1093/med/9780199673711.001.0001
10.1093/brain/awt204
10.1097/01.wco.0000200544.29915.cc
10.1016/j.clinph.2015.07.004
10.1109/HAPTIC.2012.6183769
10.1109/86.279267
10.1093/brain/119.5.1737
10.1186/1741-7007-8-92
10.1016/j.clinph.2005.08.014
10.1016/j.apmr.2011.08.028
10.1109/EMBC.2014.6944948
10.1212/01.wnl.0000202600.72018.39
10.1109/ICORR.2015.7281308
10.1016/S1474-4422(07)70193-X
10.1109/86.392371
10.1016/0006-8993(78)90973-3
10.1109/ICRA.2013.6631126
10.1016/j.apmr.2009.04.005
10.1007/978-3-319-28603-7_17
10.1093/brain/awl002
10.1016/j.medengphy.2016.04.004
10.1093/brain/123.3.572
10.1038/nrneurol.2014.162
10.1177/1545968317721975
10.1016/j.apmr.2014.10.022
10.1089/neu.2008.0824
10.1002/ana.24472
10.1109/TNSRE.2009.2033061
10.1177/1545968316680493
10.1177/1545968314543498
10.1109/TNSRE.2007.903919
10.1001/jama.292.15.1853
10.1016/S0166-2236(02)02229-4
10.1007/978-3-319-28603-7
10.1007/BF00229889
10.1093/cercor/bhr047
10.1001/archneur.1997.00550160075019
10.1186/1743-0003-6-5
10.1186/1743-0003-9-6
10.1056/NEJMoa1010790
10.1093/brain/awp124
10.1177/1545968307305302
10.1109/86.662623
10.1002/ana.24734
10.1161/STROKEAHA.110.605451
10.1016/j.apmr.2006.05.024
10.1177/1545968316666957
10.1038/nature11076
10.1097/PHM.0b013e318168ceaf
10.1111/j.1469-7793.1998.301br.x
10.1186/s12984-016-0168-z
ContentType Journal Article
Copyright COPYRIGHT 2018 BioMed Central Ltd.
Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
The Author(s). 2018
Copyright_xml – notice: COPYRIGHT 2018 BioMed Central Ltd.
– notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s). 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7TB
7TK
7TS
7X7
7XB
88C
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
L6V
LK8
M0S
M0T
M1P
M7P
M7S
NAPCQ
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1186/s12984-018-0383-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
Physical Education Index
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Health Management
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Occupational Therapy & Rehabilitation
Physical Therapy
EISSN 1743-0003
EndPage 15
ExternalDocumentID oai_doaj_org_article_f4a6ec18b9c6415c8ece499ee1a44d78
PMC5987585
A546886342
29866106
10_1186_s12984_018_0383_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
0R~
29L
2QV
2WC
53G
5GY
5VS
7RV
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
IPY
ITC
KQ8
L6V
LK8
M0T
M1P
M48
M7P
M7S
ML0
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7TB
7TK
7TS
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c674t-c904b6d741cae8c45ce825129bd62d831203856e635f3cf534a57c38ca59d7c93
IEDL.DBID M48
ISSN 1743-0003
IngestDate Wed Aug 27 01:31:42 EDT 2025
Thu Aug 21 18:08:36 EDT 2025
Fri Jul 11 08:09:26 EDT 2025
Fri Jul 25 19:21:39 EDT 2025
Tue Jun 17 21:21:04 EDT 2025
Tue Jun 10 20:21:47 EDT 2025
Thu Apr 03 06:53:43 EDT 2025
Thu Jul 10 08:03:40 EDT 2025
Thu Apr 24 22:53:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Neuroplasticity
Locomotion
Stroke
Robot-assisted therapy
Sensorimotor neurophysiology
Upper limb function
Neurorehabilitation technology
Spinal cord injury
Assist-as-needed
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c674t-c904b6d741cae8c45ce825129bd62d831203856e635f3cf534a57c38ca59d7c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-6373-8518
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-018-0383-x
PMID 29866106
PQID 2056860985
PQPubID 55356
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_f4a6ec18b9c6415c8ece499ee1a44d78
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5987585
proquest_miscellaneous_2050488460
proquest_journals_2056860985
gale_infotracmisc_A546886342
gale_infotracacademiconefile_A546886342
pubmed_primary_29866106
crossref_primary_10_1186_s12984_018_0383_x
crossref_citationtrail_10_1186_s12984_018_0383_x
PublicationCentury 2000
PublicationDate 2018-06-05
PublicationDateYYYYMMDD 2018-06-05
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Journal of neuroengineering and rehabilitation
PublicationTitleAlternate J Neuroeng Rehabil
PublicationYear 2018
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References V Pauvert (383_CR119) 1998; 508
E Taub (383_CR64) 1999; 36
P Maciejasz (383_CR131) 2014; 11
VR Edgerton (383_CR22) 2004; 27
M Schrafl-Altermatt (383_CR85) 2016; 127
EB Sandler (383_CR107) 2017; 34
MH Milot (383_CR47) 2013; 10
SR Zeiler (383_CR25) 2013; 26
383_CR57
AL van Delden (383_CR82) 2015; 29
J Zariffa (383_CR67) 2012; 50
CS Lin (383_CR114) 2007; 130
C Tefertiller (383_CR21) 2011; 48
HI Krebs (383_CR9) 1998; 6
383_CR59
J McCabe (383_CR45) 2015; 96
RC Loureiro (383_CR130) 2011; 49
AR Luft (383_CR80) 2004; 292
J Whitall (383_CR83) 2000; 31
AR Den Otter (383_CR111) 2006; 117
JM Veerbeek (383_CR136) 2017; 31
V Dietz (383_CR84) 2015; 25
O Lambercy (383_CR95) 2011; 8
V Dietz (383_CR108) 1994; 344
JC Metzger (383_CR54) 2014; 11
CG Burgar (383_CR12) 2000; 37
M Wirz (383_CR49) 2017; 34
383_CR1
383_CR4
JC Metzger (383_CR53) 2014; 7
R Riener (383_CR51) 2006; 43
383_CR6
383_CR7
X Wu (383_CR43) 2016; 30
MP Dijkers (383_CR8) 1991; 28
M Latash (383_CR35) 1996; 19
383_CR86
PS Lum (383_CR133) 2012; 91
RF Beer (383_CR76) 2007; 36
E Zarahn (383_CR26) 2011; 21
ME Stoykov (383_CR65) 2009; 23
A Pennycott (383_CR58) 2012; 9
KY Nam (383_CR139) 2017; 14
KC Lin (383_CR81) 2010; 24
G Colombo (383_CR13) 2000; 37
383_CR77
WD Byblow (383_CR63) 2015; 78
S Prabhakaran (383_CR28) 2008; 22
S Grillner (383_CR112) 1978; 146
P Rabishong (383_CR3) 1975
383_CR91
383_CR92
V Dietz (383_CR24) 2014; 137
383_CR97
383_CR98
PW Duncan (383_CR105) 2011; 364
383_CR96
M Wirz (383_CR101) 2006; 87
J Mehrholz (383_CR122) 2017; 5
VS Huang (383_CR32) 2009; 6
KR Lohse (383_CR42) 2014; 45
B Dobkin (383_CR121) 2006; 66
J Benito-Penalva (383_CR138) 2012; 93
JW Krakauer (383_CR33) 2006; 19
A Curt (383_CR27) 2008; 25
V Klamroth-Marganska (383_CR17) 2014; 13
J Beauparlant (383_CR116) 2013; 136
E Taub (383_CR73) 1994; 61
B Brouwer (383_CR99) 1992; 89
JF Veneman (383_CR125) 2007; 15
M Pohl (383_CR106) 2002; 33
RA Bos (383_CR134) 2016; 13
M Wirz (383_CR102) 2005; 86
V Dietz (383_CR109) 1995; 37
V Dietz (383_CR110) 2002; 125
D Khalili (383_CR2) 1988; 35
S Hesse (383_CR123) 2013; 33
B Sheng (383_CR132) 2016; 38
SL Kilbreath (383_CR66) 2005; 51
383_CR15
G Saposnik (383_CR34) 2011; 42
383_CR16
G Kwakkel (383_CR29) 2004; 22
S Balasubramanian (383_CR19) 2010; 23
L Marchal-Crespo (383_CR52) 2010; 201
G Di Pino (383_CR74) 2014; 10
CE Lang (383_CR50) 2009; 90
K Stefan (383_CR56) 2000; 123
RJ Nudo (383_CR23) 2001; 24
B Dobkin (383_CR104) 2007; 21
AC Lo (383_CR18) 2010; 362
HS Jorgensen (383_CR61) 1999; 30
G Kwakkel (383_CR41) 1999; 354
CE Lang (383_CR44) 2016; 80
JM Veerbeek (383_CR71) 2014; 9
MH Mudie (383_CR79) 2000; 22
S Hesse (383_CR14) 2000; 37
V Dietz (383_CR39) 2007; 6
T Nef (383_CR93) 2012
SY Schaefer (383_CR48) 2013; 27
D de Kam (383_CR120) 2013; 115
383_CR137
RT Katz (383_CR38) 1989; 70
L Ada (383_CR40) 2006; 52
V Dietz (383_CR115) 2004; 127
RN Lemon (383_CR60) 2008; 31
383_CR135
W Jakob (383_CR31) 2009; 26
A Duschau-Wicke (383_CR124) 2010; 18
KJ Waddell (383_CR46) 2017; 31
PS Lum (383_CR10) 1993; 1
G Kwakkel (383_CR75) 2015; 14
L Zimmerli (383_CR55) 2012; 9
R Loureiro (383_CR89) 2003; 15
E Buch (383_CR126) 2008; 39
C Marciniak (383_CR72) 2008; 87
V Dietz (383_CR117) 2009; 132
DR Louie (383_CR140) 2016; 13
V Dietz (383_CR68) 2006; 5
DJ Kriellaars (383_CR113) 1994; 71
LR Hochberg (383_CR128) 2012; 485
M Schubert (383_CR100) 1997; 115
NJ O'Dwyer (383_CR36) 1996; 119
M Vukobratovic (383_CR5) 1974; 12
JB Rowe (383_CR70) 2017; 31
S McCombe Waller (383_CR78) 2008; 23
SJ Housman (383_CR94) 2009; 23
S Carda (383_CR127) 2017; 98
383_CR129
C Winters (383_CR30) 2015; 29
V Dietz (383_CR37) 2015
ML Aisen (383_CR88) 1997; 54
V Dietz (383_CR118) 2002; 25
G Kwakkel (383_CR20) 2008; 22
L Carey (383_CR87) 2011; 25
CM Stinear (383_CR69) 2017; 48
L Masia (383_CR90) 2007; 12
H Barbeau (383_CR103) 1987; 25
NS Ward (383_CR62) 2006; 129
PS Lum (383_CR11) 1995; 3
References_xml – ident: 383_CR7
– volume: 37
  start-page: 574
  issue: 5
  year: 1995
  ident: 383_CR109
  publication-title: Ann Neurol
  doi: 10.1002/ana.410370506
– volume: 115
  start-page: 234
  issue: 2
  year: 1997
  ident: 383_CR100
  publication-title: Exp Brain Res
  doi: 10.1007/PL00005693
– volume: 5
  start-page: 688
  issue: 8
  year: 2006
  ident: 383_CR68
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(06)70522-1
– volume: 25
  start-page: 304
  issue: 4
  year: 2011
  ident: 383_CR87
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968310397705
– volume: 39
  start-page: 910
  issue: 3
  year: 2008
  ident: 383_CR126
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.107.505313
– volume: 22
  start-page: 111
  issue: 2
  year: 2008
  ident: 383_CR20
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968307305457
– volume: 33
  start-page: 77
  issue: 1
  year: 2013
  ident: 383_CR123
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-130930
– volume: 23
  start-page: 945
  year: 2009
  ident: 383_CR65
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968309338190
– ident: 383_CR4
– volume: 24
  start-page: 42
  issue: 1
  year: 2010
  ident: 383_CR81
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968309345268
– volume: 9
  start-page: e87987
  issue: 2
  year: 2014
  ident: 383_CR71
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0087987
– volume: 25
  start-page: 948
  issue: 4
  year: 2015
  ident: 383_CR84
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bht285
– volume: 29
  start-page: 614
  issue: 7
  year: 2015
  ident: 383_CR30
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968314562115
– volume: 201
  start-page: 209
  issue: 2
  year: 2010
  ident: 383_CR52
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-009-2026-8
– volume: 115
  start-page: 34
  issue: 1
  year: 2013
  ident: 383_CR120
  publication-title: J Appl Physiol (1985)
  doi: 10.1152/japplphysiol.00510.2012
– volume: 98
  start-page: 1628
  issue: 8
  year: 2017
  ident: 383_CR127
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2017.02.020
– volume: 125
  start-page: 2626
  issue: Pt 12
  year: 2002
  ident: 383_CR110
  publication-title: Brain
  doi: 10.1093/brain/awf273
– volume: 50
  start-page: 220
  issue: 3
  year: 2012
  ident: 383_CR67
  publication-title: Spinal Cord
  doi: 10.1038/sc.2011.104
– volume: 8
  start-page: 63
  year: 2011
  ident: 383_CR95
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/1743-0003-8-63
– volume: 21
  start-page: 25
  issue: 1
  year: 2007
  ident: 383_CR104
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968306295556
– volume: 37
  start-page: 701
  issue: 6
  year: 2000
  ident: 383_CR14
  publication-title: J Rehabil Res Dev
– volume: 24
  start-page: 1000
  issue: 8
  year: 2001
  ident: 383_CR23
  publication-title: Muscle Nerve
  doi: 10.1002/mus.1104
– volume: 12
  start-page: 66
  issue: 1
  year: 1974
  ident: 383_CR5
  publication-title: Med Biol Eng
  doi: 10.1007/BF02629836
– volume: 28
  start-page: 33
  issue: 2
  year: 1991
  ident: 383_CR8
  publication-title: J Rehabil Res Dev
  doi: 10.1682/JRRD.1991.04.0033
– volume: 11
  start-page: 3
  year: 2014
  ident: 383_CR131
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/1743-0003-11-3
– volume: 31
  start-page: 2390
  issue: 10
  year: 2000
  ident: 383_CR83
  publication-title: Stroke
  doi: 10.1161/01.STR.31.10.2390
– volume: 37
  start-page: 663
  issue: 6
  year: 2000
  ident: 383_CR12
  publication-title: J Rehabil Res Dev
– volume: 15
  start-page: 35
  issue: 1
  year: 2003
  ident: 383_CR89
  publication-title: Auton Robot
  doi: 10.1023/A:1024436732030
– volume: 362
  start-page: 1772
  year: 2010
  ident: 383_CR18
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0911341
– volume: 14
  start-page: 224
  issue: 2
  year: 2015
  ident: 383_CR75
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70160-7
– volume: 13
  start-page: 159
  issue: 2
  year: 2014
  ident: 383_CR17
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(13)70305-3
– volume: 36
  start-page: 237
  issue: 3
  year: 1999
  ident: 383_CR64
  publication-title: J Rehabil Res Dev
– volume: 11
  start-page: 154
  year: 2014
  ident: 383_CR54
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/1743-0003-11-154
– ident: 383_CR137
  doi: 10.1155/2011/759764
– ident: 383_CR15
  doi: 10.1109/BIOROB.2016.7523716
– volume: 23
  start-page: 505
  issue: 5
  year: 2009
  ident: 383_CR94
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968308331148
– volume: 86
  start-page: 672
  issue: 4
  year: 2005
  ident: 383_CR102
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2004.08.004
– volume: 61
  start-page: 281
  issue: 2
  year: 1994
  ident: 383_CR73
  publication-title: J Exp Anal Behav
  doi: 10.1901/jeab.1994.61-281
– volume: 344
  start-page: 1260
  issue: 8932
  year: 1994
  ident: 383_CR108
  publication-title: Lancet
  doi: 10.1016/S0140-6736(94)90751-X
– volume: 91
  start-page: S242
  issue: 11 Suppl 3
  year: 2012
  ident: 383_CR133
  publication-title: Am J Phys Med Rehabil
  doi: 10.1097/PHM.0b013e31826bcedb
– volume: 35
  start-page: 138
  issue: 2
  year: 1988
  ident: 383_CR2
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.1352
– volume: 137
  start-page: 654
  issue: Pt 3
  year: 2014
  ident: 383_CR24
  publication-title: Brain
  doi: 10.1093/brain/awt262
– ident: 383_CR57
  doi: 10.1007/978-3-319-28603-7_10
– volume: 27
  start-page: 145
  year: 2004
  ident: 383_CR22
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.27.070203.144308
– volume: 33
  start-page: 553
  issue: 2
  year: 2002
  ident: 383_CR106
  publication-title: Stroke
  doi: 10.1161/hs0202.102365
– volume: 7
  start-page: 140
  issue: 2
  year: 2014
  ident: 383_CR53
  publication-title: IEEE Trans Haptics
  doi: 10.1109/TOH.2013.72
– volume: 37
  start-page: 693
  issue: 6
  year: 2000
  ident: 383_CR13
  publication-title: J Rehabil Res Dev
– volume: 48
  start-page: 795
  issue: 3
  year: 2017
  ident: 383_CR69
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.116.016020
– volume: 43
  start-page: 679
  issue: 5
  year: 2006
  ident: 383_CR51
  publication-title: J Rehabil Res Dev
  doi: 10.1682/JRRD.2005.02.0046
– volume: 14
  start-page: 24
  issue: 1
  year: 2017
  ident: 383_CR139
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/s12984-017-0232-3
– volume: 12
  start-page: 399
  issue: 4
  year: 2007
  ident: 383_CR90
  publication-title: IEEE ASME Trans Mechatron
  doi: 10.1109/TMECH.2007.901928
– volume: 127
  start-page: 2221
  issue: Pt 10
  year: 2004
  ident: 383_CR115
  publication-title: Brain
  doi: 10.1093/brain/awh255
– ident: 383_CR86
– ident: 383_CR91
  doi: 10.1109/ICORR.2009.5209509
– start-page: 33
  volume-title: Proc Int Symp external control hum extremities
  year: 1975
  ident: 383_CR3
– volume: 34
  start-page: 1903
  issue: 10
  year: 2017
  ident: 383_CR107
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2016.4555
– volume: 9
  start-page: 65
  year: 2012
  ident: 383_CR58
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/1743-0003-9-65
– volume-title: Neurorehabilitation technology
  year: 2012
  ident: 383_CR93
– ident: 383_CR96
  doi: 10.1109/MRA.2014.2362863
– volume: 22
  start-page: 23
  issue: 1–2
  year: 2000
  ident: 383_CR79
  publication-title: Disabil Rehabil
  doi: 10.1080/096382800297097
– volume: 25
  start-page: 341
  issue: 3
  year: 1987
  ident: 383_CR103
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02447435
– volume: 22
  start-page: 281
  issue: 3–5
  year: 2004
  ident: 383_CR29
  publication-title: Restor Neurol Neurosci
– volume: 26
  start-page: 609
  issue: 6
  year: 2013
  ident: 383_CR25
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0000000000000025
– volume: 13
  start-page: 53
  issue: 1
  year: 2016
  ident: 383_CR140
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/s12984-016-0162-5
– volume: 52
  start-page: 241
  issue: 4
  year: 2006
  ident: 383_CR40
  publication-title: Aust J Physiother
  doi: 10.1016/S0004-9514(06)70003-4
– volume: 31
  start-page: 195
  year: 2008
  ident: 383_CR60
  publication-title: Annu Rev Neurosci
  doi: 10.1146/annurev.neuro.31.060407.125547
– ident: 383_CR135
  doi: 10.1002/14651858.CD006876.pub4
– volume: 19
  start-page: 55
  year: 1996
  ident: 383_CR35
  publication-title: Behav Brain Sci
  doi: 10.1017/S0140525X00041467
– volume: 5
  start-page: CD006185
  year: 2017
  ident: 383_CR122
  publication-title: Cochrane database Syst Rev
– volume: 51
  start-page: 119
  issue: 2
  year: 2005
  ident: 383_CR66
  publication-title: Aust J Physiother.
  doi: 10.1016/S0004-9514(05)70040-4
– volume: 354
  start-page: 191
  issue: 9174
  year: 1999
  ident: 383_CR41
  publication-title: Lancet
  doi: 10.1016/S0140-6736(98)09477-X
– volume: 49
  start-page: 1103
  issue: 10
  year: 2011
  ident: 383_CR130
  publication-title: Med Biol Eng Comput.
  doi: 10.1007/s11517-011-0797-0
– volume: 23
  start-page: 29
  issue: 1
  year: 2008
  ident: 383_CR78
  publication-title: NeuroRehabilitation
  doi: 10.3233/NRE-2008-23104
– volume: 34
  start-page: 1891
  year: 2017
  ident: 383_CR49
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2016.4643
– volume: 48
  start-page: 387
  issue: 4
  year: 2011
  ident: 383_CR21
  publication-title: J Rehabil Res Dev
  doi: 10.1682/JRRD.2010.04.0055
– volume: 45
  start-page: 2053
  issue: 7
  year: 2014
  ident: 383_CR42
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.114.004695
– volume: 36
  start-page: 242
  issue: 2
  year: 2007
  ident: 383_CR76
  publication-title: Muscle Nerve
  doi: 10.1002/mus.20817
– volume: 27
  start-page: 602
  issue: 7
  year: 2013
  ident: 383_CR48
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968313481279
– volume: 71
  start-page: 2074
  issue: 6
  year: 1994
  ident: 383_CR113
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1994.71.6.2074
– volume: 25
  start-page: 677
  issue: 6
  year: 2008
  ident: 383_CR27
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2007.0468
– volume: 30
  start-page: 583
  issue: 6
  year: 2016
  ident: 383_CR43
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968315608448
– volume: 10
  start-page: 112
  year: 2013
  ident: 383_CR47
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/1743-0003-10-112
– volume: 23
  start-page: 661
  issue: 6
  year: 2010
  ident: 383_CR19
  publication-title: Curr Opin Neurol
  doi: 10.1097/WCO.0b013e32833e99a4
– volume-title: Oxford textbook of neurorehabilitation
  year: 2015
  ident: 383_CR37
  doi: 10.1093/med/9780199673711.001.0001
– volume: 136
  start-page: 3347
  issue: Pt 11
  year: 2013
  ident: 383_CR116
  publication-title: Brain
  doi: 10.1093/brain/awt204
– volume: 19
  start-page: 84
  issue: 1
  year: 2006
  ident: 383_CR33
  publication-title: Curr Opin Neurol
  doi: 10.1097/01.wco.0000200544.29915.cc
– volume: 127
  start-page: 748
  issue: 1
  year: 2016
  ident: 383_CR85
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2015.07.004
– ident: 383_CR98
  doi: 10.1109/HAPTIC.2012.6183769
– volume: 1
  start-page: 185
  issue: 3
  year: 1993
  ident: 383_CR10
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.279267
– volume: 119
  start-page: 1737
  year: 1996
  ident: 383_CR36
  publication-title: Brain
  doi: 10.1093/brain/119.5.1737
– ident: 383_CR129
  doi: 10.1186/1741-7007-8-92
– volume: 117
  start-page: 4
  issue: 1
  year: 2006
  ident: 383_CR111
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2005.08.014
– volume: 93
  start-page: 404
  issue: 3
  year: 2012
  ident: 383_CR138
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2011.08.028
– ident: 383_CR77
  doi: 10.1109/EMBC.2014.6944948
– volume: 66
  start-page: 484
  issue: 4
  year: 2006
  ident: 383_CR121
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000202600.72018.39
– volume: 70
  start-page: 144
  issue: 2
  year: 1989
  ident: 383_CR38
  publication-title: Arch Phys Med Rehabil
– ident: 383_CR16
  doi: 10.1109/ICORR.2015.7281308
– volume: 6
  start-page: 725
  issue: 8
  year: 2007
  ident: 383_CR39
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(07)70193-X
– volume: 3
  start-page: 166
  issue: 2
  year: 1995
  ident: 383_CR11
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.392371
– volume: 146
  start-page: 269
  issue: 2
  year: 1978
  ident: 383_CR112
  publication-title: Brain Res
  doi: 10.1016/0006-8993(78)90973-3
– ident: 383_CR97
  doi: 10.1109/ICRA.2013.6631126
– volume: 90
  start-page: 1692
  issue: 10
  year: 2009
  ident: 383_CR50
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2009.04.005
– ident: 383_CR92
  doi: 10.1007/978-3-319-28603-7_17
– volume: 130
  start-page: 985
  issue: Pt 4
  year: 2007
  ident: 383_CR114
  publication-title: Brain
– volume: 129
  start-page: 809
  issue: Pt 3
  year: 2006
  ident: 383_CR62
  publication-title: Brain
  doi: 10.1093/brain/awl002
– volume: 38
  start-page: 587
  issue: 7
  year: 2016
  ident: 383_CR132
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2016.04.004
– volume: 123
  start-page: 572
  year: 2000
  ident: 383_CR56
  publication-title: Brain
  doi: 10.1093/brain/123.3.572
– volume: 10
  start-page: 597
  issue: 10
  year: 2014
  ident: 383_CR74
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2014.162
– volume: 31
  start-page: 769
  issue: 8
  year: 2017
  ident: 383_CR70
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968317721975
– volume: 96
  start-page: 981
  issue: 6
  year: 2015
  ident: 383_CR45
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2014.10.022
– volume: 26
  start-page: 2037
  issue: 11
  year: 2009
  ident: 383_CR31
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2008.0824
– volume: 30
  start-page: 2008
  issue: 10
  year: 1999
  ident: 383_CR61
  publication-title: The Copenhagen Stroke Study Stroke
– ident: 383_CR6
– volume: 78
  start-page: 848
  issue: 6
  year: 2015
  ident: 383_CR63
  publication-title: Ann Neurol
  doi: 10.1002/ana.24472
– volume: 18
  start-page: 38
  year: 2010
  ident: 383_CR124
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2009.2033061
– volume: 31
  start-page: 290
  issue: 3
  year: 2017
  ident: 383_CR46
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968316680493
– volume: 29
  start-page: 255
  issue: 3
  year: 2015
  ident: 383_CR82
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968314543498
– volume: 15
  start-page: 379
  issue: 3
  year: 2007
  ident: 383_CR125
  publication-title: IEEE Trans Neural Syst Rehabil Eng.
  doi: 10.1109/TNSRE.2007.903919
– volume: 292
  start-page: 1853
  issue: 15
  year: 2004
  ident: 383_CR80
  publication-title: JAMA
  doi: 10.1001/jama.292.15.1853
– volume: 25
  start-page: 462
  issue: 9
  year: 2002
  ident: 383_CR118
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(02)02229-4
– ident: 383_CR1
  doi: 10.1007/978-3-319-28603-7
– volume: 89
  start-page: 649
  issue: 3
  year: 1992
  ident: 383_CR99
  publication-title: Exp Brain Res
  doi: 10.1007/BF00229889
– volume: 21
  start-page: 2712
  issue: 12
  year: 2011
  ident: 383_CR26
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhr047
– volume: 54
  start-page: 443
  issue: 4
  year: 1997
  ident: 383_CR88
  publication-title: Arch Neurol
  doi: 10.1001/archneur.1997.00550160075019
– volume: 6
  start-page: 5
  year: 2009
  ident: 383_CR32
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/1743-0003-6-5
– volume: 9
  start-page: 6
  year: 2012
  ident: 383_CR55
  publication-title: J Neuroeng Rehabil.
  doi: 10.1186/1743-0003-9-6
– volume: 364
  start-page: 2026
  issue: 21
  year: 2011
  ident: 383_CR105
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1010790
– volume: 132
  start-page: 2196
  issue: Pt 8
  year: 2009
  ident: 383_CR117
  publication-title: Brain
  doi: 10.1093/brain/awp124
– volume: 22
  start-page: 64
  year: 2008
  ident: 383_CR28
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968307305302
– volume: 6
  start-page: 75
  issue: 1
  year: 1998
  ident: 383_CR9
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.662623
– volume: 80
  start-page: 342
  issue: 3
  year: 2016
  ident: 383_CR44
  publication-title: Ann Neurol
  doi: 10.1002/ana.24734
– volume: 42
  start-page: 1380
  issue: 5
  year: 2011
  ident: 383_CR34
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.605451
– ident: 383_CR59
– volume: 87
  start-page: 1218
  issue: 9
  year: 2006
  ident: 383_CR101
  publication-title: Arch Phys Med Rehabil
  doi: 10.1016/j.apmr.2006.05.024
– volume: 31
  start-page: 107
  issue: 2
  year: 2017
  ident: 383_CR136
  publication-title: Neurorehabil Neural Repair
  doi: 10.1177/1545968316666957
– volume: 485
  start-page: 372
  issue: 7398
  year: 2012
  ident: 383_CR128
  publication-title: Nature
  doi: 10.1038/nature11076
– volume: 87
  start-page: 312
  issue: 4
  year: 2008
  ident: 383_CR72
  publication-title: Am J Phys Med Rehabil
  doi: 10.1097/PHM.0b013e318168ceaf
– volume: 508
  start-page: 301
  year: 1998
  ident: 383_CR119
  publication-title: J Physiol
  doi: 10.1111/j.1469-7793.1998.301br.x
– volume: 13
  start-page: 62
  issue: 1
  year: 2016
  ident: 383_CR134
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-016-0168-z
SSID ssj0034054
Score 2.6133192
SecondaryResourceType review_article
Snippet The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system...
Abstract The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 46
SubjectTerms Activation
Arm
Assist-as-needed
Central nervous system
Design engineering
Exercise Therapy - instrumentation
Exoskeleton Device
Exploitation
Functional plasticity
Health aspects
Humans
Innovations
Knowledge management
Locomotion
Muscle contraction
Muscles
Nervous system
Neurological Rehabilitation - instrumentation
Neurological Rehabilitation - methods
Neurological Rehabilitation - trends
Neuroplasticity
Neurorehabilitation technology
Physiology
Receptors
Recovery
Recovery of function
Rehabilitation
Rehabilitation robots
Review
Robot control
Robot-assisted therapy
Robotic surgery
Robotics
Robotics - instrumentation
Robots
Sensorimotor system
Spinal cord injuries
Spinal cord injury
Spinal plasticity
Stroke
Stroke Rehabilitation - instrumentation
Therapy
Training
Treadmills (Exercise equipment)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEB6kD6IPXo631CoreAEhNCd7yca3KpYiKCIt9G1JJhsqSFJOUujP78zmYoKgL76ch7OzkM3MznyTnfkW4LXMNGqJzNsqZayMV3Hp6SfVUnlfKmvqwPb5zZycqS_n-nxx1RfXhA30wMOLO6xVYTxubZmjoWCD1qMnlO79tlCqykKbL8W8KZkafLAkGKLGM8ytNYcdRTXL1RbcTmZlfL2KQoGs_0-XvIhJ63rJRQA6fgD3RuQojoYnfgi3fLOBuws-wQ3c_jqelG_gzZI-WJwO3AHirfixYubewP3vo6ImmUdQrmXEri3bvhOEbgWhRTGXpou2Fh1lwe2O9U2jlWc6ir77IAoReDLDZ5PJu4rL332dj-Hs-PPpp5N4vIohRpOpPsY8UaWpCH5g4S0qjZ57XtO8rExaWblN-YTReIIvtcSaFF3oDKXFQudVhrl8AntN2_hnIHxSSKRJyqBVNWU_dVpzf21KU_TWFhEkk2ocjivl6zJ-uZCvWOMGbTrSpmNtuusI3s9TLgeSjr8Jf2R9z4LMrx3-IKtzo9W5f1ldBO_YWhx7AXo4LMZmBloi82m5I62MtUaqNIKDlSTtXlwPT_bmRu_RuZRQqTVJbnUEr-ZhnskVcY1vr4IMO19lkgieDuY5L4lWTLArMRFkK8NdrXk90vy8CNziOrecQe7_j5f0HO6kYcuZONEHsNfvrvwLgnB9-TLs1htK_UXv
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9RADA96guiDH6ue1VNG8AOEYrfz0akvcorHISgid7BvQ5tOT-Fo1-0e3J9vMjvb2yLcSx86GWiaTCaZJL8BeC0LjVoi47ZKmSrjVVp7euRaKu9rZU0b0D5_mONT9W2hF_HAbYhllVubGAx10yOfkVOQro01WWn1p-XflG-N4uxqvELjJtxi6DIu6SoWY8AlyRlRMZM5t-bDQHub5ZoLbiqzMr2c7EUBsv9_w7yzM02rJne2oaMHcC_6j-JwI_CHcMN3M7i7gyo4g9vfY758Bm92QYTFyQZBQLwVvyb43DO4_zOKa0vzCOopjVj1db8eBPm4gnxGMRaoi74VA8XC9K9I6jTaeAalWA8fRSUCWmY4PNnaWLG86u58DKdHX0--HKfxQoYUTaHWKZaZqk1DTghW3qLS6LnzNS_rxuSNlfOc84zGkxPTSmxJ3JUuUFqsdNkUWMonsNf1nX8KwmeVRJqkDFrVUgzU5i132eY0Rc9tlUC2FY3DyClfmnHuQtRijdtI05E0HUvTXSbwfpyy3EB1XEf8meU9EjLKdnjRr85cXLSuVZXxOLd1iYYcHbQePUWI3s8rpZrCJvCOtcWxLaCPwyq2NBCLjKrlDrUy1hqp8gQOJpS0hnE6vNU3F23I4K40PoFX4zDP5Lq4zvcXgYZNsDJZAvsb9RxZIo7J-cpMAsVEcSc8T0e6P78DwrguLceRz67_rOdwJw-LyaSZPoC99erCvyAXbV2_DOvwH4vKPII
  priority: 102
  providerName: ProQuest
Title Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective
URI https://www.ncbi.nlm.nih.gov/pubmed/29866106
https://www.proquest.com/docview/2056860985
https://www.proquest.com/docview/2050488460
https://pubmed.ncbi.nlm.nih.gov/PMC5987585
https://doaj.org/article/f4a6ec18b9c6415c8ece499ee1a44d78
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB9qC2I_-Di1Ruuxgg8QornsIxtB5Co9y0FLqT24b0uy2ahQLjV3hfrfO7OXxAtWvyRwO3NkMzM7M9md3wC85Im0klvCbeU8FMqJMHd4iSUXzuVCq9KjfZ6oo5mYzuV8C9r2Vs0LXN6Y2lE_qVl98e76569PaPAfvcFr9X6JPkvTWQoqFtM8xJByBx1TQnZ6LLpNBY6xiWg2Nm9kI2DgVKPDovZHG17Kg_n_vWRv-Kz-ecoNBzW5D3ebyJKN16rwALbcYgC7G3iDA7h93OykD-DVJrwwO19jC7DX7KyH3D2Ae6eNIFuah5D3aVhd5dVqyTD6ZRhNsu7oOqtKtsQsuapJH3C0cARXsVp-YBnzOJr-s0q7-rLLP3Wfj2A2OTz_fBQ2rRpCqxKxCm0aiVwVGJ7YzGkrpHVUExuneaHiQvNRTDuQymF4U3JboiJkMrFc20ymRWJT_hi2F9XCPQHmooxbZBLKalFidlTGJdXfxsgiRzoLIGpFY2wzU2qncWF8PqOVWQvWoGANCdZcB_C2Y7lcg3j8j_iA5N0REv62_6Gqv5nGnE0pMuXsSOepVRgCWe2sw9zRuVEmRJHoAN6QthjSW3w4mzXFDjhFwtsyYymU1oqLOID9HiVat-0Pt_pmWuMwMUatWkWplgG86IaJk07MLVx15WlocRYqCmBvrZ7dlFotDyDpKW5vzv2RxY_vHntcppoyzKf__M9ncCf2JqXCSO7D9qq-cs8xblvlQ7iVzBO86smXIeyMx9OvU7wfHJ6cng39t5Cht9ff6XBFew
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zi9RAEC6WFTwePMYrumoLroIQzKSPdASR9Vhm3QORWZi3Nul0VJDJOJnF9U_5G63qHDtB2Ld9yUO6OnRR1XWkq74GeMYTaSW3hNvKeSiUE2Hu8BFLLpzLhValR_s8UpNj8WkmZxvwt-uFobLKziZ6Q11Ulv6RY5IulVZRquXbxa-Qbo2i09XuCo1GLfbdn9-YstVv9j6gfLfjePfj9P0kbG8VCK1KxCq0aSRyVaAntZnTVkjrqH0zTvNCxYXm45gOy5RDT1xyW-KaM5lYrm0m0yKxBL6EJv8SOt6IdlQy6xM8jsGPaE9Ox1q9qvGjmmo8qIlN8_B04Pv8FQH_O4I1Tzis0lxze7s34Xobr7KdRsFuwYabj-DaGorhCC4ftufzI9heBy1m0waxgD1nXwZ44CO48blVj47mNuRDGras8mpVM4ypGcaorC-IZ1XJasy9UTaoZThaOALBWNWvWcY8Oqf_WdPZdLY46ya9A8cXIqq7sDmv5u4-MBdl3OIkoawWJeZcZVxSV2-MU-RYZwFEnWiMbTmlSzp-Gp8laWUaaRqUpiFpmtMAXvZTFg00yHnE70jePSGhevsX1fKbaY2EKUWmnB3rPLUKAyurnXWYkTo3zoQoEh3AC9IWQ7YHF2eztoUCWSQUL7MjhdJacREHsDWgRJthh8OdvpnWZtXmbIcF8LQfpplUhzd31YmnIZMvVBTAvUY9e5aQYwz2IhVAMlDcAc_DkfmP7x7RXKaa8tYH5y_rCVyZTA8PzMHe0f5DuBr7jaXCSG7B5mp54h5heLjKH_s9yeDrRRuBf7G9eIc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rehabilitation+robots+for+the+treatment+of+sensorimotor+deficits%3A+a+neurophysiological+perspective&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Gassert%2C+Roger&rft.au=Dietz%2C+Volker&rft.date=2018-06-05&rft.eissn=1743-0003&rft.volume=15&rft.issue=1&rft.spage=46&rft_id=info:doi/10.1186%2Fs12984-018-0383-x&rft_id=info%3Apmid%2F29866106&rft.externalDocID=29866106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon