Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective
The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be de...
Saved in:
Published in | Journal of neuroengineering and rehabilitation Vol. 15; no. 1; pp. 46 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
05.06.2018
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation. |
---|---|
AbstractList | The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation. Abstract The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation. The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation. Keywords: Robot-assisted therapy, Neurorehabilitation technology, Assist-as-needed, Stroke, Spinal cord injury, Locomotion, Upper limb function, Sensorimotor neurophysiology, Neuroplasticity The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation. The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices. This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation. The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge. |
ArticleNumber | 46 |
Audience | Academic |
Author | Gassert, Roger Dietz, Volker |
Author_xml | – sequence: 1 givenname: Roger orcidid: 0000-0002-6373-8518 surname: Gassert fullname: Gassert, Roger – sequence: 2 givenname: Volker surname: Dietz fullname: Dietz, Volker |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29866106$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JaR7tD-imGLrJxqlkPSx3UQihj0CgUNq1kK-vZzR4rKkkh-Tf905mGjKhFC0kpO8c6YhzWhxNYcKieMvZBedGf0i8bo2sGDcVE0ZUdy-KE95IUTHGxNGT9XFxmtKKFpIp-ao4JpnWnOmTovuBS9f50WeXfZjKGLqQUzmEWOYlljmiy2ucchmGMuGUQvTrkOm0x8GDz-lj6coJ5xg2y_vkwxgWHtxYbjCmDUL2t_i6eDm4MeGb_XxW_Pry-efVt-rm-9frq8ubCnQjcwUtk53uG8nBoQGpAE2tKGHX67o3gteUUWnUQg0CBiWkUw0IA061fQOtOCuud759cCu7oYe6eG-D8_ZhI8SFdTF7GNEO0mkEbroWtOQKDALKtkXkTsq-MeT1aee1mbs19kA_EN14YHp4MvmlXYRbq1rTKKPI4HxvEMPvGVO2a58Ax9FNGOZka6aYNEZqRuj7Z-gqzHGir9pS2mjWPhjuqYWjAH4aAt0LW1N7qaQ2RgtZE3XxD4pGj2sP1J7B0_6B4N3ToI8J_zaEAL4DIIaUIg6PCGd220K7a6GlFtptC-0daZpnGtj3i17jx_8o_wBgGeID |
CitedBy_id | crossref_primary_10_1109_TMECH_2022_3148032 crossref_primary_10_3389_fnagi_2023_1193292 crossref_primary_10_3389_fneur_2020_00934 crossref_primary_10_3390_app122412574 crossref_primary_10_3390_app9153106 crossref_primary_10_3390_s23063281 crossref_primary_10_1109_TNSRE_2023_3326777 crossref_primary_10_3390_biomimetics9100638 crossref_primary_10_1016_j_bspc_2021_103101 crossref_primary_10_1186_s12984_024_01365_2 crossref_primary_10_1038_s41563_020_0679_7 crossref_primary_10_3389_fnins_2020_600059 crossref_primary_10_3390_brainsci13081143 crossref_primary_10_1016_j_rehab_2019_09_009 crossref_primary_10_1115_1_4056007 crossref_primary_10_17587_mau_25_101_107 crossref_primary_10_1016_j_pmrj_2018_10_001 crossref_primary_10_1080_17434440_2020_1733408 crossref_primary_10_1097_NPT_0000000000000295 crossref_primary_10_4103_1673_5374_301030 crossref_primary_10_18857_jkpt_2021_33_2_69 crossref_primary_10_1111_dmcn_14795 crossref_primary_10_1142_S0219519421500329 crossref_primary_10_1007_s12652_020_02405_0 crossref_primary_10_3233_NRE_220027 crossref_primary_10_3390_machines9100224 crossref_primary_10_3390_brainsci11050587 crossref_primary_10_1002_rcs_2298 crossref_primary_10_3233_NRE_220025 crossref_primary_10_1109_MRA_2020_3044965 crossref_primary_10_3233_IES_230157 crossref_primary_10_1186_s12984_020_00739_6 crossref_primary_10_1016_j_matpr_2020_04_017 crossref_primary_10_3389_fneur_2025_1506889 crossref_primary_10_3389_fnins_2024_1398459 crossref_primary_10_3389_frobt_2021_612415 crossref_primary_10_3390_s21185991 crossref_primary_10_1080_01691864_2020_1749926 crossref_primary_10_35940_ijpmh_B1005_091421 crossref_primary_10_1109_TNSRE_2024_3432661 crossref_primary_10_17816_PAVLOVJ96752 crossref_primary_10_3390_su13042183 crossref_primary_10_1007_s10439_020_02611_z crossref_primary_10_1109_TMRB_2021_3064412 crossref_primary_10_1007_s11055_021_01109_y crossref_primary_10_17979_ja_cea_2024_45_10961 crossref_primary_10_1016_j_msard_2020_102177 crossref_primary_10_2196_45458 crossref_primary_10_3389_fnbot_2022_913748 crossref_primary_10_1080_10749357_2021_1967657 crossref_primary_10_1186_s12984_022_01043_1 crossref_primary_10_1109_TMRB_2021_3100625 crossref_primary_10_1136_bmjopen_2020_045051 crossref_primary_10_1038_s41598_021_01959_z crossref_primary_10_1186_s12984_022_00993_w crossref_primary_10_51764_smutgd_1523487 crossref_primary_10_1109_TRO_2022_3189231 crossref_primary_10_1177_1045389X241263878 crossref_primary_10_3389_fneur_2021_691444 crossref_primary_10_4081_ejtm_2021_9360 crossref_primary_10_1016_j_nicl_2018_08_026 crossref_primary_10_1016_j_pmr_2019_09_002 crossref_primary_10_3389_fpsyg_2020_584869 crossref_primary_10_1109_LRA_2024_3460412 crossref_primary_10_3389_fnbot_2022_964720 crossref_primary_10_3389_fneur_2020_588285 crossref_primary_10_4103_digm_digm_14_18 crossref_primary_10_1186_s12984_023_01158_z crossref_primary_10_3390_s23063089 crossref_primary_10_1007_s11042_023_15653_x crossref_primary_10_1177_09544062241230223 crossref_primary_10_3389_fnbot_2024_1351700 crossref_primary_10_52054_FVVO_15_4_11 crossref_primary_10_3390_app9040626 crossref_primary_10_3390_s25051322 crossref_primary_10_3390_s23115054 crossref_primary_10_1186_s12984_024_01510_x crossref_primary_10_1007_s41315_024_00369_4 crossref_primary_10_3390_machines11080787 crossref_primary_10_1109_TBME_2024_3384939 crossref_primary_10_1186_s12984_019_0630_9 crossref_primary_10_2478_ahem_2023_0012 crossref_primary_10_51483_IJAIML_4_1_2024_94_121 crossref_primary_10_1088_2516_1091_acc70a crossref_primary_10_1186_s12984_020_00763_6 crossref_primary_10_3390_s21217342 crossref_primary_10_1016_j_cobme_2021_100291 crossref_primary_10_1145_3659058 crossref_primary_10_2196_59556 crossref_primary_10_1109_JBHI_2021_3112201 crossref_primary_10_1007_s10916_019_1193_9 crossref_primary_10_1111_1440_1630_12602 crossref_primary_10_1016_j_gaitpost_2020_07_018 crossref_primary_10_1186_s13634_021_00757_z crossref_primary_10_1080_10400435_2023_2202713 crossref_primary_10_54105_ijpmh_B1005_091421 crossref_primary_10_1186_s12984_024_01347_4 crossref_primary_10_1186_s40648_019_0142_1 crossref_primary_10_1109_LRA_2019_2931607 crossref_primary_10_2196_12010 crossref_primary_10_5937_jaes0_44644 crossref_primary_10_3390_sports12100276 crossref_primary_10_3389_fnbot_2021_748196 crossref_primary_10_1109_TNSRE_2021_3121204 crossref_primary_10_3390_app10196976 crossref_primary_10_1097_MD_0000000000037214 crossref_primary_10_3390_disabilities2020021 crossref_primary_10_3390_robotics11050098 crossref_primary_10_1186_s12984_022_01065_9 crossref_primary_10_1155_2020_8810867 crossref_primary_10_3389_fnbot_2020_00019 crossref_primary_10_1007_s11370_023_00459_5 crossref_primary_10_3390_act11040111 crossref_primary_10_23736_S1973_9087_20_05926_2 crossref_primary_10_1097_MRR_0000000000000325 crossref_primary_10_1038_s42256_022_00495_3 crossref_primary_10_1080_01691864_2023_2197968 crossref_primary_10_3390_app9245357 crossref_primary_10_1038_s41598_022_11806_4 crossref_primary_10_1080_10749357_2021_1943797 crossref_primary_10_1080_17483107_2024_2378057 crossref_primary_10_3390_app10155323 crossref_primary_10_3389_fneur_2024_1449729 crossref_primary_10_1016_j_bspc_2021_103066 crossref_primary_10_3390_app14041363 crossref_primary_10_3390_app9153183 crossref_primary_10_1109_TNSRE_2023_3273990 crossref_primary_10_3390_app11010340 crossref_primary_10_3390_brainsci12121678 crossref_primary_10_1126_scirobotics_abo1966 crossref_primary_10_1186_s12984_022_01009_3 crossref_primary_10_3390_app11199245 crossref_primary_10_3389_fnbot_2022_837494 crossref_primary_10_61189_673672yizrwd crossref_primary_10_1186_s41983_023_00640_8 crossref_primary_10_1109_TNSRE_2022_3175224 crossref_primary_10_1016_j_compbiomed_2024_108839 crossref_primary_10_3390_medicina55040098 crossref_primary_10_1002_aisy_202400266 crossref_primary_10_1177_2151459320956960 crossref_primary_10_1016_j_praneu_2021_03_016 crossref_primary_10_1007_s13534_023_00262_2 crossref_primary_10_1089_soro_2019_0105 crossref_primary_10_1007_s00170_024_14830_y crossref_primary_10_1177_20552076241228928 crossref_primary_10_3390_app12041996 crossref_primary_10_1371_journal_pone_0300574 crossref_primary_10_1371_journal_pone_0245874 crossref_primary_10_1093_braincomms_fcab171 crossref_primary_10_3390_ijerph19084445 crossref_primary_10_1097_PHM_0000000000002412 crossref_primary_10_1080_09638288_2021_1989503 crossref_primary_10_3389_frobt_2024_1335147 crossref_primary_10_3390_machines12050288 crossref_primary_10_4236_ojo_2021_1112035 crossref_primary_10_1186_s10033_022_00749_6 crossref_primary_10_1186_s12984_020_00762_7 crossref_primary_10_55813_gaea_jessr_v4_n1_87 crossref_primary_10_3389_fnins_2021_678909 crossref_primary_10_1155_2022_3015645 crossref_primary_10_1109_LRA_2025_3527307 crossref_primary_10_3390_healthcare11030326 crossref_primary_10_1016_j_sna_2023_114473 crossref_primary_10_4028_p_v03hy7 crossref_primary_10_1080_10255842_2021_1938009 crossref_primary_10_1177_02692155231172299 crossref_primary_10_3390_machines12040230 crossref_primary_10_1155_2021_9962905 crossref_primary_10_1186_s12984_024_01371_4 crossref_primary_10_1186_s12984_024_01439_1 crossref_primary_10_3389_fresc_2023_1069269 crossref_primary_10_1109_MCS_2018_2866602 crossref_primary_10_1109_TMRB_2023_3310086 crossref_primary_10_3390_brainsci14101002 crossref_primary_10_3390_s23020911 crossref_primary_10_1109_ACCESS_2020_3036435 crossref_primary_10_1038_s41394_024_00630_9 crossref_primary_10_3389_fpubh_2024_1445099 crossref_primary_10_1097_MD_0000000000019517 crossref_primary_10_1016_j_bspc_2024_106896 crossref_primary_10_1055_a_2122_5548 crossref_primary_10_1186_s12984_019_0634_5 crossref_primary_10_5014_ajot_2021_038232 crossref_primary_10_3390_s23156953 crossref_primary_10_3390_s21062084 crossref_primary_10_14775_ksmpe_2020_19_07_041 crossref_primary_10_17116_jnevro202012008273 crossref_primary_10_3390_ijerph17186557 crossref_primary_10_1109_THMS_2022_3211164 crossref_primary_10_3389_fnbot_2021_753924 crossref_primary_10_1016_j_pmr_2023_06_026 crossref_primary_10_1080_09638288_2021_1980915 crossref_primary_10_1155_2023_7991765 crossref_primary_10_3389_fnagi_2020_594810 crossref_primary_10_3390_machines9120367 crossref_primary_10_3390_jpm11100953 crossref_primary_10_1155_2022_4799248 crossref_primary_10_1155_2022_9987313 crossref_primary_10_3390_app11125635 crossref_primary_10_1109_TNSRE_2022_3221308 crossref_primary_10_24075_brsmu_2021_039 crossref_primary_10_3390_healthcare11233055 crossref_primary_10_1109_TNSRE_2022_3147260 crossref_primary_10_1186_s12984_021_00815_5 crossref_primary_10_1109_LRA_2024_3446270 crossref_primary_10_1017_S0263574722000923 crossref_primary_10_2196_60374 crossref_primary_10_3389_fbioe_2020_00113 crossref_primary_10_1080_10790268_2023_2273587 crossref_primary_10_3390_robotics12010018 crossref_primary_10_1109_ACCESS_2024_3418452 crossref_primary_10_1109_TMRB_2024_3503998 crossref_primary_10_1109_TNSRE_2020_3018649 crossref_primary_10_3390_act12110406 crossref_primary_10_1016_j_apmr_2023_12_013 crossref_primary_10_3390_act12070268 crossref_primary_10_47183_mes_2023_054 crossref_primary_10_57197_JDR_2024_0031 crossref_primary_10_5194_ms_14_503_2023 crossref_primary_10_1002_acr_24103 crossref_primary_10_3233_THC_235009 crossref_primary_10_3390_ijerph17145233 crossref_primary_10_5194_ms_13_949_2022 crossref_primary_10_1186_s40814_022_01086_0 crossref_primary_10_3390_jcm13061545 crossref_primary_10_3390_ijerph19159713 crossref_primary_10_1109_OJCS_2024_3465661 crossref_primary_10_1007_s11517_023_03014_7 crossref_primary_10_1016_j_jor_2024_10_036 crossref_primary_10_1016_j_heliyon_2023_e18308 crossref_primary_10_1109_TNSRE_2024_3486173 crossref_primary_10_3390_app10196684 crossref_primary_10_3390_asi7060125 |
Cites_doi | 10.1002/ana.410370506 10.1007/PL00005693 10.1016/S1474-4422(06)70522-1 10.1177/1545968310397705 10.1161/STROKEAHA.107.505313 10.1177/1545968307305457 10.3233/NRE-130930 10.1177/1545968309338190 10.1177/1545968309345268 10.1371/journal.pone.0087987 10.1093/cercor/bht285 10.1177/1545968314562115 10.1007/s00221-009-2026-8 10.1152/japplphysiol.00510.2012 10.1016/j.apmr.2017.02.020 10.1093/brain/awf273 10.1038/sc.2011.104 10.1186/1743-0003-8-63 10.1177/1545968306295556 10.1002/mus.1104 10.1007/BF02629836 10.1682/JRRD.1991.04.0033 10.1186/1743-0003-11-3 10.1161/01.STR.31.10.2390 10.1023/A:1024436732030 10.1056/NEJMoa0911341 10.1016/S1474-4422(14)70160-7 10.1016/S1474-4422(13)70305-3 10.1186/1743-0003-11-154 10.1155/2011/759764 10.1109/BIOROB.2016.7523716 10.1177/1545968308331148 10.1016/j.apmr.2004.08.004 10.1901/jeab.1994.61-281 10.1016/S0140-6736(94)90751-X 10.1097/PHM.0b013e31826bcedb 10.1109/10.1352 10.1093/brain/awt262 10.1007/978-3-319-28603-7_10 10.1146/annurev.neuro.27.070203.144308 10.1161/hs0202.102365 10.1109/TOH.2013.72 10.1161/STROKEAHA.116.016020 10.1682/JRRD.2005.02.0046 10.1186/s12984-017-0232-3 10.1109/TMECH.2007.901928 10.1093/brain/awh255 10.1109/ICORR.2009.5209509 10.1089/neu.2016.4555 10.1186/1743-0003-9-65 10.1109/MRA.2014.2362863 10.1080/096382800297097 10.1007/BF02447435 10.1097/WCO.0000000000000025 10.1186/s12984-016-0162-5 10.1016/S0004-9514(06)70003-4 10.1146/annurev.neuro.31.060407.125547 10.1002/14651858.CD006876.pub4 10.1017/S0140525X00041467 10.1016/S0004-9514(05)70040-4 10.1016/S0140-6736(98)09477-X 10.1007/s11517-011-0797-0 10.3233/NRE-2008-23104 10.1089/neu.2016.4643 10.1682/JRRD.2010.04.0055 10.1161/STROKEAHA.114.004695 10.1002/mus.20817 10.1177/1545968313481279 10.1152/jn.1994.71.6.2074 10.1089/neu.2007.0468 10.1177/1545968315608448 10.1186/1743-0003-10-112 10.1097/WCO.0b013e32833e99a4 10.1093/med/9780199673711.001.0001 10.1093/brain/awt204 10.1097/01.wco.0000200544.29915.cc 10.1016/j.clinph.2015.07.004 10.1109/HAPTIC.2012.6183769 10.1109/86.279267 10.1093/brain/119.5.1737 10.1186/1741-7007-8-92 10.1016/j.clinph.2005.08.014 10.1016/j.apmr.2011.08.028 10.1109/EMBC.2014.6944948 10.1212/01.wnl.0000202600.72018.39 10.1109/ICORR.2015.7281308 10.1016/S1474-4422(07)70193-X 10.1109/86.392371 10.1016/0006-8993(78)90973-3 10.1109/ICRA.2013.6631126 10.1016/j.apmr.2009.04.005 10.1007/978-3-319-28603-7_17 10.1093/brain/awl002 10.1016/j.medengphy.2016.04.004 10.1093/brain/123.3.572 10.1038/nrneurol.2014.162 10.1177/1545968317721975 10.1016/j.apmr.2014.10.022 10.1089/neu.2008.0824 10.1002/ana.24472 10.1109/TNSRE.2009.2033061 10.1177/1545968316680493 10.1177/1545968314543498 10.1109/TNSRE.2007.903919 10.1001/jama.292.15.1853 10.1016/S0166-2236(02)02229-4 10.1007/978-3-319-28603-7 10.1007/BF00229889 10.1093/cercor/bhr047 10.1001/archneur.1997.00550160075019 10.1186/1743-0003-6-5 10.1186/1743-0003-9-6 10.1056/NEJMoa1010790 10.1093/brain/awp124 10.1177/1545968307305302 10.1109/86.662623 10.1002/ana.24734 10.1161/STROKEAHA.110.605451 10.1016/j.apmr.2006.05.024 10.1177/1545968316666957 10.1038/nature11076 10.1097/PHM.0b013e318168ceaf 10.1111/j.1469-7793.1998.301br.x 10.1186/s12984-016-0168-z |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 BioMed Central Ltd. Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. The Author(s). 2018 |
Copyright_xml | – notice: COPYRIGHT 2018 BioMed Central Ltd. – notice: Copyright © 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s). 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7TB 7TK 7TS 7X7 7XB 88C 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 L6V LK8 M0S M0T M1P M7P M7S NAPCQ P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1186/s12984-018-0383-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Biological Science Database Engineering Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Health Management ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Occupational Therapy & Rehabilitation Physical Therapy |
EISSN | 1743-0003 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_f4a6ec18b9c6415c8ece499ee1a44d78 PMC5987585 A546886342 29866106 10_1186_s12984_018_0383_x |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- 0R~ 29L 2QV 2WC 53G 5GY 5VS 7RV 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EBD EBLON EBS EJD ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE I-F IAO IHR INH INR IPY ITC KQ8 L6V LK8 M0T M1P M48 M7P M7S ML0 M~E NAPCQ O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS RBZ RNS ROL RPM RSV SBL SOJ TR2 TUS UKHRP WOQ WOW XSB ~8M CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7TB 7TK 7TS 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c674t-c904b6d741cae8c45ce825129bd62d831203856e635f3cf534a57c38ca59d7c93 |
IEDL.DBID | M48 |
ISSN | 1743-0003 |
IngestDate | Wed Aug 27 01:31:42 EDT 2025 Thu Aug 21 18:08:36 EDT 2025 Fri Jul 11 08:09:26 EDT 2025 Fri Jul 25 19:21:39 EDT 2025 Tue Jun 17 21:21:04 EDT 2025 Tue Jun 10 20:21:47 EDT 2025 Thu Apr 03 06:53:43 EDT 2025 Thu Jul 10 08:03:40 EDT 2025 Thu Apr 24 22:53:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Neuroplasticity Locomotion Stroke Robot-assisted therapy Sensorimotor neurophysiology Upper limb function Neurorehabilitation technology Spinal cord injury Assist-as-needed |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c674t-c904b6d741cae8c45ce825129bd62d831203856e635f3cf534a57c38ca59d7c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6373-8518 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12984-018-0383-x |
PMID | 29866106 |
PQID | 2056860985 |
PQPubID | 55356 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f4a6ec18b9c6415c8ece499ee1a44d78 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5987585 proquest_miscellaneous_2050488460 proquest_journals_2056860985 gale_infotracmisc_A546886342 gale_infotracacademiconefile_A546886342 pubmed_primary_29866106 crossref_primary_10_1186_s12984_018_0383_x crossref_citationtrail_10_1186_s12984_018_0383_x |
PublicationCentury | 2000 |
PublicationDate | 2018-06-05 |
PublicationDateYYYYMMDD | 2018-06-05 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Journal of neuroengineering and rehabilitation |
PublicationTitleAlternate | J Neuroeng Rehabil |
PublicationYear | 2018 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | V Pauvert (383_CR119) 1998; 508 E Taub (383_CR64) 1999; 36 P Maciejasz (383_CR131) 2014; 11 VR Edgerton (383_CR22) 2004; 27 M Schrafl-Altermatt (383_CR85) 2016; 127 EB Sandler (383_CR107) 2017; 34 MH Milot (383_CR47) 2013; 10 SR Zeiler (383_CR25) 2013; 26 383_CR57 AL van Delden (383_CR82) 2015; 29 J Zariffa (383_CR67) 2012; 50 CS Lin (383_CR114) 2007; 130 C Tefertiller (383_CR21) 2011; 48 HI Krebs (383_CR9) 1998; 6 383_CR59 J McCabe (383_CR45) 2015; 96 RC Loureiro (383_CR130) 2011; 49 AR Luft (383_CR80) 2004; 292 J Whitall (383_CR83) 2000; 31 AR Den Otter (383_CR111) 2006; 117 JM Veerbeek (383_CR136) 2017; 31 V Dietz (383_CR84) 2015; 25 O Lambercy (383_CR95) 2011; 8 V Dietz (383_CR108) 1994; 344 JC Metzger (383_CR54) 2014; 11 CG Burgar (383_CR12) 2000; 37 M Wirz (383_CR49) 2017; 34 383_CR1 383_CR4 JC Metzger (383_CR53) 2014; 7 R Riener (383_CR51) 2006; 43 383_CR6 383_CR7 X Wu (383_CR43) 2016; 30 MP Dijkers (383_CR8) 1991; 28 M Latash (383_CR35) 1996; 19 383_CR86 PS Lum (383_CR133) 2012; 91 RF Beer (383_CR76) 2007; 36 E Zarahn (383_CR26) 2011; 21 ME Stoykov (383_CR65) 2009; 23 A Pennycott (383_CR58) 2012; 9 KY Nam (383_CR139) 2017; 14 KC Lin (383_CR81) 2010; 24 G Colombo (383_CR13) 2000; 37 383_CR77 WD Byblow (383_CR63) 2015; 78 S Prabhakaran (383_CR28) 2008; 22 S Grillner (383_CR112) 1978; 146 P Rabishong (383_CR3) 1975 383_CR91 383_CR92 V Dietz (383_CR24) 2014; 137 383_CR97 383_CR98 PW Duncan (383_CR105) 2011; 364 383_CR96 M Wirz (383_CR101) 2006; 87 J Mehrholz (383_CR122) 2017; 5 VS Huang (383_CR32) 2009; 6 KR Lohse (383_CR42) 2014; 45 B Dobkin (383_CR121) 2006; 66 J Benito-Penalva (383_CR138) 2012; 93 JW Krakauer (383_CR33) 2006; 19 A Curt (383_CR27) 2008; 25 V Klamroth-Marganska (383_CR17) 2014; 13 J Beauparlant (383_CR116) 2013; 136 E Taub (383_CR73) 1994; 61 B Brouwer (383_CR99) 1992; 89 JF Veneman (383_CR125) 2007; 15 M Pohl (383_CR106) 2002; 33 RA Bos (383_CR134) 2016; 13 M Wirz (383_CR102) 2005; 86 V Dietz (383_CR109) 1995; 37 V Dietz (383_CR110) 2002; 125 D Khalili (383_CR2) 1988; 35 S Hesse (383_CR123) 2013; 33 B Sheng (383_CR132) 2016; 38 SL Kilbreath (383_CR66) 2005; 51 383_CR15 G Saposnik (383_CR34) 2011; 42 383_CR16 G Kwakkel (383_CR29) 2004; 22 S Balasubramanian (383_CR19) 2010; 23 L Marchal-Crespo (383_CR52) 2010; 201 G Di Pino (383_CR74) 2014; 10 CE Lang (383_CR50) 2009; 90 K Stefan (383_CR56) 2000; 123 RJ Nudo (383_CR23) 2001; 24 B Dobkin (383_CR104) 2007; 21 AC Lo (383_CR18) 2010; 362 HS Jorgensen (383_CR61) 1999; 30 G Kwakkel (383_CR41) 1999; 354 CE Lang (383_CR44) 2016; 80 JM Veerbeek (383_CR71) 2014; 9 MH Mudie (383_CR79) 2000; 22 S Hesse (383_CR14) 2000; 37 V Dietz (383_CR39) 2007; 6 T Nef (383_CR93) 2012 SY Schaefer (383_CR48) 2013; 27 D de Kam (383_CR120) 2013; 115 383_CR137 RT Katz (383_CR38) 1989; 70 L Ada (383_CR40) 2006; 52 V Dietz (383_CR115) 2004; 127 RN Lemon (383_CR60) 2008; 31 383_CR135 W Jakob (383_CR31) 2009; 26 A Duschau-Wicke (383_CR124) 2010; 18 KJ Waddell (383_CR46) 2017; 31 PS Lum (383_CR10) 1993; 1 G Kwakkel (383_CR75) 2015; 14 L Zimmerli (383_CR55) 2012; 9 R Loureiro (383_CR89) 2003; 15 E Buch (383_CR126) 2008; 39 C Marciniak (383_CR72) 2008; 87 V Dietz (383_CR117) 2009; 132 DR Louie (383_CR140) 2016; 13 V Dietz (383_CR68) 2006; 5 DJ Kriellaars (383_CR113) 1994; 71 LR Hochberg (383_CR128) 2012; 485 M Schubert (383_CR100) 1997; 115 NJ O'Dwyer (383_CR36) 1996; 119 M Vukobratovic (383_CR5) 1974; 12 JB Rowe (383_CR70) 2017; 31 S McCombe Waller (383_CR78) 2008; 23 SJ Housman (383_CR94) 2009; 23 S Carda (383_CR127) 2017; 98 383_CR129 C Winters (383_CR30) 2015; 29 V Dietz (383_CR37) 2015 ML Aisen (383_CR88) 1997; 54 V Dietz (383_CR118) 2002; 25 G Kwakkel (383_CR20) 2008; 22 L Carey (383_CR87) 2011; 25 CM Stinear (383_CR69) 2017; 48 L Masia (383_CR90) 2007; 12 H Barbeau (383_CR103) 1987; 25 NS Ward (383_CR62) 2006; 129 PS Lum (383_CR11) 1995; 3 |
References_xml | – ident: 383_CR7 – volume: 37 start-page: 574 issue: 5 year: 1995 ident: 383_CR109 publication-title: Ann Neurol doi: 10.1002/ana.410370506 – volume: 115 start-page: 234 issue: 2 year: 1997 ident: 383_CR100 publication-title: Exp Brain Res doi: 10.1007/PL00005693 – volume: 5 start-page: 688 issue: 8 year: 2006 ident: 383_CR68 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(06)70522-1 – volume: 25 start-page: 304 issue: 4 year: 2011 ident: 383_CR87 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968310397705 – volume: 39 start-page: 910 issue: 3 year: 2008 ident: 383_CR126 publication-title: Stroke doi: 10.1161/STROKEAHA.107.505313 – volume: 22 start-page: 111 issue: 2 year: 2008 ident: 383_CR20 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968307305457 – volume: 33 start-page: 77 issue: 1 year: 2013 ident: 383_CR123 publication-title: NeuroRehabilitation doi: 10.3233/NRE-130930 – volume: 23 start-page: 945 year: 2009 ident: 383_CR65 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968309338190 – ident: 383_CR4 – volume: 24 start-page: 42 issue: 1 year: 2010 ident: 383_CR81 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968309345268 – volume: 9 start-page: e87987 issue: 2 year: 2014 ident: 383_CR71 publication-title: PLoS One doi: 10.1371/journal.pone.0087987 – volume: 25 start-page: 948 issue: 4 year: 2015 ident: 383_CR84 publication-title: Cereb Cortex doi: 10.1093/cercor/bht285 – volume: 29 start-page: 614 issue: 7 year: 2015 ident: 383_CR30 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968314562115 – volume: 201 start-page: 209 issue: 2 year: 2010 ident: 383_CR52 publication-title: Exp Brain Res doi: 10.1007/s00221-009-2026-8 – volume: 115 start-page: 34 issue: 1 year: 2013 ident: 383_CR120 publication-title: J Appl Physiol (1985) doi: 10.1152/japplphysiol.00510.2012 – volume: 98 start-page: 1628 issue: 8 year: 2017 ident: 383_CR127 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2017.02.020 – volume: 125 start-page: 2626 issue: Pt 12 year: 2002 ident: 383_CR110 publication-title: Brain doi: 10.1093/brain/awf273 – volume: 50 start-page: 220 issue: 3 year: 2012 ident: 383_CR67 publication-title: Spinal Cord doi: 10.1038/sc.2011.104 – volume: 8 start-page: 63 year: 2011 ident: 383_CR95 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-8-63 – volume: 21 start-page: 25 issue: 1 year: 2007 ident: 383_CR104 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968306295556 – volume: 37 start-page: 701 issue: 6 year: 2000 ident: 383_CR14 publication-title: J Rehabil Res Dev – volume: 24 start-page: 1000 issue: 8 year: 2001 ident: 383_CR23 publication-title: Muscle Nerve doi: 10.1002/mus.1104 – volume: 12 start-page: 66 issue: 1 year: 1974 ident: 383_CR5 publication-title: Med Biol Eng doi: 10.1007/BF02629836 – volume: 28 start-page: 33 issue: 2 year: 1991 ident: 383_CR8 publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.1991.04.0033 – volume: 11 start-page: 3 year: 2014 ident: 383_CR131 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-11-3 – volume: 31 start-page: 2390 issue: 10 year: 2000 ident: 383_CR83 publication-title: Stroke doi: 10.1161/01.STR.31.10.2390 – volume: 37 start-page: 663 issue: 6 year: 2000 ident: 383_CR12 publication-title: J Rehabil Res Dev – volume: 15 start-page: 35 issue: 1 year: 2003 ident: 383_CR89 publication-title: Auton Robot doi: 10.1023/A:1024436732030 – volume: 362 start-page: 1772 year: 2010 ident: 383_CR18 publication-title: N Engl J Med doi: 10.1056/NEJMoa0911341 – volume: 14 start-page: 224 issue: 2 year: 2015 ident: 383_CR75 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70160-7 – volume: 13 start-page: 159 issue: 2 year: 2014 ident: 383_CR17 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(13)70305-3 – volume: 36 start-page: 237 issue: 3 year: 1999 ident: 383_CR64 publication-title: J Rehabil Res Dev – volume: 11 start-page: 154 year: 2014 ident: 383_CR54 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-11-154 – ident: 383_CR137 doi: 10.1155/2011/759764 – ident: 383_CR15 doi: 10.1109/BIOROB.2016.7523716 – volume: 23 start-page: 505 issue: 5 year: 2009 ident: 383_CR94 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968308331148 – volume: 86 start-page: 672 issue: 4 year: 2005 ident: 383_CR102 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2004.08.004 – volume: 61 start-page: 281 issue: 2 year: 1994 ident: 383_CR73 publication-title: J Exp Anal Behav doi: 10.1901/jeab.1994.61-281 – volume: 344 start-page: 1260 issue: 8932 year: 1994 ident: 383_CR108 publication-title: Lancet doi: 10.1016/S0140-6736(94)90751-X – volume: 91 start-page: S242 issue: 11 Suppl 3 year: 2012 ident: 383_CR133 publication-title: Am J Phys Med Rehabil doi: 10.1097/PHM.0b013e31826bcedb – volume: 35 start-page: 138 issue: 2 year: 1988 ident: 383_CR2 publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.1352 – volume: 137 start-page: 654 issue: Pt 3 year: 2014 ident: 383_CR24 publication-title: Brain doi: 10.1093/brain/awt262 – ident: 383_CR57 doi: 10.1007/978-3-319-28603-7_10 – volume: 27 start-page: 145 year: 2004 ident: 383_CR22 publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.27.070203.144308 – volume: 33 start-page: 553 issue: 2 year: 2002 ident: 383_CR106 publication-title: Stroke doi: 10.1161/hs0202.102365 – volume: 7 start-page: 140 issue: 2 year: 2014 ident: 383_CR53 publication-title: IEEE Trans Haptics doi: 10.1109/TOH.2013.72 – volume: 37 start-page: 693 issue: 6 year: 2000 ident: 383_CR13 publication-title: J Rehabil Res Dev – volume: 48 start-page: 795 issue: 3 year: 2017 ident: 383_CR69 publication-title: Stroke doi: 10.1161/STROKEAHA.116.016020 – volume: 43 start-page: 679 issue: 5 year: 2006 ident: 383_CR51 publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.2005.02.0046 – volume: 14 start-page: 24 issue: 1 year: 2017 ident: 383_CR139 publication-title: J Neuroeng Rehabil. doi: 10.1186/s12984-017-0232-3 – volume: 12 start-page: 399 issue: 4 year: 2007 ident: 383_CR90 publication-title: IEEE ASME Trans Mechatron doi: 10.1109/TMECH.2007.901928 – volume: 127 start-page: 2221 issue: Pt 10 year: 2004 ident: 383_CR115 publication-title: Brain doi: 10.1093/brain/awh255 – ident: 383_CR86 – ident: 383_CR91 doi: 10.1109/ICORR.2009.5209509 – start-page: 33 volume-title: Proc Int Symp external control hum extremities year: 1975 ident: 383_CR3 – volume: 34 start-page: 1903 issue: 10 year: 2017 ident: 383_CR107 publication-title: J Neurotrauma doi: 10.1089/neu.2016.4555 – volume: 9 start-page: 65 year: 2012 ident: 383_CR58 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-9-65 – volume-title: Neurorehabilitation technology year: 2012 ident: 383_CR93 – ident: 383_CR96 doi: 10.1109/MRA.2014.2362863 – volume: 22 start-page: 23 issue: 1–2 year: 2000 ident: 383_CR79 publication-title: Disabil Rehabil doi: 10.1080/096382800297097 – volume: 25 start-page: 341 issue: 3 year: 1987 ident: 383_CR103 publication-title: Med Biol Eng Comput doi: 10.1007/BF02447435 – volume: 22 start-page: 281 issue: 3–5 year: 2004 ident: 383_CR29 publication-title: Restor Neurol Neurosci – volume: 26 start-page: 609 issue: 6 year: 2013 ident: 383_CR25 publication-title: Curr Opin Neurol doi: 10.1097/WCO.0000000000000025 – volume: 13 start-page: 53 issue: 1 year: 2016 ident: 383_CR140 publication-title: J Neuroeng Rehabil. doi: 10.1186/s12984-016-0162-5 – volume: 52 start-page: 241 issue: 4 year: 2006 ident: 383_CR40 publication-title: Aust J Physiother doi: 10.1016/S0004-9514(06)70003-4 – volume: 31 start-page: 195 year: 2008 ident: 383_CR60 publication-title: Annu Rev Neurosci doi: 10.1146/annurev.neuro.31.060407.125547 – ident: 383_CR135 doi: 10.1002/14651858.CD006876.pub4 – volume: 19 start-page: 55 year: 1996 ident: 383_CR35 publication-title: Behav Brain Sci doi: 10.1017/S0140525X00041467 – volume: 5 start-page: CD006185 year: 2017 ident: 383_CR122 publication-title: Cochrane database Syst Rev – volume: 51 start-page: 119 issue: 2 year: 2005 ident: 383_CR66 publication-title: Aust J Physiother. doi: 10.1016/S0004-9514(05)70040-4 – volume: 354 start-page: 191 issue: 9174 year: 1999 ident: 383_CR41 publication-title: Lancet doi: 10.1016/S0140-6736(98)09477-X – volume: 49 start-page: 1103 issue: 10 year: 2011 ident: 383_CR130 publication-title: Med Biol Eng Comput. doi: 10.1007/s11517-011-0797-0 – volume: 23 start-page: 29 issue: 1 year: 2008 ident: 383_CR78 publication-title: NeuroRehabilitation doi: 10.3233/NRE-2008-23104 – volume: 34 start-page: 1891 year: 2017 ident: 383_CR49 publication-title: J Neurotrauma doi: 10.1089/neu.2016.4643 – volume: 48 start-page: 387 issue: 4 year: 2011 ident: 383_CR21 publication-title: J Rehabil Res Dev doi: 10.1682/JRRD.2010.04.0055 – volume: 45 start-page: 2053 issue: 7 year: 2014 ident: 383_CR42 publication-title: Stroke doi: 10.1161/STROKEAHA.114.004695 – volume: 36 start-page: 242 issue: 2 year: 2007 ident: 383_CR76 publication-title: Muscle Nerve doi: 10.1002/mus.20817 – volume: 27 start-page: 602 issue: 7 year: 2013 ident: 383_CR48 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968313481279 – volume: 71 start-page: 2074 issue: 6 year: 1994 ident: 383_CR113 publication-title: J Neurophysiol doi: 10.1152/jn.1994.71.6.2074 – volume: 25 start-page: 677 issue: 6 year: 2008 ident: 383_CR27 publication-title: J Neurotrauma doi: 10.1089/neu.2007.0468 – volume: 30 start-page: 583 issue: 6 year: 2016 ident: 383_CR43 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968315608448 – volume: 10 start-page: 112 year: 2013 ident: 383_CR47 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-10-112 – volume: 23 start-page: 661 issue: 6 year: 2010 ident: 383_CR19 publication-title: Curr Opin Neurol doi: 10.1097/WCO.0b013e32833e99a4 – volume-title: Oxford textbook of neurorehabilitation year: 2015 ident: 383_CR37 doi: 10.1093/med/9780199673711.001.0001 – volume: 136 start-page: 3347 issue: Pt 11 year: 2013 ident: 383_CR116 publication-title: Brain doi: 10.1093/brain/awt204 – volume: 19 start-page: 84 issue: 1 year: 2006 ident: 383_CR33 publication-title: Curr Opin Neurol doi: 10.1097/01.wco.0000200544.29915.cc – volume: 127 start-page: 748 issue: 1 year: 2016 ident: 383_CR85 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2015.07.004 – ident: 383_CR98 doi: 10.1109/HAPTIC.2012.6183769 – volume: 1 start-page: 185 issue: 3 year: 1993 ident: 383_CR10 publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.279267 – volume: 119 start-page: 1737 year: 1996 ident: 383_CR36 publication-title: Brain doi: 10.1093/brain/119.5.1737 – ident: 383_CR129 doi: 10.1186/1741-7007-8-92 – volume: 117 start-page: 4 issue: 1 year: 2006 ident: 383_CR111 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2005.08.014 – volume: 93 start-page: 404 issue: 3 year: 2012 ident: 383_CR138 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2011.08.028 – ident: 383_CR77 doi: 10.1109/EMBC.2014.6944948 – volume: 66 start-page: 484 issue: 4 year: 2006 ident: 383_CR121 publication-title: Neurology doi: 10.1212/01.wnl.0000202600.72018.39 – volume: 70 start-page: 144 issue: 2 year: 1989 ident: 383_CR38 publication-title: Arch Phys Med Rehabil – ident: 383_CR16 doi: 10.1109/ICORR.2015.7281308 – volume: 6 start-page: 725 issue: 8 year: 2007 ident: 383_CR39 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(07)70193-X – volume: 3 start-page: 166 issue: 2 year: 1995 ident: 383_CR11 publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.392371 – volume: 146 start-page: 269 issue: 2 year: 1978 ident: 383_CR112 publication-title: Brain Res doi: 10.1016/0006-8993(78)90973-3 – ident: 383_CR97 doi: 10.1109/ICRA.2013.6631126 – volume: 90 start-page: 1692 issue: 10 year: 2009 ident: 383_CR50 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2009.04.005 – ident: 383_CR92 doi: 10.1007/978-3-319-28603-7_17 – volume: 130 start-page: 985 issue: Pt 4 year: 2007 ident: 383_CR114 publication-title: Brain – volume: 129 start-page: 809 issue: Pt 3 year: 2006 ident: 383_CR62 publication-title: Brain doi: 10.1093/brain/awl002 – volume: 38 start-page: 587 issue: 7 year: 2016 ident: 383_CR132 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2016.04.004 – volume: 123 start-page: 572 year: 2000 ident: 383_CR56 publication-title: Brain doi: 10.1093/brain/123.3.572 – volume: 10 start-page: 597 issue: 10 year: 2014 ident: 383_CR74 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2014.162 – volume: 31 start-page: 769 issue: 8 year: 2017 ident: 383_CR70 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968317721975 – volume: 96 start-page: 981 issue: 6 year: 2015 ident: 383_CR45 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2014.10.022 – volume: 26 start-page: 2037 issue: 11 year: 2009 ident: 383_CR31 publication-title: J Neurotrauma doi: 10.1089/neu.2008.0824 – volume: 30 start-page: 2008 issue: 10 year: 1999 ident: 383_CR61 publication-title: The Copenhagen Stroke Study Stroke – ident: 383_CR6 – volume: 78 start-page: 848 issue: 6 year: 2015 ident: 383_CR63 publication-title: Ann Neurol doi: 10.1002/ana.24472 – volume: 18 start-page: 38 year: 2010 ident: 383_CR124 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2009.2033061 – volume: 31 start-page: 290 issue: 3 year: 2017 ident: 383_CR46 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968316680493 – volume: 29 start-page: 255 issue: 3 year: 2015 ident: 383_CR82 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968314543498 – volume: 15 start-page: 379 issue: 3 year: 2007 ident: 383_CR125 publication-title: IEEE Trans Neural Syst Rehabil Eng. doi: 10.1109/TNSRE.2007.903919 – volume: 292 start-page: 1853 issue: 15 year: 2004 ident: 383_CR80 publication-title: JAMA doi: 10.1001/jama.292.15.1853 – volume: 25 start-page: 462 issue: 9 year: 2002 ident: 383_CR118 publication-title: Trends Neurosci doi: 10.1016/S0166-2236(02)02229-4 – ident: 383_CR1 doi: 10.1007/978-3-319-28603-7 – volume: 89 start-page: 649 issue: 3 year: 1992 ident: 383_CR99 publication-title: Exp Brain Res doi: 10.1007/BF00229889 – volume: 21 start-page: 2712 issue: 12 year: 2011 ident: 383_CR26 publication-title: Cereb Cortex doi: 10.1093/cercor/bhr047 – volume: 54 start-page: 443 issue: 4 year: 1997 ident: 383_CR88 publication-title: Arch Neurol doi: 10.1001/archneur.1997.00550160075019 – volume: 6 start-page: 5 year: 2009 ident: 383_CR32 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-6-5 – volume: 9 start-page: 6 year: 2012 ident: 383_CR55 publication-title: J Neuroeng Rehabil. doi: 10.1186/1743-0003-9-6 – volume: 364 start-page: 2026 issue: 21 year: 2011 ident: 383_CR105 publication-title: N Engl J Med doi: 10.1056/NEJMoa1010790 – volume: 132 start-page: 2196 issue: Pt 8 year: 2009 ident: 383_CR117 publication-title: Brain doi: 10.1093/brain/awp124 – volume: 22 start-page: 64 year: 2008 ident: 383_CR28 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968307305302 – volume: 6 start-page: 75 issue: 1 year: 1998 ident: 383_CR9 publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.662623 – volume: 80 start-page: 342 issue: 3 year: 2016 ident: 383_CR44 publication-title: Ann Neurol doi: 10.1002/ana.24734 – volume: 42 start-page: 1380 issue: 5 year: 2011 ident: 383_CR34 publication-title: Stroke doi: 10.1161/STROKEAHA.110.605451 – ident: 383_CR59 – volume: 87 start-page: 1218 issue: 9 year: 2006 ident: 383_CR101 publication-title: Arch Phys Med Rehabil doi: 10.1016/j.apmr.2006.05.024 – volume: 31 start-page: 107 issue: 2 year: 2017 ident: 383_CR136 publication-title: Neurorehabil Neural Repair doi: 10.1177/1545968316666957 – volume: 485 start-page: 372 issue: 7398 year: 2012 ident: 383_CR128 publication-title: Nature doi: 10.1038/nature11076 – volume: 87 start-page: 312 issue: 4 year: 2008 ident: 383_CR72 publication-title: Am J Phys Med Rehabil doi: 10.1097/PHM.0b013e318168ceaf – volume: 508 start-page: 301 year: 1998 ident: 383_CR119 publication-title: J Physiol doi: 10.1111/j.1469-7793.1998.301br.x – volume: 13 start-page: 62 issue: 1 year: 2016 ident: 383_CR134 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-016-0168-z |
SSID | ssj0034054 |
Score | 2.6133192 |
SecondaryResourceType | review_article |
Snippet | The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system... Abstract The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 46 |
SubjectTerms | Activation Arm Assist-as-needed Central nervous system Design engineering Exercise Therapy - instrumentation Exoskeleton Device Exploitation Functional plasticity Health aspects Humans Innovations Knowledge management Locomotion Muscle contraction Muscles Nervous system Neurological Rehabilitation - instrumentation Neurological Rehabilitation - methods Neurological Rehabilitation - trends Neuroplasticity Neurorehabilitation technology Physiology Receptors Recovery Recovery of function Rehabilitation Rehabilitation robots Review Robot control Robot-assisted therapy Robotic surgery Robotics Robotics - instrumentation Robots Sensorimotor system Spinal cord injuries Spinal cord injury Spinal plasticity Stroke Stroke Rehabilitation - instrumentation Therapy Training Treadmills (Exercise equipment) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEB6kD6IPXo631CoreAEhNCd7yca3KpYiKCIt9G1JJhsqSFJOUujP78zmYoKgL76ch7OzkM3MznyTnfkW4LXMNGqJzNsqZayMV3Hp6SfVUnlfKmvqwPb5zZycqS_n-nxx1RfXhA30wMOLO6xVYTxubZmjoWCD1qMnlO79tlCqykKbL8W8KZkafLAkGKLGM8ytNYcdRTXL1RbcTmZlfL2KQoGs_0-XvIhJ63rJRQA6fgD3RuQojoYnfgi3fLOBuws-wQ3c_jqelG_gzZI-WJwO3AHirfixYubewP3vo6ImmUdQrmXEri3bvhOEbgWhRTGXpou2Fh1lwe2O9U2jlWc6ir77IAoReDLDZ5PJu4rL332dj-Hs-PPpp5N4vIohRpOpPsY8UaWpCH5g4S0qjZ57XtO8rExaWblN-YTReIIvtcSaFF3oDKXFQudVhrl8AntN2_hnIHxSSKRJyqBVNWU_dVpzf21KU_TWFhEkk2ocjivl6zJ-uZCvWOMGbTrSpmNtuusI3s9TLgeSjr8Jf2R9z4LMrx3-IKtzo9W5f1ldBO_YWhx7AXo4LMZmBloi82m5I62MtUaqNIKDlSTtXlwPT_bmRu_RuZRQqTVJbnUEr-ZhnskVcY1vr4IMO19lkgieDuY5L4lWTLArMRFkK8NdrXk90vy8CNziOrecQe7_j5f0HO6kYcuZONEHsNfvrvwLgnB9-TLs1htK_UXv priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9RADA96guiDH6ue1VNG8AOEYrfz0akvcorHISgid7BvQ5tOT-Fo1-0e3J9vMjvb2yLcSx86GWiaTCaZJL8BeC0LjVoi47ZKmSrjVVp7euRaKu9rZU0b0D5_mONT9W2hF_HAbYhllVubGAx10yOfkVOQro01WWn1p-XflG-N4uxqvELjJtxi6DIu6SoWY8AlyRlRMZM5t-bDQHub5ZoLbiqzMr2c7EUBsv9_w7yzM02rJne2oaMHcC_6j-JwI_CHcMN3M7i7gyo4g9vfY758Bm92QYTFyQZBQLwVvyb43DO4_zOKa0vzCOopjVj1db8eBPm4gnxGMRaoi74VA8XC9K9I6jTaeAalWA8fRSUCWmY4PNnaWLG86u58DKdHX0--HKfxQoYUTaHWKZaZqk1DTghW3qLS6LnzNS_rxuSNlfOc84zGkxPTSmxJ3JUuUFqsdNkUWMonsNf1nX8KwmeVRJqkDFrVUgzU5i132eY0Rc9tlUC2FY3DyClfmnHuQtRijdtI05E0HUvTXSbwfpyy3EB1XEf8meU9EjLKdnjRr85cXLSuVZXxOLd1iYYcHbQePUWI3s8rpZrCJvCOtcWxLaCPwyq2NBCLjKrlDrUy1hqp8gQOJpS0hnE6vNU3F23I4K40PoFX4zDP5Lq4zvcXgYZNsDJZAvsb9RxZIo7J-cpMAsVEcSc8T0e6P78DwrguLceRz67_rOdwJw-LyaSZPoC99erCvyAXbV2_DOvwH4vKPII priority: 102 providerName: ProQuest |
Title | Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29866106 https://www.proquest.com/docview/2056860985 https://www.proquest.com/docview/2050488460 https://pubmed.ncbi.nlm.nih.gov/PMC5987585 https://doaj.org/article/f4a6ec18b9c6415c8ece499ee1a44d78 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ra9RAEB9qC2I_-Di1Ruuxgg8QornsIxtB5Co9y0FLqT24b0uy2ahQLjV3hfrfO7OXxAtWvyRwO3NkMzM7M9md3wC85Im0klvCbeU8FMqJMHd4iSUXzuVCq9KjfZ6oo5mYzuV8C9r2Vs0LXN6Y2lE_qVl98e76569PaPAfvcFr9X6JPkvTWQoqFtM8xJByBx1TQnZ6LLpNBY6xiWg2Nm9kI2DgVKPDovZHG17Kg_n_vWRv-Kz-ecoNBzW5D3ebyJKN16rwALbcYgC7G3iDA7h93OykD-DVJrwwO19jC7DX7KyH3D2Ae6eNIFuah5D3aVhd5dVqyTD6ZRhNsu7oOqtKtsQsuapJH3C0cARXsVp-YBnzOJr-s0q7-rLLP3Wfj2A2OTz_fBQ2rRpCqxKxCm0aiVwVGJ7YzGkrpHVUExuneaHiQvNRTDuQymF4U3JboiJkMrFc20ymRWJT_hi2F9XCPQHmooxbZBLKalFidlTGJdXfxsgiRzoLIGpFY2wzU2qncWF8PqOVWQvWoGANCdZcB_C2Y7lcg3j8j_iA5N0REv62_6Gqv5nGnE0pMuXsSOepVRgCWe2sw9zRuVEmRJHoAN6QthjSW3w4mzXFDjhFwtsyYymU1oqLOID9HiVat-0Pt_pmWuMwMUatWkWplgG86IaJk07MLVx15WlocRYqCmBvrZ7dlFotDyDpKW5vzv2RxY_vHntcppoyzKf__M9ncCf2JqXCSO7D9qq-cs8xblvlQ7iVzBO86smXIeyMx9OvU7wfHJ6cng39t5Cht9ff6XBFew |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zi9RAEC6WFTwePMYrumoLroIQzKSPdASR9Vhm3QORWZi3Nul0VJDJOJnF9U_5G63qHDtB2Ld9yUO6OnRR1XWkq74GeMYTaSW3hNvKeSiUE2Hu8BFLLpzLhValR_s8UpNj8WkmZxvwt-uFobLKziZ6Q11Ulv6RY5IulVZRquXbxa-Qbo2i09XuCo1GLfbdn9-YstVv9j6gfLfjePfj9P0kbG8VCK1KxCq0aSRyVaAntZnTVkjrqH0zTvNCxYXm45gOy5RDT1xyW-KaM5lYrm0m0yKxBL6EJv8SOt6IdlQy6xM8jsGPaE9Ox1q9qvGjmmo8qIlN8_B04Pv8FQH_O4I1Tzis0lxze7s34Xobr7KdRsFuwYabj-DaGorhCC4ftufzI9heBy1m0waxgD1nXwZ44CO48blVj47mNuRDGras8mpVM4ypGcaorC-IZ1XJasy9UTaoZThaOALBWNWvWcY8Oqf_WdPZdLY46ya9A8cXIqq7sDmv5u4-MBdl3OIkoawWJeZcZVxSV2-MU-RYZwFEnWiMbTmlSzp-Gp8laWUaaRqUpiFpmtMAXvZTFg00yHnE70jePSGhevsX1fKbaY2EKUWmnB3rPLUKAyurnXWYkTo3zoQoEh3AC9IWQ7YHF2eztoUCWSQUL7MjhdJacREHsDWgRJthh8OdvpnWZtXmbIcF8LQfpplUhzd31YmnIZMvVBTAvUY9e5aQYwz2IhVAMlDcAc_DkfmP7x7RXKaa8tYH5y_rCVyZTA8PzMHe0f5DuBr7jaXCSG7B5mp54h5heLjKH_s9yeDrRRuBf7G9eIc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rehabilitation+robots+for+the+treatment+of+sensorimotor+deficits%3A+a+neurophysiological+perspective&rft.jtitle=Journal+of+neuroengineering+and+rehabilitation&rft.au=Gassert%2C+Roger&rft.au=Dietz%2C+Volker&rft.date=2018-06-05&rft.eissn=1743-0003&rft.volume=15&rft.issue=1&rft.spage=46&rft_id=info:doi/10.1186%2Fs12984-018-0383-x&rft_id=info%3Apmid%2F29866106&rft.externalDocID=29866106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1743-0003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1743-0003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1743-0003&client=summon |