Glucagon-Like Peptide 1 Recruits Microvasculature and Increases Glucose Use in Muscle via a Nitric Oxide–Dependent Mechanism

Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle microvasculature and glucose uptake. After confirming that GLP-1 potently stimulates nitric oxide (NO) synthase (NOS) phosphorylation in endotheli...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 61; no. 4; pp. 888 - 896
Main Authors Chai, Weidong, Dong, Zhenhua, Wang, Nasui, Wang, Wenhui, Tao, Lijian, Cao, Wenhong, Liu, Zhenqi
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle microvasculature and glucose uptake. After confirming that GLP-1 potently stimulates nitric oxide (NO) synthase (NOS) phosphorylation in endothelial cells, overnight-fasted adult male rats received continuous GLP-1 infusion (30 pmol/kg/min) for 2 h plus or minus NOS inhibition. Muscle microvascular blood volume (MBV), microvascular blood flow velocity (MFV), and microvascular blood flow (MBF) were determined. Additional rats received GLP-1 or saline for 30 min and muscle insulin clearance/uptake was determined. GLP-1 infusion acutely increased muscle MBV (P < 0.04) within 30 min without altering MFV or femoral blood flow. This effect persisted throughout the 120-min infusion period, leading to a greater than twofold increase in muscle MBF (P < 0.02). These changes were paralleled with increases in plasma NO levels, muscle interstitial oxygen saturation, hind leg glucose extraction, and muscle insulin clearance/uptake. NOS inhibition blocked GLP-1-mediated increases in muscle MBV, glucose disposal, NO production, and muscle insulin clearance/uptake. In conclusion, GLP-1 acutely recruits microvasculature and increases basal glucose uptake in muscle via a NO-dependent mechanism. Thus, GLP-1 may afford potential to improve muscle insulin action by expanding microvascular endothelial surface area.
AbstractList Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle microvasculature and glucose uptake. After confirming that GLP-1 potently stimulates nitric oxide (NO) synthase (NOS) phosphorylation in endothelial cells, overnight-fasted adult male rats received continuous GLP-1 infusion (30 pmol/kg/min) for 2 h plus or minus NOS inhibition. Muscle microvascular blood volume (MBV), microvascular blood flow velocity (MFV), and microvascular blood flow (MBF) were determined. Additional rats received GLP-1 or saline for 30 min and muscle insulin clearance/uptake was determined. GLP-1 infusion acutely increased muscle MBV (P < 0.04) within 30 min without altering MFV or femoral blood flow. This effect persisted throughout the 120-min infusion period, leading to a greater than twofold increase in muscle MBF (P < 0.02). These changes were paralleled with increases in plasma NO levels, muscle interstitial oxygen saturation, hind leg glucose extraction, and muscle insulin clearance/uptake. NOS inhibition blocked GLP-1-mediated increases in muscle MBV, glucose disposal, NO production, and muscle insulin clearance/uptake. In conclusion, GLP-1 acutely recruits microvasculature and increases basal glucose uptake in muscle via a NO-dependent mechanism. Thus, GLP-1 may afford potential to improve muscle insulin action by expanding microvascular endothelial surface area.
Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle microvasculature and glucose uptake. After confirming that GLP-1 potently stimulates nitric oxide (NO) synthase (NOS) phosphorylation in endothelial cells, overnight-fasted adult male rats received continuous GLP-1 infusion (30 pmol/kg/min) for 2 h plus or minus NOS inhibition. Muscle microvascular blood volume (MBV), microvascular blood flow velocity (MFV), and microvascular blood flow (MBF) were determined. Additional rats received GLP-1 or saline for 30 min and muscle insulin clearance/uptake was determined. GLP-1 infusion acutely increased muscle MBV (P < 0.04) within 30 min without altering MFV or femoral blood flow. This effect persisted throughout the 120-min infusion period, leading to a greater than twofold increase in muscle MBF (P < 0.02). These changes were paralleled with increases in plasma NO levels, muscle interstitial oxygen saturation, hind leg glucose extraction, and muscle insulin clearance/uptake. NOS inhibition blocked GLP-1-mediated increases in muscle MBV, glucose disposal, NO production, and muscle insulin clearance/uptake. In conclusion, GLP-1 acutely recruits microvasculature and increases basal glucose uptake in muscle via a NO-dependent mechanism. Thus, GLP-1 may afford potential to improve muscle insulin action by expanding microvascular endothelial surface area. Diabetes 61:888-896, 2012
Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle microvasculature and glucose uptake. After confirming that GLP-1 potently stimulates nitric oxide (NO) synthase (NOS) phosphorylation in endothelial cells, overnight-fasted adult male rats received continuous GLP-1 infusion (30 pmol/kg/min) for 2 h plus or minus NOS inhibition. Muscle microvascular blood volume (MBV), microvascular blood flow velocity (MFV), and microvascular blood flow (MBF) were determined. Additional rats received GLP-1 or saline for 30 min and muscle insulin clearance/uptake was determined. GLP-1 infusion acutely increased muscle MBV (P < 0.04) within 30 min without altering MFV or femoral blood flow. This effect persisted throughout the 120-min infusion period, leading to a greater than twofold increase in muscle MBF (P < 0.02). These changes were paralleled with increases in plasma NO levels, muscle interstitial oxygen saturation, hind leg glucose extraction, and muscle insulin clearance/uptake. NOS inhibition blocked GLP-1-mediated increases in muscle MBV, glucose disposal, NO production, and muscle insulin clearance/uptake. In conclusion, GLP-1 acutely recruits microvasculature and increases basal glucose uptake in muscle via a NO-dependent mechanism. Thus, GLP-1 may afford potential to improve muscle insulin action by expanding microvascular endothelial surface area.Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle microvasculature and glucose uptake. After confirming that GLP-1 potently stimulates nitric oxide (NO) synthase (NOS) phosphorylation in endothelial cells, overnight-fasted adult male rats received continuous GLP-1 infusion (30 pmol/kg/min) for 2 h plus or minus NOS inhibition. Muscle microvascular blood volume (MBV), microvascular blood flow velocity (MFV), and microvascular blood flow (MBF) were determined. Additional rats received GLP-1 or saline for 30 min and muscle insulin clearance/uptake was determined. GLP-1 infusion acutely increased muscle MBV (P < 0.04) within 30 min without altering MFV or femoral blood flow. This effect persisted throughout the 120-min infusion period, leading to a greater than twofold increase in muscle MBF (P < 0.02). These changes were paralleled with increases in plasma NO levels, muscle interstitial oxygen saturation, hind leg glucose extraction, and muscle insulin clearance/uptake. NOS inhibition blocked GLP-1-mediated increases in muscle MBV, glucose disposal, NO production, and muscle insulin clearance/uptake. In conclusion, GLP-1 acutely recruits microvasculature and increases basal glucose uptake in muscle via a NO-dependent mechanism. Thus, GLP-1 may afford potential to improve muscle insulin action by expanding microvascular endothelial surface area.
Audience Professional
Author Tao, Lijian
Wang, Wenhui
Cao, Wenhong
Liu, Zhenqi
Chai, Weidong
Wang, Nasui
Dong, Zhenhua
Author_xml – sequence: 1
  givenname: Weidong
  surname: Chai
  fullname: Chai, Weidong
  organization: Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
– sequence: 2
  givenname: Zhenhua
  surname: Dong
  fullname: Dong, Zhenhua
  organization: Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, Department of Medicine, Shandong University Jinan Central Hospital, Shandong, People’s Republic of China
– sequence: 3
  givenname: Nasui
  surname: Wang
  fullname: Wang, Nasui
  organization: Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia, Department of Medicine, Central South University Xiangya Hospital, Hunan, People’s Republic of China
– sequence: 4
  givenname: Wenhui
  surname: Wang
  fullname: Wang, Wenhui
  organization: Department of Medicine, Shandong University Jinan Central Hospital, Shandong, People’s Republic of China
– sequence: 5
  givenname: Lijian
  surname: Tao
  fullname: Tao, Lijian
  organization: Department of Medicine, Central South University Xiangya Hospital, Hunan, People’s Republic of China
– sequence: 6
  givenname: Wenhong
  surname: Cao
  fullname: Cao, Wenhong
  organization: Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
– sequence: 7
  givenname: Zhenqi
  surname: Liu
  fullname: Liu, Zhenqi
  organization: Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25668910$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22357961$$D View this record in MEDLINE/PubMed
BookMark eNp9k1Fv0zAQxy00xLrCA18AWSCEeMhmx4mTvCBNBcqkliLEJN6sq3PJPFK7xEk1XhDfgW_IJ8HRuo1ChSzLku93_zuf747IgXUWCXnM2XEsRHZSLjmPOMvEPTLihSgiEWefD8iIMR5HPCuyQ3Lk_SVjTIb1gBzGsUizQvIR-T5teg21s9HMfEH6AdedKZFy-hF125vO07nRrduA130DXd8iBVvSM6tbBI-eDv7OIz0P21g6771ukG4MUKDvTdcaTRdXQfLXj5-vcY22RNvROeoLsMavHpL7FTQeH23PMTl_--bT5F00W0zPJqezSMss6aIYqlQUuZTLkiOUkAqZa8YLzKRkuViKLIZgLvI4GBIOElgpgWuBTMiklGJMXl3rrvvlCksdkmihUevWrKD9phwYtWux5kLVbqOE4IlIsiDwYivQuq89-k6tjNfYNGDR9V4VSZ4XMQvwmDz9i7x0fWvD61QhE8bSNGUBenYN1dCgMrZyIaoeJNVpnCdZmjA-BI32UDVaDCmGFqhMuN7hj_fwYZW4Mnqvw8sdh8B0eNXV0Huv8unsf8lsWe2aBmtU4bsmi13-yZ8lv631Te8F4PkWCM0FTdWC1cbfcamUecGHWp1cc6EPvW-xUtp00Bk3_JRpFGdqmAI1TIEapuDuWbceN6L_sr8B5oQDdQ
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1152_ajpendo_00267_2021
crossref_primary_10_1152_ajpheart_00680_2014
crossref_primary_10_1016_j_drudis_2013_11_021
crossref_primary_10_1002_jcsm_12898
crossref_primary_10_1016_j_obmed_2019_100153
crossref_primary_10_1016_j_tem_2016_03_017
crossref_primary_10_1186_1475_2840_13_12
crossref_primary_10_1016_j_molmet_2014_04_009
crossref_primary_10_1007_s11154_013_9242_z
crossref_primary_10_1097_HJH_0000000000000776
crossref_primary_10_3390_ijms252313195
crossref_primary_10_1146_annurev_physiol_021113_170315
crossref_primary_10_3390_foods13111680
crossref_primary_10_31083_j_fbl2811315
crossref_primary_10_14336_AD_2021_0928
crossref_primary_10_3892_ijmm_2013_1350
crossref_primary_10_1007_s43440_024_00609_1
crossref_primary_10_1007_s11154_013_9238_8
crossref_primary_10_1152_ajpendo_00283_2013
crossref_primary_10_3390_ijms20030562
crossref_primary_10_3389_fphys_2020_00555
crossref_primary_10_1016_j_pharmthera_2017_06_012
crossref_primary_10_1002_dmrr_3100
crossref_primary_10_1016_j_phrs_2017_12_001
crossref_primary_10_1016_j_jcjd_2021_08_012
crossref_primary_10_1155_2015_490365
crossref_primary_10_1186_s13613_015_0051_2
crossref_primary_10_1016_j_jdiacomp_2013_04_007
crossref_primary_10_1111_nbu_12244
crossref_primary_10_3389_fendo_2020_583006
crossref_primary_10_1210_er_2016_1078
crossref_primary_10_1161_HYPERTENSIONAHA_113_03025
crossref_primary_10_1016_j_bcp_2025_116791
crossref_primary_10_1161_ATVBAHA_115_305447
crossref_primary_10_1007_s00018_013_1419_9
crossref_primary_10_1113_jphysiol_2014_282137
crossref_primary_10_1111_bph_12943
crossref_primary_10_1210_endrev_bnac018
crossref_primary_10_1111_acel_13202
crossref_primary_10_2337_db22_0745
crossref_primary_10_1097_FJC_0000000000000170
crossref_primary_10_3389_fcvm_2024_1446468
crossref_primary_10_2337_dbi17_0044
crossref_primary_10_1038_s41392_024_01931_z
crossref_primary_10_1016_j_mce_2015_01_006
crossref_primary_10_3390_pharmaceutics15071858
crossref_primary_10_1186_1475_2840_12_154
crossref_primary_10_1152_ajpendo_00376_2013
crossref_primary_10_1113_JP270129
crossref_primary_10_1097_CM9_0000000000000696
crossref_primary_10_1038_s41574_022_00783_3
crossref_primary_10_1210_js_2017_00446
crossref_primary_10_1111_1753_0407_13045
crossref_primary_10_1152_ajpendo_00400_2015
crossref_primary_10_1210_jendso_bvaa063
crossref_primary_10_1210_endrev_bnaa025
crossref_primary_10_3389_fcdhc_2023_1218692
crossref_primary_10_2337_db14_0976
crossref_primary_10_1155_2020_9368583
crossref_primary_10_1152_ajprenal_00280_2019
crossref_primary_10_1113_JP270371
crossref_primary_10_1152_ajpendo_00240_2021
crossref_primary_10_1111_nyas_12395
crossref_primary_10_1152_ajpendo_00205_2016
crossref_primary_10_1111_micc_12367
crossref_primary_10_1038_nrendo_2015_128
crossref_primary_10_3389_fendo_2018_00181
crossref_primary_10_1016_j_nutres_2015_07_005
crossref_primary_10_1159_000492114
crossref_primary_10_1152_ajpendo_00126_2021
crossref_primary_10_3164_jcbn_17_98
crossref_primary_10_2337_dc19_1465
crossref_primary_10_1159_000368423
crossref_primary_10_1152_ajpendo_00443_2015
crossref_primary_10_1097_MD_0000000000007773
crossref_primary_10_1152_ajpregu_00181_2017
crossref_primary_10_1007_s40520_015_0525_y
crossref_primary_10_3389_fendo_2014_00115
crossref_primary_10_1111_1440_1681_13237
crossref_primary_10_1152_ajpendo_00473_2012
crossref_primary_10_1152_ajpendo_00130_2013
crossref_primary_10_1002_ptr_6685
crossref_primary_10_1139_apnm_2014_0380
crossref_primary_10_3803_EnM_2020_781
crossref_primary_10_3904_kjim_2022_338
crossref_primary_10_4093_dmj_2012_36_2_83
crossref_primary_10_33549_physiolres_934480
crossref_primary_10_1111_tri_13883
crossref_primary_10_1177_1479164114547358
crossref_primary_10_3389_fnagi_2022_899389
crossref_primary_10_1161_CIRCRESAHA_114_301958
crossref_primary_10_1007_s00125_016_4071_8
crossref_primary_10_3389_fendo_2018_00672
crossref_primary_10_4161_isl_23345
crossref_primary_10_1007_s11154_014_9290_z
crossref_primary_10_1111_bph_15462
crossref_primary_10_1002_cph4_7
crossref_primary_10_1097_XCE_0000000000000086
crossref_primary_10_1152_ajpheart_00209_2014
crossref_primary_10_1210_en_2017_00585
crossref_primary_10_15275_sarmj_2021_0304
crossref_primary_10_1007_s00125_023_05973_w
crossref_primary_10_1210_jc_2017_01922
crossref_primary_10_1016_j_coph_2013_09_013
crossref_primary_10_1016_j_xops_2025_100734
crossref_primary_10_1016_j_jdiacomp_2018_05_018
crossref_primary_10_1093_jmcb_mjab024
crossref_primary_10_2174_0113895575299439240216081711
crossref_primary_10_1152_ajpendo_00069_2016
crossref_primary_10_1016_j_clinthera_2018_11_013
crossref_primary_10_1016_j_metabol_2014_05_008
crossref_primary_10_1016_j_molmet_2019_09_010
crossref_primary_10_3389_fphar_2021_637051
crossref_primary_10_23736_S1121_421X_18_02511_4
crossref_primary_10_1016_j_artres_2015_04_001
crossref_primary_10_1016_j_intimp_2020_107192
crossref_primary_10_1038_s41401_020_0493_4
crossref_primary_10_1152_ajpendo_00600_2012
crossref_primary_10_1371_journal_pone_0093856
crossref_primary_10_1172_JCI67166
crossref_primary_10_3389_fphar_2021_720703
crossref_primary_10_2337_db13_1597
crossref_primary_10_1186_s12886_025_03958_4
crossref_primary_10_3390_ijms22147574
crossref_primary_10_1016_j_peptides_2018_09_002
crossref_primary_10_1038_nm_3128
crossref_primary_10_1016_j_mce_2021_111472
crossref_primary_10_1038_s41569_023_00849_3
crossref_primary_10_1152_ajpendo_00537_2012
crossref_primary_10_1097_MOL_0b013e3283590b8f
crossref_primary_10_1042_BST20130283
crossref_primary_10_1186_1475_2840_13_69
crossref_primary_10_3892_ijmm_2025_5515
crossref_primary_10_1016_j_tet_2022_132901
crossref_primary_10_1186_s13098_015_0116_2
crossref_primary_10_1111_cts_12121
crossref_primary_10_1155_2021_6518221
crossref_primary_10_1007_s11154_012_9233_5
crossref_primary_10_1210_clinem_dgac613
crossref_primary_10_7759_cureus_51352
crossref_primary_10_1111_jgs_13970
crossref_primary_10_1113_jphysiol_2013_257246
crossref_primary_10_1042_CS20130708
crossref_primary_10_1111_jdi_12065
crossref_primary_10_1016_j_tem_2015_02_002
crossref_primary_10_1161_CIRCRESAHA_111_300388
crossref_primary_10_1016_j_vph_2015_08_011
crossref_primary_10_1038_s41387_022_00209_z
crossref_primary_10_1016_j_tem_2012_10_009
Cites_doi 10.1210/jcem.86.8.7750
10.1152/ajpendo.00414.2010
10.2337/diabetes.53.6.1418
10.2337/diabetes.50.12.2682
10.1210/jc.2009-0027
10.1016/j.cmet.2006.01.004
10.1055/s-0028-1082326
10.1152/ajpendo.00373.2007
10.1172/JCI942
10.1161/CIRCULATIONAHA.105.563213
10.1152/ajpendo.00497.2005
10.1097/00004872-200306000-00012
10.1007/s00125-010-1831-8
10.1210/jc.2010-1174
10.2337/db07-0020
10.1016/j.mce.2008.08.012
10.1007/BF00274255
10.1161/CIRCULATIONAHA.104.495127
10.1161/01.ATV.0000164044.42910.6b
10.2337/db08-1077
10.2337/diabetes.50.3.609
10.1210/en.2009-0172
10.2337/db06-0911
10.1161/01.CIR.0000139339.85840.DD
10.1172/JCI109054
10.1152/ajpendo.00435.2007
10.1038/ijo.2008.229
10.1007/s11906-010-0114-6
10.1152/ajpendo.00275.2007
10.1161/HYPERTENSIONAHA.109.145409
10.1152/ajpendo.00237.2004
10.1152/ajpendo.90477.2008
10.1152/physrev.00034.2006
10.1210/jc.2002-021873
10.1152/ajpendo.00021.2003
10.1152/ajpheart.00347.2005
10.2337/dc09-0206
10.1007/s00125-009-1313-z
10.1016/S0167-0115(01)00300-7
10.1210/en.2005-0505
10.1152/ajpendo.90760.2008
10.1210/en.2008-0945
10.1124/jpet.106.100982
ContentType Journal Article
Copyright 2015 INIST-CNRS
COPYRIGHT 2012 American Diabetes Association
COPYRIGHT 2012 American Diabetes Association
Copyright American Diabetes Association Apr 2012
2012 by the American Diabetes Association. 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2012 American Diabetes Association
– notice: COPYRIGHT 2012 American Diabetes Association
– notice: Copyright American Diabetes Association Apr 2012
– notice: 2012 by the American Diabetes Association. 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
S0X
7X8
5PM
DOI 10.2337/db11-1073
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Consumer Health Database (Alumni Edition)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Consumer Health Database
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
SIRS Editorial
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep


MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 896
ExternalDocumentID PMC3314347
2625836741
A284754017
22357961
25668910
10_2337_db11_1073
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01-HL-094722
– fundername: NHLBI NIH HHS
  grantid: R01 HL094722
GroupedDBID ---
.55
.XZ
08P
0R~
18M
29F
2WC
354
4.4
53G
5GY
5RE
5RS
5VS
6PF
7RV
7X7
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAFWJ
AAKAS
AAQQT
AAWTL
AAYEP
AAYOK
AAYXX
ABOCM
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADGHP
ADZCM
AEGXH
AENEX
AERZD
AFKRA
AHMBA
AIAGR
AIZAD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BTFSW
BVXVI
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GICCO
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HZ~
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
ITC
K-O
K2M
K9-
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5~
M7P
NAPCQ
O5R
O5S
O9-
OB3
OHH
OK1
OVD
P2P
PCD
PEA
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
TEORI
TR2
UKHRP
VVN
W8F
WH7
WOQ
WOW
X7M
YFH
YHG
YOC
ZY1
~KM
.GJ
1CY
8F7
AAYJJ
AFFNX
AI.
C1A
H~9
IQODW
J5H
MVM
N4W
PJZUB
PPXIY
PQGLB
VH1
XOL
YQJ
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7XB
8FK
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c674t-2af539866bd1eada5368c019e766083b372a98698236841a6a0d6a1c3e0364d63
IEDL.DBID 7X7
ISSN 0012-1797
1939-327X
IngestDate Thu Aug 21 14:09:22 EDT 2025
Fri Jul 11 06:56:06 EDT 2025
Fri Jul 25 19:29:03 EDT 2025
Tue Jun 17 21:09:11 EDT 2025
Thu Jun 12 23:30:36 EDT 2025
Tue Jun 10 20:20:11 EDT 2025
Fri Jun 27 03:46:05 EDT 2025
Tue Jun 10 19:50:44 EDT 2025
Mon Jul 21 06:01:21 EDT 2025
Mon Jul 21 09:13:21 EDT 2025
Tue Jul 01 03:04:07 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Endocrinopathy
Microcirculation
Gastrointestinal hormone
Diabetes mellitus
Nitric oxide
Muscle
Glucose
Glucagon like peptide 1
Language English
License CC BY 4.0
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c674t-2af539866bd1eada5368c019e766083b372a98698236841a6a0d6a1c3e0364d63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Feature-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3314347
PMID 22357961
PQID 964005550
PQPubID 34443
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3314347
proquest_miscellaneous_948892014
proquest_journals_964005550
gale_infotracmisc_A284754017
gale_infotracgeneralonefile_A284754017
gale_infotracacademiconefile_A284754017
gale_incontextgauss_8GL_A284754017
gale_incontextcollege_GICCO_A284754017
pubmed_primary_22357961
pascalfrancis_primary_25668910
crossref_citationtrail_10_2337_db11_1073
crossref_primary_10_2337_db11_1073
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2012
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Ayala (2022031210290205600_B6) 2009; 150
Inyard (2022031210290205600_B21) 2009; 58
Vilsbøll (2022031210290205600_B1) 2001; 50
Toft-Nielsen (2022031210290205600_B2) 2001; 86
Vincent (2022031210290205600_B36) 2006; 290
Zhao (2022031210290205600_B10) 2006; 317
Honig (2022031210290205600_B35) 1982; 243
Ye (2022031210290205600_B41) 2009; 33
Hosogai (2022031210290205600_B40) 2007; 56
Vilsbøll (2022031210290205600_B3) 2003; 88
Drucker (2022031210290205600_B5) 2006; 3
Zeleznik (2022031210290205600_B32) 1978; 61
Golpon (2022031210290205600_B15) 2001; 102
Barrett (2022031210290205600_B16) 2009; 52
Hattori (2022031210290205600_B38) 2010; 53
Kim (2022031210290205600_B44) 2006; 113
Richter (2022031210290205600_B14) 1993; 265
Vincent (2022031210290205600_B28) 2003; 285
Kim (2022031210290205600_B43) 2005; 25
Liu (2022031210290205600_B45) 2011; 96
Inyard (2022031210290205600_B22) 2007; 56
Jones (2022031210290205600_B4) 1989; 32
Yin (2022031210290205600_B42) 2009; 296
Liu (2022031210290205600_B19) 2009; 94
Li (2022031210290205600_B26) 2005; 146
Vincent (2022031210290205600_B30) 2004; 53
2022031210290205600_B34
Tolessa (2022031210290205600_B33) 1998; 102
Nikolaidis (2022031210290205600_B7) 2004; 110
Wang (2022031210290205600_B29) 2011; 300
Nikolaidis (2022031210290205600_B8) 2005; 289
Li (2022031210290205600_B27) 2009; 150
Holst (2022031210290205600_B46) 2009; 297
Keske (2022031210290205600_B20) 2009; 32
Ye (2022031210290205600_B39) 2007; 293
Yu (2022031210290205600_B11) 2003; 21
Clark (2022031210290205600_B17) 2008; 295
Scognamiglio (2022031210290205600_B37) 2005; 112
Basu (2022031210290205600_B12) 2007; 293
Ko (2022031210290205600_B18) 2010; 12
Nyström (2022031210290205600_B13) 2004; 287
Coggins (2022031210290205600_B23) 2001; 50
Nyström (2022031210290205600_B25) 2008; 40
Holst (2022031210290205600_B31) 2007; 87
Johnson (2022031210290205600_B9) 2007; 293
Chai (2022031210290205600_B24) 2010; 55
11730979 - Regul Pept. 2001 Dec 15;102(2-3):81-6
16489128 - J Pharmacol Exp Ther. 2006 Jun;317(3):1106-13
20978231 - Am J Physiol Endocrinol Metab. 2011 Jan;300(1):E195-201
15353407 - Am J Physiol Endocrinol Metab. 2004 Dec;287(6):E1209-15
19487636 - Diabetes Care. 2009 Sep;32(9):1672-7
16024574 - Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2401-8
19050672 - Int J Obes (Lond). 2009 Jan;33(1):54-66
2676668 - Diabetologia. 1989 Sep;32(9):668-77
16682488 - Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1191-7
17684104 - Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E1085-91
17666485 - Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E1118-28
20582734 - Curr Hypertens Rep. 2010 Aug;12(4):243-51
18792870 - Horm Metab Res. 2008 Sep;40(9):593-606
659598 - J Clin Invest. 1978 May;61(5):1363-74
12788877 - J Clin Endocrinol Metab. 2003 Jun;88(6):2706-13
11723050 - Diabetes. 2001 Dec;50(12):2682-90
8238371 - Am J Physiol. 1993 Oct;265(4 Pt 1):L374-81
21047922 - J Clin Endocrinol Metab. 2011 Feb;96(2):438-46
19423756 - Endocrinology. 2009 Aug;150(8):3475-82
17928588 - Physiol Rev. 2007 Oct;87(4):1409-39
12777949 - J Hypertens. 2003 Jun;21(6):1125-35
19996061 - Hypertension. 2010 Feb;55(2):523-30
19283361 - Diabetologia. 2009 May;52(5):752-64
7114231 - Am J Physiol. 1982 Aug;243(2):H196-206
16099860 - Endocrinology. 2005 Nov;146(11):4690-6
18786605 - Mol Cell Endocrinol. 2009 Jan 15;297(1-2):127-36
19008308 - Endocrinology. 2009 Mar;150(3):1155-64
19675134 - Diabetes. 2009 Nov;58(11):2457-63
12791603 - Am J Physiol Endocrinol Metab. 2003 Jul;285(1):E123-9
11502801 - J Clin Endocrinol Metab. 2001 Aug;86(8):3717-23
15863720 - Arterioscler Thromb Vasc Biol. 2005 May;25(5):889-91
20593161 - Diabetologia. 2010 Oct;53(10):2256-63
17563063 - Diabetes. 2007 Sep;56(9):2194-200
17711996 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1289-95
19066318 - Am J Physiol Endocrinol Metab. 2009 Feb;296(2):E333-42
18612041 - Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E732-50
15161743 - Diabetes. 2004 Jun;53(6):1418-23
11246881 - Diabetes. 2001 Mar;50(3):609-13
19567533 - J Clin Endocrinol Metab. 2009 Sep;94(9):3543-9
15313949 - Circulation. 2004 Aug 24;110(8):955-61
16618833 - Circulation. 2006 Apr 18;113(15):1888-904
15998667 - Circulation. 2005 Jul 12;112(2):179-84
17395738 - Diabetes. 2007 Apr;56(4):901-11
16517403 - Cell Metab. 2006 Mar;3(3):153-65
21896931 - Diabetes. 2011 Nov;60(11):2939-46
9710445 - J Clin Invest. 1998 Aug 15;102(4):764-74
References_xml – volume: 86
  start-page: 3717
  year: 2001
  ident: 2022031210290205600_B2
  article-title: Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jcem.86.8.7750
– volume: 300
  start-page: E195
  year: 2011
  ident: 2022031210290205600_B29
  article-title: Resveratrol recruits rat muscle microvasculature via a nitric oxide-dependent mechanism that is blocked by TNFα
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00414.2010
– volume: 53
  start-page: 1418
  year: 2004
  ident: 2022031210290205600_B30
  article-title: Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.6.1418
– volume: 50
  start-page: 2682
  year: 2001
  ident: 2022031210290205600_B23
  article-title: Physiologic hyperinsulinemia enhances human skeletal muscle perfusion by capillary recruitment
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.12.2682
– volume: 94
  start-page: 3543
  year: 2009
  ident: 2022031210290205600_B19
  article-title: Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2009-0027
– volume: 3
  start-page: 153
  year: 2006
  ident: 2022031210290205600_B5
  article-title: The biology of incretin hormones
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2006.01.004
– volume: 40
  start-page: 593
  year: 2008
  ident: 2022031210290205600_B25
  article-title: The potential beneficial role of glucagon-like peptide-1 in endothelial dysfunction and heart failure associated with insulin resistance
  publication-title: Horm Metab Res
  doi: 10.1055/s-0028-1082326
– volume: 293
  start-page: E1289
  year: 2007
  ident: 2022031210290205600_B12
  article-title: Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00373.2007
– volume: 102
  start-page: 764
  year: 1998
  ident: 2022031210290205600_B33
  article-title: Inhibitory effect of glucagon-like peptide-1 on small bowel motility. Fasting but not fed motility inhibited via nitric oxide independently of insulin and somatostatin
  publication-title: J Clin Invest
  doi: 10.1172/JCI942
– volume: 113
  start-page: 1888
  year: 2006
  ident: 2022031210290205600_B44
  article-title: Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.563213
– volume: 290
  start-page: E1191
  year: 2006
  ident: 2022031210290205600_B36
  article-title: Mixed meal and light exercise each recruit muscle capillaries in healthy humans
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00497.2005
– volume: 21
  start-page: 1125
  year: 2003
  ident: 2022031210290205600_B11
  article-title: Antihypertensive effect of glucagon-like peptide 1 in Dahl salt-sensitive rats
  publication-title: J Hypertens
  doi: 10.1097/00004872-200306000-00012
– volume: 53
  start-page: 2256
  year: 2010
  ident: 2022031210290205600_B38
  article-title: A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells
  publication-title: Diabetologia
  doi: 10.1007/s00125-010-1831-8
– volume: 96
  start-page: 438
  year: 2011
  ident: 2022031210290205600_B45
  article-title: Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2010-1174
– volume: 56
  start-page: 2194
  year: 2007
  ident: 2022031210290205600_B22
  article-title: Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake
  publication-title: Diabetes
  doi: 10.2337/db07-0020
– volume: 297
  start-page: 127
  year: 2009
  ident: 2022031210290205600_B46
  article-title: The incretin system and its role in type 2 diabetes mellitus
  publication-title: Mol Cell Endocrinol
  doi: 10.1016/j.mce.2008.08.012
– volume: 32
  start-page: 668
  year: 1989
  ident: 2022031210290205600_B4
  article-title: The glucose dependent insulinotropic polypeptide response to oral glucose and mixed meals is increased in patients with type 2 (non-insulin-dependent) diabetes mellitus
  publication-title: Diabetologia
  doi: 10.1007/BF00274255
– volume: 112
  start-page: 179
  year: 2005
  ident: 2022031210290205600_B37
  article-title: Postprandial myocardial perfusion in healthy subjects and in type 2 diabetic patients
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.104.495127
– volume: 25
  start-page: 889
  year: 2005
  ident: 2022031210290205600_B43
  article-title: The union of vascular and metabolic actions of insulin in sickness and in health
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000164044.42910.6b
– volume: 58
  start-page: 2457
  year: 2009
  ident: 2022031210290205600_B21
  article-title: Muscle contraction, but not insulin, increases microvascular blood volume in the presence of free fatty acid-induced insulin resistance
  publication-title: Diabetes
  doi: 10.2337/db08-1077
– volume: 50
  start-page: 609
  year: 2001
  ident: 2022031210290205600_B1
  article-title: Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.3.609
– volume: 150
  start-page: 3475
  year: 2009
  ident: 2022031210290205600_B27
  article-title: Insulin and insulin-like growth factor-I receptors differentially mediate insulin-stimulated adhesion molecule production by endothelial cells
  publication-title: Endocrinology
  doi: 10.1210/en.2009-0172
– volume: 56
  start-page: 901
  year: 2007
  ident: 2022031210290205600_B40
  article-title: Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation
  publication-title: Diabetes
  doi: 10.2337/db06-0911
– volume: 110
  start-page: 955
  year: 2004
  ident: 2022031210290205600_B7
  article-title: Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000139339.85840.DD
– volume: 61
  start-page: 1363
  year: 1978
  ident: 2022031210290205600_B32
  article-title: Demonstration of the insulin receptor in vivo in rabbits and its possible role as a reservoir for the plasma hormone
  publication-title: J Clin Invest
  doi: 10.1172/JCI109054
– volume: 293
  start-page: E1118
  year: 2007
  ident: 2022031210290205600_B39
  article-title: Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00435.2007
– volume: 33
  start-page: 54
  year: 2009
  ident: 2022031210290205600_B41
  article-title: Emerging role of adipose tissue hypoxia in obesity and insulin resistance
  publication-title: Int J Obes (Lond)
  doi: 10.1038/ijo.2008.229
– volume: 265
  start-page: L374
  year: 1993
  ident: 2022031210290205600_B14
  article-title: GLP-1 stimulates secretion of macromolecules from airways and relaxes pulmonary artery
  publication-title: Am J Physiol
– volume: 12
  start-page: 243
  year: 2010
  ident: 2022031210290205600_B18
  article-title: Hypertension management and microvascular insulin resistance in diabetes
  publication-title: Curr Hypertens Rep
  doi: 10.1007/s11906-010-0114-6
– volume: 293
  start-page: E1085
  year: 2007
  ident: 2022031210290205600_B9
  article-title: Intraportal GLP-1 infusion increases nonhepatic glucose utilization without changing pancreatic hormone levels
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00275.2007
– volume: 55
  start-page: 523
  year: 2010
  ident: 2022031210290205600_B24
  article-title: Angiotensin II type 1 and type 2 receptors regulate basal skeletal muscle microvascular volume and glucose use
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.109.145409
– volume: 287
  start-page: E1209
  year: 2004
  ident: 2022031210290205600_B13
  article-title: Effects of glucagon-like peptide-1 on endothelial function in type 2 diabetes patients with stable coronary artery disease
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00237.2004
– volume: 295
  start-page: E732
  year: 2008
  ident: 2022031210290205600_B17
  article-title: Impaired microvascular perfusion: a consequence of vascular dysfunction and a potential cause of insulin resistance in muscle
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.90477.2008
– volume: 87
  start-page: 1409
  year: 2007
  ident: 2022031210290205600_B31
  article-title: The physiology of glucagon-like peptide 1
  publication-title: Physiol Rev
  doi: 10.1152/physrev.00034.2006
– volume: 88
  start-page: 2706
  year: 2003
  ident: 2022031210290205600_B3
  article-title: Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2002-021873
– volume: 285
  start-page: E123
  year: 2003
  ident: 2022031210290205600_B28
  article-title: Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.00021.2003
– volume: 289
  start-page: H2401
  year: 2005
  ident: 2022031210290205600_B8
  article-title: Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00347.2005
– volume: 32
  start-page: 1672
  year: 2009
  ident: 2022031210290205600_B20
  article-title: Obesity blunts microvascular recruitment in human forearm muscle after a mixed meal
  publication-title: Diabetes Care
  doi: 10.2337/dc09-0206
– volume: 52
  start-page: 752
  year: 2009
  ident: 2022031210290205600_B16
  article-title: The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action
  publication-title: Diabetologia
  doi: 10.1007/s00125-009-1313-z
– volume: 102
  start-page: 81
  year: 2001
  ident: 2022031210290205600_B15
  article-title: Vasorelaxant effect of glucagon-like peptide-(7-36)amide and amylin on the pulmonary circulation of the rat
  publication-title: Regul Pept
  doi: 10.1016/S0167-0115(01)00300-7
– volume: 146
  start-page: 4690
  year: 2005
  ident: 2022031210290205600_B26
  article-title: Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells
  publication-title: Endocrinology
  doi: 10.1210/en.2005-0505
– volume: 296
  start-page: E333
  year: 2009
  ident: 2022031210290205600_B42
  article-title: Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue
  publication-title: Am J Physiol Endocrinol Metab
  doi: 10.1152/ajpendo.90760.2008
– volume: 243
  start-page: H196
  year: 1982
  ident: 2022031210290205600_B35
  article-title: Active and passive capillary control in red muscle at rest and in exercise
  publication-title: Am J Physiol
– ident: 2022031210290205600_B34
– volume: 150
  start-page: 1155
  year: 2009
  ident: 2022031210290205600_B6
  article-title: The glucagon-like peptide-1 receptor regulates endogenous glucose production and muscle glucose uptake independent of its incretin action
  publication-title: Endocrinology
  doi: 10.1210/en.2008-0945
– volume: 317
  start-page: 1106
  year: 2006
  ident: 2022031210290205600_B10
  article-title: Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.106.100982
– reference: 17395738 - Diabetes. 2007 Apr;56(4):901-11
– reference: 17666485 - Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E1118-28
– reference: 15161743 - Diabetes. 2004 Jun;53(6):1418-23
– reference: 19423756 - Endocrinology. 2009 Aug;150(8):3475-82
– reference: 12791603 - Am J Physiol Endocrinol Metab. 2003 Jul;285(1):E123-9
– reference: 15353407 - Am J Physiol Endocrinol Metab. 2004 Dec;287(6):E1209-15
– reference: 19008308 - Endocrinology. 2009 Mar;150(3):1155-64
– reference: 11502801 - J Clin Endocrinol Metab. 2001 Aug;86(8):3717-23
– reference: 18792870 - Horm Metab Res. 2008 Sep;40(9):593-606
– reference: 21896931 - Diabetes. 2011 Nov;60(11):2939-46
– reference: 12777949 - J Hypertens. 2003 Jun;21(6):1125-35
– reference: 16618833 - Circulation. 2006 Apr 18;113(15):1888-904
– reference: 19283361 - Diabetologia. 2009 May;52(5):752-64
– reference: 16099860 - Endocrinology. 2005 Nov;146(11):4690-6
– reference: 19050672 - Int J Obes (Lond). 2009 Jan;33(1):54-66
– reference: 18786605 - Mol Cell Endocrinol. 2009 Jan 15;297(1-2):127-36
– reference: 19996061 - Hypertension. 2010 Feb;55(2):523-30
– reference: 20978231 - Am J Physiol Endocrinol Metab. 2011 Jan;300(1):E195-201
– reference: 15998667 - Circulation. 2005 Jul 12;112(2):179-84
– reference: 16024574 - Am J Physiol Heart Circ Physiol. 2005 Dec;289(6):H2401-8
– reference: 17684104 - Am J Physiol Endocrinol Metab. 2007 Oct;293(4):E1085-91
– reference: 9710445 - J Clin Invest. 1998 Aug 15;102(4):764-74
– reference: 19675134 - Diabetes. 2009 Nov;58(11):2457-63
– reference: 12788877 - J Clin Endocrinol Metab. 2003 Jun;88(6):2706-13
– reference: 8238371 - Am J Physiol. 1993 Oct;265(4 Pt 1):L374-81
– reference: 659598 - J Clin Invest. 1978 May;61(5):1363-74
– reference: 16517403 - Cell Metab. 2006 Mar;3(3):153-65
– reference: 16682488 - Am J Physiol Endocrinol Metab. 2006 Jun;290(6):E1191-7
– reference: 20582734 - Curr Hypertens Rep. 2010 Aug;12(4):243-51
– reference: 17928588 - Physiol Rev. 2007 Oct;87(4):1409-39
– reference: 17711996 - Am J Physiol Endocrinol Metab. 2007 Nov;293(5):E1289-95
– reference: 21047922 - J Clin Endocrinol Metab. 2011 Feb;96(2):438-46
– reference: 15863720 - Arterioscler Thromb Vasc Biol. 2005 May;25(5):889-91
– reference: 2676668 - Diabetologia. 1989 Sep;32(9):668-77
– reference: 19066318 - Am J Physiol Endocrinol Metab. 2009 Feb;296(2):E333-42
– reference: 15313949 - Circulation. 2004 Aug 24;110(8):955-61
– reference: 11246881 - Diabetes. 2001 Mar;50(3):609-13
– reference: 17563063 - Diabetes. 2007 Sep;56(9):2194-200
– reference: 19487636 - Diabetes Care. 2009 Sep;32(9):1672-7
– reference: 20593161 - Diabetologia. 2010 Oct;53(10):2256-63
– reference: 7114231 - Am J Physiol. 1982 Aug;243(2):H196-206
– reference: 19567533 - J Clin Endocrinol Metab. 2009 Sep;94(9):3543-9
– reference: 16489128 - J Pharmacol Exp Ther. 2006 Jun;317(3):1106-13
– reference: 18612041 - Am J Physiol Endocrinol Metab. 2008 Oct;295(4):E732-50
– reference: 11723050 - Diabetes. 2001 Dec;50(12):2682-90
– reference: 11730979 - Regul Pept. 2001 Dec 15;102(2-3):81-6
SSID ssj0006060
Score 2.4617033
Snippet Glucagon-like peptide 1 (GLP-1) increases tissue glucose uptake and causes vasodilation independent of insulin. We examined the effect of GLP-1 on muscle...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 888
SubjectTerms Animals
Aorta - cytology
Biological and medical sciences
Blood glucose
Blood sugar
Cardiovascular disease
Cattle
Cells, Cultured
Cyclic AMP-Dependent Protein Kinases - genetics
Cyclic AMP-Dependent Protein Kinases - metabolism
Diabetes
Diabetes. Impaired glucose tolerance
Drug Administration Schedule
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Endothelial Cells - metabolism
Endothelium
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Flow velocity
Gene Expression Regulation - physiology
Glucagon
Glucagon-Like Peptide 1 - genetics
Glucagon-Like Peptide 1 - metabolism
Glucagon-Like Peptide 1 - pharmacology
Glucose
Glucose - metabolism
Hormones - pharmacology
Insulin
Insulin - metabolism
Kinases
Laboratories
Male
Medical sciences
Microcirculation
Microvessels
Muscle, Skeletal - blood supply
Muscle, Skeletal - metabolism
Muscles
NG-Nitroarginine Methyl Ester - pharmacology
Nitric oxide
Nitric Oxide - blood
Nitric Oxide - metabolism
Nitric Oxide Synthase Type III - genetics
Nitric Oxide Synthase Type III - metabolism
Pathophysiology
Peptide hormones
Peptides
Physiological aspects
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Pulmonary arteries
Rats
Rats, Sprague-Dawley
Somatostatin - pharmacology
Title Glucagon-Like Peptide 1 Recruits Microvasculature and Increases Glucose Use in Muscle via a Nitric Oxide–Dependent Mechanism
URI https://www.ncbi.nlm.nih.gov/pubmed/22357961
https://www.proquest.com/docview/964005550
https://www.proquest.com/docview/948892014
https://pubmed.ncbi.nlm.nih.gov/PMC3314347
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgkxDShPhN2KgshAYv0Zo4sZMnNMrWCS3dhKjUt8ixnRIxkkISxAN_PHeJGwiqeGhefHJjn333Jf7yHSGvmORaQqJ2fY2i2nEYuhISj6uMZvk0kzLs1PaTBb9YBh9W4cpyc2pLq9zGxC5Q60rhO_KTmAeoFxVO326-uVg0Cg9XbQWN22QflcuQ0SVWw_PWFLB5_wWK56MKp-iFhXzGxInOOiaXYKN0ZIPywUbWMEF5X9liF_T8l0H5V0o6v0_uWSxJT3vnPyC3TPmQ3Ensafkj8muOJc3WVeleFl8MvUYCizbUo4gV26KpaYJ0PEtGxaMEKktNIWQgU93UdN7z2ekSfkVJk7aG_6E_CkklXRSo7U-vfkKX7ntbSrehicFPiYv662OyPD_7NLtwbbUFV3ERNK4v85DFEeeZ9mB5yZDxSAEANIJzwGkZE76E5hgrpEeBJ7mcai49xQweZWrOnpC9sirNM0INyyJfaUQrMQQIngkTSw1-yMMIknLskDfbSU-VlSLHihg3KTySoH9S9E-K_nHIy8F00-tv7DI6Rs-lqGdRImFG9S9dUhjf7Co9xRQMyNQT0NvYcC3buk6j-eXI6LU1yiu4KyXthwowNtTKGlkejyzXvVL4LsOjkSFsYTVqnoyW3DBSwKM8AkDnkMPtGkxtjKnTYUc4hA6t2DPS5kpTtWACsx8DxAsc8rRfsH-6Rp2jmHsOEaOlPBig7vi4pSw-d_rjjAHIDsTz_97UIbnr48brSE5HZK_53poXgN-abNLtUrhGM29C9t-dLa4__gYqEUWx
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgIkhPgmbAwLwdhLtCZOnOQBobGPdqzpJrRKewtO7JYISAtJ-ZD4l_gfuWvcQFDF2x7y5JMT-853P8fn3wE841IoiYHadhWRake-b0sMPHamFR93Uyn9Bdt-PBT9kffmwr9Yg1_LuzCUVrn0iQtHraYZ_SPfjYRHfFF-99Xss01Fo-hwdVlBo7aKE_3jG-7YypfHB6je5657dHi-37dNUQE7E4FX2a4c-zwKhUiVg7MofS7CDHGODoRAOJLywJXYHFEh8NBzpJBdJaSTcU0ndkpw7PcKrHscdzIdWH99ODx727h-3A3Ud14cl3g_g5rKyOU82FXpIncs4K0AaMLAjZksUSXjupbGKrD7b87mX0Hw6BbcNOiV7dXmdhvWdHEHrsbmfP4u_OxREbXJtLAH-QfNzihlRmnmMEKn87wqWUwJgCb9lQ4vmCwUQydFufG6ZL06g56N8MkLFs9LfA_7mksm2TCnagLs9Dt2aR-Y4r0VizVdXs7LT_dgdCmquA-dYlroh8A0T0M3U4SPInRJIg10JBXqYeyHCAMiC3aWk55khvycanB8THATRPpJSD8J6ceCp43orGb8WCW0TZpLiEGjoBSdrP7Nk-D49k-TPQr6iIWdAHtrC07kvCyTsDdoCb0wQuMpflUmzdUIHBuxc7Ukt1uSk5qbfJXgZksQnUbWat5qmVwzUkTAIkQIacHG0gYT49XKpFmDFrCmlXqmRL1CT-cogrMfIaj0LHhQG-yfrolZKRKOBUHLlBsBYjpvtxT5-wXjOecI673g0X8_6glc65_Hg2RwPDzZgOsuLcJFitUmdKovc_0Y0WOVbpk1y-DdZbuJ3yUcf4U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGkCYkhPgmbAwLweAlahMndvKA0LTSbqzt9kClvhkndrpokBbS8iHxj_HfcZe4gaCKtz3kyScn9p3vfo7PvyPkOVNcKwjUrq-RVDsOQ1dB4HFTo1nWTZQKK7b90ZgfT4J303C6RX6t78JgWuXaJ1aOWs9T_EfeiXmAfFFht5PZrIjzXv_N4rOLBaTwoHVdTaO2kFPz4xvs3srXJz1Q9Qvf7799f3Ts2gIDbspFsHR9lYUsjjhPtAczqkLGoxQwjxGcAzRJmPAVNMdYFDwKPMVVV3Plpczg6Z3mDPq9Rq4LFnq4xMS02et1YV9Q337xfGQAFTWpkc-Y6OikyiITrBUKbUC4uVAlKCerq2psgr3_Zm_-FQ77t8kti2PpYW14d8iWKe6SnZE9qb9Hfg6wnNpsXrjD_NLQc0ye0YZ6FHHqKl-WdISpgDYRFo8xqCo0BXeFWfKmpIM6l55O4MkLOlqV8B76NVdU0XGOdQXo2Xfo0u3ZMr5LOjJ4jTkvP90nkytRxAOyXcwL84hQw5LITzUipRicE0-EiZUGPWRhBIAgdsir9aTL1NKgYzWOjxK2Q6gfifqRqB-HPGtEFzX3xyahA9ScRC6NAs0yrX_4SBjf0Zk8xPAPqNgT0FtbcKZWZSmjwbAl9NIKZXP4qlTZSxIwNuTpakketCRnNUv5JsG9liC4j7TVvN8yuWakgIV5BGDSIbtrG5TWv5WyWY0OoU0r9owpe4WZr0AEZj8GeBk45GFtsH-6Ro6lmHsOES1TbgSQ87zdUuQXFfc5YwDwA_H4vx_1lOyAc5DDk_HpLrnh4xqscq32yPbyy8o8ARi5TParBUvJh6v2EL8BxPCCVQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Glucagon-like+peptide+1+recruits+microvasculature+and+increases+glucose+use+in+muscle+via+a+nitric+oxide-dependent+mechanism&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Chai%2C+Weidong&rft.au=Dong%2C+Zhenhua&rft.au=Wang%2C+Nasui&rft.au=Wang%2C+Wenhui&rft.date=2012-04-01&rft.issn=1939-327X&rft.eissn=1939-327X&rft.volume=61&rft.issue=4&rft.spage=888&rft_id=info:doi/10.2337%2Fdb11-1073&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon