From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage
Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the...
Saved in:
Published in | Nano-micro letters Vol. 13; no. 1; pp. 98 - 14 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.
The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores.
The thick electrode (~ 19 mg cm
−2
) with a high areal capacity of 6.14 mAh cm
−2
displays an ultrahigh cycling stability and an outstanding low-temperature performance.
Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na
+
but allow the entrance of naked Na
+
into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g
−1
at 30 mA g
−1
with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm
−2
) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm
−2
at 25 °C and 5.32 mAh cm
−2
at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na
+
storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs. |
---|---|
AbstractList | Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm−2) with a high areal capacity of 6.14 mAh cm−2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Abstract Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g−1 at 30 mA g−1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm−2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm−2 at 25 °C and 5.32 mAh cm−2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs. Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm-2) with a high areal capacity of 6.14 mAh cm-2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion-carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g-1 at 30 mA g-1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm-2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm-2 at 25 °C and 5.32 mAh cm-2 at - 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.HIGHLIGHTSHard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm-2) with a high areal capacity of 6.14 mAh cm-2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion-carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g-1 at 30 mA g-1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm-2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm-2 at 25 °C and 5.32 mAh cm-2 at - 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs. Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm −2 ) with a high areal capacity of 6.14 mAh cm −2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na + but allow the entrance of naked Na + into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g −1 at 30 mA g −1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm −2 ) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm −2 at 25 °C and 5.32 mAh cm −2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na + storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs. HighlightsHard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores.The thick electrode (~ 19 mg cm−2) with a high areal capacity of 6.14 mAh cm−2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g−1 at 30 mA g−1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm−2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm−2 at 25 °C and 5.32 mAh cm−2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs. Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm ) with a high areal capacity of 6.14 mAh cm displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na but allow the entrance of naked Na into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion-carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g at 30 mA g with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm ) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm at 25 °C and 5.32 mAh cm at - 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs. |
ArticleNumber | 98 |
Author | Chen, Wei Yang, Quan-Hong Zhang, Weichao Wang, Xiaowei Cui, Xinhang Yang, Jinlin Lian, Xu Zhang, Kexin Lin, Ming Loh, Kian Ping Zou, Ruqiang Dai, Wenrui |
Author_xml | – sequence: 1 givenname: Jinlin surname: Yang fullname: Yang, Jinlin organization: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Department of Chemistry, National University of Singapore, National University of Singapore (Suzhou) Research Institute – sequence: 2 givenname: Xiaowei surname: Wang fullname: Wang, Xiaowei organization: Department of Chemistry, National University of Singapore – sequence: 3 givenname: Wenrui surname: Dai fullname: Dai, Wenrui organization: Department of Chemistry, National University of Singapore, National University of Singapore (Suzhou) Research Institute – sequence: 4 givenname: Xu surname: Lian fullname: Lian, Xu organization: Department of Chemistry, National University of Singapore – sequence: 5 givenname: Xinhang surname: Cui fullname: Cui, Xinhang organization: National University of Singapore (Suzhou) Research Institute, Department of Physics, National University of Singapore – sequence: 6 givenname: Weichao surname: Zhang fullname: Zhang, Weichao organization: Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University – sequence: 7 givenname: Kexin surname: Zhang fullname: Zhang, Kexin organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University – sequence: 8 givenname: Ming surname: Lin fullname: Lin, Ming organization: Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research (ASTAR) – sequence: 9 givenname: Ruqiang surname: Zou fullname: Zou, Ruqiang organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University – sequence: 10 givenname: Kian Ping surname: Loh fullname: Loh, Kian Ping organization: Department of Chemistry, National University of Singapore – sequence: 11 givenname: Quan-Hong surname: Yang fullname: Yang, Quan-Hong email: qhyangcn@tju.edu.cn organization: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University – sequence: 12 givenname: Wei surname: Chen fullname: Chen, Wei email: phycw@nus.edu.sg organization: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Department of Chemistry, National University of Singapore, National University of Singapore (Suzhou) Research Institute, Department of Physics, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34138264$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLaU_wAJFYsMm1G87LJDQqKUjDUKi07XlxDdTV4k92AnVSHw8DtNS2kUXV7avzzn3-bo48MFDUbzF6CNGSJ4mhhRBFZoNcSWr3YviiGCOKs45Psh3inElJBKHxUlKrkGcMEkkZ6-KQ8owVUSwo-L3eQxD-c21MWxDhFSOobzqx2iq4cHnfHIWygsTbbkwsQn-U7kOt_PzzF8b38Ls35rWjbsMLn-EMFSnq3BbrWHYQjTjFKG8DNZNQ7UMvrwcQzQbeFO87Eyf4OTuPC6uzs_Wi4tq9f3rcvFlVbVC0rHqUK6L2sayWnYMY4oI54LzVtiaWIs4qxlBSoCw2TgCImuBiOKsUZKplh4Xy72uDeZGb6MbTNzpYJz-6whxo00cXduDxqq2dQ5DKDDWGGIYaqDDbUchB4Uma33ea22nZgDbgs_N6h-JPv7x7lpvwi-tUJ6bUlngw51ADD8nSKMeXGqh742HMCVNOCNU5PHIDH3_BHoTpuhzqzQRuOZSqvp5FEeiZlhwkVHv_s_7X8L3q5ABag_IY08pQqfzOM3owlyG6zVGel48vV88jWabF0_vMpU8od6rP0uie1LKYL-B-JD2M6w_2Rjpow |
CitedBy_id | crossref_primary_10_1002_adma_202300002 crossref_primary_10_1021_acs_inorgchem_3c02457 crossref_primary_10_1002_adma_202212186 crossref_primary_10_1007_s10854_024_12209_z crossref_primary_10_1002_smll_202311197 crossref_primary_10_1002_adma_202109282 crossref_primary_10_1039_D3CC03967F crossref_primary_10_1016_j_jpowsour_2024_235474 crossref_primary_10_1016_j_jmst_2024_05_009 crossref_primary_10_1016_j_cej_2025_159431 crossref_primary_10_1016_j_cej_2022_140418 crossref_primary_10_1016_j_esci_2023_100181 crossref_primary_10_1016_j_electacta_2022_140017 crossref_primary_10_1002_adfm_202315408 crossref_primary_10_1039_D3EE03347C crossref_primary_10_1016_j_est_2024_114692 crossref_primary_10_1016_j_jechem_2022_06_006 crossref_primary_10_1021_acsami_4c04101 crossref_primary_10_1039_D4MH01118J crossref_primary_10_1007_s40820_022_00924_3 crossref_primary_10_1021_acsphyschemau_1c00036 crossref_primary_10_1002_aenm_202300357 crossref_primary_10_1016_j_cclet_2024_110792 crossref_primary_10_1016_j_jpowsour_2022_232517 crossref_primary_10_1002_adfm_202421790 crossref_primary_10_1007_s40820_022_00873_x crossref_primary_10_1016_j_jece_2025_115455 crossref_primary_10_1016_j_fuel_2024_132664 crossref_primary_10_1016_j_jechem_2025_01_042 crossref_primary_10_1021_acsnano_4c06281 crossref_primary_10_1002_adfm_202308392 crossref_primary_10_1002_aenm_202400125 crossref_primary_10_1002_smtd_202201508 crossref_primary_10_1002_adma_202420251 crossref_primary_10_1002_advs_202310196 crossref_primary_10_1016_j_ensm_2022_07_005 crossref_primary_10_1016_j_enchem_2023_100099 crossref_primary_10_1016_S1872_5805_24_60884_X crossref_primary_10_1016_j_jpowsour_2024_235335 crossref_primary_10_1016_j_scib_2025_03_042 crossref_primary_10_1039_D5GC00409H crossref_primary_10_1002_asia_202301146 crossref_primary_10_1002_adfm_202405174 crossref_primary_10_1016_j_apsusc_2024_159528 crossref_primary_10_1016_j_cclet_2025_111112 crossref_primary_10_1039_D2QI01990F crossref_primary_10_1002_anie_202416720 crossref_primary_10_1002_advs_202407538 crossref_primary_10_1021_acs_jpcc_3c01773 crossref_primary_10_1016_j_jcis_2021_10_007 crossref_primary_10_1016_j_jcis_2025_01_168 crossref_primary_10_1016_j_est_2024_115204 crossref_primary_10_1016_j_jelechem_2023_117254 crossref_primary_10_1002_ente_202200612 crossref_primary_10_1021_acs_energyfuels_3c00220 crossref_primary_10_1002_adfm_202205453 crossref_primary_10_1016_j_ensm_2024_103386 crossref_primary_10_1002_adma_202410326 crossref_primary_10_1016_j_jpowsour_2024_236093 crossref_primary_10_1021_acsami_1c14738 crossref_primary_10_1021_acsami_4c00301 crossref_primary_10_1016_j_ensm_2024_103269 crossref_primary_10_1021_acsami_4c17922 crossref_primary_10_12677_ms_2025_151013 crossref_primary_10_1021_acs_nanolett_4c04569 crossref_primary_10_1149_2754_2734_ac8aaf crossref_primary_10_1002_smll_202309809 crossref_primary_10_1039_D4TA08291E crossref_primary_10_1002_cey2_546 crossref_primary_10_1039_D3EE00161J crossref_primary_10_3390_ma17051016 crossref_primary_10_1016_j_carbon_2023_118756 crossref_primary_10_1002_adma_202407369 crossref_primary_10_1021_acs_nanolett_4c01620 crossref_primary_10_1016_j_cej_2023_146836 crossref_primary_10_1016_j_jpowsour_2024_235151 crossref_primary_10_1016_j_carbon_2023_02_004 crossref_primary_10_1016_j_cej_2024_154103 crossref_primary_10_1039_D1TA07310A crossref_primary_10_1002_adfm_202414761 crossref_primary_10_1016_j_jpowsour_2024_235664 crossref_primary_10_1016_j_electacta_2025_146041 crossref_primary_10_1016_j_jpowsour_2024_234730 crossref_primary_10_3390_molecules28073134 crossref_primary_10_1038_s41467_023_39637_5 crossref_primary_10_1002_ange_202416720 crossref_primary_10_1002_cey2_713 crossref_primary_10_3390_nano12193529 crossref_primary_10_1016_j_mtener_2024_101501 crossref_primary_10_1002_aenm_202304537 crossref_primary_10_1016_j_jcis_2024_11_067 crossref_primary_10_1016_j_jelechem_2022_116769 crossref_primary_10_1002_adem_202302063 crossref_primary_10_1016_j_ensm_2024_103760 crossref_primary_10_1016_j_jallcom_2021_163420 crossref_primary_10_1002_adfm_202423530 crossref_primary_10_1016_j_jcis_2025_137359 crossref_primary_10_1002_aenm_202405294 crossref_primary_10_1016_j_ensm_2024_103645 crossref_primary_10_1021_acscentsci_3c00301 crossref_primary_10_1088_2515_7655_ac8dc1 crossref_primary_10_1016_j_electacta_2023_143579 crossref_primary_10_1002_batt_202400694 crossref_primary_10_1021_acsenergylett_1c01359 crossref_primary_10_1002_advs_202410318 crossref_primary_10_1016_j_est_2024_110988 crossref_primary_10_1002_anie_202200475 crossref_primary_10_1016_j_est_2024_112767 crossref_primary_10_1016_j_electacta_2023_142641 crossref_primary_10_1016_j_cej_2024_152274 crossref_primary_10_1007_s12598_024_02763_0 crossref_primary_10_1016_j_est_2025_115649 crossref_primary_10_1016_j_cej_2024_156115 crossref_primary_10_1007_s10854_023_10849_1 crossref_primary_10_1002_adfm_202203725 crossref_primary_10_1002_eem2_12521 crossref_primary_10_1016_j_jcis_2025_02_028 crossref_primary_10_1002_smll_202300256 crossref_primary_10_1007_s40820_024_01351_2 crossref_primary_10_1016_S1872_5805_25_60953_X crossref_primary_10_1039_D2TA07391A crossref_primary_10_1002_ange_202200475 crossref_primary_10_3390_inorganics10090136 crossref_primary_10_1002_batt_202300233 crossref_primary_10_1016_j_electacta_2024_145042 crossref_primary_10_1016_j_apsusc_2024_160277 crossref_primary_10_1007_s12274_024_6546_0 crossref_primary_10_1007_s10800_024_02235_4 crossref_primary_10_1002_adma_202402291 crossref_primary_10_1016_j_cej_2022_137468 crossref_primary_10_1016_j_est_2024_114795 crossref_primary_10_1002_adma_202205678 crossref_primary_10_20517_energymater_2024_63 crossref_primary_10_1002_adfm_202203117 crossref_primary_10_1002_aenm_202303064 crossref_primary_10_1016_j_pmatsci_2024_101401 crossref_primary_10_1002_cnma_202400562 crossref_primary_10_1016_j_cej_2022_137070 crossref_primary_10_1016_j_cclet_2021_10_014 crossref_primary_10_1016_j_est_2024_114209 crossref_primary_10_1039_D3CS01043K crossref_primary_10_1016_j_ssi_2024_116555 crossref_primary_10_1021_acsami_3c16484 crossref_primary_10_1021_acssuschemeng_3c03765 crossref_primary_10_1016_j_jpowsour_2023_233718 crossref_primary_10_1016_j_nanoen_2022_107797 crossref_primary_10_1016_j_pnsc_2024_11_002 crossref_primary_10_1007_s40820_022_00910_9 crossref_primary_10_1016_j_jpowsour_2025_236505 |
Cites_doi | 10.1002/aenm.201702409 10.1038/nmat4318 10.1002/aenm.201801149 10.1002/aenm.201501588 10.1021/acs.chemmater.6b05474 10.1016/j.ensm.2020.11.005 10.1016/j.ensm.2015.10.003 10.1002/aenm.201800930 10.1149/1.1393348 10.1016/j.ensm.2015.12.004 10.1039/C6CP04611H 10.1002/adma.201802035 10.1039/C9CP02922B 10.1016/j.jpowsour.2012.10.025 10.1021/acs.chemmater.8b01390 10.1002/anie.201803511 10.1039/C5TA08601A 10.1039/C9TA04436A 10.1039/C6CC06990H 10.1002/aenm.201703268 10.1002/adfm.201100854 10.1002/anie.201603934 10.1002/aenm.202000666 10.1002/aenm.201900343 10.1002/aenm.201602894 10.1002/aenm.201801361 10.1149/1.1870612 10.1016/j.ensm.2017.09.009 10.1021/acsaem.8b01734 10.1021/nn404640c 10.1021/ja104391g 10.1002/adma.201800036 10.1002/aenm.201901351 10.1021/acs.nanolett.5b01969 10.1002/aenm.201800108 10.1016/j.carbon.2007.10.023 10.1002/aenm.201702582 10.1149/1.1394081 10.1016/j.nanoen.2017.12.013 10.1021/nn502045y 10.1002/aenm.201903312 10.1002/anie.200704894 10.1002/adma.201800492 10.1149/1.1379565 10.1021/acsenergylett.9b01900 10.1016/j.scib.2018.07.018 10.1021/nl3016957 10.1002/aenm.201700403 10.1002/aenm.201803260 10.1002/aenm.202000283 10.1021/acsenergylett.6b00172 10.1016/0008-6223(96)00177-7 10.1039/C6EE03367A 10.1016/j.ensm.2019.05.019 10.1021/am507679x 10.1002/aenm.201602898 10.1002/adma.201804116 10.1016/j.nanoen.2019.04.008 10.1073/pnas.1602473113 10.1002/aenm.201902852 10.1016/j.ensm.2019.11.010 10.1021/nn9008615 10.1002/anie.201912171 10.1021/acsami.6b04763 10.1016/j.nanoen.2020.104451 10.1016/j.ensm.2019.04.009 10.1002/adma.201700104 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-020-00587-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_189d997f23e44ba2a40bef1cf3e255eb PMC8010088 34138264 10_1007_s40820_020_00587_y |
Genre | Journal Article |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c673t-f02153dbd497f41130255655c6d92dd054942086e6d6e650e279602854b8748c3 |
IEDL.DBID | DOA |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:28:17 EDT 2025 Thu Aug 21 13:46:03 EDT 2025 Fri Jul 11 03:48:12 EDT 2025 Wed Aug 13 08:46:21 EDT 2025 Wed Aug 13 06:59:06 EDT 2025 Mon Jul 21 06:07:52 EDT 2025 Tue Jul 01 00:55:46 EDT 2025 Thu Apr 24 22:55:20 EDT 2025 Fri Feb 21 02:44:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Carbon anode Low-voltage capacity Ultra-micropores Extra sodium-ion storage sites High areal capacity |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c673t-f02153dbd497f41130255655c6d92dd054942086e6d6e650e279602854b8748c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/189d997f23e44ba2a40bef1cf3e255eb |
PMID | 34138264 |
PQID | 2506941656 |
PQPubID | 2044332 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_189d997f23e44ba2a40bef1cf3e255eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8010088 proquest_miscellaneous_2542363827 proquest_journals_2619577897 proquest_journals_2506941656 pubmed_primary_34138264 crossref_citationtrail_10_1007_s40820_020_00587_y crossref_primary_10_1007_s40820_020_00587_y springer_journals_10_1007_s40820_020_00587_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211200 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2021 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Li, Ma, Surta, Bommier, Jian (CR29) 2016; 1 Zhang, Lv, Luo, You, Zhang (CR49) 2016; 3 Choi, Lee, Lee, Jin, Yun (CR38) 2019; 2 Meng, Lu, Ding, Zhang, Chen (CR32) 2019; 4 Bi, Kong, Cao, Sun, Su (CR39) 2019; 7 Zhao, Ding, Lu, Chen, Hu (CR4) 2020; 59 Hou, Qiu, Wei, Zhang, Ji (CR1) 2017; 7 Li, Bommier, Chong, Jian, Surta (CR30) 2017; 7 Chen, Meng, Xie, He, He (CR13) 2018; 30 Lotfabad, Ding, Cui, Kohandehghan, Kalisvaart (CR26) 2014; 8 Hong, Zhen, Ruan, Kang, Zhou (CR44) 2018; 30 Stevens, Dahn (CR18) 2001; 148 Komaba, Murata, Ishikawa, Yabuuchi, Ozeki (CR20) 2011; 21 Zhang, Ghimbeu, Laberty, Vix-Guterl, Tarascon (CR31) 2016; 6 Yao, Ke, Ren, Wang, Xiong (CR66) 2018; 9 Yang, Ju, Jiang, Xing, Xi (CR59) 2018; 30 Lu, Rong, Hu, Chen, Li (CR7) 2019; 23 Zhang, Yang, Shan, Li, Tang (CR51) 2019; 21 Liu, Xue, Zheng, Dahn (CR57) 1996; 34 Bommier, Surta, Dolgos, Ji (CR28) 2015; 15 Yang, Lv, Dong, Lai, Zhao (CR64) 2018; 30 Zhang, Cao, Yang, Gu (CR53) 2008; 46 Xie, Zhang, Ye, Jaroniec, Qiao (CR12) 2019; 31 Cao, Zhang, Liu, Xu, Zhang (CR63) 2018; 8 Gotoh, Ishikawa, Shimadzu, Yabuuchi, Komaba (CR21) 2013; 225 Shao, Zhong, Lu, Liu, Zhao (CR3) 2019; 23 Chmiola, Largeot, Taberna, Simon, Gogotsi (CR52) 2008; 120 Sun, Guan, Liu, Cao, Zhu (CR56) 2019; 9 Levi, Levy, Sigalov, Salitra, Aurbach (CR47) 2010; 132 Li, Mu, Hu, Li, Chen (CR37) 2016; 2 Karatrantos, Cai (CR50) 2016; 18 Li, Hu, Li, Chen, Huang (CR36) 2016; 4 Cao, Xiao, Sushko, Wang, Schwenzer (CR23) 2012; 12 Griffin, Forse, Tsai, Taberna, Simon (CR48) 2015; 14 Chen, Madden, Pham, Forrest, Kumar (CR55) 2016; 55 Jian, Bommier, Luo, Li, Wang (CR58) 2017; 29 Alvin, Cahyadi, Hwang, Chang, Kwak (CR27) 2020; 10 Zhang, Wang, Lv, Zhang, Liang (CR6) 2017; 10 Li, Lu, Meng, Jensen, Zhang (CR33) 2019; 9 Yang, Chen, Lei, Guo, Li (CR41) 2018; 8 Bommier, Ji, Greaney (CR46) 2018; 31 Ding, Wang, Li, Kohandehghan, Cui (CR25) 2013; 7 Lu, Zhao, Qi, Qi, Li (CR34) 2018; 8 Zhang, Wang, Lv, Qin, Niu (CR5) 2018; 8 Fang, Liu, Xiang, Zhu, Tang (CR60) 2020; 69 Qiu, Xiao, Sushko, Han, Shao (CR24) 2017; 7 Xiao, Zhao, Wang, Su, Bai (CR14) 2020; 10 Lu, Liang, Hu, Liu, Chen (CR45) 2020; 10 Stevens, Dahn (CR19) 2000; 147 Ju, Li, Ma, Xing, Zhuang (CR42) 2018; 11 Wu, Chen, Xing, Lam, Pang (CR2) 2019; 9 Xiao, Su, Wang, Wu, Zhou (CR15) 2018; 8 Zhang, Hasa, Passerini (CR10) 2018; 8 Yang, Xiao, Cui, Dai, Lian (CR40) 2020; 26 Zhao, Wang, Lu, Li, Chen (CR35) 2018; 63 Xie, Zhang, Gu, Chao, Jaroniec (CR11) 2019; 60 Ju, Zhang, Xing, Zhuang, Qiang (CR43) 2016; 8 Saurel, Orayech, Xiao, Carriazo, Li (CR16) 2018; 8 Stratford, Allan, Pecher, Chater, Grey (CR22) 2016; 52 Zeng, Xie, Yang, Jaroniec, Zhang (CR8) 2018; 57 Yang, Feng, Lv, Zhou, Lin (CR65) 2021; 35 Matei Ghimbeu, Górka, Simone, Simonin, Martinet (CR61) 2018; 44 Liu, Merinov, Goddard (CR9) 2016; 113 Luo, Bommier, Jian, Li, Carter (CR62) 2015; 7 Alcántara, Lavela, Ortiz, Tirado (CR67) 2005; 8 Stevens, Dahn (CR17) 2000; 147 Huang, Chen, Gao, Chen, Wee (CR54) 2009; 3 H Zhang (587_CR10) 2018; 8 Y Liu (587_CR9) 2016; 113 D Saurel (587_CR16) 2018; 8 S Qiu (587_CR24) 2017; 7 Z Hong (587_CR44) 2018; 30 Y Cao (587_CR23) 2012; 12 Z Li (587_CR29) 2016; 1 K Fang (587_CR60) 2020; 69 H Hou (587_CR1) 2017; 7 Y Lu (587_CR7) 2019; 23 N Sun (587_CR56) 2019; 9 C Matei Ghimbeu (587_CR61) 2018; 44 J Choi (587_CR38) 2019; 2 Z Bi (587_CR39) 2019; 7 KJ Chen (587_CR55) 2016; 55 C Yang (587_CR65) 2021; 35 DA Stevens (587_CR19) 2000; 147 C Zeng (587_CR8) 2018; 57 Y Lu (587_CR45) 2020; 10 F Xie (587_CR11) 2019; 60 S-W Zhang (587_CR49) 2016; 3 C Yang (587_CR64) 2018; 30 C Zhao (587_CR4) 2020; 59 W Luo (587_CR62) 2015; 7 J Ding (587_CR25) 2013; 7 X Yao (587_CR66) 2018; 9 MD Levi (587_CR47) 2010; 132 J Yang (587_CR59) 2018; 30 C Bommier (587_CR46) 2018; 31 Z Jian (587_CR58) 2017; 29 R Alcántara (587_CR67) 2005; 8 B Chen (587_CR13) 2018; 30 Y Lu (587_CR34) 2018; 8 JM Griffin (587_CR48) 2015; 14 Z Ju (587_CR43) 2016; 8 Z Li (587_CR30) 2017; 7 Q Meng (587_CR32) 2019; 4 X Zhang (587_CR51) 2019; 21 Y Li (587_CR36) 2016; 4 S Komaba (587_CR20) 2011; 21 JM Stratford (587_CR22) 2016; 52 Y Liu (587_CR57) 1996; 34 Y Xiao (587_CR14) 2020; 10 B Zhang (587_CR31) 2016; 6 B Cao (587_CR63) 2018; 8 J Chmiola (587_CR52) 2008; 120 DA Stevens (587_CR18) 2001; 148 F Xie (587_CR12) 2019; 31 H Zhang (587_CR53) 2008; 46 J Yang (587_CR40) 2020; 26 Z Ju (587_CR42) 2018; 11 C Zhao (587_CR35) 2018; 63 EM Lotfabad (587_CR26) 2014; 8 Y Li (587_CR37) 2016; 2 A Karatrantos (587_CR50) 2016; 18 S Alvin (587_CR27) 2020; 10 J Zhang (587_CR5) 2018; 8 H Huang (587_CR54) 2009; 3 J Zhang (587_CR6) 2017; 10 Y Li (587_CR33) 2019; 9 C Bommier (587_CR28) 2015; 15 X Wu (587_CR2) 2019; 9 B Yang (587_CR41) 2018; 8 Y Shao (587_CR3) 2019; 23 DA Stevens (587_CR17) 2000; 147 K Gotoh (587_CR21) 2013; 225 Y Xiao (587_CR15) 2018; 8 |
References_xml | – volume: 8 start-page: 1702409 issue: 10 year: 2018 ident: CR41 article-title: Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702409 – volume: 14 start-page: 812 issue: 8 year: 2015 end-page: 819 ident: CR48 article-title: In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors publication-title: Nat. Mater. doi: 10.1038/nmat4318 – volume: 8 start-page: 1801149 issue: 25 year: 2018 ident: CR63 article-title: Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801149 – volume: 6 start-page: 1501588 issue: 1 year: 2016 ident: CR31 article-title: Correlation between microstructure and Na storage behavior in hard carbon publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501588 – volume: 29 start-page: 2314 issue: 5 year: 2017 end-page: 2320 ident: CR58 article-title: Insights on the mechanism of Na-ion storage in soft carbon anode publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b05474 – volume: 35 start-page: 1 year: 2021 end-page: 11 ident: CR65 article-title: Carbon-coated ultrathin metallic V Se nanosheet for high-energy-density and robust potassium storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.11.005 – volume: 2 start-page: 139 year: 2016 end-page: 145 ident: CR37 article-title: Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.10.003 – volume: 8 start-page: 1800930 issue: 22 year: 2018 ident: CR15 article-title: CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800930 – volume: 147 start-page: 1271 issue: 4 year: 2000 end-page: 1273 ident: CR17 article-title: High capacity anode materials for rechargeable sodium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393348 – volume: 3 start-page: 18 year: 2016 end-page: 23 ident: CR49 article-title: Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.12.004 – volume: 18 start-page: 30761 issue: 44 year: 2016 end-page: 30769 ident: CR50 article-title: Effects of pore size and surface charge on Na ion storage in carbon nanopores publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04611H – volume: 30 start-page: e1802035 issue: 29 year: 2018 ident: CR44 article-title: Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance publication-title: Adv. Mater. doi: 10.1002/adma.201802035 – volume: 21 start-page: 23697 issue: 42 year: 2019 end-page: 23704 ident: CR51 article-title: Insights into the effect of the interlayer spacings of bilayer graphene on the desolvation of H(+), Li(+), Na(+), and K(+) ions with water as a solvent: a first-principles study publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP02922B – volume: 225 start-page: 137 year: 2013 end-page: 140 ident: CR21 article-title: NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.025 – volume: 31 start-page: 658 issue: 3 year: 2018 end-page: 677 ident: CR46 article-title: Electrochemical properties and theoretical capacity for sodium storage in hard carbon: insights from first principles calculations publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01390 – volume: 57 start-page: 8540 issue: 28 year: 2018 end-page: 8544 ident: CR8 article-title: Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803511 – volume: 4 start-page: 96 issue: 1 year: 2016 end-page: 104 ident: CR36 article-title: A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08601A – volume: 7 start-page: 16028 issue: 27 year: 2019 end-page: 16045 ident: CR39 article-title: Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04436A – volume: 52 start-page: 12430 issue: 84 year: 2016 end-page: 12433 ident: CR22 article-title: Mechanistic insights into sodium storage in hard carbon anodes using local structure probes publication-title: Chem. Commun. doi: 10.1039/C6CC06990H – volume: 8 start-page: 1703268 issue: 17 year: 2018 ident: CR16 article-title: From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703268 – volume: 21 start-page: 3859 issue: 20 year: 2011 end-page: 3867 ident: CR20 article-title: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100854 – volume: 55 start-page: 10268 issue: 35 year: 2016 end-page: 10272 ident: CR55 article-title: Tuning pore size in square-lattice coordination networks for size-selective sieving of CO publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603934 – volume: 10 start-page: 2000666 issue: 25 year: 2020 ident: CR14 article-title: A nanosheet array of Cu Se intercalation compound with expanded interlayer space for sodium ion storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000666 – volume: 9 start-page: 1900343 issue: 21 year: 2019 ident: CR2 article-title: Advanced carbon-based anodes for potassium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900343 – volume: 7 start-page: 1602894 issue: 18 year: 2017 ident: CR30 article-title: Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602894 – volume: 8 start-page: 1801361 issue: 26 year: 2018 ident: CR5 article-title: Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801361 – volume: 8 start-page: A222 issue: 4 year: 2005 end-page: A225 ident: CR67 article-title: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1870612 – volume: 11 start-page: 38 year: 2018 end-page: 46 ident: CR42 article-title: Few layer nitrogen-doped graphene with highly reversible potassium storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.09.009 – volume: 2 start-page: 1185 issue: 2 year: 2019 end-page: 1191 ident: CR38 article-title: Pyroprotein-derived hard carbon fibers exhibiting exceptionally high plateau capacities for sodium ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01734 – volume: 7 start-page: 11004 issue: 12 year: 2013 end-page: 11015 ident: CR25 article-title: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes publication-title: ACS Nano doi: 10.1021/nn404640c – volume: 132 start-page: 13220 issue: 38 year: 2010 end-page: 13222 ident: CR47 article-title: Electrochemical quartz crystal microbalance (eqcm) studies of ions and solvents insertion into highly porous activated carbons publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104391g – volume: 30 start-page: 1800036 issue: 27 year: 2018 ident: CR64 article-title: Metallic graphene-like VSe ultrathin nanosheets: superior potassium-ion storage and their working mechanism publication-title: Adv. Mater. doi: 10.1002/adma.201800036 – volume: 9 start-page: 1901351 issue: 32 year: 2019 ident: CR56 article-title: Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901351 – volume: 15 start-page: 5888 issue: 9 year: 2015 end-page: 5892 ident: CR28 article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01969 – volume: 8 start-page: 1800108 issue: 27 year: 2018 ident: CR34 article-title: Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800108 – volume: 46 start-page: 30 issue: 1 year: 2008 end-page: 34 ident: CR53 article-title: Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60°C publication-title: Carbon doi: 10.1016/j.carbon.2007.10.023 – volume: 8 start-page: 1702582 issue: 17 year: 2018 ident: CR10 article-title: Beyond insertion for na-ion batteries: Nanostructured alloying and conversion anode materials publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702582 – volume: 147 start-page: 4428 issue: 12 year: 2000 end-page: 4431 ident: CR19 article-title: An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell publication-title: J. Electrochem. Soc. doi: 10.1149/1.1394081 – volume: 44 start-page: 327 year: 2018 end-page: 335 ident: CR61 article-title: Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.013 – volume: 8 start-page: 7115 issue: 7 year: 2014 end-page: 7129 ident: CR26 article-title: High-density sodium and lithium ion battery anodes from banana peels publication-title: ACS Nano doi: 10.1021/nn502045y – volume: 10 start-page: 1903312 issue: 7 year: 2020 ident: CR45 article-title: Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: insights into capacitive contribution mechanism publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903312 – volume: 120 start-page: 3440 issue: 18 year: 2008 end-page: 3443 ident: CR52 article-title: Desolvation of ions in sub-nanometer pores and its effect on capacitance and double-layer theory publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200704894 – volume: 31 start-page: e1800492 issue: 38 year: 2019 ident: CR12 article-title: The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems publication-title: Adv. Mater. doi: 10.1002/adma.201800492 – volume: 148 start-page: A803 issue: 8 year: 2001 end-page: A811 ident: CR18 article-title: The mechanisms of lithium and sodium insertion in carbon materials publication-title: J. Electrochem. Soc. doi: 10.1149/1.1379565 – volume: 4 start-page: 2608 issue: 11 year: 2019 end-page: 2612 ident: CR32 article-title: Tuning the closed pore structure of hard carbons with the highest Na storage capacity publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01900 – volume: 63 start-page: 1125 issue: 17 year: 2018 end-page: 1129 ident: CR35 article-title: High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau publication-title: Sci. Bulletin doi: 10.1016/j.scib.2018.07.018 – volume: 12 start-page: 3783 issue: 7 year: 2012 end-page: 3787 ident: CR23 article-title: Sodium ion insertion in hollow carbon nanowires for battery applications publication-title: Nano Lett. doi: 10.1021/nl3016957 – volume: 7 start-page: 1700403 issue: 17 year: 2017 ident: CR24 article-title: Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700403 – volume: 9 start-page: 1803260 issue: 6 year: 2018 ident: CR66 article-title: Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803260 – volume: 10 start-page: 2000283 issue: 20 year: 2020 ident: CR27 article-title: Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000283 – volume: 1 start-page: 395 issue: 2 year: 2016 end-page: 401 ident: CR29 article-title: High capacity of hard carbon anode in Na-ion batteries unlocked by pox doping publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00172 – volume: 34 start-page: 193 issue: 2 year: 1996 end-page: 200 ident: CR57 article-title: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins publication-title: Carbon doi: 10.1016/0008-6223(96)00177-7 – volume: 10 start-page: 370 issue: 1 year: 2017 end-page: 376 ident: CR6 article-title: Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03367A – volume: 23 start-page: 144 year: 2019 end-page: 153 ident: CR7 article-title: Research and development of advanced battery materials in china publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.019 – volume: 7 start-page: 2626 issue: 4 year: 2015 end-page: 2631 ident: CR62 article-title: Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507679x – volume: 7 start-page: 1602898 issue: 24 year: 2017 ident: CR1 article-title: Carbon anode materials for advanced sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602898 – volume: 30 start-page: e1804116 issue: 46 year: 2018 ident: CR13 article-title: 1D sub-nanotubes with anatase/bronze TiO nanocrystal wall for high-rate and long-life sodium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201804116 – volume: 60 start-page: 591 year: 2019 end-page: 599 ident: CR11 article-title: Multi-shell hollow structured Sb S for sodium-ion batteries with enhanced energy density publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.008 – volume: 113 start-page: 3735 issue: 14 year: 2016 end-page: 3739 ident: CR9 article-title: Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1602473113 – volume: 9 start-page: 1902852 issue: 48 year: 2019 ident: CR33 article-title: Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902852 – volume: 26 start-page: 391 year: 2020 end-page: 399 ident: CR40 article-title: Inorganic-anion-modulated synthesis of 2D nonlayered aluminum-based metal-organic frameworks as carbon precursor for capacitive sodium ion storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.11.010 – volume: 3 start-page: 3431 issue: 11 year: 2009 end-page: 3436 ident: CR54 article-title: Structural and electronic properties of PTCDA thin films on epitaxial graphene publication-title: ACS Nano doi: 10.1021/nn9008615 – volume: 59 start-page: 264 issue: 1 year: 2020 end-page: 269 ident: CR4 article-title: High-entropy layered oxide cathodes for sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912171 – volume: 8 start-page: 20682 issue: 32 year: 2016 end-page: 20690 ident: CR43 article-title: Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04763 – volume: 69 start-page: 104451 year: 2020 ident: CR60 article-title: Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104451 – volume: 23 start-page: 514 year: 2019 end-page: 521 ident: CR3 article-title: A novel nasicon-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.04.009 – volume: 30 start-page: 1700104 issue: 4 year: 2018 ident: CR59 article-title: Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage publication-title: Adv. Mater. doi: 10.1002/adma.201700104 – volume: 7 start-page: 11004 issue: 12 year: 2013 ident: 587_CR25 publication-title: ACS Nano doi: 10.1021/nn404640c – volume: 9 start-page: 1803260 issue: 6 year: 2018 ident: 587_CR66 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803260 – volume: 52 start-page: 12430 issue: 84 year: 2016 ident: 587_CR22 publication-title: Chem. Commun. doi: 10.1039/C6CC06990H – volume: 21 start-page: 23697 issue: 42 year: 2019 ident: 587_CR51 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C9CP02922B – volume: 46 start-page: 30 issue: 1 year: 2008 ident: 587_CR53 publication-title: Carbon doi: 10.1016/j.carbon.2007.10.023 – volume: 113 start-page: 3735 issue: 14 year: 2016 ident: 587_CR9 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1602473113 – volume: 8 start-page: 1800930 issue: 22 year: 2018 ident: 587_CR15 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800930 – volume: 35 start-page: 1 year: 2021 ident: 587_CR65 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.11.005 – volume: 147 start-page: 1271 issue: 4 year: 2000 ident: 587_CR17 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393348 – volume: 4 start-page: 2608 issue: 11 year: 2019 ident: 587_CR32 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b01900 – volume: 148 start-page: A803 issue: 8 year: 2001 ident: 587_CR18 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1379565 – volume: 11 start-page: 38 year: 2018 ident: 587_CR42 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.09.009 – volume: 132 start-page: 13220 issue: 38 year: 2010 ident: 587_CR47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja104391g – volume: 1 start-page: 395 issue: 2 year: 2016 ident: 587_CR29 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00172 – volume: 8 start-page: 20682 issue: 32 year: 2016 ident: 587_CR43 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04763 – volume: 3 start-page: 3431 issue: 11 year: 2009 ident: 587_CR54 publication-title: ACS Nano doi: 10.1021/nn9008615 – volume: 6 start-page: 1501588 issue: 1 year: 2016 ident: 587_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501588 – volume: 31 start-page: e1800492 issue: 38 year: 2019 ident: 587_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201800492 – volume: 30 start-page: e1802035 issue: 29 year: 2018 ident: 587_CR44 publication-title: Adv. Mater. doi: 10.1002/adma.201802035 – volume: 30 start-page: 1800036 issue: 27 year: 2018 ident: 587_CR64 publication-title: Adv. Mater. doi: 10.1002/adma.201800036 – volume: 8 start-page: 1800108 issue: 27 year: 2018 ident: 587_CR34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800108 – volume: 14 start-page: 812 issue: 8 year: 2015 ident: 587_CR48 publication-title: Nat. Mater. doi: 10.1038/nmat4318 – volume: 225 start-page: 137 year: 2013 ident: 587_CR21 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.10.025 – volume: 15 start-page: 5888 issue: 9 year: 2015 ident: 587_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01969 – volume: 8 start-page: 1703268 issue: 17 year: 2018 ident: 587_CR16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703268 – volume: 10 start-page: 2000283 issue: 20 year: 2020 ident: 587_CR27 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000283 – volume: 2 start-page: 139 year: 2016 ident: 587_CR37 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.10.003 – volume: 55 start-page: 10268 issue: 35 year: 2016 ident: 587_CR55 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201603934 – volume: 59 start-page: 264 issue: 1 year: 2020 ident: 587_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201912171 – volume: 8 start-page: A222 issue: 4 year: 2005 ident: 587_CR67 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1870612 – volume: 9 start-page: 1902852 issue: 48 year: 2019 ident: 587_CR33 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201902852 – volume: 29 start-page: 2314 issue: 5 year: 2017 ident: 587_CR58 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b05474 – volume: 8 start-page: 1801361 issue: 26 year: 2018 ident: 587_CR5 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801361 – volume: 7 start-page: 1700403 issue: 17 year: 2017 ident: 587_CR24 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700403 – volume: 57 start-page: 8540 issue: 28 year: 2018 ident: 587_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201803511 – volume: 8 start-page: 7115 issue: 7 year: 2014 ident: 587_CR26 publication-title: ACS Nano doi: 10.1021/nn502045y – volume: 9 start-page: 1901351 issue: 32 year: 2019 ident: 587_CR56 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901351 – volume: 21 start-page: 3859 issue: 20 year: 2011 ident: 587_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100854 – volume: 44 start-page: 327 year: 2018 ident: 587_CR61 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.12.013 – volume: 8 start-page: 1702409 issue: 10 year: 2018 ident: 587_CR41 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702409 – volume: 63 start-page: 1125 issue: 17 year: 2018 ident: 587_CR35 publication-title: Sci. Bulletin doi: 10.1016/j.scib.2018.07.018 – volume: 34 start-page: 193 issue: 2 year: 1996 ident: 587_CR57 publication-title: Carbon doi: 10.1016/0008-6223(96)00177-7 – volume: 120 start-page: 3440 issue: 18 year: 2008 ident: 587_CR52 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200704894 – volume: 9 start-page: 1900343 issue: 21 year: 2019 ident: 587_CR2 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900343 – volume: 18 start-page: 30761 issue: 44 year: 2016 ident: 587_CR50 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP04611H – volume: 8 start-page: 1702582 issue: 17 year: 2018 ident: 587_CR10 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702582 – volume: 31 start-page: 658 issue: 3 year: 2018 ident: 587_CR46 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01390 – volume: 10 start-page: 1903312 issue: 7 year: 2020 ident: 587_CR45 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903312 – volume: 30 start-page: e1804116 issue: 46 year: 2018 ident: 587_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201804116 – volume: 7 start-page: 16028 issue: 27 year: 2019 ident: 587_CR39 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA04436A – volume: 2 start-page: 1185 issue: 2 year: 2019 ident: 587_CR38 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b01734 – volume: 8 start-page: 1801149 issue: 25 year: 2018 ident: 587_CR63 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801149 – volume: 10 start-page: 2000666 issue: 25 year: 2020 ident: 587_CR14 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000666 – volume: 69 start-page: 104451 year: 2020 ident: 587_CR60 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104451 – volume: 23 start-page: 514 year: 2019 ident: 587_CR3 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.04.009 – volume: 7 start-page: 1602898 issue: 24 year: 2017 ident: 587_CR1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602898 – volume: 7 start-page: 2626 issue: 4 year: 2015 ident: 587_CR62 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am507679x – volume: 3 start-page: 18 year: 2016 ident: 587_CR49 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.12.004 – volume: 10 start-page: 370 issue: 1 year: 2017 ident: 587_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03367A – volume: 26 start-page: 391 year: 2020 ident: 587_CR40 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.11.010 – volume: 147 start-page: 4428 issue: 12 year: 2000 ident: 587_CR19 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1394081 – volume: 12 start-page: 3783 issue: 7 year: 2012 ident: 587_CR23 publication-title: Nano Lett. doi: 10.1021/nl3016957 – volume: 4 start-page: 96 issue: 1 year: 2016 ident: 587_CR36 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08601A – volume: 23 start-page: 144 year: 2019 ident: 587_CR7 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.05.019 – volume: 60 start-page: 591 year: 2019 ident: 587_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.008 – volume: 30 start-page: 1700104 issue: 4 year: 2018 ident: 587_CR59 publication-title: Adv. Mater. doi: 10.1002/adma.201700104 – volume: 7 start-page: 1602894 issue: 18 year: 2017 ident: 587_CR30 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602894 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.561169 |
Snippet | Highlights
Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.... Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The... HighlightsHard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.The... Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The... Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 98 |
SubjectTerms | Anodes Carbon Carbon anode Carbonization Chemical synthesis Diffusion rate Displays Electrochemical analysis Engineering Extra sodium-ion storage sites High areal capacity Ion storage Low temperature Low-voltage capacity Na-ion batteries Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering NMR Nuclear magnetic resonance Porosity Rechargeable batteries Sodium Sodium-ion batteries Ultra-micropores |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcAB8d1AQUbiBlYTx4kdLohWuyqIVqjdlXqL4thpV-omZTcrVIkfz4zXSbpQesjFdqI4HttvMuP3CHkPUybSIopYJZVmIqtipjJVsahMbQH4IdNOteToOD2cim9nyZn_4bb0aZXdmugWatOU-I98D7ZqPHMJt3---slQNQqjq15C4z7ZhiVYgfO1vT86_nHSWRSXqMw0xAlRXlncYKsRyO0SD4RmCRKYyYEnM-EC9ne_4a4BtcRQllOsgw6mMkz9SRx3Hg_Vm0OGHhnK9Ul2vbHbOVGA25DsvwmZf0Vl3WY3fkweeZRKv6zN6gm5Z-un5OEN7sJn5Pd40czpEebzAYS3S9o2dHoJz2XzoWzm1EAppgfQg2Khm_oTnbhEXTqqL1zyAZSD2w6-ADSmJwDj2d735hebWMDza75netqY2WrOvjY1PW3BZM_tczIdjyYHh8xLObAylXHLKoQWsdFGZLIC04gd9VmSlKnJuDGAGzOM86c2NXAloYWRS0M83amVFKqMX5CtuqntDqEmS4oE_DDOVSEqXiouCy7SsIgSZbUyAYm6T56Xnucc5TYu856h2Q1THuKFw5RfB-RDf8_VmuXjztb7OJJ9S2TodgXN4jz3Ez6PVGYy6CyPrRC64IUIta2isootdN3qgOx2dpD7ZWOZD0Z-ezV4u4mUKpMBeddXw3qAQZ6its0KHwEAGRZVDm1erq2qf1FELOBOioDIDXvb6MlmTT27cJzjAGQALaqAfOwsc3it_3-pV3d38jV5wDFFyGUH7ZKtdrGybwDjtfqtn8h_AFTvQ2U priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgucAB8SawICNxA4vE8SvcoNpqQSwHtpX2FsWxs1tpm6A2FVqJH8-MkyZbKEgccrEnkR2P7W80M98Q8hq2TGJFkrBKG8tEVqXMZKZiSal8Afghs6FqyclXdTwXn8_kWZ8Utt5Gu29dkuGkHpLdsDRyzNDcwVp4ml3dJLck2O6o15ORc5xrrMY0-gaxpLK4xlAjkM8lHUnMJJKW6ZEbU3IBd3p_yXYgWqP7KlSpg0kpHas--2b_sHZuuFAIYB96_TMI8zdPbLjgpvfI3R6Z0g-dKt0nN3z9gNy5xlf4kPycrpolPcEYPoDtfk3bhs4v4btsObYtQgVQiiEBdFKsbFO_p7MQnEuP6osQcADtYKoD_gdh-g2gO3v3pfnBZh4wfMfxTE8bt9gs2aempqctqOm5f0Tm06PZ5Jj15RtYqXTasgrhROqsE5muQB3SQHcmZalcxp0DrJihb1955eCRsYeVUzFmdFqjhSnTx-Sgbmr_lFCXyUKC7cW5KUTFS8N1wYWKi0Qab42LSLL95XnZc5tjiY3LfGBlDsuUx_jgMuVXEXkzvPO9Y_b4p_RHXMlBElm5Q0OzOs_7TZ4nJnMZTJanXghb8ELE1ldJWaUepu5tRA63epD3R8U6BwyKycSwL_Z3g4UrtTaZjsiroRvOAHTsFLVvNvgJAMVwkHKQedJp1TBQRClgQoqI6B1925nJbk-9uAg84wBeACGaiLzdauY4rL__qWf_J_6c3OYYJhQihA7JQbva-BeA81r7MmzrX_CBPyc priority: 102 providerName: Springer Nature |
Title | From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage |
URI | https://link.springer.com/article/10.1007/s40820-020-00587-y https://www.ncbi.nlm.nih.gov/pubmed/34138264 https://www.proquest.com/docview/2506941656 https://www.proquest.com/docview/2619577897 https://www.proquest.com/docview/2542363827 https://pubmed.ncbi.nlm.nih.gov/PMC8010088 https://doaj.org/article/189d997f23e44ba2a40bef1cf3e255eb |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgXOCA-E3YqIzEDawljmM73NbSMhCb0NZKu0Vx4myV1gR1qaZJ_PG856RJCwMuHJJIthMl9ovf9-Tn7yPkLfwygRFBwAqlDRNxETId64IFmbQp4IfYONWSo2N5OBNfzqKzDakvzAlr6IGbjtsPdJzHsSp4aIUwKU-Fb2wRZEVoAQ1bg7Mv-LyNYAosiStUZOrXB1FWWWyw1AjkdAl7IrMIictUz48ZcQF-vXW0DZBWuITllOrgw6TyZbsDx-3DQ9Vmn2EkhjJ9it1seTknBnAbgv09EfOX1Vjn5CaPyMMWndKDplcekzu2fEIebHAWPiU_JstqQY8wjw-gu72idUVnl_BctujL5k4FlGJaAB2lS1OVH-jUJejScXnhkg6gHMJ1iAGgMT0B-M72v1bXbGoBxzc8z_S0yuerBftclfS0BlM9t8_IbDKejg5ZK-HAMqnCmhUIKcLc5AKGEEwidJRnUZTJPOZ5DngxxvV9aWUOR-RbGDnp465Oo5XQWfic7JRVaV8SmsdRGkH8xblORcEzzVXKhfTTINLW6NwjwbrLk6zlN0eZjcukY2Z2w5T4eOAwJTceedfd871h9_hr6yGOZNcSmbldAdhr0tpr8i979cje2g6Sdrq4SgCH4oZi-Ddur4YoN1JKx8ojb7pqmAdwcSctbbXCRwAwhsmUQ5sXjVV1L4pIBcJI4RG1ZW9bX7JdU84vHNc4ABhAidoj79eW2b_Wn3vq1f_oqV1yn2MCkcsd2iM79XJlXwMCrM2A3NWTTwNy72D4cTiB63B8_O0ESkdc4FmOBm46-AmUHlDv |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCawmjhM7SAhB6bJLd3ugW6m3NImddqVusuxD1Ur8Jn4jM06y6ULprYdcHMfyYzz-JjP-hpA3sGW8VHgey6VKmYhyn6lI5czLQpMAfohSm7VksB92D8X3o-Bog_xu7sJgWGWjE62i1mWG_8i34ajGO5fw-afJT4ZZo9C72qTQqMRizyzPwWSbfex9hfV9y3lnd7jTZXVWAZaF0p-zHE85X6daRDKHXvqWhSsIslBHXGuAMBG6nEMTangC13AJKB8vGqZKCpX50O4NclP4foQ7SnW-NfILFaXvtV5JTOYsLnDjCGSS8Vv6tADp0mTLyhlwAWiiPt4r-C7RcWbz48F0htIN63s_9vYf5op2Gdp_mBxQsuXa2WpTEFyGm_8N__zLB2yP1s49crfGxPRzJcT3yYYpHpA7F5gSH5JfnWk5pgOMHgSDwczovKSHZ9AuG7dlI5t7lGIwAt1JpmlZfKBDGxZMd4tTG-oA5ZMkA8sDKtMfYDSw7X55zoYGrIeKXZoelHq0GLNeWdCDOWyQE_OIHF7LEj8mm0VZmKeE6ihIArD6OFeJyHmmuEy4CN3EC5RJlXaI10x5nNWs6pjc4yxe8UHbZYpdfHCZ4qVD3q2-mVScIlfW_oIruaqJfOC2oJyexLV6iT0V6QgGy30jRJrwRLipyb0s9w0M3aQO2WrkIK6V1Cxut9Tlr8G2DqRUkXTI69Vr0D7oUkoKUy6wCYDjoMI51HlSSdWqo4iPwHgVDpFr8rY2kvU3xejUMpwDbAJsqhzyvpHMtlv_n6lnVw_yFbnVHQ76cb-3v_ec3OYYnGTjkrbI5ny6MC8AXc7Tl3ZLU3J83TrkD6dke3M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgSAgeEL8JbGAk3sBq4jixwxvrVm2wTYi10t6iOHa2SmsydanQJP547pw0aUdB4iEv9iWy47P9ne7uO0I-wJYJtAgCVkilmUiKkKlEFSzIY5sBfki0q1pyfBIfTMTXs-hsJYvfRbsvXZJNTgOyNJX14MoUgy7xDcsk-wxNH6yLJ9nNXXIPLJUAg_qGPf84l1iZqfcTYnllscJWI5DbJewJzSIkMJM9T2bEBdzv7YXbAGqJrixXsQ4mGEs_bjNxNg9r7bZzRQE2Idk_AzJveWXdZTd6TB61KJV-adTqCbljy6fk4Qp34TPyazSvZvQY4_kAwttrWld0cgnfZbO-beqqgVIMD6DDbK6r8jMdu0Bdul9euOADaAezHWwBEKY_AMazwVH1k40t4PmG75meVma6mLHDqqSnNajsuX1OJqP98fCAtaUcWB7LsGYFQovQaCMSWYBqhI76LIry2CTcGMCNCfr5YxsbeCLfwsrFPmZ3aiWFysMXZKusSvuKUJNEWQR2GOcqEwXPFZcZF7GfBZGyWhmPBMtfnuYtzzmW27hMO4Zmt0ypjw8uU3rjkY_dO1cNy8c_pXdxJTtJZOh2DdX8PG03fBqoxCQwWR5aIXTGM-FrWwR5EVqYutUe2V7qQdoeG9cp4FFMLIY9srkbrN1ISpVIj7zvuuE8QCdPVtpqgZ8AgAyHKgeZl41WdQNFxALmpPCIXNO3tZms95TTC8c5DkAG0KLyyKelZvbD-vufev1_4u_I_e97o_To8OTbG_KAY_SQCxzaJlv1fGF3AP7V-q3b4b8Bq5xGWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Micropores+to+Ultra-micropores+inside+Hard+Carbon%3A+Toward+Enhanced+Capacity+in+Room-%2FLow-Temperature+Sodium-Ion+Storage&rft.jtitle=Nano-micro+letters&rft.au=Jinlin+Yang&rft.au=Xiaowei+Wang&rft.au=Wenrui+Dai&rft.au=Xu+Lian&rft.date=2021-12-01&rft.pub=SpringerOpen&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1007%2Fs40820-020-00587-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_189d997f23e44ba2a40bef1cf3e255eb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |