From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage

Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 13; no. 1; pp. 98 - 14
Main Authors Yang, Jinlin, Wang, Xiaowei, Dai, Wenrui, Lian, Xu, Cui, Xinhang, Zhang, Weichao, Zhang, Kexin, Lin, Ming, Zou, Ruqiang, Loh, Kian Ping, Yang, Quan-Hong, Chen, Wei
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm −2 ) with a high areal capacity of 6.14 mAh cm −2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na + but allow the entrance of naked Na + into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g −1 at 30 mA g −1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm −2 ) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm −2 at 25 °C and 5.32 mAh cm −2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na + storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
AbstractList Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm−2) with a high areal capacity of 6.14 mAh cm−2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Abstract Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g−1 at 30 mA g−1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm−2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm−2 at 25 °C and 5.32 mAh cm−2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm-2) with a high areal capacity of 6.14 mAh cm-2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion-carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g-1 at 30 mA g-1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm-2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm-2 at 25 °C and 5.32 mAh cm-2 at - 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.HIGHLIGHTSHard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm-2) with a high areal capacity of 6.14 mAh cm-2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion-carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g-1 at 30 mA g-1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm-2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm-2 at 25 °C and 5.32 mAh cm-2 at - 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm −2 ) with a high areal capacity of 6.14 mAh cm −2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na + but allow the entrance of naked Na + into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g −1 at 30 mA g −1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm −2 ) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm −2 at 25 °C and 5.32 mAh cm −2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na + storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
HighlightsHard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores.The thick electrode (~ 19 mg cm−2) with a high areal capacity of 6.14 mAh cm−2 displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na+ but allow the entrance of naked Na+ into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion–carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g−1 at 30 mA g−1 with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm−2) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm−2 at 25 °C and 5.32 mAh cm−2 at − 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na+ storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The ultra-micropores dominated carbon anode displays an enhanced capacity, which originates from the extra sodium-ion storage sites of the designed ultra-micropores. The thick electrode (~ 19 mg cm ) with a high areal capacity of 6.14 mAh cm displays an ultrahigh cycling stability and an outstanding low-temperature performance. Pore structure of hard carbon has a fundamental influence on the electrochemical properties in sodium-ion batteries (SIBs). Ultra-micropores (< 0.5 nm) of hard carbon can function as ionic sieves to reduce the diffusion of slovated Na but allow the entrance of naked Na into the pores, which can reduce the interficial contact between the electrolyte and the inner pores without sacrificing the fast diffusion kinetics. Herein, a molten diffusion-carbonization method is proposed to transform the micropores (> 1 nm) inside carbon into ultra-micropores (< 0.5 nm). Consequently, the designed carbon anode displays an enhanced capacity of 346 mAh g at 30 mA g with a high ICE value of ~ 80.6% and most of the capacity (~ 90%) is below 1 V. Moreover, the high-loading electrode (~ 19 mg cm ) exhibits a good temperature endurance with a high areal capacity of 6.14 mAh cm at 25 °C and 5.32 mAh cm at - 20 °C. Based on the in situ X-ray diffraction and ex situ solid-state nuclear magnetic resonance results, the designed ultra-micropores provide the extra Na storage sites, which mainly contributes to the enhanced capacity. This proposed strategy shows a good potential for the development of high-performance SIBs.
ArticleNumber 98
Author Chen, Wei
Yang, Quan-Hong
Zhang, Weichao
Wang, Xiaowei
Cui, Xinhang
Yang, Jinlin
Lian, Xu
Zhang, Kexin
Lin, Ming
Loh, Kian Ping
Zou, Ruqiang
Dai, Wenrui
Author_xml – sequence: 1
  givenname: Jinlin
  surname: Yang
  fullname: Yang, Jinlin
  organization: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Department of Chemistry, National University of Singapore, National University of Singapore (Suzhou) Research Institute
– sequence: 2
  givenname: Xiaowei
  surname: Wang
  fullname: Wang, Xiaowei
  organization: Department of Chemistry, National University of Singapore
– sequence: 3
  givenname: Wenrui
  surname: Dai
  fullname: Dai, Wenrui
  organization: Department of Chemistry, National University of Singapore, National University of Singapore (Suzhou) Research Institute
– sequence: 4
  givenname: Xu
  surname: Lian
  fullname: Lian, Xu
  organization: Department of Chemistry, National University of Singapore
– sequence: 5
  givenname: Xinhang
  surname: Cui
  fullname: Cui, Xinhang
  organization: National University of Singapore (Suzhou) Research Institute, Department of Physics, National University of Singapore
– sequence: 6
  givenname: Weichao
  surname: Zhang
  fullname: Zhang, Weichao
  organization: Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University
– sequence: 7
  givenname: Kexin
  surname: Zhang
  fullname: Zhang, Kexin
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University
– sequence: 8
  givenname: Ming
  surname: Lin
  fullname: Lin, Ming
  organization: Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology, and Research (ASTAR)
– sequence: 9
  givenname: Ruqiang
  surname: Zou
  fullname: Zou, Ruqiang
  organization: Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University
– sequence: 10
  givenname: Kian Ping
  surname: Loh
  fullname: Loh, Kian Ping
  organization: Department of Chemistry, National University of Singapore
– sequence: 11
  givenname: Quan-Hong
  surname: Yang
  fullname: Yang, Quan-Hong
  email: qhyangcn@tju.edu.cn
  organization: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University
– sequence: 12
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: phycw@nus.edu.sg
  organization: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Department of Chemistry, National University of Singapore, National University of Singapore (Suzhou) Research Institute, Department of Physics, National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34138264$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLaU_wAJFYsMm1G87LJDQqKUjDUKi07XlxDdTV4k92AnVSHw8DtNS2kUXV7avzzn3-bo48MFDUbzF6CNGSJ4mhhRBFZoNcSWr3YviiGCOKs45Psh3inElJBKHxUlKrkGcMEkkZ6-KQ8owVUSwo-L3eQxD-c21MWxDhFSOobzqx2iq4cHnfHIWygsTbbkwsQn-U7kOt_PzzF8b38Ls35rWjbsMLn-EMFSnq3BbrWHYQjTjFKG8DNZNQ7UMvrwcQzQbeFO87Eyf4OTuPC6uzs_Wi4tq9f3rcvFlVbVC0rHqUK6L2sayWnYMY4oI54LzVtiaWIs4qxlBSoCw2TgCImuBiOKsUZKplh4Xy72uDeZGb6MbTNzpYJz-6whxo00cXduDxqq2dQ5DKDDWGGIYaqDDbUchB4Uma33ea22nZgDbgs_N6h-JPv7x7lpvwi-tUJ6bUlngw51ADD8nSKMeXGqh742HMCVNOCNU5PHIDH3_BHoTpuhzqzQRuOZSqvp5FEeiZlhwkVHv_s_7X8L3q5ABag_IY08pQqfzOM3owlyG6zVGel48vV88jWabF0_vMpU8od6rP0uie1LKYL-B-JD2M6w_2Rjpow
CitedBy_id crossref_primary_10_1002_adma_202300002
crossref_primary_10_1021_acs_inorgchem_3c02457
crossref_primary_10_1002_adma_202212186
crossref_primary_10_1007_s10854_024_12209_z
crossref_primary_10_1002_smll_202311197
crossref_primary_10_1002_adma_202109282
crossref_primary_10_1039_D3CC03967F
crossref_primary_10_1016_j_jpowsour_2024_235474
crossref_primary_10_1016_j_jmst_2024_05_009
crossref_primary_10_1016_j_cej_2025_159431
crossref_primary_10_1016_j_cej_2022_140418
crossref_primary_10_1016_j_esci_2023_100181
crossref_primary_10_1016_j_electacta_2022_140017
crossref_primary_10_1002_adfm_202315408
crossref_primary_10_1039_D3EE03347C
crossref_primary_10_1016_j_est_2024_114692
crossref_primary_10_1016_j_jechem_2022_06_006
crossref_primary_10_1021_acsami_4c04101
crossref_primary_10_1039_D4MH01118J
crossref_primary_10_1007_s40820_022_00924_3
crossref_primary_10_1021_acsphyschemau_1c00036
crossref_primary_10_1002_aenm_202300357
crossref_primary_10_1016_j_cclet_2024_110792
crossref_primary_10_1016_j_jpowsour_2022_232517
crossref_primary_10_1002_adfm_202421790
crossref_primary_10_1007_s40820_022_00873_x
crossref_primary_10_1016_j_jece_2025_115455
crossref_primary_10_1016_j_fuel_2024_132664
crossref_primary_10_1016_j_jechem_2025_01_042
crossref_primary_10_1021_acsnano_4c06281
crossref_primary_10_1002_adfm_202308392
crossref_primary_10_1002_aenm_202400125
crossref_primary_10_1002_smtd_202201508
crossref_primary_10_1002_adma_202420251
crossref_primary_10_1002_advs_202310196
crossref_primary_10_1016_j_ensm_2022_07_005
crossref_primary_10_1016_j_enchem_2023_100099
crossref_primary_10_1016_S1872_5805_24_60884_X
crossref_primary_10_1016_j_jpowsour_2024_235335
crossref_primary_10_1016_j_scib_2025_03_042
crossref_primary_10_1039_D5GC00409H
crossref_primary_10_1002_asia_202301146
crossref_primary_10_1002_adfm_202405174
crossref_primary_10_1016_j_apsusc_2024_159528
crossref_primary_10_1016_j_cclet_2025_111112
crossref_primary_10_1039_D2QI01990F
crossref_primary_10_1002_anie_202416720
crossref_primary_10_1002_advs_202407538
crossref_primary_10_1021_acs_jpcc_3c01773
crossref_primary_10_1016_j_jcis_2021_10_007
crossref_primary_10_1016_j_jcis_2025_01_168
crossref_primary_10_1016_j_est_2024_115204
crossref_primary_10_1016_j_jelechem_2023_117254
crossref_primary_10_1002_ente_202200612
crossref_primary_10_1021_acs_energyfuels_3c00220
crossref_primary_10_1002_adfm_202205453
crossref_primary_10_1016_j_ensm_2024_103386
crossref_primary_10_1002_adma_202410326
crossref_primary_10_1016_j_jpowsour_2024_236093
crossref_primary_10_1021_acsami_1c14738
crossref_primary_10_1021_acsami_4c00301
crossref_primary_10_1016_j_ensm_2024_103269
crossref_primary_10_1021_acsami_4c17922
crossref_primary_10_12677_ms_2025_151013
crossref_primary_10_1021_acs_nanolett_4c04569
crossref_primary_10_1149_2754_2734_ac8aaf
crossref_primary_10_1002_smll_202309809
crossref_primary_10_1039_D4TA08291E
crossref_primary_10_1002_cey2_546
crossref_primary_10_1039_D3EE00161J
crossref_primary_10_3390_ma17051016
crossref_primary_10_1016_j_carbon_2023_118756
crossref_primary_10_1002_adma_202407369
crossref_primary_10_1021_acs_nanolett_4c01620
crossref_primary_10_1016_j_cej_2023_146836
crossref_primary_10_1016_j_jpowsour_2024_235151
crossref_primary_10_1016_j_carbon_2023_02_004
crossref_primary_10_1016_j_cej_2024_154103
crossref_primary_10_1039_D1TA07310A
crossref_primary_10_1002_adfm_202414761
crossref_primary_10_1016_j_jpowsour_2024_235664
crossref_primary_10_1016_j_electacta_2025_146041
crossref_primary_10_1016_j_jpowsour_2024_234730
crossref_primary_10_3390_molecules28073134
crossref_primary_10_1038_s41467_023_39637_5
crossref_primary_10_1002_ange_202416720
crossref_primary_10_1002_cey2_713
crossref_primary_10_3390_nano12193529
crossref_primary_10_1016_j_mtener_2024_101501
crossref_primary_10_1002_aenm_202304537
crossref_primary_10_1016_j_jcis_2024_11_067
crossref_primary_10_1016_j_jelechem_2022_116769
crossref_primary_10_1002_adem_202302063
crossref_primary_10_1016_j_ensm_2024_103760
crossref_primary_10_1016_j_jallcom_2021_163420
crossref_primary_10_1002_adfm_202423530
crossref_primary_10_1016_j_jcis_2025_137359
crossref_primary_10_1002_aenm_202405294
crossref_primary_10_1016_j_ensm_2024_103645
crossref_primary_10_1021_acscentsci_3c00301
crossref_primary_10_1088_2515_7655_ac8dc1
crossref_primary_10_1016_j_electacta_2023_143579
crossref_primary_10_1002_batt_202400694
crossref_primary_10_1021_acsenergylett_1c01359
crossref_primary_10_1002_advs_202410318
crossref_primary_10_1016_j_est_2024_110988
crossref_primary_10_1002_anie_202200475
crossref_primary_10_1016_j_est_2024_112767
crossref_primary_10_1016_j_electacta_2023_142641
crossref_primary_10_1016_j_cej_2024_152274
crossref_primary_10_1007_s12598_024_02763_0
crossref_primary_10_1016_j_est_2025_115649
crossref_primary_10_1016_j_cej_2024_156115
crossref_primary_10_1007_s10854_023_10849_1
crossref_primary_10_1002_adfm_202203725
crossref_primary_10_1002_eem2_12521
crossref_primary_10_1016_j_jcis_2025_02_028
crossref_primary_10_1002_smll_202300256
crossref_primary_10_1007_s40820_024_01351_2
crossref_primary_10_1016_S1872_5805_25_60953_X
crossref_primary_10_1039_D2TA07391A
crossref_primary_10_1002_ange_202200475
crossref_primary_10_3390_inorganics10090136
crossref_primary_10_1002_batt_202300233
crossref_primary_10_1016_j_electacta_2024_145042
crossref_primary_10_1016_j_apsusc_2024_160277
crossref_primary_10_1007_s12274_024_6546_0
crossref_primary_10_1007_s10800_024_02235_4
crossref_primary_10_1002_adma_202402291
crossref_primary_10_1016_j_cej_2022_137468
crossref_primary_10_1016_j_est_2024_114795
crossref_primary_10_1002_adma_202205678
crossref_primary_10_20517_energymater_2024_63
crossref_primary_10_1002_adfm_202203117
crossref_primary_10_1002_aenm_202303064
crossref_primary_10_1016_j_pmatsci_2024_101401
crossref_primary_10_1002_cnma_202400562
crossref_primary_10_1016_j_cej_2022_137070
crossref_primary_10_1016_j_cclet_2021_10_014
crossref_primary_10_1016_j_est_2024_114209
crossref_primary_10_1039_D3CS01043K
crossref_primary_10_1016_j_ssi_2024_116555
crossref_primary_10_1021_acsami_3c16484
crossref_primary_10_1021_acssuschemeng_3c03765
crossref_primary_10_1016_j_jpowsour_2023_233718
crossref_primary_10_1016_j_nanoen_2022_107797
crossref_primary_10_1016_j_pnsc_2024_11_002
crossref_primary_10_1007_s40820_022_00910_9
crossref_primary_10_1016_j_jpowsour_2025_236505
Cites_doi 10.1002/aenm.201702409
10.1038/nmat4318
10.1002/aenm.201801149
10.1002/aenm.201501588
10.1021/acs.chemmater.6b05474
10.1016/j.ensm.2020.11.005
10.1016/j.ensm.2015.10.003
10.1002/aenm.201800930
10.1149/1.1393348
10.1016/j.ensm.2015.12.004
10.1039/C6CP04611H
10.1002/adma.201802035
10.1039/C9CP02922B
10.1016/j.jpowsour.2012.10.025
10.1021/acs.chemmater.8b01390
10.1002/anie.201803511
10.1039/C5TA08601A
10.1039/C9TA04436A
10.1039/C6CC06990H
10.1002/aenm.201703268
10.1002/adfm.201100854
10.1002/anie.201603934
10.1002/aenm.202000666
10.1002/aenm.201900343
10.1002/aenm.201602894
10.1002/aenm.201801361
10.1149/1.1870612
10.1016/j.ensm.2017.09.009
10.1021/acsaem.8b01734
10.1021/nn404640c
10.1021/ja104391g
10.1002/adma.201800036
10.1002/aenm.201901351
10.1021/acs.nanolett.5b01969
10.1002/aenm.201800108
10.1016/j.carbon.2007.10.023
10.1002/aenm.201702582
10.1149/1.1394081
10.1016/j.nanoen.2017.12.013
10.1021/nn502045y
10.1002/aenm.201903312
10.1002/anie.200704894
10.1002/adma.201800492
10.1149/1.1379565
10.1021/acsenergylett.9b01900
10.1016/j.scib.2018.07.018
10.1021/nl3016957
10.1002/aenm.201700403
10.1002/aenm.201803260
10.1002/aenm.202000283
10.1021/acsenergylett.6b00172
10.1016/0008-6223(96)00177-7
10.1039/C6EE03367A
10.1016/j.ensm.2019.05.019
10.1021/am507679x
10.1002/aenm.201602898
10.1002/adma.201804116
10.1016/j.nanoen.2019.04.008
10.1073/pnas.1602473113
10.1002/aenm.201902852
10.1016/j.ensm.2019.11.010
10.1021/nn9008615
10.1002/anie.201912171
10.1021/acsami.6b04763
10.1016/j.nanoen.2020.104451
10.1016/j.ensm.2019.04.009
10.1002/adma.201700104
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-020-00587-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Publicly Available Content Database
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 14
ExternalDocumentID oai_doaj_org_article_189d997f23e44ba2a40bef1cf3e255eb
PMC8010088
34138264
10_1007_s40820_020_00587_y
Genre Journal Article
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c673t-f02153dbd497f41130255655c6d92dd054942086e6d6e650e279602854b8748c3
IEDL.DBID DOA
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:28:17 EDT 2025
Thu Aug 21 13:46:03 EDT 2025
Fri Jul 11 03:48:12 EDT 2025
Wed Aug 13 08:46:21 EDT 2025
Wed Aug 13 06:59:06 EDT 2025
Mon Jul 21 06:07:52 EDT 2025
Tue Jul 01 00:55:46 EDT 2025
Thu Apr 24 22:55:20 EDT 2025
Fri Feb 21 02:44:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Carbon anode
Low-voltage capacity
Ultra-micropores
Extra sodium-ion storage sites
High areal capacity
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c673t-f02153dbd497f41130255655c6d92dd054942086e6d6e650e279602854b8748c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/189d997f23e44ba2a40bef1cf3e255eb
PMID 34138264
PQID 2506941656
PQPubID 2044332
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_189d997f23e44ba2a40bef1cf3e255eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8010088
proquest_miscellaneous_2542363827
proquest_journals_2619577897
proquest_journals_2506941656
pubmed_primary_34138264
crossref_citationtrail_10_1007_s40820_020_00587_y
crossref_primary_10_1007_s40820_020_00587_y
springer_journals_10_1007_s40820_020_00587_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211200
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 20211200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2021
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Li, Ma, Surta, Bommier, Jian (CR29) 2016; 1
Zhang, Lv, Luo, You, Zhang (CR49) 2016; 3
Choi, Lee, Lee, Jin, Yun (CR38) 2019; 2
Meng, Lu, Ding, Zhang, Chen (CR32) 2019; 4
Bi, Kong, Cao, Sun, Su (CR39) 2019; 7
Zhao, Ding, Lu, Chen, Hu (CR4) 2020; 59
Hou, Qiu, Wei, Zhang, Ji (CR1) 2017; 7
Li, Bommier, Chong, Jian, Surta (CR30) 2017; 7
Chen, Meng, Xie, He, He (CR13) 2018; 30
Lotfabad, Ding, Cui, Kohandehghan, Kalisvaart (CR26) 2014; 8
Hong, Zhen, Ruan, Kang, Zhou (CR44) 2018; 30
Stevens, Dahn (CR18) 2001; 148
Komaba, Murata, Ishikawa, Yabuuchi, Ozeki (CR20) 2011; 21
Zhang, Ghimbeu, Laberty, Vix-Guterl, Tarascon (CR31) 2016; 6
Yao, Ke, Ren, Wang, Xiong (CR66) 2018; 9
Yang, Ju, Jiang, Xing, Xi (CR59) 2018; 30
Lu, Rong, Hu, Chen, Li (CR7) 2019; 23
Zhang, Yang, Shan, Li, Tang (CR51) 2019; 21
Liu, Xue, Zheng, Dahn (CR57) 1996; 34
Bommier, Surta, Dolgos, Ji (CR28) 2015; 15
Yang, Lv, Dong, Lai, Zhao (CR64) 2018; 30
Zhang, Cao, Yang, Gu (CR53) 2008; 46
Xie, Zhang, Ye, Jaroniec, Qiao (CR12) 2019; 31
Cao, Zhang, Liu, Xu, Zhang (CR63) 2018; 8
Gotoh, Ishikawa, Shimadzu, Yabuuchi, Komaba (CR21) 2013; 225
Shao, Zhong, Lu, Liu, Zhao (CR3) 2019; 23
Chmiola, Largeot, Taberna, Simon, Gogotsi (CR52) 2008; 120
Sun, Guan, Liu, Cao, Zhu (CR56) 2019; 9
Levi, Levy, Sigalov, Salitra, Aurbach (CR47) 2010; 132
Li, Mu, Hu, Li, Chen (CR37) 2016; 2
Karatrantos, Cai (CR50) 2016; 18
Li, Hu, Li, Chen, Huang (CR36) 2016; 4
Cao, Xiao, Sushko, Wang, Schwenzer (CR23) 2012; 12
Griffin, Forse, Tsai, Taberna, Simon (CR48) 2015; 14
Chen, Madden, Pham, Forrest, Kumar (CR55) 2016; 55
Jian, Bommier, Luo, Li, Wang (CR58) 2017; 29
Alvin, Cahyadi, Hwang, Chang, Kwak (CR27) 2020; 10
Zhang, Wang, Lv, Zhang, Liang (CR6) 2017; 10
Li, Lu, Meng, Jensen, Zhang (CR33) 2019; 9
Yang, Chen, Lei, Guo, Li (CR41) 2018; 8
Bommier, Ji, Greaney (CR46) 2018; 31
Ding, Wang, Li, Kohandehghan, Cui (CR25) 2013; 7
Lu, Zhao, Qi, Qi, Li (CR34) 2018; 8
Zhang, Wang, Lv, Qin, Niu (CR5) 2018; 8
Fang, Liu, Xiang, Zhu, Tang (CR60) 2020; 69
Qiu, Xiao, Sushko, Han, Shao (CR24) 2017; 7
Xiao, Zhao, Wang, Su, Bai (CR14) 2020; 10
Lu, Liang, Hu, Liu, Chen (CR45) 2020; 10
Stevens, Dahn (CR19) 2000; 147
Ju, Li, Ma, Xing, Zhuang (CR42) 2018; 11
Wu, Chen, Xing, Lam, Pang (CR2) 2019; 9
Xiao, Su, Wang, Wu, Zhou (CR15) 2018; 8
Zhang, Hasa, Passerini (CR10) 2018; 8
Yang, Xiao, Cui, Dai, Lian (CR40) 2020; 26
Zhao, Wang, Lu, Li, Chen (CR35) 2018; 63
Xie, Zhang, Gu, Chao, Jaroniec (CR11) 2019; 60
Ju, Zhang, Xing, Zhuang, Qiang (CR43) 2016; 8
Saurel, Orayech, Xiao, Carriazo, Li (CR16) 2018; 8
Stratford, Allan, Pecher, Chater, Grey (CR22) 2016; 52
Zeng, Xie, Yang, Jaroniec, Zhang (CR8) 2018; 57
Yang, Feng, Lv, Zhou, Lin (CR65) 2021; 35
Matei Ghimbeu, Górka, Simone, Simonin, Martinet (CR61) 2018; 44
Liu, Merinov, Goddard (CR9) 2016; 113
Luo, Bommier, Jian, Li, Carter (CR62) 2015; 7
Alcántara, Lavela, Ortiz, Tirado (CR67) 2005; 8
Stevens, Dahn (CR17) 2000; 147
Huang, Chen, Gao, Chen, Wee (CR54) 2009; 3
H Zhang (587_CR10) 2018; 8
Y Liu (587_CR9) 2016; 113
D Saurel (587_CR16) 2018; 8
S Qiu (587_CR24) 2017; 7
Z Hong (587_CR44) 2018; 30
Y Cao (587_CR23) 2012; 12
Z Li (587_CR29) 2016; 1
K Fang (587_CR60) 2020; 69
H Hou (587_CR1) 2017; 7
Y Lu (587_CR7) 2019; 23
N Sun (587_CR56) 2019; 9
C Matei Ghimbeu (587_CR61) 2018; 44
J Choi (587_CR38) 2019; 2
Z Bi (587_CR39) 2019; 7
KJ Chen (587_CR55) 2016; 55
C Yang (587_CR65) 2021; 35
DA Stevens (587_CR19) 2000; 147
C Zeng (587_CR8) 2018; 57
Y Lu (587_CR45) 2020; 10
F Xie (587_CR11) 2019; 60
S-W Zhang (587_CR49) 2016; 3
C Yang (587_CR64) 2018; 30
C Zhao (587_CR4) 2020; 59
W Luo (587_CR62) 2015; 7
J Ding (587_CR25) 2013; 7
X Yao (587_CR66) 2018; 9
MD Levi (587_CR47) 2010; 132
J Yang (587_CR59) 2018; 30
C Bommier (587_CR46) 2018; 31
Z Jian (587_CR58) 2017; 29
R Alcántara (587_CR67) 2005; 8
B Chen (587_CR13) 2018; 30
Y Lu (587_CR34) 2018; 8
JM Griffin (587_CR48) 2015; 14
Z Ju (587_CR43) 2016; 8
Z Li (587_CR30) 2017; 7
Q Meng (587_CR32) 2019; 4
X Zhang (587_CR51) 2019; 21
Y Li (587_CR36) 2016; 4
S Komaba (587_CR20) 2011; 21
JM Stratford (587_CR22) 2016; 52
Y Liu (587_CR57) 1996; 34
Y Xiao (587_CR14) 2020; 10
B Zhang (587_CR31) 2016; 6
B Cao (587_CR63) 2018; 8
J Chmiola (587_CR52) 2008; 120
DA Stevens (587_CR18) 2001; 148
F Xie (587_CR12) 2019; 31
H Zhang (587_CR53) 2008; 46
J Yang (587_CR40) 2020; 26
Z Ju (587_CR42) 2018; 11
C Zhao (587_CR35) 2018; 63
EM Lotfabad (587_CR26) 2014; 8
Y Li (587_CR37) 2016; 2
A Karatrantos (587_CR50) 2016; 18
S Alvin (587_CR27) 2020; 10
J Zhang (587_CR5) 2018; 8
H Huang (587_CR54) 2009; 3
J Zhang (587_CR6) 2017; 10
Y Li (587_CR33) 2019; 9
C Bommier (587_CR28) 2015; 15
X Wu (587_CR2) 2019; 9
B Yang (587_CR41) 2018; 8
Y Shao (587_CR3) 2019; 23
DA Stevens (587_CR17) 2000; 147
K Gotoh (587_CR21) 2013; 225
Y Xiao (587_CR15) 2018; 8
References_xml – volume: 8
  start-page: 1702409
  issue: 10
  year: 2018
  ident: CR41
  article-title: Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702409
– volume: 14
  start-page: 812
  issue: 8
  year: 2015
  end-page: 819
  ident: CR48
  article-title: In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4318
– volume: 8
  start-page: 1801149
  issue: 25
  year: 2018
  ident: CR63
  article-title: Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801149
– volume: 6
  start-page: 1501588
  issue: 1
  year: 2016
  ident: CR31
  article-title: Correlation between microstructure and Na storage behavior in hard carbon
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501588
– volume: 29
  start-page: 2314
  issue: 5
  year: 2017
  end-page: 2320
  ident: CR58
  article-title: Insights on the mechanism of Na-ion storage in soft carbon anode
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b05474
– volume: 35
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR65
  article-title: Carbon-coated ultrathin metallic V Se nanosheet for high-energy-density and robust potassium storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.11.005
– volume: 2
  start-page: 139
  year: 2016
  end-page: 145
  ident: CR37
  article-title: Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.10.003
– volume: 8
  start-page: 1800930
  issue: 22
  year: 2018
  ident: CR15
  article-title: CuS microspheres with tunable interlayer space and micropore as a high-rate and long-life anode for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800930
– volume: 147
  start-page: 1271
  issue: 4
  year: 2000
  end-page: 1273
  ident: CR17
  article-title: High capacity anode materials for rechargeable sodium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393348
– volume: 3
  start-page: 18
  year: 2016
  end-page: 23
  ident: CR49
  article-title: Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.12.004
– volume: 18
  start-page: 30761
  issue: 44
  year: 2016
  end-page: 30769
  ident: CR50
  article-title: Effects of pore size and surface charge on Na ion storage in carbon nanopores
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04611H
– volume: 30
  start-page: e1802035
  issue: 29
  year: 2018
  ident: CR44
  article-title: Rational design and general synthesis of S-doped hard carbon with tunable doping sites toward excellent Na-ion storage performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802035
– volume: 21
  start-page: 23697
  issue: 42
  year: 2019
  end-page: 23704
  ident: CR51
  article-title: Insights into the effect of the interlayer spacings of bilayer graphene on the desolvation of H(+), Li(+), Na(+), and K(+) ions with water as a solvent: a first-principles study
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP02922B
– volume: 225
  start-page: 137
  year: 2013
  end-page: 140
  ident: CR21
  article-title: NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.025
– volume: 31
  start-page: 658
  issue: 3
  year: 2018
  end-page: 677
  ident: CR46
  article-title: Electrochemical properties and theoretical capacity for sodium storage in hard carbon: insights from first principles calculations
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01390
– volume: 57
  start-page: 8540
  issue: 28
  year: 2018
  end-page: 8544
  ident: CR8
  article-title: Ultrathin titanate nanosheets/graphene films derived from confined transformation for excellent Na/K ion storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803511
– volume: 4
  start-page: 96
  issue: 1
  year: 2016
  end-page: 104
  ident: CR36
  article-title: A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08601A
– volume: 7
  start-page: 16028
  issue: 27
  year: 2019
  end-page: 16045
  ident: CR39
  article-title: Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04436A
– volume: 52
  start-page: 12430
  issue: 84
  year: 2016
  end-page: 12433
  ident: CR22
  article-title: Mechanistic insights into sodium storage in hard carbon anodes using local structure probes
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06990H
– volume: 8
  start-page: 1703268
  issue: 17
  year: 2018
  ident: CR16
  article-title: From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703268
– volume: 21
  start-page: 3859
  issue: 20
  year: 2011
  end-page: 3867
  ident: CR20
  article-title: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100854
– volume: 55
  start-page: 10268
  issue: 35
  year: 2016
  end-page: 10272
  ident: CR55
  article-title: Tuning pore size in square-lattice coordination networks for size-selective sieving of CO
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603934
– volume: 10
  start-page: 2000666
  issue: 25
  year: 2020
  ident: CR14
  article-title: A nanosheet array of Cu Se intercalation compound with expanded interlayer space for sodium ion storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000666
– volume: 9
  start-page: 1900343
  issue: 21
  year: 2019
  ident: CR2
  article-title: Advanced carbon-based anodes for potassium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900343
– volume: 7
  start-page: 1602894
  issue: 18
  year: 2017
  ident: CR30
  article-title: Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602894
– volume: 8
  start-page: 1801361
  issue: 26
  year: 2018
  ident: CR5
  article-title: Ethers illume sodium-based battery chemistry: Uniqueness, surprise, and challenges
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801361
– volume: 8
  start-page: A222
  issue: 4
  year: 2005
  end-page: A225
  ident: CR67
  article-title: Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1870612
– volume: 11
  start-page: 38
  year: 2018
  end-page: 46
  ident: CR42
  article-title: Few layer nitrogen-doped graphene with highly reversible potassium storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.09.009
– volume: 2
  start-page: 1185
  issue: 2
  year: 2019
  end-page: 1191
  ident: CR38
  article-title: Pyroprotein-derived hard carbon fibers exhibiting exceptionally high plateau capacities for sodium ion batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01734
– volume: 7
  start-page: 11004
  issue: 12
  year: 2013
  end-page: 11015
  ident: CR25
  article-title: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes
  publication-title: ACS Nano
  doi: 10.1021/nn404640c
– volume: 132
  start-page: 13220
  issue: 38
  year: 2010
  end-page: 13222
  ident: CR47
  article-title: Electrochemical quartz crystal microbalance (eqcm) studies of ions and solvents insertion into highly porous activated carbons
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104391g
– volume: 30
  start-page: 1800036
  issue: 27
  year: 2018
  ident: CR64
  article-title: Metallic graphene-like VSe ultrathin nanosheets: superior potassium-ion storage and their working mechanism
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800036
– volume: 9
  start-page: 1901351
  issue: 32
  year: 2019
  ident: CR56
  article-title: Extended “adsorption–insertion” model: a new insight into the sodium storage mechanism of hard carbons
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901351
– volume: 15
  start-page: 5888
  issue: 9
  year: 2015
  end-page: 5892
  ident: CR28
  article-title: New mechanistic insights on Na-ion storage in nongraphitizable carbon
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01969
– volume: 8
  start-page: 1800108
  issue: 27
  year: 2018
  ident: CR34
  article-title: Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800108
– volume: 46
  start-page: 30
  issue: 1
  year: 2008
  end-page: 34
  ident: CR53
  article-title: Capacitive performance of an ultralong aligned carbon nanotube electrode in an ionic liquid at 60°C
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.10.023
– volume: 8
  start-page: 1702582
  issue: 17
  year: 2018
  ident: CR10
  article-title: Beyond insertion for na-ion batteries: Nanostructured alloying and conversion anode materials
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702582
– volume: 147
  start-page: 4428
  issue: 12
  year: 2000
  end-page: 4431
  ident: CR19
  article-title: An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1394081
– volume: 44
  start-page: 327
  year: 2018
  end-page: 335
  ident: CR61
  article-title: Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.013
– volume: 8
  start-page: 7115
  issue: 7
  year: 2014
  end-page: 7129
  ident: CR26
  article-title: High-density sodium and lithium ion battery anodes from banana peels
  publication-title: ACS Nano
  doi: 10.1021/nn502045y
– volume: 10
  start-page: 1903312
  issue: 7
  year: 2020
  ident: CR45
  article-title: Accurate control multiple active sites of carbonaceous anode for high performance sodium storage: insights into capacitive contribution mechanism
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903312
– volume: 120
  start-page: 3440
  issue: 18
  year: 2008
  end-page: 3443
  ident: CR52
  article-title: Desolvation of ions in sub-nanometer pores and its effect on capacitance and double-layer theory
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200704894
– volume: 31
  start-page: e1800492
  issue: 38
  year: 2019
  ident: CR12
  article-title: The application of hollow structured anodes for sodium-ion batteries: from simple to complex systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800492
– volume: 148
  start-page: A803
  issue: 8
  year: 2001
  end-page: A811
  ident: CR18
  article-title: The mechanisms of lithium and sodium insertion in carbon materials
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1379565
– volume: 4
  start-page: 2608
  issue: 11
  year: 2019
  end-page: 2612
  ident: CR32
  article-title: Tuning the closed pore structure of hard carbons with the highest Na storage capacity
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01900
– volume: 63
  start-page: 1125
  issue: 17
  year: 2018
  end-page: 1129
  ident: CR35
  article-title: High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau
  publication-title: Sci. Bulletin
  doi: 10.1016/j.scib.2018.07.018
– volume: 12
  start-page: 3783
  issue: 7
  year: 2012
  end-page: 3787
  ident: CR23
  article-title: Sodium ion insertion in hollow carbon nanowires for battery applications
  publication-title: Nano Lett.
  doi: 10.1021/nl3016957
– volume: 7
  start-page: 1700403
  issue: 17
  year: 2017
  ident: CR24
  article-title: Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700403
– volume: 9
  start-page: 1803260
  issue: 6
  year: 2018
  ident: CR66
  article-title: Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803260
– volume: 10
  start-page: 2000283
  issue: 20
  year: 2020
  ident: CR27
  article-title: Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000283
– volume: 1
  start-page: 395
  issue: 2
  year: 2016
  end-page: 401
  ident: CR29
  article-title: High capacity of hard carbon anode in Na-ion batteries unlocked by pox doping
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00172
– volume: 34
  start-page: 193
  issue: 2
  year: 1996
  end-page: 200
  ident: CR57
  article-title: Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins
  publication-title: Carbon
  doi: 10.1016/0008-6223(96)00177-7
– volume: 10
  start-page: 370
  issue: 1
  year: 2017
  end-page: 376
  ident: CR6
  article-title: Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03367A
– volume: 23
  start-page: 144
  year: 2019
  end-page: 153
  ident: CR7
  article-title: Research and development of advanced battery materials in china
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.019
– volume: 7
  start-page: 2626
  issue: 4
  year: 2015
  end-page: 2631
  ident: CR62
  article-title: Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507679x
– volume: 7
  start-page: 1602898
  issue: 24
  year: 2017
  ident: CR1
  article-title: Carbon anode materials for advanced sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602898
– volume: 30
  start-page: e1804116
  issue: 46
  year: 2018
  ident: CR13
  article-title: 1D sub-nanotubes with anatase/bronze TiO nanocrystal wall for high-rate and long-life sodium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804116
– volume: 60
  start-page: 591
  year: 2019
  end-page: 599
  ident: CR11
  article-title: Multi-shell hollow structured Sb S for sodium-ion batteries with enhanced energy density
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.008
– volume: 113
  start-page: 3735
  issue: 14
  year: 2016
  end-page: 3739
  ident: CR9
  article-title: Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1602473113
– volume: 9
  start-page: 1902852
  issue: 48
  year: 2019
  ident: CR33
  article-title: Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902852
– volume: 26
  start-page: 391
  year: 2020
  end-page: 399
  ident: CR40
  article-title: Inorganic-anion-modulated synthesis of 2D nonlayered aluminum-based metal-organic frameworks as carbon precursor for capacitive sodium ion storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.11.010
– volume: 3
  start-page: 3431
  issue: 11
  year: 2009
  end-page: 3436
  ident: CR54
  article-title: Structural and electronic properties of PTCDA thin films on epitaxial graphene
  publication-title: ACS Nano
  doi: 10.1021/nn9008615
– volume: 59
  start-page: 264
  issue: 1
  year: 2020
  end-page: 269
  ident: CR4
  article-title: High-entropy layered oxide cathodes for sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912171
– volume: 8
  start-page: 20682
  issue: 32
  year: 2016
  end-page: 20690
  ident: CR43
  article-title: Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04763
– volume: 69
  start-page: 104451
  year: 2020
  ident: CR60
  article-title: Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104451
– volume: 23
  start-page: 514
  year: 2019
  end-page: 521
  ident: CR3
  article-title: A novel nasicon-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.04.009
– volume: 30
  start-page: 1700104
  issue: 4
  year: 2018
  ident: CR59
  article-title: Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700104
– volume: 7
  start-page: 11004
  issue: 12
  year: 2013
  ident: 587_CR25
  publication-title: ACS Nano
  doi: 10.1021/nn404640c
– volume: 9
  start-page: 1803260
  issue: 6
  year: 2018
  ident: 587_CR66
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803260
– volume: 52
  start-page: 12430
  issue: 84
  year: 2016
  ident: 587_CR22
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC06990H
– volume: 21
  start-page: 23697
  issue: 42
  year: 2019
  ident: 587_CR51
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C9CP02922B
– volume: 46
  start-page: 30
  issue: 1
  year: 2008
  ident: 587_CR53
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.10.023
– volume: 113
  start-page: 3735
  issue: 14
  year: 2016
  ident: 587_CR9
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1602473113
– volume: 8
  start-page: 1800930
  issue: 22
  year: 2018
  ident: 587_CR15
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800930
– volume: 35
  start-page: 1
  year: 2021
  ident: 587_CR65
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.11.005
– volume: 147
  start-page: 1271
  issue: 4
  year: 2000
  ident: 587_CR17
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393348
– volume: 4
  start-page: 2608
  issue: 11
  year: 2019
  ident: 587_CR32
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01900
– volume: 148
  start-page: A803
  issue: 8
  year: 2001
  ident: 587_CR18
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1379565
– volume: 11
  start-page: 38
  year: 2018
  ident: 587_CR42
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.09.009
– volume: 132
  start-page: 13220
  issue: 38
  year: 2010
  ident: 587_CR47
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja104391g
– volume: 1
  start-page: 395
  issue: 2
  year: 2016
  ident: 587_CR29
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00172
– volume: 8
  start-page: 20682
  issue: 32
  year: 2016
  ident: 587_CR43
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04763
– volume: 3
  start-page: 3431
  issue: 11
  year: 2009
  ident: 587_CR54
  publication-title: ACS Nano
  doi: 10.1021/nn9008615
– volume: 6
  start-page: 1501588
  issue: 1
  year: 2016
  ident: 587_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501588
– volume: 31
  start-page: e1800492
  issue: 38
  year: 2019
  ident: 587_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800492
– volume: 30
  start-page: e1802035
  issue: 29
  year: 2018
  ident: 587_CR44
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802035
– volume: 30
  start-page: 1800036
  issue: 27
  year: 2018
  ident: 587_CR64
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800036
– volume: 8
  start-page: 1800108
  issue: 27
  year: 2018
  ident: 587_CR34
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800108
– volume: 14
  start-page: 812
  issue: 8
  year: 2015
  ident: 587_CR48
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4318
– volume: 225
  start-page: 137
  year: 2013
  ident: 587_CR21
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.10.025
– volume: 15
  start-page: 5888
  issue: 9
  year: 2015
  ident: 587_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b01969
– volume: 8
  start-page: 1703268
  issue: 17
  year: 2018
  ident: 587_CR16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703268
– volume: 10
  start-page: 2000283
  issue: 20
  year: 2020
  ident: 587_CR27
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000283
– volume: 2
  start-page: 139
  year: 2016
  ident: 587_CR37
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.10.003
– volume: 55
  start-page: 10268
  issue: 35
  year: 2016
  ident: 587_CR55
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201603934
– volume: 59
  start-page: 264
  issue: 1
  year: 2020
  ident: 587_CR4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201912171
– volume: 8
  start-page: A222
  issue: 4
  year: 2005
  ident: 587_CR67
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1870612
– volume: 9
  start-page: 1902852
  issue: 48
  year: 2019
  ident: 587_CR33
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201902852
– volume: 29
  start-page: 2314
  issue: 5
  year: 2017
  ident: 587_CR58
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b05474
– volume: 8
  start-page: 1801361
  issue: 26
  year: 2018
  ident: 587_CR5
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801361
– volume: 7
  start-page: 1700403
  issue: 17
  year: 2017
  ident: 587_CR24
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700403
– volume: 57
  start-page: 8540
  issue: 28
  year: 2018
  ident: 587_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201803511
– volume: 8
  start-page: 7115
  issue: 7
  year: 2014
  ident: 587_CR26
  publication-title: ACS Nano
  doi: 10.1021/nn502045y
– volume: 9
  start-page: 1901351
  issue: 32
  year: 2019
  ident: 587_CR56
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901351
– volume: 21
  start-page: 3859
  issue: 20
  year: 2011
  ident: 587_CR20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100854
– volume: 44
  start-page: 327
  year: 2018
  ident: 587_CR61
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.12.013
– volume: 8
  start-page: 1702409
  issue: 10
  year: 2018
  ident: 587_CR41
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702409
– volume: 63
  start-page: 1125
  issue: 17
  year: 2018
  ident: 587_CR35
  publication-title: Sci. Bulletin
  doi: 10.1016/j.scib.2018.07.018
– volume: 34
  start-page: 193
  issue: 2
  year: 1996
  ident: 587_CR57
  publication-title: Carbon
  doi: 10.1016/0008-6223(96)00177-7
– volume: 120
  start-page: 3440
  issue: 18
  year: 2008
  ident: 587_CR52
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200704894
– volume: 9
  start-page: 1900343
  issue: 21
  year: 2019
  ident: 587_CR2
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900343
– volume: 18
  start-page: 30761
  issue: 44
  year: 2016
  ident: 587_CR50
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP04611H
– volume: 8
  start-page: 1702582
  issue: 17
  year: 2018
  ident: 587_CR10
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702582
– volume: 31
  start-page: 658
  issue: 3
  year: 2018
  ident: 587_CR46
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01390
– volume: 10
  start-page: 1903312
  issue: 7
  year: 2020
  ident: 587_CR45
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903312
– volume: 30
  start-page: e1804116
  issue: 46
  year: 2018
  ident: 587_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804116
– volume: 7
  start-page: 16028
  issue: 27
  year: 2019
  ident: 587_CR39
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA04436A
– volume: 2
  start-page: 1185
  issue: 2
  year: 2019
  ident: 587_CR38
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b01734
– volume: 8
  start-page: 1801149
  issue: 25
  year: 2018
  ident: 587_CR63
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801149
– volume: 10
  start-page: 2000666
  issue: 25
  year: 2020
  ident: 587_CR14
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000666
– volume: 69
  start-page: 104451
  year: 2020
  ident: 587_CR60
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104451
– volume: 23
  start-page: 514
  year: 2019
  ident: 587_CR3
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.04.009
– volume: 7
  start-page: 1602898
  issue: 24
  year: 2017
  ident: 587_CR1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602898
– volume: 7
  start-page: 2626
  issue: 4
  year: 2015
  ident: 587_CR62
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am507679x
– volume: 3
  start-page: 18
  year: 2016
  ident: 587_CR49
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2015.12.004
– volume: 10
  start-page: 370
  issue: 1
  year: 2017
  ident: 587_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03367A
– volume: 26
  start-page: 391
  year: 2020
  ident: 587_CR40
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.11.010
– volume: 147
  start-page: 4428
  issue: 12
  year: 2000
  ident: 587_CR19
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1394081
– volume: 12
  start-page: 3783
  issue: 7
  year: 2012
  ident: 587_CR23
  publication-title: Nano Lett.
  doi: 10.1021/nl3016957
– volume: 4
  start-page: 96
  issue: 1
  year: 2016
  ident: 587_CR36
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08601A
– volume: 23
  start-page: 144
  year: 2019
  ident: 587_CR7
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.05.019
– volume: 60
  start-page: 591
  year: 2019
  ident: 587_CR11
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.008
– volume: 30
  start-page: 1700104
  issue: 4
  year: 2018
  ident: 587_CR59
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700104
– volume: 7
  start-page: 1602894
  issue: 18
  year: 2017
  ident: 587_CR30
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602894
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.561169
Snippet Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method....
Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The...
HighlightsHard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method.The...
Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion-carbonization method. The...
Highlights Hard-carbon anode dominated with ultra-micropores (< 0.5 nm) was synthesized for sodium-ion batteries via a molten diffusion–carbonization method....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 98
SubjectTerms Anodes
Carbon
Carbon anode
Carbonization
Chemical synthesis
Diffusion rate
Displays
Electrochemical analysis
Engineering
Extra sodium-ion storage sites
High areal capacity
Ion storage
Low temperature
Low-voltage capacity
Na-ion batteries
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
NMR
Nuclear magnetic resonance
Porosity
Rechargeable batteries
Sodium
Sodium-ion batteries
Ultra-micropores
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvcAB8d1AQUbiBlYTx4kdLohWuyqIVqjdlXqL4thpV-omZTcrVIkfz4zXSbpQesjFdqI4HttvMuP3CHkPUybSIopYJZVmIqtipjJVsahMbQH4IdNOteToOD2cim9nyZn_4bb0aZXdmugWatOU-I98D7ZqPHMJt3---slQNQqjq15C4z7ZhiVYgfO1vT86_nHSWRSXqMw0xAlRXlncYKsRyO0SD4RmCRKYyYEnM-EC9ne_4a4BtcRQllOsgw6mMkz9SRx3Hg_Vm0OGHhnK9Ul2vbHbOVGA25DsvwmZf0Vl3WY3fkweeZRKv6zN6gm5Z-un5OEN7sJn5Pd40czpEebzAYS3S9o2dHoJz2XzoWzm1EAppgfQg2Khm_oTnbhEXTqqL1zyAZSD2w6-ADSmJwDj2d735hebWMDza75netqY2WrOvjY1PW3BZM_tczIdjyYHh8xLObAylXHLKoQWsdFGZLIC04gd9VmSlKnJuDGAGzOM86c2NXAloYWRS0M83amVFKqMX5CtuqntDqEmS4oE_DDOVSEqXiouCy7SsIgSZbUyAYm6T56Xnucc5TYu856h2Q1THuKFw5RfB-RDf8_VmuXjztb7OJJ9S2TodgXN4jz3Ez6PVGYy6CyPrRC64IUIta2isootdN3qgOx2dpD7ZWOZD0Z-ezV4u4mUKpMBeddXw3qAQZ6its0KHwEAGRZVDm1erq2qf1FELOBOioDIDXvb6MlmTT27cJzjAGQALaqAfOwsc3it_3-pV3d38jV5wDFFyGUH7ZKtdrGybwDjtfqtn8h_AFTvQ2U
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgucAB8SawICNxA4vE8SvcoNpqQSwHtpX2FsWxs1tpm6A2FVqJH8-MkyZbKEgccrEnkR2P7W80M98Q8hq2TGJFkrBKG8tEVqXMZKZiSal8Afghs6FqyclXdTwXn8_kWZ8Utt5Gu29dkuGkHpLdsDRyzNDcwVp4ml3dJLck2O6o15ORc5xrrMY0-gaxpLK4xlAjkM8lHUnMJJKW6ZEbU3IBd3p_yXYgWqP7KlSpg0kpHas--2b_sHZuuFAIYB96_TMI8zdPbLjgpvfI3R6Z0g-dKt0nN3z9gNy5xlf4kPycrpolPcEYPoDtfk3bhs4v4btsObYtQgVQiiEBdFKsbFO_p7MQnEuP6osQcADtYKoD_gdh-g2gO3v3pfnBZh4wfMfxTE8bt9gs2aempqctqOm5f0Tm06PZ5Jj15RtYqXTasgrhROqsE5muQB3SQHcmZalcxp0DrJihb1955eCRsYeVUzFmdFqjhSnTx-Sgbmr_lFCXyUKC7cW5KUTFS8N1wYWKi0Qab42LSLL95XnZc5tjiY3LfGBlDsuUx_jgMuVXEXkzvPO9Y_b4p_RHXMlBElm5Q0OzOs_7TZ4nJnMZTJanXghb8ELE1ldJWaUepu5tRA63epD3R8U6BwyKycSwL_Z3g4UrtTaZjsiroRvOAHTsFLVvNvgJAMVwkHKQedJp1TBQRClgQoqI6B1925nJbk-9uAg84wBeACGaiLzdauY4rL__qWf_J_6c3OYYJhQihA7JQbva-BeA81r7MmzrX_CBPyc
  priority: 102
  providerName: Springer Nature
Title From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage
URI https://link.springer.com/article/10.1007/s40820-020-00587-y
https://www.ncbi.nlm.nih.gov/pubmed/34138264
https://www.proquest.com/docview/2506941656
https://www.proquest.com/docview/2619577897
https://www.proquest.com/docview/2542363827
https://pubmed.ncbi.nlm.nih.gov/PMC8010088
https://doaj.org/article/189d997f23e44ba2a40bef1cf3e255eb
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgXOCA-E3YqIzEDawljmM73NbSMhCb0NZKu0Vx4myV1gR1qaZJ_PG856RJCwMuHJJIthMl9ovf9-Tn7yPkLfwygRFBwAqlDRNxETId64IFmbQp4IfYONWSo2N5OBNfzqKzDakvzAlr6IGbjtsPdJzHsSp4aIUwKU-Fb2wRZEVoAQ1bg7Mv-LyNYAosiStUZOrXB1FWWWyw1AjkdAl7IrMIictUz48ZcQF-vXW0DZBWuITllOrgw6TyZbsDx-3DQ9Vmn2EkhjJ9it1seTknBnAbgv09EfOX1Vjn5CaPyMMWndKDplcekzu2fEIebHAWPiU_JstqQY8wjw-gu72idUVnl_BctujL5k4FlGJaAB2lS1OVH-jUJejScXnhkg6gHMJ1iAGgMT0B-M72v1bXbGoBxzc8z_S0yuerBftclfS0BlM9t8_IbDKejg5ZK-HAMqnCmhUIKcLc5AKGEEwidJRnUZTJPOZ5DngxxvV9aWUOR-RbGDnp465Oo5XQWfic7JRVaV8SmsdRGkH8xblORcEzzVXKhfTTINLW6NwjwbrLk6zlN0eZjcukY2Z2w5T4eOAwJTceedfd871h9_hr6yGOZNcSmbldAdhr0tpr8i979cje2g6Sdrq4SgCH4oZi-Ddur4YoN1JKx8ojb7pqmAdwcSctbbXCRwAwhsmUQ5sXjVV1L4pIBcJI4RG1ZW9bX7JdU84vHNc4ABhAidoj79eW2b_Wn3vq1f_oqV1yn2MCkcsd2iM79XJlXwMCrM2A3NWTTwNy72D4cTiB63B8_O0ESkdc4FmOBm46-AmUHlDv
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCawmjhM7SAhB6bJLd3ugW6m3NImddqVusuxD1Ur8Jn4jM06y6ULprYdcHMfyYzz-JjP-hpA3sGW8VHgey6VKmYhyn6lI5czLQpMAfohSm7VksB92D8X3o-Bog_xu7sJgWGWjE62i1mWG_8i34ajGO5fw-afJT4ZZo9C72qTQqMRizyzPwWSbfex9hfV9y3lnd7jTZXVWAZaF0p-zHE85X6daRDKHXvqWhSsIslBHXGuAMBG6nEMTangC13AJKB8vGqZKCpX50O4NclP4foQ7SnW-NfILFaXvtV5JTOYsLnDjCGSS8Vv6tADp0mTLyhlwAWiiPt4r-C7RcWbz48F0htIN63s_9vYf5op2Gdp_mBxQsuXa2WpTEFyGm_8N__zLB2yP1s49crfGxPRzJcT3yYYpHpA7F5gSH5JfnWk5pgOMHgSDwczovKSHZ9AuG7dlI5t7lGIwAt1JpmlZfKBDGxZMd4tTG-oA5ZMkA8sDKtMfYDSw7X55zoYGrIeKXZoelHq0GLNeWdCDOWyQE_OIHF7LEj8mm0VZmKeE6ihIArD6OFeJyHmmuEy4CN3EC5RJlXaI10x5nNWs6pjc4yxe8UHbZYpdfHCZ4qVD3q2-mVScIlfW_oIruaqJfOC2oJyexLV6iT0V6QgGy30jRJrwRLipyb0s9w0M3aQO2WrkIK6V1Cxut9Tlr8G2DqRUkXTI69Vr0D7oUkoKUy6wCYDjoMI51HlSSdWqo4iPwHgVDpFr8rY2kvU3xejUMpwDbAJsqhzyvpHMtlv_n6lnVw_yFbnVHQ76cb-3v_ec3OYYnGTjkrbI5ny6MC8AXc7Tl3ZLU3J83TrkD6dke3M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgSAgeEL8JbGAk3sBq4jixwxvrVm2wTYi10t6iOHa2SmsydanQJP547pw0aUdB4iEv9iWy47P9ne7uO0I-wJYJtAgCVkilmUiKkKlEFSzIY5sBfki0q1pyfBIfTMTXs-hsJYvfRbsvXZJNTgOyNJX14MoUgy7xDcsk-wxNH6yLJ9nNXXIPLJUAg_qGPf84l1iZqfcTYnllscJWI5DbJewJzSIkMJM9T2bEBdzv7YXbAGqJrixXsQ4mGEs_bjNxNg9r7bZzRQE2Idk_AzJveWXdZTd6TB61KJV-adTqCbljy6fk4Qp34TPyazSvZvQY4_kAwttrWld0cgnfZbO-beqqgVIMD6DDbK6r8jMdu0Bdul9euOADaAezHWwBEKY_AMazwVH1k40t4PmG75meVma6mLHDqqSnNajsuX1OJqP98fCAtaUcWB7LsGYFQovQaCMSWYBqhI76LIry2CTcGMCNCfr5YxsbeCLfwsrFPmZ3aiWFysMXZKusSvuKUJNEWQR2GOcqEwXPFZcZF7GfBZGyWhmPBMtfnuYtzzmW27hMO4Zmt0ypjw8uU3rjkY_dO1cNy8c_pXdxJTtJZOh2DdX8PG03fBqoxCQwWR5aIXTGM-FrWwR5EVqYutUe2V7qQdoeG9cp4FFMLIY9srkbrN1ISpVIj7zvuuE8QCdPVtpqgZ8AgAyHKgeZl41WdQNFxALmpPCIXNO3tZms95TTC8c5DkAG0KLyyKelZvbD-vufev1_4u_I_e97o_To8OTbG_KAY_SQCxzaJlv1fGF3AP7V-q3b4b8Bq5xGWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Micropores+to+Ultra-micropores+inside+Hard+Carbon%3A+Toward+Enhanced+Capacity+in+Room-%2FLow-Temperature+Sodium-Ion+Storage&rft.jtitle=Nano-micro+letters&rft.au=Jinlin+Yang&rft.au=Xiaowei+Wang&rft.au=Wenrui+Dai&rft.au=Xu+Lian&rft.date=2021-12-01&rft.pub=SpringerOpen&rft.issn=2311-6706&rft.eissn=2150-5551&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1007%2Fs40820-020-00587-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_189d997f23e44ba2a40bef1cf3e255eb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon