Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode

Highlights Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2 O) 6 2+ structure in aqueous Zn ion batteries. The addition of CHD could establish robust protection layers on the Zn electrode s...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 14; no. 1; pp. 110 - 17
Main Authors Wu, Zhenzhen, Li, Meng, Tian, Yuhui, Chen, Hao, Zhang, Shao-Jian, Sun, Chuang, Li, Chengpeng, Kiefel, Milton, Lai, Chao, Lin, Zhan, Zhang, Shanqing
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2 O) 6 2+ structure in aqueous Zn ion batteries. The addition of CHD could establish robust protection layers on the Zn electrode surface. The CHD-modified electrolytes exhibit long-term cycling stability. Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H 2 O) 5 (CHD)] 2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL −1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm −2 , 1000 h at 5 mA cm −2 , and 650 h at 10 mA cm −2 at the fixed capacity of 1 mAh cm −2 . When matched with V 2 O 5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g −1 with the capacity retention of 92% after 2000 cycles under 2 A g −1 . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
AbstractList Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H2O)5(CHD)]2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL-1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm-2, 1000 h at 5 mA cm-2, and 650 h at 10 mA cm-2 at the fixed capacity of 1 mAh cm-2. When matched with V2O5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g-1 with the capacity retention of 92% after 2000 cycles under 2 A g-1. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H2O)5(CHD)]2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL-1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm-2, 1000 h at 5 mA cm-2, and 650 h at 10 mA cm-2 at the fixed capacity of 1 mAh cm-2. When matched with V2O5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g-1 with the capacity retention of 92% after 2000 cycles under 2 A g-1. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H 2 O) 5 (CHD)] 2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL −1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm −2 , 1000 h at 5 mA cm −2 , and 650 h at 10 mA cm −2 at the fixed capacity of 1 mAh cm −2 . When matched with V 2 O 5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g −1 with the capacity retention of 92% after 2000 cycles under 2 A g −1 . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
HighlightsCyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale.The CHD molecules could effectively modify the hydrated Zn(H2O)62+ structure in aqueous Zn ion batteries.The addition of CHD could establish robust protection layers on the Zn electrode surface.The CHD-modified electrolytes exhibit long-term cycling stability.Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H2O)5(CHD)]2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL−1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm−2, 1000 h at 5 mA cm−2, and 650 h at 10 mA cm−2 at the fixed capacity of 1 mAh cm−2. When matched with V2O5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g−1 with the capacity retention of 92% after 2000 cycles under 2 A g−1. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
Abstract Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H2O)5(CHD)]2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL−1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm−2, 1000 h at 5 mA cm−2, and 650 h at 10 mA cm−2 at the fixed capacity of 1 mAh cm−2. When matched with V2O5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g−1 with the capacity retention of 92% after 2000 cycles under 2 A g−1. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
Highlights Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2 O) 6 2+ structure in aqueous Zn ion batteries. The addition of CHD could establish robust protection layers on the Zn electrode surface. The CHD-modified electrolytes exhibit long-term cycling stability. Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H 2 O) 5 (CHD)] 2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL −1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm −2 , 1000 h at 5 mA cm −2 , and 650 h at 10 mA cm −2 at the fixed capacity of 1 mAh cm −2 . When matched with V 2 O 5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g −1 with the capacity retention of 92% after 2000 cycles under 2 A g −1 . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2 O) 6 2+ structure in aqueous Zn ion batteries. The addition of CHD could establish robust protection layers on the Zn electrode surface. The CHD-modified electrolytes exhibit long-term cycling stability. Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H 2 O) 5 (CHD)] 2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL −1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm −2 , 1000 h at 5 mA cm −2 , and 650 h at 10 mA cm −2 at the fixed capacity of 1 mAh cm −2 . When matched with V 2 O 5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g −1 with the capacity retention of 92% after 2000 cycles under 2 A g −1 . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H O) (CHD)] complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm , 1000 h at 5 mA cm , and 650 h at 10 mA cm at the fixed capacity of 1 mAh cm . When matched with V O cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g with the capacity retention of 92% after 2000 cycles under 2 A g . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.
ArticleNumber 110
Author Lai, Chao
Zhang, Shao-Jian
Wu, Zhenzhen
Sun, Chuang
Li, Meng
Zhang, Shanqing
Tian, Yuhui
Li, Chengpeng
Lin, Zhan
Chen, Hao
Kiefel, Milton
Author_xml – sequence: 1
  givenname: Zhenzhen
  surname: Wu
  fullname: Wu, Zhenzhen
  organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University
– sequence: 2
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University
– sequence: 3
  givenname: Yuhui
  surname: Tian
  fullname: Tian, Yuhui
  organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University
– sequence: 4
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University
– sequence: 5
  givenname: Shao-Jian
  surname: Zhang
  fullname: Zhang, Shao-Jian
  organization: Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology
– sequence: 6
  givenname: Chuang
  surname: Sun
  fullname: Sun, Chuang
  organization: School of Chemistry and Materials Science, Jiangsu Normal University
– sequence: 7
  givenname: Chengpeng
  surname: Li
  fullname: Li, Chengpeng
  organization: Institute for Glycomics, Griffith University
– sequence: 8
  givenname: Milton
  surname: Kiefel
  fullname: Kiefel, Milton
  organization: Institute for Glycomics, Griffith University
– sequence: 9
  givenname: Chao
  surname: Lai
  fullname: Lai, Chao
  organization: School of Chemistry and Materials Science, Jiangsu Normal University
– sequence: 10
  givenname: Zhan
  surname: Lin
  fullname: Lin, Zhan
  email: zhanlin@gdut.edu.cn
  organization: Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology
– sequence: 11
  givenname: Shanqing
  surname: Zhang
  fullname: Zhang, Shanqing
  email: s.zhang@griffith.edu.au
  organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35441329$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEUhUeoiJbSF2CBRmLDZuD6b-zZIEVRaSMVgRBs2Fge-07iamIHe4Lo29dJWqBddGXLPufT8fV5WR2FGLCqXhN4TwDkh8xBUWiA0gZA8baBZ9UJJQIaIQQ5KntGSNNKaI-rs5x9D4JySaXgL6pjJjgnjHYnlZvf2DGu8I8J6KJDG8dmVuR5QlcvwoRpMNabsT4PSx8Qkw_Leoip_hb7bZ5qE1x96Zer5mtRxrQ2wWL90wdbf8ap2GahQF9VzwczZjy7W0-rH5_Ov88vm6svF4v57KqxrWRT03NADr20CrueopKcWyXQ0BYJdx3vFQPK3KCoJDgQ1SGwoe8H4RxKxjt2Wi0OXBfNtd4kvzbpRkfj9f4gpqU2afJ2RA1OWLAEuAHCFRe96SQ63krSEev6obA-Hlibbb9GZzFMyYwPoA9vgl_pZfytOyAdACuAd3eAFH9tMU967bPFcSyTjtusaSuoagWTvEjfPpJex20KZVQ7VUso6fave_N_or9R7j-zCNRBYFPMOeGgrZ_M5OMuoB81Ab2rjj5UR5fq6H11NBQrfWS9pz9pYgdT3uxqgelf7Cdct3Mb1f0
CitedBy_id crossref_primary_10_1002_adma_202404011
crossref_primary_10_1016_j_cej_2023_147763
crossref_primary_10_1007_s40820_023_01227_x
crossref_primary_10_1039_D3EE02945J
crossref_primary_10_1016_j_jcis_2024_08_178
crossref_primary_10_1016_j_cej_2023_141902
crossref_primary_10_1002_ange_202316841
crossref_primary_10_1002_adfm_202414563
crossref_primary_10_1021_acs_energyfuels_4c05742
crossref_primary_10_1002_anie_202307274
crossref_primary_10_1016_j_jmst_2024_05_030
crossref_primary_10_1016_j_jcis_2023_08_047
crossref_primary_10_1002_chem_202303211
crossref_primary_10_1016_j_jcis_2024_03_168
crossref_primary_10_1016_j_jechem_2024_12_032
crossref_primary_10_1016_j_cej_2023_144845
crossref_primary_10_1021_acsapm_3c01903
crossref_primary_10_1021_acs_nanolett_3c02904
crossref_primary_10_1002_ange_202215060
crossref_primary_10_1002_tcr_202400142
crossref_primary_10_1021_acsenergylett_4c02014
crossref_primary_10_1021_acsnano_3c04155
crossref_primary_10_1016_j_mtchem_2023_101629
crossref_primary_10_1016_j_scib_2023_08_024
crossref_primary_10_1002_aenm_202304341
crossref_primary_10_1002_aenm_202301670
crossref_primary_10_3390_batteries9010041
crossref_primary_10_1021_acsami_3c06907
crossref_primary_10_1016_j_cej_2023_142580
crossref_primary_10_1007_s12598_024_02705_w
crossref_primary_10_1002_ange_202307274
crossref_primary_10_1002_anie_202215060
crossref_primary_10_1016_j_jechem_2024_06_036
crossref_primary_10_1039_D3TA01943H
crossref_primary_10_1002_adfm_202306085
crossref_primary_10_1021_acsami_2c18460
crossref_primary_10_1002_anie_202403050
crossref_primary_10_1016_j_cej_2023_141328
crossref_primary_10_1002_cnl2_54
crossref_primary_10_1021_acs_nanolett_2c03114
crossref_primary_10_1039_D4EE05922K
crossref_primary_10_1007_s12598_023_02541_4
crossref_primary_10_1016_j_cej_2022_139963
crossref_primary_10_1021_acsnano_4c10901
crossref_primary_10_1007_s40820_023_01136_z
crossref_primary_10_1002_adfm_202306359
crossref_primary_10_1016_j_cej_2024_155858
crossref_primary_10_1002_smtd_202201277
crossref_primary_10_1021_acsami_4c19265
crossref_primary_10_1002_anie_202301570
crossref_primary_10_1021_acssuschemeng_2c05835
crossref_primary_10_1016_j_jmst_2024_03_024
crossref_primary_10_1002_ange_202403050
crossref_primary_10_1002_anie_202316841
crossref_primary_10_1016_j_jcis_2023_06_196
crossref_primary_10_1016_j_jcis_2025_137251
crossref_primary_10_1021_acsami_3c08474
crossref_primary_10_1002_adfm_202404219
crossref_primary_10_1016_j_cej_2022_139573
crossref_primary_10_1016_j_cej_2024_152577
crossref_primary_10_1021_acssuschemeng_4c09979
crossref_primary_10_1021_acssuschemeng_3c04018
crossref_primary_10_1016_j_ensm_2024_103856
crossref_primary_10_1002_ange_202301570
crossref_primary_10_1002_adfm_202413807
crossref_primary_10_1016_j_cej_2023_141392
crossref_primary_10_1039_D3DT04030E
Cites_doi 10.1021/acs.chemrev.9b00531
10.1103/PhysRevB.28.1809
10.1103/PhysRevB.50.17953
10.1016/j.nanoen.2014.12.011
10.1002/adfm.202100594
10.1016/0927-0256(96)00008-0
10.1002/smll.202100778
10.1007/s40820-020-00554-7
10.1002/adma.202003021
10.1002/anie.202000162
10.1002/anie.202105756
10.1002/jcc.21759
10.1063/1.448118
10.1139/v88-057
10.1002/adma.202003425
10.1103/PhysRevB.54.11169
10.1016/j.softx.2015.06.001
10.1002/adfm.202112091
10.1021/jacs.6b05958
10.1002/adfm.202001263
10.1038/s41563-018-0063-z
10.1002/aenm.202102010
10.1016/j.ensm.2020.10.019
10.1039/c9cs00349e
10.1063/1.2408420
10.1063/1.464397
10.1039/d1ee00030f
10.1038/s41560-021-00841-6
10.1002/ange.202016531
10.1021/acsami.5b10024
10.1002/aenm.202003065
10.1002/aenm.201900704
10.1002/aenm.202100186
10.1063/1.328693
10.1007/s40820-020-00522-1
10.1063/1.3382344
10.1007/s40820-021-00641-3
10.1103/PhysRevLett.77.3865
10.1021/acsenergylett.1c00833
10.1007/s40820-021-00594-7
10.1007/s40820-021-00612-8
10.1016/j.carbon.2020.12.018
10.1016/j.joule.2020.05.018
10.1039/C9EE03545A
10.1016/j.nanoen.2019.104128
10.1038/s41467-020-14505-8
10.1021/acs.nanolett.5b00795
10.1002/advs.202100309
10.1021/jacs.8b08963
10.1002/ange.201907830
10.1021/acsenergylett.0c01792
ContentType Journal Article
Copyright Crown 2022
2022. Crown.
Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Crown 2022
– notice: 2022. Crown.
– notice: Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-022-00846-0
DatabaseName Springer Nature Link
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database



PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 17
ExternalDocumentID oai_doaj_org_article_0d5c0c104a014845ba97ed467191cdbf
PMC9019003
35441329
10_1007_s40820_022_00846_0
Genre Journal Article
GrantInformation_xml – fundername: Shanghai Jiao Tong University
– fundername: ;
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c673t-b40e40b7c8e9b2e8744c85ea26e14d94b83023df8271ef189e03fbbf5dde73493
IEDL.DBID C24
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 01:20:06 EDT 2025
Thu Aug 21 18:16:25 EDT 2025
Fri Jul 11 10:27:01 EDT 2025
Wed Aug 13 04:33:12 EDT 2025
Wed Feb 19 02:24:54 EST 2025
Tue Jul 01 00:55:47 EDT 2025
Thu Apr 24 23:08:22 EDT 2025
Fri Feb 21 02:45:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Zn dendrite
Cyclohexanedodecol
Aqueous Zn-ion battery
Zn corrosion
Hydrogen evolution
Language English
License 2022. Crown.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c673t-b40e40b7c8e9b2e8744c85ea26e14d94b83023df8271ef189e03fbbf5dde73493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/10.1007/s40820-022-00846-0
PMID 35441329
PQID 2656121949
PQPubID 2044332
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_0d5c0c104a014845ba97ed467191cdbf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9019003
proquest_miscellaneous_2652865374
proquest_journals_2656121949
pubmed_primary_35441329
crossref_citationtrail_10_1007_s40820_022_00846_0
crossref_primary_10_1007_s40820_022_00846_0
springer_journals_10_1007_s40820_022_00846_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2022
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Sun, Wu, Gu, Wang, Wang (CR38) 2021; 13
Ling, Xu, Zhao, Gu, Qiu (CR44) 2015; 12
Hao, Li, Zhang, Yang, Zeng (CR15) 2020; 30
Li, Liu, Liu, Ba, Liu (CR24) 2021; 13
Ling, Qiu, Li, Yan, Kiefel (CR45) 2015; 15
Grimme, Antony, Ehrlich, Krieg (CR30) 2010; 132
Langreth, Mehl (CR26) 1983; 28
Wang, Dong, Huang, Jia, Zhao (CR5) 2021; 13
Grimme, Ehrlich, Goerigk (CR31) 2011; 32
Zong, Du, Liu, Yang, Zhang (CR51) 2021; 13
Hao, Yuan, Ye, Chao, Davey (CR12) 2021; 133
Li, Ouyang, Xiong, Jiang, Adekoya (CR2) 2021; 174
Kresse, Furthmüller (CR28) 1996; 54
Adekoya, Qian, Gu, Wen, Li (CR4) 2021; 13
Chen, Yuan, Xia, Zhang, Fu (CR18) 2021; 8
Secco (CR41) 1988; 66
Bussi, Donadio, Parrinello (CR34) 2007; 126
Abraham, Murtola, Schulz, Páll, Smith (CR32) 2015; 1–2
Hao, Li, Li, Zeng, Zhang (CR16) 2020; 32
Blöchl (CR29) 1994; 50
Xie, Liang, Gao, Guo, Guo (CR49) 2020; 13
Zhang, Cheng, Liu, Zhao, Lei (CR20) 2016; 138
Li, Liu, Wang, He, Liu (CR42) 2019; 9
Sun, Ma, Zhou, Qiu, Wang (CR10) 2021; 133
Wang, Borodin, Gao, Fan, Sun (CR22) 2018; 17
Yi, Chen, Hou, Wang, Liang (CR19) 2020; 11
Zhang, Luan, Tang, Ji, Wang (CR13) 2020; 59
Darden, York, Pedersen (CR33) 1993; 98
Parrinello, Rahman (CR36) 1981; 52
Xu (CR7) 2021; 6
Nian, Zhang, Feng, Liu, Sun (CR11) 2021; 6
Zhou, Huang, Xiong, Yang, Yang (CR3) 2021; 17
Berendsen, Postma, Gunsteren, DiNola, Haak (CR35) 1984; 81
Dong, Dai, Fan, Lai, Zhang (CR9) 2019; 66
Bayaguud, Luo, Fu, Zhu (CR37) 2020; 5
Zhang, Chen, Yu, Niu, Cheng (CR14) 2020; 49
Li, Wang, Chen, Xu, Lu (CR1) 2020; 120
Li, Li, Wang, Meng, Liu (CR6) 2021; 14
Sun, Dong, Lu, Li, Lai (CR46) 2021; 31
Guo, Qin, Zhang, Zhou, Zhou (CR23) 2021; 34
Han, Rajput, Qu, Pan, He (CR21) 2016; 8
Huang, Zhao, Hao, Yang, Qian (CR50) 2022
Yan, Li, Nan, Yang, Li (CR17) 2021; 11
Zhang, Luan, Fu, Wu, Tang (CR48) 2019; 58
Perdew, Burke, Ernzerhof (CR25) 1996; 77
Dai, Gu, Dong, Wang, Lai (CR39) 2020; 11
Zhang, Hao, Luo, Zhang, Zhang (CR40) 2021; 11
Yang, Du, Zhao, Chen, Li (CR43) 2020; 4
Li, Sun, Yang, Yu, Wei (CR47) 2020; 32
Dai, Xi, Liu, Lai, Zhang (CR8) 2018; 140
Kresse, Furthmüller (CR27) 1996; 6
A Bayaguud (846_CR37) 2020; 5
H Dai (846_CR8) 2018; 140
J Hao (846_CR12) 2021; 133
JP Perdew (846_CR25) 1996; 77
G Kresse (846_CR27) 1996; 6
M Ling (846_CR44) 2015; 12
G Li (846_CR2) 2021; 174
M Li (846_CR1) 2020; 120
K Xu (846_CR7) 2021; 6
P Sun (846_CR10) 2021; 133
J Hao (846_CR15) 2020; 30
Q Zhang (846_CR48) 2019; 58
S Zhou (846_CR3) 2021; 17
F Wang (846_CR22) 2018; 17
N Zhang (846_CR14) 2020; 49
J Dong (846_CR9) 2019; 66
T Darden (846_CR33) 1993; 98
MJ Abraham (846_CR32) 2015; 1–2
G Kresse (846_CR28) 1996; 54
M Ling (846_CR45) 2015; 15
S Guo (846_CR23) 2021; 34
C Li (846_CR47) 2020; 32
HJC Berendsen (846_CR35) 1984; 81
J Hao (846_CR16) 2020; 32
C Sun (846_CR46) 2021; 31
S Grimme (846_CR31) 2011; 32
G Li (846_CR42) 2019; 9
X Xie (846_CR49) 2020; 13
Q Zong (846_CR51) 2021; 13
P Chen (846_CR18) 2021; 8
S Grimme (846_CR30) 2010; 132
D Adekoya (846_CR4) 2021; 13
L Li (846_CR24) 2021; 13
Z Yi (846_CR19) 2020; 11
SJ Zhang (846_CR40) 2021; 11
PE Blöchl (846_CR29) 1994; 50
H Dai (846_CR39) 2020; 11
EA Secco (846_CR41) 1988; 66
Z Wang (846_CR5) 2021; 13
Q Nian (846_CR11) 2021; 6
G Bussi (846_CR34) 2007; 126
M Li (846_CR6) 2021; 14
DC Langreth (846_CR26) 1983; 28
SD Han (846_CR21) 2016; 8
C Sun (846_CR38) 2021; 13
H Yan (846_CR17) 2021; 11
N Zhang (846_CR20) 2016; 138
W Yang (846_CR43) 2020; 4
Q Zhang (846_CR13) 2020; 59
M Parrinello (846_CR36) 1981; 52
C Huang (846_CR50) 2022
References_xml – volume: 120
  start-page: 6783
  issue: 14
  year: 2020
  end-page: 6819
  ident: CR1
  article-title: New concepts in electrolytes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00531
– volume: 28
  start-page: 1809
  issue: 4
  year: 1983
  end-page: 1834
  ident: CR26
  article-title: Beyond the local-density approximation in calculations of ground-state electronic properties
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.1809
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  end-page: 17979
  ident: CR29
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 12
  start-page: 178
  year: 2015
  end-page: 185
  ident: CR44
  article-title: Dual-functional gum arabic binder for silicon anodes in lithium ion batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.011
– volume: 31
  start-page: 2100594
  issue: 26
  year: 2021
  ident: CR46
  article-title: Sol electrolyte: pathway to long-term stable lithium metal anode
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100594
– volume: 6
  start-page: 15
  issue: 1
  year: 1996
  end-page: 50
  ident: CR27
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 17
  start-page: 2100778
  issue: 26
  year: 2021
  ident: CR3
  article-title: Sub-thick electrodes with enhanced transport kinetics via in situ epitaxial heterogeneous interfaces for high areal-capacity lithium ion batteries
  publication-title: Small
  doi: 10.1002/smll.202100778
– volume: 13
  start-page: 34
  year: 2021
  ident: CR24
  article-title: Electrolyte concentration regulation boosting zinc storage stability of high-capacity K V O cathode for bendable quasi-solid-state zinc ion batteries
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00554-7
– volume: 32
  start-page: 2003021
  issue: 34
  year: 2020
  ident: CR16
  article-title: An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003021
– volume: 59
  start-page: 13180
  issue: 32
  year: 2020
  end-page: 13191
  ident: CR13
  article-title: Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000162
– volume: 133
  start-page: 18395
  issue: 33
  year: 2021
  end-page: 18403
  ident: CR10
  article-title: Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries: achieved by a low-cost glucose additive
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105756
– volume: 32
  start-page: 1456
  issue: 7
  year: 2011
  end-page: 1465
  ident: CR31
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 81
  start-page: 3684
  issue: 8
  year: 1984
  end-page: 3690
  ident: CR35
  article-title: Molecular dynamics with coupling to an external bath
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 66
  start-page: 329
  issue: 2
  year: 1988
  end-page: 336
  ident: CR41
  article-title: Spectroscopic properties of SO (and OH) in different molecular and crystalline environments. I. Infrared spectra of Cu (OH) SO , Cu (OH) OSO , and Cu (OH) SO
  publication-title: Can. J. Chem.
  doi: 10.1139/v88-057
– volume: 32
  start-page: 2003425
  issue: 33
  year: 2020
  ident: CR47
  article-title: Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003425
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  end-page: 11186
  ident: CR28
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 1–2
  start-page: 19
  year: 2015
  end-page: 25
  ident: CR32
  article-title: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– year: 2022
  ident: CR50
  article-title: Self-healing SeO additives enable zinc metal reversibility in aqueous ZnSO electrolytes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112091
– volume: 138
  start-page: 12894
  issue: 39
  year: 2016
  end-page: 12901
  ident: CR20
  article-title: Cation-deficient spinel Znmn O cathode in Zn(CF SO ) electrolyte for rechargeable aqueous Zn-ion battery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 30
  start-page: 2001263
  issue: 30
  year: 2020
  ident: CR15
  article-title: Designing dendrite-free zinc anodes for advanced aqueous zinc batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001263
– volume: 17
  start-page: 543
  issue: 6
  year: 2018
  end-page: 549
  ident: CR22
  article-title: Highly reversible zinc metal anode for aqueous batteries
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 11
  start-page: 2102010
  issue: 37
  year: 2021
  ident: CR40
  article-title: Dual-function electrolyte additive for highly reversible Zn anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102010
– volume: 34
  start-page: 545
  year: 2021
  end-page: 562
  ident: CR23
  article-title: Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.019
– volume: 49
  start-page: 4203
  issue: 13
  year: 2020
  end-page: 4219
  ident: CR14
  article-title: Materials chemistry for rechargeable zinc-ion batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c9cs00349e
– volume: 126
  issue: 1
  year: 2007
  ident: CR34
  article-title: Canonical sampling through velocity rescaling
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 98
  start-page: 10089
  issue: 12
  year: 1993
  end-page: 10092
  ident: CR33
  article-title: Particle mesh ewald: an N⋅log(N) method for ewald sums in large systems
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 14
  start-page: 3796
  issue: 7
  year: 2021
  end-page: 3839
  ident: CR6
  article-title: Comprehensive understandings into roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee00030f
– volume: 6
  start-page: 763
  issue: 7
  year: 2021
  end-page: 763
  ident: CR7
  article-title: Li-ion battery electrolytes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00841-6
– volume: 133
  start-page: 7442
  issue: 13
  year: 2021
  end-page: 7451
  ident: CR12
  article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202016531
– volume: 8
  start-page: 3021
  issue: 5
  year: 2016
  end-page: 3031
  ident: CR21
  article-title: Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10024
– volume: 11
  start-page: 2003065
  issue: 1
  year: 2020
  ident: CR19
  article-title: Strategies for the stabilization of Zn metal anodes for Zn-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003065
– volume: 9
  start-page: 1900704
  issue: 22
  year: 2019
  ident: CR42
  article-title: Electrokinetic phenomena enhanced lithium-ion transport in leaky film for stable lithium metal anodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900704
– volume: 11
  start-page: 2100186
  issue: 18
  year: 2021
  ident: CR17
  article-title: Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100186
– volume: 52
  start-page: 7182
  issue: 12
  year: 1981
  end-page: 7190
  ident: CR36
  article-title: Polymorphic transitions in single crystals: a new molecular dynamics method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 13
  start-page: 13
  year: 2021
  ident: CR4
  article-title: DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00522-1
– volume: 132
  issue: 15
  year: 2010
  ident: CR30
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PU
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 13
  start-page: 116
  year: 2021
  ident: CR51
  article-title: Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00641-3
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  end-page: 3868
  ident: CR25
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 6
  start-page: 2174
  issue: 6
  year: 2021
  end-page: 2180
  ident: CR11
  article-title: Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00833
– volume: 13
  start-page: 73
  year: 2021
  ident: CR5
  article-title: Simultaneously regulating uniform Zn flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00594-7
– volume: 13
  start-page: 89
  year: 2021
  ident: CR38
  article-title: Interface engineering via Ti C T MXene electrolyte additive toward dendrite-free zinc deposition
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00612-8
– volume: 174
  start-page: 1
  issue: 15
  year: 2021
  end-page: 9
  ident: CR2
  article-title: All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-ion storage
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.12.018
– volume: 4
  start-page: 1557
  issue: 7
  year: 2020
  end-page: 1574
  ident: CR43
  article-title: Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2020.05.018
– volume: 13
  start-page: 503
  issue: 2
  year: 2020
  end-page: 510
  ident: CR49
  article-title: Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03545A
– volume: 66
  year: 2019
  ident: CR9
  article-title: Grain refining mechanisms: initial levelling stage during nucleation for high-stability lithium anodes
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104128
– volume: 11
  start-page: 643
  year: 2020
  ident: CR39
  article-title: Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14505-8
– volume: 15
  start-page: 4440
  issue: 7
  year: 2015
  end-page: 4447
  ident: CR45
  article-title: Multifunctional SA-PProDOT binder for lithium ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00795
– volume: 8
  start-page: 2100309
  issue: 11
  year: 2021
  ident: CR18
  article-title: An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100309
– volume: 140
  start-page: 17515
  issue: 50
  year: 2018
  end-page: 17521
  ident: CR8
  article-title: Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08963
– volume: 58
  start-page: 15841
  issue: 44
  year: 2019
  end-page: 15847
  ident: CR48
  article-title: The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201907830
– volume: 5
  start-page: 3012
  issue: 9
  year: 2020
  end-page: 3020
  ident: CR37
  article-title: Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01792
– volume: 174
  start-page: 1
  issue: 15
  year: 2021
  ident: 846_CR2
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.12.018
– volume: 50
  start-page: 17953
  issue: 24
  year: 1994
  ident: 846_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 11
  start-page: 2003065
  issue: 1
  year: 2020
  ident: 846_CR19
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003065
– volume: 52
  start-page: 7182
  issue: 12
  year: 1981
  ident: 846_CR36
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 32
  start-page: 2003021
  issue: 34
  year: 2020
  ident: 846_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003021
– volume: 12
  start-page: 178
  year: 2015
  ident: 846_CR44
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.12.011
– volume: 11
  start-page: 2102010
  issue: 37
  year: 2021
  ident: 846_CR40
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102010
– volume: 66
  start-page: 329
  issue: 2
  year: 1988
  ident: 846_CR41
  publication-title: Can. J. Chem.
  doi: 10.1139/v88-057
– volume: 4
  start-page: 1557
  issue: 7
  year: 2020
  ident: 846_CR43
  publication-title: Joule
  doi: 10.1016/j.joule.2020.05.018
– volume: 11
  start-page: 2100186
  issue: 18
  year: 2021
  ident: 846_CR17
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100186
– volume: 28
  start-page: 1809
  issue: 4
  year: 1983
  ident: 846_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.28.1809
– volume: 17
  start-page: 543
  issue: 6
  year: 2018
  ident: 846_CR22
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0063-z
– volume: 32
  start-page: 1456
  issue: 7
  year: 2011
  ident: 846_CR31
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 13
  start-page: 34
  year: 2021
  ident: 846_CR24
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00554-7
– year: 2022
  ident: 846_CR50
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202112091
– volume: 6
  start-page: 15
  issue: 1
  year: 1996
  ident: 846_CR27
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 132
  issue: 15
  year: 2010
  ident: 846_CR30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 13
  start-page: 73
  year: 2021
  ident: 846_CR5
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00594-7
– volume: 49
  start-page: 4203
  issue: 13
  year: 2020
  ident: 846_CR14
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c9cs00349e
– volume: 81
  start-page: 3684
  issue: 8
  year: 1984
  ident: 846_CR35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448118
– volume: 98
  start-page: 10089
  issue: 12
  year: 1993
  ident: 846_CR33
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464397
– volume: 31
  start-page: 2100594
  issue: 26
  year: 2021
  ident: 846_CR46
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100594
– volume: 6
  start-page: 763
  issue: 7
  year: 2021
  ident: 846_CR7
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00841-6
– volume: 133
  start-page: 18395
  issue: 33
  year: 2021
  ident: 846_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105756
– volume: 14
  start-page: 3796
  issue: 7
  year: 2021
  ident: 846_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/d1ee00030f
– volume: 13
  start-page: 503
  issue: 2
  year: 2020
  ident: 846_CR49
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03545A
– volume: 133
  start-page: 7442
  issue: 13
  year: 2021
  ident: 846_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.202016531
– volume: 8
  start-page: 3021
  issue: 5
  year: 2016
  ident: 846_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b10024
– volume: 13
  start-page: 13
  year: 2021
  ident: 846_CR4
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00522-1
– volume: 140
  start-page: 17515
  issue: 50
  year: 2018
  ident: 846_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08963
– volume: 5
  start-page: 3012
  issue: 9
  year: 2020
  ident: 846_CR37
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c01792
– volume: 126
  issue: 1
  year: 2007
  ident: 846_CR34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2408420
– volume: 9
  start-page: 1900704
  issue: 22
  year: 2019
  ident: 846_CR42
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900704
– volume: 54
  start-page: 11169
  issue: 16
  year: 1996
  ident: 846_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 13
  start-page: 89
  year: 2021
  ident: 846_CR38
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00612-8
– volume: 11
  start-page: 643
  year: 2020
  ident: 846_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14505-8
– volume: 77
  start-page: 3865
  issue: 18
  year: 1996
  ident: 846_CR25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 30
  start-page: 2001263
  issue: 30
  year: 2020
  ident: 846_CR15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001263
– volume: 17
  start-page: 2100778
  issue: 26
  year: 2021
  ident: 846_CR3
  publication-title: Small
  doi: 10.1002/smll.202100778
– volume: 15
  start-page: 4440
  issue: 7
  year: 2015
  ident: 846_CR45
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00795
– volume: 13
  start-page: 116
  year: 2021
  ident: 846_CR51
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00641-3
– volume: 1–2
  start-page: 19
  year: 2015
  ident: 846_CR32
  publication-title: SoftwareX
  doi: 10.1016/j.softx.2015.06.001
– volume: 58
  start-page: 15841
  issue: 44
  year: 2019
  ident: 846_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201907830
– volume: 66
  year: 2019
  ident: 846_CR9
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104128
– volume: 34
  start-page: 545
  year: 2021
  ident: 846_CR23
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.10.019
– volume: 138
  start-page: 12894
  issue: 39
  year: 2016
  ident: 846_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05958
– volume: 32
  start-page: 2003425
  issue: 33
  year: 2020
  ident: 846_CR47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003425
– volume: 6
  start-page: 2174
  issue: 6
  year: 2021
  ident: 846_CR11
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c00833
– volume: 120
  start-page: 6783
  issue: 14
  year: 2020
  ident: 846_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00531
– volume: 8
  start-page: 2100309
  issue: 11
  year: 2021
  ident: 846_CR18
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100309
– volume: 59
  start-page: 13180
  issue: 32
  year: 2020
  ident: 846_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202000162
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.529361
Snippet Highlights Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the...
Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable....
HighlightsCyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale.The CHD molecules could effectively modify the...
Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2...
Abstract Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110
SubjectTerms Anodes
Aqueous Zn-ion battery
Commercialization
Cycles
Cyclohexanedodecol
Dendritic structure
Electrolytes
Energy storage
Engineering
Flammability
Hydrogen evolution
Industrial energy
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Plating
Rechargeable batteries
Robustness
Storage batteries
Zinc
Zinc Anodes
Zn corrosion
Zn dendrite
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Li9YwEA-yJz2Ib6urRPCmwebVNEddXBZhRcSFxUvJq-zCR7u4_Q7-986k_dp-Pi9e26QNM79kMsnMbwh5ifmLUSfDwDaCg8JTYHUrFANXIToXaydzUtjpx-rkTH041-erUl8YEzbSA4-Ce1NGHcoAToPDsy-lvbMmRZje4GiE6FtcfcHmrZwpQJIwWJFpuR_EsspqxVKjkNNFLkRmGonLzMKPqYWCsU-GdtxIG7zCypXqOGeVKaspAyfn4WHV5pJhYDzy04OLvmflcjGA3-1gfw3E_Ok2Nhu54zvk9rQ7pW9HqdwlN1J3j9xacRbeJ_Hoe9j0F5gWk2IfwXvdMNAxoiXSfL7YOjyGp6teFHbG9HPvt9cDdV2kGFzCPi0pC_TrZRfoaRrw3x189AE5O37_5eiETaUaWKiMHJhXZVKlN6FO1ouEnPqh1smJKnEVrfJIMyZjWwMiUstrm0rZet9qWF1BF1Y-JAdd36XHhHLtACRRtlx71QbhwUGrbArSARJkqgrCd6JtwsRjjuU0Ns3MwJzV0YA6mqyOpizIq7nP1cji8dfW71Bjc0tk4M4PAJfNhMvmX7gsyOFO3820LFw3osJipNwqW5AX82uY0HhLA2rrt7kNZgtLowryaITHPBKJFeOkgN5mDzh7Q91_011eZNJwi6QBpSzI6x3ElmH9WRRP_oconpKbAudGDgI6JAfDt216Blu5wT_Ps_YH7hI5OA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauLSHqm9CaeVKvbVWk9iOk1MFCIQqgRAqEuol8isFaZVQNnvg33fG6yS7FLgmduJkxmPPjOf7CPmC9YtOesVgbQQHJfOWlU0uGLgKTmtXah6Kwo5PiqNz8fNCXsSA2zweqxxsYjDUrrMYI_-eF8jjCC539eP6L0PWKMyuRgqNp2QTTHAJztfm3sHJ6dmgUblCZqYpT4j0ymIFrUYgtgufAM0kApipCSdT5gK-IS64yw21wlRWYKzLMlaotIiVOKEeD9mbU4YH5BGnHlz1tdUukALct5P9_0DmnaxsWOwOX5IXcZdKd5dq9Yo88e1r8nwFu_ANcfu3dtZdYnmMd50DL3bGQNaoNY6GOGOjMRxPV3pR2CHTs84s5j3VraN4yISdTqUL9PdVa-mx7_HdLTz0LTk_PPi1f8QiZQOzheI9MyL1IjXKlr4yuUdsfVtKr_PCZ8JVwiDcGHdNCZrhm6ysfMobYxoJVhZkUfF3ZKPtWr9FaCY1KIvjTSaNaGxuwFErKm-5dtJyXyQkG35tbSOeOdJqzOoRiTmIowZx1EEcdZqQr2Of6yWax6Ot91BiY0tE4g4Xups_dZzYdQqjSS04tRpjs0IaXSnvYPkBR9g60yRkZ5B3Hc3DvJ6UOSGfx9swsTFbA2LrFqENVg1zJRLyfqke40g4MsfxHHqrNcVZG-r6nfbqMoCHVwgekPKEfBtUbBrWw79i-_Gv-ECe5aj14ZjPDtnobxb-I2zWevMpzsh_N3cyKw
  priority: 102
  providerName: ProQuest
Title Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode
URI https://link.springer.com/article/10.1007/s40820-022-00846-0
https://www.ncbi.nlm.nih.gov/pubmed/35441329
https://www.proquest.com/docview/2656121949
https://www.proquest.com/docview/2652865374
https://pubmed.ncbi.nlm.nih.gov/PMC9019003
https://doaj.org/article/0d5c0c104a014845ba97ed467191cdbf
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_W9mV7GPuuty5osLdNYFuSZT82WbMyaCllhbIXY314LQR7NMnD_vvdKf5Itm6wlxhiyT58J92d7u53AO-pftEprznqRnRQEm95XqeSo6vgqsrllQhFYWfn2emV_HKtrruisGWf7d6HJMNOPRS7UWvkmFP2OYHAox-8BwcKfXeS69mIOZ5q6sY0xgappbLcQqiRhOciRhAzRaBlesTGVKlEujsluzGiNYWvQpe6JOGZjrOu-uZ-snY0XGgEcJ_1-mcS5m-R2KDg5k_gcWeZsuONKD2FB755Bo-28Aqfg5v9tIv2hkpivGsdeq4LjvwlSXEsnC3WFR3Bs61ZDK1idtma9XLFqsYxSizhF2O5Avt221h25lf07gYf-gKu5idfZ6e8a9PAbabFihsZexkbbXNfmNQTnr7Nla_SzCfSFdIQxJhwdY7S4OskL3wsamNqhTsr8qIQL2G_aRt_CCxRFQqIE3WijKxtatA5ywpvReWUFT6LIOk_bWk7DHNqpbEoB_TlwI4S2VEGdpRxBB-GOT82CB7_HD0ljg0jCX07_NHefS-7xVzGSE1s0ZGt6DxWKlMV2jtUOej8WmfqCI56fpfdlrAs04wakSaFLCJ4N9zGxUwRGmRbuw5jqFJYaBnBq414DJQI6hYnUpytdwRnh9TdO83tTQAMLwgwIBYRfOxFbCTr75_i9f8NfwMPU1oFIdXnCPZXd2v_Fg22lZnAXj7_PIGD4-mn6Ryv05Pzi8tJWLX0m80m4SjkF-lQMx0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDehBYwEJ7BIbCdODghBYdnSboVQK1Vc0vgRWmmVtN2sUP8Uv5EZJ9ns8uit18TeeD3jedie7yPkBdYv2tgpBr4REpTIGZaWXDJIFWxR2LQQvihsspeMD-SXw_hwjfzqa2HwWmVvE72htrXBPfI3PEEeR0i5s3enZwxZo_B0tafQaNVix138hJRt9nb7I8j3JeejT_tbY9axCjCTKNEwLUMnQ61M6jLNHcK_mzR2BU9cJG0mNSJiCVumMHhXRmnmQlFqXcZgCJSQCL4EJv-aFCLDFZWOPvf6yxXyQA2nkkjmLJewcSQiyYgBPi1GuDQ1oHLGXMKMde69Dd8VHpx5frwoYokKk67ux1f_IVd0yPA6PqLiJyxc8a2eguBfcfPf1z__OAP2rnV0m9zqYmL6vlXiO2TNVXfJzSWkxHvEbl2YaX2MxTjO1hZy5ikDzUIdtdTvapYFbv7TpV4U4nH6rdbzWUOLylK80sK-DoUS9PtJZejENfjtCn70Pjm4ElE-IOtVXblHhEZxAappRRnFWpaGa0gLk8wZUdjYCJcEJOqnNjcdejqSeEzzBe6zF0cO4si9OPIwIK8WfU5b7JBLW39AiS1aIu63f1Cf_8g7M5KHMJrQQApd4E6wjHWRKWfB2UHabawuA7LZyzvvjNEsH5ZOQJ4vXoMZwbMhEFs9922wRlkoGZCHrXosRiKQp05w6K1WFGdlqKtvqpNjD1WeIVRBKALyulexYVj_n4rHl_-LZ-T6eH-ym-9u7-1skBscV4C_YLRJ1pvzuXsCYWKjn_q1ScnRVRuD37oSbfs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gSIg9ID5HYUCReINobZM07SMcnMbHpgkxaeIlyiebdGqnrfew_x477bV3MJB4bZPWjZ3aju2fCXmN9YtOeElBN4KDkntLq1BwCq6C09pVmsWisIPDcv-Yfz4RJ2tV_DHbfRWS7GsaEKWp6fbOXdgbC9-wTXJGMRMdAeHBJ75JboGnkmNS32zCHy8kdmaa4oTYXpmvodVwxHZhE6CZQAAzOeFkioLDNwwKtzeoJYayYse6PKelzMqhEud6sja0XWwKcJ0l-2dC5m9R2ajs5vfI3cFKTd_1YnWf3PDNA7K9hl34kLjZlV20p1ge413rwItdUOA1So1L4zlj0Hgcn67NSsFCTr-1ZnnZpbpxKSaZ0KOpdCH9cdbY9MB3-O4GHvqIHM8_fp_t06FlA7WlZB01PPM8M9JWvjaFR2x9Wwmvi9Ln3NXcINwYc6ECyfAhr2qfsWBMEPCXBV7U7DHZatrGPyFpLjQIi2MhF4YHWxhw1MraW6adsMyXCclXS6vsgGeObTUWakRijuxQwA4V2aGyhLwZ55z3aB7_HP0eOTaORCTueKG9-KmGja0yoCaz4NRqPJvlwuhaegfqBxxh60xIyO6K32r4PVyqosSmpHnN64S8Gm_DxsZoDbCtXcYxWDXMJE_ITi8eIyUMO8exAmbLDcHZIHXzTnN2GsHDawQPyFhC3q5EbCLr70vx9P-GvyS3jz7M1ddPh1-ekTsFboiYAbRLtrqLpX8OdlxnXsSt-gtwMjSK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclohexanedodecol-Assisted+Interfacial+Engineering+for+Robust+and+High-Performance+Zinc+Metal+Anode&rft.jtitle=Nano-micro+letters&rft.au=Wu%2C+Zhenzhen&rft.au=Li%2C+Meng&rft.au=Tian%2C+Yuhui&rft.au=Chen%2C+Hao&rft.date=2022-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=14&rft.issue=1&rft.spage=110&rft_id=info:doi/10.1007%2Fs40820-022-00846-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon