Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode
Highlights Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2 O) 6 2+ structure in aqueous Zn ion batteries. The addition of CHD could establish robust protection layers on the Zn electrode s...
Saved in:
Published in | Nano-micro letters Vol. 14; no. 1; pp. 110 - 17 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2022
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale.
The CHD molecules could effectively modify the hydrated Zn(H
2
O)
6
2+
structure in aqueous Zn ion batteries.
The addition of CHD could establish robust protection layers on the Zn electrode surface.
The CHD-modified electrolytes exhibit long-term cycling stability.
Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H
2
O)
5
(CHD)]
2+
complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL
−1
CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm
−2
, 1000 h at 5 mA cm
−2
, and 650 h at 10 mA cm
−2
at the fixed capacity of 1 mAh cm
−2
. When matched with V
2
O
5
cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g
−1
with the capacity retention of 92% after 2000 cycles under 2 A g
−1
. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. |
---|---|
AbstractList | Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H2O)5(CHD)]2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL-1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm-2, 1000 h at 5 mA cm-2, and 650 h at 10 mA cm-2 at the fixed capacity of 1 mAh cm-2. When matched with V2O5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g-1 with the capacity retention of 92% after 2000 cycles under 2 A g-1. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage.Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H2O)5(CHD)]2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL-1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm-2, 1000 h at 5 mA cm-2, and 650 h at 10 mA cm-2 at the fixed capacity of 1 mAh cm-2. When matched with V2O5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g-1 with the capacity retention of 92% after 2000 cycles under 2 A g-1. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H 2 O) 5 (CHD)] 2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL −1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm −2 , 1000 h at 5 mA cm −2 , and 650 h at 10 mA cm −2 at the fixed capacity of 1 mAh cm −2 . When matched with V 2 O 5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g −1 with the capacity retention of 92% after 2000 cycles under 2 A g −1 . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. HighlightsCyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale.The CHD molecules could effectively modify the hydrated Zn(H2O)62+ structure in aqueous Zn ion batteries.The addition of CHD could establish robust protection layers on the Zn electrode surface.The CHD-modified electrolytes exhibit long-term cycling stability.Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H2O)5(CHD)]2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL−1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm−2, 1000 h at 5 mA cm−2, and 650 h at 10 mA cm−2 at the fixed capacity of 1 mAh cm−2. When matched with V2O5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g−1 with the capacity retention of 92% after 2000 cycles under 2 A g−1. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. Abstract Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H2O)5(CHD)]2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL−1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm−2, 1000 h at 5 mA cm−2, and 650 h at 10 mA cm−2 at the fixed capacity of 1 mAh cm−2. When matched with V2O5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g−1 with the capacity retention of 92% after 2000 cycles under 2 A g−1. Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. Highlights Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2 O) 6 2+ structure in aqueous Zn ion batteries. The addition of CHD could establish robust protection layers on the Zn electrode surface. The CHD-modified electrolytes exhibit long-term cycling stability. Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H 2 O) 5 (CHD)] 2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL −1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm −2 , 1000 h at 5 mA cm −2 , and 650 h at 10 mA cm −2 at the fixed capacity of 1 mAh cm −2 . When matched with V 2 O 5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g −1 with the capacity retention of 92% after 2000 cycles under 2 A g −1 . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2 O) 6 2+ structure in aqueous Zn ion batteries. The addition of CHD could establish robust protection layers on the Zn electrode surface. The CHD-modified electrolytes exhibit long-term cycling stability. Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H 2 O) 5 (CHD)] 2+ complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL −1 CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm −2 , 1000 h at 5 mA cm −2 , and 650 h at 10 mA cm −2 at the fixed capacity of 1 mAh cm −2 . When matched with V 2 O 5 cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g −1 with the capacity retention of 92% after 2000 cycles under 2 A g −1 . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable. However, the challenges of AZIBs, including dendrite growth, hydrogen evolution, corrosion, and passivation of zinc anode during charging and discharging processes, must be overcome to achieve high cycling performance and stability in practical applications. In this work, we utilize a dual-functional organic additive cyclohexanedodecol (CHD) to firstly establish [Zn(H O) (CHD)] complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas. Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD. At a very low concentration of 0.1 mg mL CHD, long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm , 1000 h at 5 mA cm , and 650 h at 10 mA cm at the fixed capacity of 1 mAh cm . When matched with V O cathode, the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g with the capacity retention of 92% after 2000 cycles under 2 A g . Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. |
ArticleNumber | 110 |
Author | Lai, Chao Zhang, Shao-Jian Wu, Zhenzhen Sun, Chuang Li, Meng Zhang, Shanqing Tian, Yuhui Li, Chengpeng Lin, Zhan Chen, Hao Kiefel, Milton |
Author_xml | – sequence: 1 givenname: Zhenzhen surname: Wu fullname: Wu, Zhenzhen organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University – sequence: 2 givenname: Meng surname: Li fullname: Li, Meng organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University – sequence: 3 givenname: Yuhui surname: Tian fullname: Tian, Yuhui organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University – sequence: 4 givenname: Hao surname: Chen fullname: Chen, Hao organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University – sequence: 5 givenname: Shao-Jian surname: Zhang fullname: Zhang, Shao-Jian organization: Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology – sequence: 6 givenname: Chuang surname: Sun fullname: Sun, Chuang organization: School of Chemistry and Materials Science, Jiangsu Normal University – sequence: 7 givenname: Chengpeng surname: Li fullname: Li, Chengpeng organization: Institute for Glycomics, Griffith University – sequence: 8 givenname: Milton surname: Kiefel fullname: Kiefel, Milton organization: Institute for Glycomics, Griffith University – sequence: 9 givenname: Chao surname: Lai fullname: Lai, Chao organization: School of Chemistry and Materials Science, Jiangsu Normal University – sequence: 10 givenname: Zhan surname: Lin fullname: Lin, Zhan email: zhanlin@gdut.edu.cn organization: Guangzhou Key Laboratory of Clean Transportation Energy Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology – sequence: 11 givenname: Shanqing surname: Zhang fullname: Zhang, Shanqing email: s.zhang@griffith.edu.au organization: Centre for Clean Environment and Energy, School of Environment and Science, Griffith University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35441329$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1uEzEUhUeoiJbSF2CBRmLDZuD6b-zZIEVRaSMVgRBs2Fge-07iamIHe4Lo29dJWqBddGXLPufT8fV5WR2FGLCqXhN4TwDkh8xBUWiA0gZA8baBZ9UJJQIaIQQ5KntGSNNKaI-rs5x9D4JySaXgL6pjJjgnjHYnlZvf2DGu8I8J6KJDG8dmVuR5QlcvwoRpMNabsT4PSx8Qkw_Leoip_hb7bZ5qE1x96Zer5mtRxrQ2wWL90wdbf8ap2GahQF9VzwczZjy7W0-rH5_Ov88vm6svF4v57KqxrWRT03NADr20CrueopKcWyXQ0BYJdx3vFQPK3KCoJDgQ1SGwoe8H4RxKxjt2Wi0OXBfNtd4kvzbpRkfj9f4gpqU2afJ2RA1OWLAEuAHCFRe96SQ63krSEev6obA-Hlibbb9GZzFMyYwPoA9vgl_pZfytOyAdACuAd3eAFH9tMU967bPFcSyTjtusaSuoagWTvEjfPpJex20KZVQ7VUso6fave_N_or9R7j-zCNRBYFPMOeGgrZ_M5OMuoB81Ab2rjj5UR5fq6H11NBQrfWS9pz9pYgdT3uxqgelf7Cdct3Mb1f0 |
CitedBy_id | crossref_primary_10_1002_adma_202404011 crossref_primary_10_1016_j_cej_2023_147763 crossref_primary_10_1007_s40820_023_01227_x crossref_primary_10_1039_D3EE02945J crossref_primary_10_1016_j_jcis_2024_08_178 crossref_primary_10_1016_j_cej_2023_141902 crossref_primary_10_1002_ange_202316841 crossref_primary_10_1002_adfm_202414563 crossref_primary_10_1021_acs_energyfuels_4c05742 crossref_primary_10_1002_anie_202307274 crossref_primary_10_1016_j_jmst_2024_05_030 crossref_primary_10_1016_j_jcis_2023_08_047 crossref_primary_10_1002_chem_202303211 crossref_primary_10_1016_j_jcis_2024_03_168 crossref_primary_10_1016_j_jechem_2024_12_032 crossref_primary_10_1016_j_cej_2023_144845 crossref_primary_10_1021_acsapm_3c01903 crossref_primary_10_1021_acs_nanolett_3c02904 crossref_primary_10_1002_ange_202215060 crossref_primary_10_1002_tcr_202400142 crossref_primary_10_1021_acsenergylett_4c02014 crossref_primary_10_1021_acsnano_3c04155 crossref_primary_10_1016_j_mtchem_2023_101629 crossref_primary_10_1016_j_scib_2023_08_024 crossref_primary_10_1002_aenm_202304341 crossref_primary_10_1002_aenm_202301670 crossref_primary_10_3390_batteries9010041 crossref_primary_10_1021_acsami_3c06907 crossref_primary_10_1016_j_cej_2023_142580 crossref_primary_10_1007_s12598_024_02705_w crossref_primary_10_1002_ange_202307274 crossref_primary_10_1002_anie_202215060 crossref_primary_10_1016_j_jechem_2024_06_036 crossref_primary_10_1039_D3TA01943H crossref_primary_10_1002_adfm_202306085 crossref_primary_10_1021_acsami_2c18460 crossref_primary_10_1002_anie_202403050 crossref_primary_10_1016_j_cej_2023_141328 crossref_primary_10_1002_cnl2_54 crossref_primary_10_1021_acs_nanolett_2c03114 crossref_primary_10_1039_D4EE05922K crossref_primary_10_1007_s12598_023_02541_4 crossref_primary_10_1016_j_cej_2022_139963 crossref_primary_10_1021_acsnano_4c10901 crossref_primary_10_1007_s40820_023_01136_z crossref_primary_10_1002_adfm_202306359 crossref_primary_10_1016_j_cej_2024_155858 crossref_primary_10_1002_smtd_202201277 crossref_primary_10_1021_acsami_4c19265 crossref_primary_10_1002_anie_202301570 crossref_primary_10_1021_acssuschemeng_2c05835 crossref_primary_10_1016_j_jmst_2024_03_024 crossref_primary_10_1002_ange_202403050 crossref_primary_10_1002_anie_202316841 crossref_primary_10_1016_j_jcis_2023_06_196 crossref_primary_10_1016_j_jcis_2025_137251 crossref_primary_10_1021_acsami_3c08474 crossref_primary_10_1002_adfm_202404219 crossref_primary_10_1016_j_cej_2022_139573 crossref_primary_10_1016_j_cej_2024_152577 crossref_primary_10_1021_acssuschemeng_4c09979 crossref_primary_10_1021_acssuschemeng_3c04018 crossref_primary_10_1016_j_ensm_2024_103856 crossref_primary_10_1002_ange_202301570 crossref_primary_10_1002_adfm_202413807 crossref_primary_10_1016_j_cej_2023_141392 crossref_primary_10_1039_D3DT04030E |
Cites_doi | 10.1021/acs.chemrev.9b00531 10.1103/PhysRevB.28.1809 10.1103/PhysRevB.50.17953 10.1016/j.nanoen.2014.12.011 10.1002/adfm.202100594 10.1016/0927-0256(96)00008-0 10.1002/smll.202100778 10.1007/s40820-020-00554-7 10.1002/adma.202003021 10.1002/anie.202000162 10.1002/anie.202105756 10.1002/jcc.21759 10.1063/1.448118 10.1139/v88-057 10.1002/adma.202003425 10.1103/PhysRevB.54.11169 10.1016/j.softx.2015.06.001 10.1002/adfm.202112091 10.1021/jacs.6b05958 10.1002/adfm.202001263 10.1038/s41563-018-0063-z 10.1002/aenm.202102010 10.1016/j.ensm.2020.10.019 10.1039/c9cs00349e 10.1063/1.2408420 10.1063/1.464397 10.1039/d1ee00030f 10.1038/s41560-021-00841-6 10.1002/ange.202016531 10.1021/acsami.5b10024 10.1002/aenm.202003065 10.1002/aenm.201900704 10.1002/aenm.202100186 10.1063/1.328693 10.1007/s40820-020-00522-1 10.1063/1.3382344 10.1007/s40820-021-00641-3 10.1103/PhysRevLett.77.3865 10.1021/acsenergylett.1c00833 10.1007/s40820-021-00594-7 10.1007/s40820-021-00612-8 10.1016/j.carbon.2020.12.018 10.1016/j.joule.2020.05.018 10.1039/C9EE03545A 10.1016/j.nanoen.2019.104128 10.1038/s41467-020-14505-8 10.1021/acs.nanolett.5b00795 10.1002/advs.202100309 10.1021/jacs.8b08963 10.1002/ange.201907830 10.1021/acsenergylett.0c01792 |
ContentType | Journal Article |
Copyright | Crown 2022 2022. Crown. Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: Crown 2022 – notice: 2022. Crown. – notice: Crown 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-022-00846-0 |
DatabaseName | Springer Nature Link CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_0d5c0c104a014845ba97ed467191cdbf PMC9019003 35441329 10_1007_s40820_022_00846_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Shanghai Jiao Tong University – fundername: ; |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM ABUWG AZQEC DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c673t-b40e40b7c8e9b2e8744c85ea26e14d94b83023df8271ef189e03fbbf5dde73493 |
IEDL.DBID | C24 |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 01:20:06 EDT 2025 Thu Aug 21 18:16:25 EDT 2025 Fri Jul 11 10:27:01 EDT 2025 Wed Aug 13 04:33:12 EDT 2025 Wed Feb 19 02:24:54 EST 2025 Tue Jul 01 00:55:47 EDT 2025 Thu Apr 24 23:08:22 EDT 2025 Fri Feb 21 02:45:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Zn dendrite Cyclohexanedodecol Aqueous Zn-ion battery Zn corrosion Hydrogen evolution |
Language | English |
License | 2022. Crown. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c673t-b40e40b7c8e9b2e8744c85ea26e14d94b83023df8271ef189e03fbbf5dde73493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://link.springer.com/10.1007/s40820-022-00846-0 |
PMID | 35441329 |
PQID | 2656121949 |
PQPubID | 2044332 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0d5c0c104a014845ba97ed467191cdbf pubmedcentral_primary_oai_pubmedcentral_nih_gov_9019003 proquest_miscellaneous_2652865374 proquest_journals_2656121949 pubmed_primary_35441329 crossref_citationtrail_10_1007_s40820_022_00846_0 crossref_primary_10_1007_s40820_022_00846_0 springer_journals_10_1007_s40820_022_00846_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2022 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Sun, Wu, Gu, Wang, Wang (CR38) 2021; 13 Ling, Xu, Zhao, Gu, Qiu (CR44) 2015; 12 Hao, Li, Zhang, Yang, Zeng (CR15) 2020; 30 Li, Liu, Liu, Ba, Liu (CR24) 2021; 13 Ling, Qiu, Li, Yan, Kiefel (CR45) 2015; 15 Grimme, Antony, Ehrlich, Krieg (CR30) 2010; 132 Langreth, Mehl (CR26) 1983; 28 Wang, Dong, Huang, Jia, Zhao (CR5) 2021; 13 Grimme, Ehrlich, Goerigk (CR31) 2011; 32 Zong, Du, Liu, Yang, Zhang (CR51) 2021; 13 Hao, Yuan, Ye, Chao, Davey (CR12) 2021; 133 Li, Ouyang, Xiong, Jiang, Adekoya (CR2) 2021; 174 Kresse, Furthmüller (CR28) 1996; 54 Adekoya, Qian, Gu, Wen, Li (CR4) 2021; 13 Chen, Yuan, Xia, Zhang, Fu (CR18) 2021; 8 Secco (CR41) 1988; 66 Bussi, Donadio, Parrinello (CR34) 2007; 126 Abraham, Murtola, Schulz, Páll, Smith (CR32) 2015; 1–2 Hao, Li, Li, Zeng, Zhang (CR16) 2020; 32 Blöchl (CR29) 1994; 50 Xie, Liang, Gao, Guo, Guo (CR49) 2020; 13 Zhang, Cheng, Liu, Zhao, Lei (CR20) 2016; 138 Li, Liu, Wang, He, Liu (CR42) 2019; 9 Sun, Ma, Zhou, Qiu, Wang (CR10) 2021; 133 Wang, Borodin, Gao, Fan, Sun (CR22) 2018; 17 Yi, Chen, Hou, Wang, Liang (CR19) 2020; 11 Zhang, Luan, Tang, Ji, Wang (CR13) 2020; 59 Darden, York, Pedersen (CR33) 1993; 98 Parrinello, Rahman (CR36) 1981; 52 Xu (CR7) 2021; 6 Nian, Zhang, Feng, Liu, Sun (CR11) 2021; 6 Zhou, Huang, Xiong, Yang, Yang (CR3) 2021; 17 Berendsen, Postma, Gunsteren, DiNola, Haak (CR35) 1984; 81 Dong, Dai, Fan, Lai, Zhang (CR9) 2019; 66 Bayaguud, Luo, Fu, Zhu (CR37) 2020; 5 Zhang, Chen, Yu, Niu, Cheng (CR14) 2020; 49 Li, Wang, Chen, Xu, Lu (CR1) 2020; 120 Li, Li, Wang, Meng, Liu (CR6) 2021; 14 Sun, Dong, Lu, Li, Lai (CR46) 2021; 31 Guo, Qin, Zhang, Zhou, Zhou (CR23) 2021; 34 Han, Rajput, Qu, Pan, He (CR21) 2016; 8 Huang, Zhao, Hao, Yang, Qian (CR50) 2022 Yan, Li, Nan, Yang, Li (CR17) 2021; 11 Zhang, Luan, Fu, Wu, Tang (CR48) 2019; 58 Perdew, Burke, Ernzerhof (CR25) 1996; 77 Dai, Gu, Dong, Wang, Lai (CR39) 2020; 11 Zhang, Hao, Luo, Zhang, Zhang (CR40) 2021; 11 Yang, Du, Zhao, Chen, Li (CR43) 2020; 4 Li, Sun, Yang, Yu, Wei (CR47) 2020; 32 Dai, Xi, Liu, Lai, Zhang (CR8) 2018; 140 Kresse, Furthmüller (CR27) 1996; 6 A Bayaguud (846_CR37) 2020; 5 H Dai (846_CR8) 2018; 140 J Hao (846_CR12) 2021; 133 JP Perdew (846_CR25) 1996; 77 G Kresse (846_CR27) 1996; 6 M Ling (846_CR44) 2015; 12 G Li (846_CR2) 2021; 174 M Li (846_CR1) 2020; 120 K Xu (846_CR7) 2021; 6 P Sun (846_CR10) 2021; 133 J Hao (846_CR15) 2020; 30 Q Zhang (846_CR48) 2019; 58 S Zhou (846_CR3) 2021; 17 F Wang (846_CR22) 2018; 17 N Zhang (846_CR14) 2020; 49 J Dong (846_CR9) 2019; 66 T Darden (846_CR33) 1993; 98 MJ Abraham (846_CR32) 2015; 1–2 G Kresse (846_CR28) 1996; 54 M Ling (846_CR45) 2015; 15 S Guo (846_CR23) 2021; 34 C Li (846_CR47) 2020; 32 HJC Berendsen (846_CR35) 1984; 81 J Hao (846_CR16) 2020; 32 C Sun (846_CR46) 2021; 31 S Grimme (846_CR31) 2011; 32 G Li (846_CR42) 2019; 9 X Xie (846_CR49) 2020; 13 Q Zong (846_CR51) 2021; 13 P Chen (846_CR18) 2021; 8 S Grimme (846_CR30) 2010; 132 D Adekoya (846_CR4) 2021; 13 L Li (846_CR24) 2021; 13 Z Yi (846_CR19) 2020; 11 SJ Zhang (846_CR40) 2021; 11 PE Blöchl (846_CR29) 1994; 50 H Dai (846_CR39) 2020; 11 EA Secco (846_CR41) 1988; 66 Z Wang (846_CR5) 2021; 13 Q Nian (846_CR11) 2021; 6 G Bussi (846_CR34) 2007; 126 M Li (846_CR6) 2021; 14 DC Langreth (846_CR26) 1983; 28 SD Han (846_CR21) 2016; 8 C Sun (846_CR38) 2021; 13 H Yan (846_CR17) 2021; 11 N Zhang (846_CR20) 2016; 138 W Yang (846_CR43) 2020; 4 Q Zhang (846_CR13) 2020; 59 M Parrinello (846_CR36) 1981; 52 C Huang (846_CR50) 2022 |
References_xml | – volume: 120 start-page: 6783 issue: 14 year: 2020 end-page: 6819 ident: CR1 article-title: New concepts in electrolytes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00531 – volume: 28 start-page: 1809 issue: 4 year: 1983 end-page: 1834 ident: CR26 article-title: Beyond the local-density approximation in calculations of ground-state electronic properties publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.1809 – volume: 50 start-page: 17953 issue: 24 year: 1994 end-page: 17979 ident: CR29 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 12 start-page: 178 year: 2015 end-page: 185 ident: CR44 article-title: Dual-functional gum arabic binder for silicon anodes in lithium ion batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.011 – volume: 31 start-page: 2100594 issue: 26 year: 2021 ident: CR46 article-title: Sol electrolyte: pathway to long-term stable lithium metal anode publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100594 – volume: 6 start-page: 15 issue: 1 year: 1996 end-page: 50 ident: CR27 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 17 start-page: 2100778 issue: 26 year: 2021 ident: CR3 article-title: Sub-thick electrodes with enhanced transport kinetics via in situ epitaxial heterogeneous interfaces for high areal-capacity lithium ion batteries publication-title: Small doi: 10.1002/smll.202100778 – volume: 13 start-page: 34 year: 2021 ident: CR24 article-title: Electrolyte concentration regulation boosting zinc storage stability of high-capacity K V O cathode for bendable quasi-solid-state zinc ion batteries publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00554-7 – volume: 32 start-page: 2003021 issue: 34 year: 2020 ident: CR16 article-title: An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.202003021 – volume: 59 start-page: 13180 issue: 32 year: 2020 end-page: 13191 ident: CR13 article-title: Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000162 – volume: 133 start-page: 18395 issue: 33 year: 2021 end-page: 18403 ident: CR10 article-title: Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries: achieved by a low-cost glucose additive publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105756 – volume: 32 start-page: 1456 issue: 7 year: 2011 end-page: 1465 ident: CR31 article-title: Effect of the damping function in dispersion corrected density functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 81 start-page: 3684 issue: 8 year: 1984 end-page: 3690 ident: CR35 article-title: Molecular dynamics with coupling to an external bath publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 66 start-page: 329 issue: 2 year: 1988 end-page: 336 ident: CR41 article-title: Spectroscopic properties of SO (and OH) in different molecular and crystalline environments. I. Infrared spectra of Cu (OH) SO , Cu (OH) OSO , and Cu (OH) SO publication-title: Can. J. Chem. doi: 10.1139/v88-057 – volume: 32 start-page: 2003425 issue: 33 year: 2020 ident: CR47 article-title: Directly grown vertical graphene carpets as janus separators toward stabilized Zn metal anodes publication-title: Adv. Mater. doi: 10.1002/adma.202003425 – volume: 54 start-page: 11169 issue: 16 year: 1996 end-page: 11186 ident: CR28 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 1–2 start-page: 19 year: 2015 end-page: 25 ident: CR32 article-title: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – year: 2022 ident: CR50 article-title: Self-healing SeO additives enable zinc metal reversibility in aqueous ZnSO electrolytes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112091 – volume: 138 start-page: 12894 issue: 39 year: 2016 end-page: 12901 ident: CR20 article-title: Cation-deficient spinel Znmn O cathode in Zn(CF SO ) electrolyte for rechargeable aqueous Zn-ion battery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 30 start-page: 2001263 issue: 30 year: 2020 ident: CR15 article-title: Designing dendrite-free zinc anodes for advanced aqueous zinc batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001263 – volume: 17 start-page: 543 issue: 6 year: 2018 end-page: 549 ident: CR22 article-title: Highly reversible zinc metal anode for aqueous batteries publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 11 start-page: 2102010 issue: 37 year: 2021 ident: CR40 article-title: Dual-function electrolyte additive for highly reversible Zn anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102010 – volume: 34 start-page: 545 year: 2021 end-page: 562 ident: CR23 article-title: Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.019 – volume: 49 start-page: 4203 issue: 13 year: 2020 end-page: 4219 ident: CR14 article-title: Materials chemistry for rechargeable zinc-ion batteries publication-title: Chem. Soc. Rev. doi: 10.1039/c9cs00349e – volume: 126 issue: 1 year: 2007 ident: CR34 article-title: Canonical sampling through velocity rescaling publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 98 start-page: 10089 issue: 12 year: 1993 end-page: 10092 ident: CR33 article-title: Particle mesh ewald: an N⋅log(N) method for ewald sums in large systems publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 14 start-page: 3796 issue: 7 year: 2021 end-page: 3839 ident: CR6 article-title: Comprehensive understandings into roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials publication-title: Energy Environ. Sci. doi: 10.1039/d1ee00030f – volume: 6 start-page: 763 issue: 7 year: 2021 end-page: 763 ident: CR7 article-title: Li-ion battery electrolytes publication-title: Nat. Energy doi: 10.1038/s41560-021-00841-6 – volume: 133 start-page: 7442 issue: 13 year: 2021 end-page: 7451 ident: CR12 article-title: Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202016531 – volume: 8 start-page: 3021 issue: 5 year: 2016 end-page: 3031 ident: CR21 article-title: Origin of electrochemical, structural, and transport properties in nonaqueous zinc electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10024 – volume: 11 start-page: 2003065 issue: 1 year: 2020 ident: CR19 article-title: Strategies for the stabilization of Zn metal anodes for Zn-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003065 – volume: 9 start-page: 1900704 issue: 22 year: 2019 ident: CR42 article-title: Electrokinetic phenomena enhanced lithium-ion transport in leaky film for stable lithium metal anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900704 – volume: 11 start-page: 2100186 issue: 18 year: 2021 ident: CR17 article-title: Ultrafast zinc–ion–conductor interface toward high-rate and stable zinc metal batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100186 – volume: 52 start-page: 7182 issue: 12 year: 1981 end-page: 7190 ident: CR36 article-title: Polymorphic transitions in single crystals: a new molecular dynamics method publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 13 start-page: 13 year: 2021 ident: CR4 article-title: DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00522-1 – volume: 132 issue: 15 year: 2010 ident: CR30 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-PU publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 13 start-page: 116 year: 2021 ident: CR51 article-title: Enhanced reversible zinc ion intercalation in deficient ammonium vanadate for high-performance aqueous zinc-ion battery publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00641-3 – volume: 77 start-page: 3865 issue: 18 year: 1996 end-page: 3868 ident: CR25 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 6 start-page: 2174 issue: 6 year: 2021 end-page: 2180 ident: CR11 article-title: Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00833 – volume: 13 start-page: 73 year: 2021 ident: CR5 article-title: Simultaneously regulating uniform Zn flux and electron conduction by MOF/rGO interlayers for high-performance Zn anodes publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00594-7 – volume: 13 start-page: 89 year: 2021 ident: CR38 article-title: Interface engineering via Ti C T MXene electrolyte additive toward dendrite-free zinc deposition publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00612-8 – volume: 174 start-page: 1 issue: 15 year: 2021 end-page: 9 ident: CR2 article-title: All-carbon-frameworks enabled thick electrode with exceptional high-areal-capacity for Li-ion storage publication-title: Carbon doi: 10.1016/j.carbon.2020.12.018 – volume: 4 start-page: 1557 issue: 7 year: 2020 end-page: 1574 ident: CR43 article-title: Hydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries publication-title: Joule doi: 10.1016/j.joule.2020.05.018 – volume: 13 start-page: 503 issue: 2 year: 2020 end-page: 510 ident: CR49 article-title: Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03545A – volume: 66 year: 2019 ident: CR9 article-title: Grain refining mechanisms: initial levelling stage during nucleation for high-stability lithium anodes publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104128 – volume: 11 start-page: 643 year: 2020 ident: CR39 article-title: Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation publication-title: Nat. Commun. doi: 10.1038/s41467-020-14505-8 – volume: 15 start-page: 4440 issue: 7 year: 2015 end-page: 4447 ident: CR45 article-title: Multifunctional SA-PProDOT binder for lithium ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00795 – volume: 8 start-page: 2100309 issue: 11 year: 2021 ident: CR18 article-title: An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries publication-title: Adv. Sci. doi: 10.1002/advs.202100309 – volume: 140 start-page: 17515 issue: 50 year: 2018 end-page: 17521 ident: CR8 article-title: Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08963 – volume: 58 start-page: 15841 issue: 44 year: 2019 end-page: 15847 ident: CR48 article-title: The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201907830 – volume: 5 start-page: 3012 issue: 9 year: 2020 end-page: 3020 ident: CR37 article-title: Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01792 – volume: 174 start-page: 1 issue: 15 year: 2021 ident: 846_CR2 publication-title: Carbon doi: 10.1016/j.carbon.2020.12.018 – volume: 50 start-page: 17953 issue: 24 year: 1994 ident: 846_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 11 start-page: 2003065 issue: 1 year: 2020 ident: 846_CR19 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003065 – volume: 52 start-page: 7182 issue: 12 year: 1981 ident: 846_CR36 publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 32 start-page: 2003021 issue: 34 year: 2020 ident: 846_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.202003021 – volume: 12 start-page: 178 year: 2015 ident: 846_CR44 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.12.011 – volume: 11 start-page: 2102010 issue: 37 year: 2021 ident: 846_CR40 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102010 – volume: 66 start-page: 329 issue: 2 year: 1988 ident: 846_CR41 publication-title: Can. J. Chem. doi: 10.1139/v88-057 – volume: 4 start-page: 1557 issue: 7 year: 2020 ident: 846_CR43 publication-title: Joule doi: 10.1016/j.joule.2020.05.018 – volume: 11 start-page: 2100186 issue: 18 year: 2021 ident: 846_CR17 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100186 – volume: 28 start-page: 1809 issue: 4 year: 1983 ident: 846_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.28.1809 – volume: 17 start-page: 543 issue: 6 year: 2018 ident: 846_CR22 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0063-z – volume: 32 start-page: 1456 issue: 7 year: 2011 ident: 846_CR31 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 13 start-page: 34 year: 2021 ident: 846_CR24 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00554-7 – year: 2022 ident: 846_CR50 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202112091 – volume: 6 start-page: 15 issue: 1 year: 1996 ident: 846_CR27 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 132 issue: 15 year: 2010 ident: 846_CR30 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 13 start-page: 73 year: 2021 ident: 846_CR5 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00594-7 – volume: 49 start-page: 4203 issue: 13 year: 2020 ident: 846_CR14 publication-title: Chem. Soc. Rev. doi: 10.1039/c9cs00349e – volume: 81 start-page: 3684 issue: 8 year: 1984 ident: 846_CR35 publication-title: J. Chem. Phys. doi: 10.1063/1.448118 – volume: 98 start-page: 10089 issue: 12 year: 1993 ident: 846_CR33 publication-title: J. Chem. Phys. doi: 10.1063/1.464397 – volume: 31 start-page: 2100594 issue: 26 year: 2021 ident: 846_CR46 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100594 – volume: 6 start-page: 763 issue: 7 year: 2021 ident: 846_CR7 publication-title: Nat. Energy doi: 10.1038/s41560-021-00841-6 – volume: 133 start-page: 18395 issue: 33 year: 2021 ident: 846_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105756 – volume: 14 start-page: 3796 issue: 7 year: 2021 ident: 846_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/d1ee00030f – volume: 13 start-page: 503 issue: 2 year: 2020 ident: 846_CR49 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03545A – volume: 133 start-page: 7442 issue: 13 year: 2021 ident: 846_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.202016531 – volume: 8 start-page: 3021 issue: 5 year: 2016 ident: 846_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10024 – volume: 13 start-page: 13 year: 2021 ident: 846_CR4 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00522-1 – volume: 140 start-page: 17515 issue: 50 year: 2018 ident: 846_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b08963 – volume: 5 start-page: 3012 issue: 9 year: 2020 ident: 846_CR37 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c01792 – volume: 126 issue: 1 year: 2007 ident: 846_CR34 publication-title: J. Chem. Phys. doi: 10.1063/1.2408420 – volume: 9 start-page: 1900704 issue: 22 year: 2019 ident: 846_CR42 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900704 – volume: 54 start-page: 11169 issue: 16 year: 1996 ident: 846_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 13 start-page: 89 year: 2021 ident: 846_CR38 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00612-8 – volume: 11 start-page: 643 year: 2020 ident: 846_CR39 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14505-8 – volume: 77 start-page: 3865 issue: 18 year: 1996 ident: 846_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 30 start-page: 2001263 issue: 30 year: 2020 ident: 846_CR15 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001263 – volume: 17 start-page: 2100778 issue: 26 year: 2021 ident: 846_CR3 publication-title: Small doi: 10.1002/smll.202100778 – volume: 15 start-page: 4440 issue: 7 year: 2015 ident: 846_CR45 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00795 – volume: 13 start-page: 116 year: 2021 ident: 846_CR51 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00641-3 – volume: 1–2 start-page: 19 year: 2015 ident: 846_CR32 publication-title: SoftwareX doi: 10.1016/j.softx.2015.06.001 – volume: 58 start-page: 15841 issue: 44 year: 2019 ident: 846_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201907830 – volume: 66 year: 2019 ident: 846_CR9 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104128 – volume: 34 start-page: 545 year: 2021 ident: 846_CR23 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.10.019 – volume: 138 start-page: 12894 issue: 39 year: 2016 ident: 846_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05958 – volume: 32 start-page: 2003425 issue: 33 year: 2020 ident: 846_CR47 publication-title: Adv. Mater. doi: 10.1002/adma.202003425 – volume: 6 start-page: 2174 issue: 6 year: 2021 ident: 846_CR11 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c00833 – volume: 120 start-page: 6783 issue: 14 year: 2020 ident: 846_CR1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00531 – volume: 8 start-page: 2100309 issue: 11 year: 2021 ident: 846_CR18 publication-title: Adv. Sci. doi: 10.1002/advs.202100309 – volume: 59 start-page: 13180 issue: 32 year: 2020 ident: 846_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202000162 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.529361 |
Snippet | Highlights
Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale.
The CHD molecules could effectively modify the... Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and sustainable.... HighlightsCyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale.The CHD molecules could effectively modify the... Cyclohexanedodecol (CHD) could facilitate the Zn dendrite-free plating/stripping at a nanoscale. The CHD molecules could effectively modify the hydrated Zn(H 2... Abstract Aqueous zinc-ion batteries (AZIBs) can be one of the most promising electrochemical energy storage devices for being non-flammable, low-cost, and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110 |
SubjectTerms | Anodes Aqueous Zn-ion battery Commercialization Cycles Cyclohexanedodecol Dendritic structure Electrolytes Energy storage Engineering Flammability Hydrogen evolution Industrial energy Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Plating Rechargeable batteries Robustness Storage batteries Zinc Zinc Anodes Zn corrosion Zn dendrite |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Li9YwEA-yJz2Ib6urRPCmwebVNEddXBZhRcSFxUvJq-zCR7u4_Q7-986k_dp-Pi9e26QNM79kMsnMbwh5ifmLUSfDwDaCg8JTYHUrFANXIToXaydzUtjpx-rkTH041-erUl8YEzbSA4-Ce1NGHcoAToPDsy-lvbMmRZje4GiE6FtcfcHmrZwpQJIwWJFpuR_EsspqxVKjkNNFLkRmGonLzMKPqYWCsU-GdtxIG7zCypXqOGeVKaspAyfn4WHV5pJhYDzy04OLvmflcjGA3-1gfw3E_Ok2Nhu54zvk9rQ7pW9HqdwlN1J3j9xacRbeJ_Hoe9j0F5gWk2IfwXvdMNAxoiXSfL7YOjyGp6teFHbG9HPvt9cDdV2kGFzCPi0pC_TrZRfoaRrw3x189AE5O37_5eiETaUaWKiMHJhXZVKlN6FO1ouEnPqh1smJKnEVrfJIMyZjWwMiUstrm0rZet9qWF1BF1Y-JAdd36XHhHLtACRRtlx71QbhwUGrbArSARJkqgrCd6JtwsRjjuU0Ns3MwJzV0YA6mqyOpizIq7nP1cji8dfW71Bjc0tk4M4PAJfNhMvmX7gsyOFO3820LFw3osJipNwqW5AX82uY0HhLA2rrt7kNZgtLowryaITHPBKJFeOkgN5mDzh7Q91_011eZNJwi6QBpSzI6x3ElmH9WRRP_oconpKbAudGDgI6JAfDt216Blu5wT_Ps_YH7hI5OA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauLSHqm9CaeVKvbVWk9iOk1MFCIQqgRAqEuol8isFaZVQNnvg33fG6yS7FLgmduJkxmPPjOf7CPmC9YtOesVgbQQHJfOWlU0uGLgKTmtXah6Kwo5PiqNz8fNCXsSA2zweqxxsYjDUrrMYI_-eF8jjCC539eP6L0PWKMyuRgqNp2QTTHAJztfm3sHJ6dmgUblCZqYpT4j0ymIFrUYgtgufAM0kApipCSdT5gK-IS64yw21wlRWYKzLMlaotIiVOKEeD9mbU4YH5BGnHlz1tdUukALct5P9_0DmnaxsWOwOX5IXcZdKd5dq9Yo88e1r8nwFu_ANcfu3dtZdYnmMd50DL3bGQNaoNY6GOGOjMRxPV3pR2CHTs84s5j3VraN4yISdTqUL9PdVa-mx7_HdLTz0LTk_PPi1f8QiZQOzheI9MyL1IjXKlr4yuUdsfVtKr_PCZ8JVwiDcGHdNCZrhm6ysfMobYxoJVhZkUfF3ZKPtWr9FaCY1KIvjTSaNaGxuwFErKm-5dtJyXyQkG35tbSOeOdJqzOoRiTmIowZx1EEcdZqQr2Of6yWax6Ot91BiY0tE4g4Xups_dZzYdQqjSS04tRpjs0IaXSnvYPkBR9g60yRkZ5B3Hc3DvJ6UOSGfx9swsTFbA2LrFqENVg1zJRLyfqke40g4MsfxHHqrNcVZG-r6nfbqMoCHVwgekPKEfBtUbBrWw79i-_Gv-ECe5aj14ZjPDtnobxb-I2zWevMpzsh_N3cyKw priority: 102 providerName: ProQuest |
Title | Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode |
URI | https://link.springer.com/article/10.1007/s40820-022-00846-0 https://www.ncbi.nlm.nih.gov/pubmed/35441329 https://www.proquest.com/docview/2656121949 https://www.proquest.com/docview/2652865374 https://pubmed.ncbi.nlm.nih.gov/PMC9019003 https://doaj.org/article/0d5c0c104a014845ba97ed467191cdbf |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_W9mV7GPuuty5osLdNYFuSZT82WbMyaCllhbIXY314LQR7NMnD_vvdKf5Itm6wlxhiyT58J92d7u53AO-pftEprznqRnRQEm95XqeSo6vgqsrllQhFYWfn2emV_HKtrruisGWf7d6HJMNOPRS7UWvkmFP2OYHAox-8BwcKfXeS69mIOZ5q6sY0xgappbLcQqiRhOciRhAzRaBlesTGVKlEujsluzGiNYWvQpe6JOGZjrOu-uZ-snY0XGgEcJ_1-mcS5m-R2KDg5k_gcWeZsuONKD2FB755Bo-28Aqfg5v9tIv2hkpivGsdeq4LjvwlSXEsnC3WFR3Bs61ZDK1idtma9XLFqsYxSizhF2O5Avt221h25lf07gYf-gKu5idfZ6e8a9PAbabFihsZexkbbXNfmNQTnr7Nla_SzCfSFdIQxJhwdY7S4OskL3wsamNqhTsr8qIQL2G_aRt_CCxRFQqIE3WijKxtatA5ywpvReWUFT6LIOk_bWk7DHNqpbEoB_TlwI4S2VEGdpRxBB-GOT82CB7_HD0ljg0jCX07_NHefS-7xVzGSE1s0ZGt6DxWKlMV2jtUOej8WmfqCI56fpfdlrAs04wakSaFLCJ4N9zGxUwRGmRbuw5jqFJYaBnBq414DJQI6hYnUpytdwRnh9TdO83tTQAMLwgwIBYRfOxFbCTr75_i9f8NfwMPU1oFIdXnCPZXd2v_Fg22lZnAXj7_PIGD4-mn6Ryv05Pzi8tJWLX0m80m4SjkF-lQMx0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcgAOiDehBYwEJ7BIbCdODghBYdnSboVQK1Vc0vgRWmmVtN2sUP8Uv5EZJ9ns8uit18TeeD3jedie7yPkBdYv2tgpBr4REpTIGZaWXDJIFWxR2LQQvihsspeMD-SXw_hwjfzqa2HwWmVvE72htrXBPfI3PEEeR0i5s3enZwxZo_B0tafQaNVix138hJRt9nb7I8j3JeejT_tbY9axCjCTKNEwLUMnQ61M6jLNHcK_mzR2BU9cJG0mNSJiCVumMHhXRmnmQlFqXcZgCJSQCL4EJv-aFCLDFZWOPvf6yxXyQA2nkkjmLJewcSQiyYgBPi1GuDQ1oHLGXMKMde69Dd8VHpx5frwoYokKk67ux1f_IVd0yPA6PqLiJyxc8a2eguBfcfPf1z__OAP2rnV0m9zqYmL6vlXiO2TNVXfJzSWkxHvEbl2YaX2MxTjO1hZy5ikDzUIdtdTvapYFbv7TpV4U4nH6rdbzWUOLylK80sK-DoUS9PtJZejENfjtCn70Pjm4ElE-IOtVXblHhEZxAappRRnFWpaGa0gLk8wZUdjYCJcEJOqnNjcdejqSeEzzBe6zF0cO4si9OPIwIK8WfU5b7JBLW39AiS1aIu63f1Cf_8g7M5KHMJrQQApd4E6wjHWRKWfB2UHabawuA7LZyzvvjNEsH5ZOQJ4vXoMZwbMhEFs9922wRlkoGZCHrXosRiKQp05w6K1WFGdlqKtvqpNjD1WeIVRBKALyulexYVj_n4rHl_-LZ-T6eH-ym-9u7-1skBscV4C_YLRJ1pvzuXsCYWKjn_q1ScnRVRuD37oSbfs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI9gSIg9ID5HYUCReINobZM07SMcnMbHpgkxaeIlyiebdGqnrfew_x477bV3MJB4bZPWjZ3aju2fCXmN9YtOeElBN4KDkntLq1BwCq6C09pVmsWisIPDcv-Yfz4RJ2tV_DHbfRWS7GsaEKWp6fbOXdgbC9-wTXJGMRMdAeHBJ75JboGnkmNS32zCHy8kdmaa4oTYXpmvodVwxHZhE6CZQAAzOeFkioLDNwwKtzeoJYayYse6PKelzMqhEud6sja0XWwKcJ0l-2dC5m9R2ajs5vfI3cFKTd_1YnWf3PDNA7K9hl34kLjZlV20p1ge413rwItdUOA1So1L4zlj0Hgcn67NSsFCTr-1ZnnZpbpxKSaZ0KOpdCH9cdbY9MB3-O4GHvqIHM8_fp_t06FlA7WlZB01PPM8M9JWvjaFR2x9Wwmvi9Ln3NXcINwYc6ECyfAhr2qfsWBMEPCXBV7U7DHZatrGPyFpLjQIi2MhF4YHWxhw1MraW6adsMyXCclXS6vsgGeObTUWakRijuxQwA4V2aGyhLwZ55z3aB7_HP0eOTaORCTueKG9-KmGja0yoCaz4NRqPJvlwuhaegfqBxxh60xIyO6K32r4PVyqosSmpHnN64S8Gm_DxsZoDbCtXcYxWDXMJE_ITi8eIyUMO8exAmbLDcHZIHXzTnN2GsHDawQPyFhC3q5EbCLr70vx9P-GvyS3jz7M1ddPh1-ekTsFboiYAbRLtrqLpX8OdlxnXsSt-gtwMjSK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyclohexanedodecol-Assisted+Interfacial+Engineering+for+Robust+and+High-Performance+Zinc+Metal+Anode&rft.jtitle=Nano-micro+letters&rft.au=Wu%2C+Zhenzhen&rft.au=Li%2C+Meng&rft.au=Tian%2C+Yuhui&rft.au=Chen%2C+Hao&rft.date=2022-12-01&rft.issn=2150-5551&rft.eissn=2150-5551&rft.volume=14&rft.issue=1&rft.spage=110&rft_id=info:doi/10.1007%2Fs40820-022-00846-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |