Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR in...
Saved in:
Published in | The Journal of clinical investigation Vol. 132; no. 24; pp. 1 - 16 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Clinical Investigation
15.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome- mediated suppression of intrinsic immunity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity. |
Audience | Academic |
Author | Zhang, Lizhi Beare, Paul A. Zani, Ashley Eddy, Adrian C. Lai, Kin Kui Yewdell, Jonathan W. Compton, Alex A. Li, Tiansheng Yount, Jacob S. Shi, Guoli Chiramel, Abhilash I. Best, Sonja M. Kar, Swagata Dempsey, Tirhas Majdoul, Saliha Kenney, Adam D. |
AuthorAffiliation | 1 HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA 3 Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA 5 Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA 2 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA 4 Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA 6 Bioqual, Rockville, Maryland, USA |
AuthorAffiliation_xml | – name: 3 Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA – name: 6 Bioqual, Rockville, Maryland, USA – name: 1 HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA – name: 5 Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA – name: 2 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA – name: 4 Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA |
Author_xml | – sequence: 1 givenname: Guoli surname: Shi fullname: Shi, Guoli – sequence: 2 givenname: Abhilash I. surname: Chiramel fullname: Chiramel, Abhilash I. – sequence: 3 givenname: Tiansheng surname: Li fullname: Li, Tiansheng – sequence: 4 givenname: Kin Kui orcidid: 0000-0003-2694-6243 surname: Lai fullname: Lai, Kin Kui – sequence: 5 givenname: Adam D. orcidid: 0000-0002-9110-1178 surname: Kenney fullname: Kenney, Adam D. – sequence: 6 givenname: Ashley surname: Zani fullname: Zani, Ashley – sequence: 7 givenname: Adrian C. orcidid: 0000-0002-9945-2810 surname: Eddy fullname: Eddy, Adrian C. – sequence: 8 givenname: Saliha orcidid: 0000-0002-0530-6354 surname: Majdoul fullname: Majdoul, Saliha – sequence: 9 givenname: Lizhi surname: Zhang fullname: Zhang, Lizhi – sequence: 10 givenname: Tirhas surname: Dempsey fullname: Dempsey, Tirhas – sequence: 11 givenname: Paul A. surname: Beare fullname: Beare, Paul A. – sequence: 12 givenname: Swagata orcidid: 0000-0003-3702-6207 surname: Kar fullname: Kar, Swagata – sequence: 13 givenname: Jonathan W. orcidid: 0000-0002-3826-1906 surname: Yewdell fullname: Yewdell, Jonathan W. – sequence: 14 givenname: Sonja M. surname: Best fullname: Best, Sonja M. – sequence: 15 givenname: Jacob S. surname: Yount fullname: Yount, Jacob S. – sequence: 16 givenname: Alex A. orcidid: 0000-0002-7508-4953 surname: Compton fullname: Compton, Alex A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36264642$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk0mP0zAUxyM0iFngwBdAkZAQHDLjLXF8QaoqlqJBI7UwV8vxkrpK7BInQL89DjN0mlEPyAdbfr_3f36Lz5MT551OkpcQXEJI0dWX-QIWgBbFk-QM5nmZlQiXJwfn0-Q8hA0AkJCcPEtOcYEKUhB0lnxdiq1ofB1S5X-51quhEb1Ores764KVqW3bwdl-lwqn0m3nWx_NUjdNqiOzS71JV7PlKpv72ww9T54a0QT94n6_SL5__PBt_jm7vvm0mM-uM1lQ3McnVTlWDAgAS00pYEQSpJmUhqicYQYxoKUxRuYGKDSmVhlagIpJjAnAEl8kiztd5cWGbzvbim7HvbD874Xvai663spG85xIgLQhkmpIDFKlUSUSZYVIWUKqWNR6f6e1HapWKzmmJZqJ6NTi7JrX_idnNMeM0Sjw9l6g8z8GHXre2jBWSDjth8ARRQWLTSAwoq8foRs_dC6WKlIxzRFiD1QtYgLWGR_jylGUzyhGFMfARaSyI1StnY6PjPNhbLye8JdH-LiUbq086vBu4hCZXv_uazGEwBer5f-zN7dT9s0Bu9ai6dfBN0NvvQtT8NVhZ_Yt-Te9D1Fl50PotNkjEPDxZ_D9z4js1SNW2l6MMWMZbHPE4w8grgjg |
CitedBy_id | crossref_primary_10_3389_fimmu_2023_1045009 crossref_primary_10_1016_j_bbadis_2025_167733 crossref_primary_10_1038_s41467_024_45075_8 crossref_primary_10_1038_s41467_024_53792_3 crossref_primary_10_1007_s11033_022_08188_1 crossref_primary_10_1016_j_isci_2023_106169 crossref_primary_10_1016_j_coi_2024_102426 crossref_primary_10_3390_biom13060937 crossref_primary_10_1016_j_intimp_2023_111155 crossref_primary_10_3389_fimmu_2024_1303356 crossref_primary_10_3389_fphar_2024_1173240 crossref_primary_10_15252_embr_202256660 crossref_primary_10_1038_s41366_023_01352_y crossref_primary_10_1038_s41573_023_00672_y |
Cites_doi | 10.1136/jitc-2020-000862 10.4049/jimmunol.2000413 10.1083/jcb.201711002 10.1002/bies.201800008 10.3389/fimmu.2020.01372 10.3389/fphar.2020.00856 10.1080/15548627.2018.1532265 10.1038/emboj.2012.32 10.1371/journal.ppat.1005095 10.1016/j.cell.2021.07.023 10.1093/infdis/jiab075 10.1016/j.devcel.2010.12.003 10.1016/j.molcel.2014.12.012 10.1016/j.cell.2012.03.017 10.1038/s41586-020-2286-9 10.1038/s41577-021-00626-8 10.1186/s13023-015-0317-7 10.1038/nri3198 10.1038/s41591-020-1070-6 10.1080/22221751.2020.1799723 10.1371/journal.pbio.3000252 10.1093/annonc/mdi113 10.1002/jmv.26009 10.1038/s41467-021-22166-4 10.1186/s12931-016-0492-7 10.1128/JVI.00562-20 10.1016/j.cell.2020.10.049 10.1016/j.celrep.2020.108371 10.1126/scisignal.2002790 10.1101/2021.12.22.473914 10.1021/acsmedchemlett.9b00215 10.1080/15548627.2015.1043077 10.1038/s41586-020-2008-3 10.1186/s12931-017-0618-6 10.1056/NEJMoa2001017 10.1186/s13046-020-01590-2 10.1096/fj.07-9574LSF 10.1073/pnas.2012197117 10.1038/ncb3114 10.1038/nrm3025 10.1038/s41586-020-2355-0 10.1016/S2666-7568(20)30068-4 10.1038/s41421-020-0153-3 10.1371/journal.pmed.0050008 10.15252/embr.201642771 10.18632/aging.103493 10.15252/embj.2020106501 10.1242/jcs.246322 10.7717/peerj.10402 10.1038/nrd3531 10.1016/j.cell.2020.02.052 10.1016/S0960-9822(07)00535-0 10.26508/lsa.202000786 10.1016/j.genrep.2020.100765 10.1128/MCB.00678-12 10.1074/jbc.R117.818237 10.1083/jcb.201902127 10.1016/j.cbi.2020.109282 10.4161/auto.19653 10.1371/journal.ppat.1001258 10.4161/auto.7.6.15287 10.1186/s12977-016-0324-3 10.1056/NEJMc2031670 10.1128/JVI.02422-20 10.1016/S0140-6736(20)30628-0 10.3389/fphar.2018.01425 10.4161/auto.7.7.14733 10.1093/infdis/jiaa666 10.18632/aging.102988 10.1038/s41564-020-0688-y 10.1016/j.molcel.2020.04.022 10.1038/d41586-020-02856-7 10.1016/j.clim.2020.108464 10.1172/JCI64099 10.1182/blood.2019000040 10.14412/2074-2711-2022-1-108-114 10.1038/s41598-017-00988-x 10.1038/s41564-022-01143-7 10.1073/pnas.1320856111 10.1128/JVI.01535-17 10.1073/pnas.1811892115 10.1093/jjco/hys110 10.1093/infdis/jiaa224 10.1016/j.immuni.2020.06.017 10.1016/j.cell.2020.04.026 10.1016/j.jphs.2019.05.007 10.1016/j.jmb.2021.167265 10.1038/s41467-021-24817-y 10.1016/j.cell.2020.09.050 10.1016/j.celrep.2019.05.040 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 American Society for Clinical Investigation Copyright American Society for Clinical Investigation Dec 2022 2022 Shi et al. 2022 Shi et al. |
Copyright_xml | – notice: COPYRIGHT 2022 American Society for Clinical Investigation – notice: Copyright American Society for Clinical Investigation Dec 2022 – notice: 2022 Shi et al. 2022 Shi et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7RV 7X7 7XB 88A 88E 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS S0X 7X8 5PM DOA |
DOI | 10.1172/JCI160766 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SIRS Editorial MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SIRS Editorial elibrary ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-8238 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_54c02ef4c7e14f2d8fd82a8b248817d9 PMC9753997 A732737536 36264642 10_1172_JCI160766 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL154001 – fundername: NIAID NIH HHS grantid: R01 AI130110 – fundername: NIAID NIH HHS grantid: T32 AI165391 – fundername: NIAID NIH HHS grantid: R21 AI151230 – fundername: Intramural Research Program, NIH grantid: N/A – fundername: ; grantid: N/A – fundername: NIH grantid: AI130110,AI151230,AI142256,; HL154001 |
GroupedDBID | --- -~X .55 .XZ 08G 08P 29K 354 36B 5GY 5RE 5RS 7RV 7X7 88E 8AO 8F7 8FE 8FH 8FI 8FJ 8R4 8R5 AAWTL AAYXX ABOCM ABPMR ABUWG ACGFO ACIHN ACNCT ACPRK ADBBV AEAQA AENEX AFCHL AFKRA AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ASPBG AVWKF AZFZN BAWUL BBNVY BCU BEC BENPR BHPHI BKEYQ BLC BPHCQ BVXVI CCPQU CITATION CS3 D-I DIK DU5 E3Z EBS EJD EMB EX3 F5P FRP FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR IHW INH IOF IOV IPO ISR ITC KQ8 L7B LK8 M1P M5~ M7P NAPCQ OBH OCB ODZKP OFXIZ OGEVE OHH OK1 OVD OVIDX OVT P2P P6G PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPM S0X SJFOW SV3 TEORI TR2 TVE UKHRP VVN W2D WH7 WOQ WOW X7M XSB YFH YHG YKV YOC ZY1 ~H1 3V. 88A CGR CUY CVF ECM EIF INR M0L NPM PMFND 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c673t-82b53d90a018e77094c42e9ccf4d593913078fffc5f0d21607bf760b9c33403c3 |
IEDL.DBID | DOA |
ISSN | 1558-8238 0021-9738 |
IngestDate | Wed Aug 27 01:29:21 EDT 2025 Thu Aug 21 18:39:01 EDT 2025 Thu Jul 10 23:32:27 EDT 2025 Sat Aug 23 12:54:51 EDT 2025 Tue Jun 17 21:34:50 EDT 2025 Thu Jun 12 23:54:32 EDT 2025 Tue Jun 10 20:22:10 EDT 2025 Fri Jun 27 05:32:59 EDT 2025 Fri Jun 27 05:52:16 EDT 2025 Thu May 22 21:31:43 EDT 2025 Thu Jan 02 22:53:37 EST 2025 Tue Jul 01 00:21:54 EDT 2025 Thu Apr 24 23:02:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | COVID-19 Lysosomes Innate immunity Autophagy |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c673t-82b53d90a018e77094c42e9ccf4d593913078fffc5f0d21607bf760b9c33403c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0530-6354 0000-0002-7508-4953 0000-0002-9945-2810 0000-0003-2694-6243 0000-0002-3826-1906 0000-0002-9110-1178 0000-0003-3702-6207 |
OpenAccessLink | https://doaj.org/article/54c02ef4c7e14f2d8fd82a8b248817d9 |
PMID | 36264642 |
PQID | 2760738419 |
PQPubID | 42166 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_54c02ef4c7e14f2d8fd82a8b248817d9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9753997 proquest_miscellaneous_2726923841 proquest_journals_2760738419 gale_infotracmisc_A732737536 gale_infotracgeneralonefile_A732737536 gale_infotracacademiconefile_A732737536 gale_incontextgauss_ISR_A732737536 gale_incontextgauss_IOV_A732737536 gale_healthsolutions_A732737536 pubmed_primary_36264642 crossref_primary_10_1172_JCI160766 crossref_citationtrail_10_1172_JCI160766 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-15 |
PublicationDateYYYYMMDD | 2022-12-15 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Ann Arbor |
PublicationTitle | The Journal of clinical investigation |
PublicationTitleAlternate | J Clin Invest |
PublicationYear | 2022 |
Publisher | American Society for Clinical Investigation |
Publisher_xml | – name: American Society for Clinical Investigation |
References | B20 B64 Zang (B78) 2020; 117 B21 B65 B22 B66 B23 B67 B24 B68 B25 B69 B26 B27 B28 B29 B70 B71 B72 B73 B30 B74 B31 B75 B32 B33 B34 B35 B79 B36 Roczniak-Ferguson (B51) 2012; 5 B37 B39 Zhao (B77) 2020; 94 B1 B2 B3 B4 B5 Shi (B47) 2021; 40 B6 B7 B8 Zhou (B10) 2020; 6 B9 Winstone (B76) 2021; 95 B81 B82 B83 B84 B41 B85 B42 B86 B43 B87 B44 B88 B45 B89 B46 B48 B49 B90 Letko (B91) 2020; 11 B50 B52 B53 Majdoul (B40) 2021; 22 B54 B11 B55 Shi (B38) 2018; 115 B56 B13 B57 B14 B58 B15 B59 B16 B17 Blagosklonny (B12) 2020; 12 B19 Zhavoronkov (B18) 2020; 12 Zhao (B80) 2018; 92 B60 B61 B62 B63 33880473 - bioRxiv. 2022 Apr 06 |
References_xml | – ident: B5 doi: 10.1136/jitc-2020-000862 – ident: B32 doi: 10.4049/jimmunol.2000413 – ident: B44 doi: 10.1083/jcb.201711002 – ident: B64 doi: 10.1002/bies.201800008 – ident: B83 doi: 10.3389/fimmu.2020.01372 – ident: B16 doi: 10.3389/fphar.2020.00856 – ident: B45 doi: 10.1080/15548627.2018.1532265 – ident: B53 doi: 10.1038/emboj.2012.32 – ident: B71 doi: 10.1371/journal.ppat.1005095 – ident: B85 doi: 10.1016/j.cell.2021.07.023 – ident: B6 doi: 10.1093/infdis/jiab075 – ident: B46 doi: 10.1016/j.devcel.2010.12.003 – ident: B70 doi: 10.1016/j.molcel.2014.12.012 – ident: B21 doi: 10.1016/j.cell.2012.03.017 – ident: B9 doi: 10.1038/s41586-020-2286-9 – volume: 22 start-page: 339 issue: 6 year: 2021 ident: B40 article-title: Lessons in self-defence: inhibition of virus entry by intrinsic immunity publication-title: Nat Rev Immunol doi: 10.1038/s41577-021-00626-8 – ident: B57 doi: 10.1186/s13023-015-0317-7 – ident: B29 doi: 10.1038/nri3198 – ident: B55 doi: 10.1038/s41591-020-1070-6 – ident: B11 doi: 10.1080/22221751.2020.1799723 – ident: B54 doi: 10.1371/journal.pbio.3000252 – ident: B23 doi: 10.1093/annonc/mdi113 – ident: B15 doi: 10.1002/jmv.26009 – ident: B34 doi: 10.1038/s41467-021-22166-4 – ident: B56 doi: 10.1186/s12931-016-0492-7 – volume: 94 issue: 18 year: 2020 ident: B77 article-title: LY6E restricts entry of human coronaviruses, including currently pandemic SARS-CoV-2 publication-title: J Virol doi: 10.1128/JVI.00562-20 – ident: B8 doi: 10.1016/j.cell.2020.10.049 – ident: B88 doi: 10.1016/j.celrep.2020.108371 – volume: 5 issue: 228 year: 2012 ident: B51 article-title: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis publication-title: Sci Signal doi: 10.1126/scisignal.2002790 – ident: B81 doi: 10.1101/2021.12.22.473914 – ident: B25 doi: 10.1021/acsmedchemlett.9b00215 – ident: B74 doi: 10.1080/15548627.2015.1043077 – ident: B2 doi: 10.1038/s41586-020-2008-3 – ident: B35 doi: 10.1186/s12931-017-0618-6 – ident: B1 doi: 10.1056/NEJMoa2001017 – ident: B13 doi: 10.1186/s13046-020-01590-2 – ident: B58 doi: 10.1096/fj.07-9574LSF – volume: 117 start-page: 32105 issue: 50 year: 2020 ident: B78 article-title: Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2012197117 – ident: B62 doi: 10.1038/ncb3114 – ident: B28 doi: 10.1038/nrm3025 – ident: B3 doi: 10.1038/s41586-020-2355-0 – ident: B33 doi: 10.1016/S2666-7568(20)30068-4 – volume: 6 year: 2020 ident: B10 article-title: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2 publication-title: Cell Discovery doi: 10.1038/s41421-020-0153-3 – ident: B59 doi: 10.1371/journal.pmed.0050008 – ident: B72 doi: 10.15252/embr.201642771 – volume: 12 start-page: 10004 issue: 11 year: 2020 ident: B12 article-title: From causes of aging to death from COVID-19 publication-title: Aging (Albany NY) doi: 10.18632/aging.103493 – volume: 40 issue: 3 year: 2021 ident: B47 article-title: Opposing activities of IFITM proteins in SARS-CoV-2 infection publication-title: EMBO J doi: 10.15252/embj.2020106501 – ident: B63 doi: 10.1242/jcs.246322 – ident: B87 doi: 10.7717/peerj.10402 – ident: B26 doi: 10.1038/nrd3531 – ident: B43 doi: 10.1016/j.cell.2020.02.052 – ident: B22 doi: 10.1016/S0960-9822(07)00535-0 – ident: B41 doi: 10.26508/lsa.202000786 – ident: B17 doi: 10.1016/j.genrep.2020.100765 – ident: B27 doi: 10.1128/MCB.00678-12 – ident: B66 doi: 10.1074/jbc.R117.818237 – ident: B69 doi: 10.1083/jcb.201902127 – ident: B14 doi: 10.1016/j.cbi.2020.109282 – ident: B52 doi: 10.4161/auto.19653 – ident: B79 doi: 10.1371/journal.ppat.1001258 – ident: B65 doi: 10.4161/auto.7.6.15287 – ident: B39 doi: 10.1186/s12977-016-0324-3 – ident: B4 doi: 10.1056/NEJMc2031670 – ident: B73 doi: 10.1083/jcb.201902127 – volume: 95 issue: 9 year: 2021 ident: B76 article-title: The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2 publication-title: J Virol doi: 10.1128/JVI.02422-20 – ident: B31 doi: 10.1016/S0140-6736(20)30628-0 – ident: B50 doi: 10.3389/fphar.2018.01425 – ident: B67 doi: 10.4161/auto.7.7.14733 – ident: B7 doi: 10.1093/infdis/jiaa666 – volume: 12 start-page: 6492 issue: 8 year: 2020 ident: B18 article-title: Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections publication-title: Aging (Albany NY) doi: 10.18632/aging.102988 – volume: 11 start-page: 562 issue: 4 year: 2020 ident: B91 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat Microbiol doi: 10.1038/s41564-020-0688-y – ident: B42 doi: 10.1016/j.molcel.2020.04.022 – ident: B19 doi: 10.1038/d41586-020-02856-7 – ident: B20 doi: 10.1016/j.clim.2020.108464 – ident: B24 doi: 10.1172/JCI64099 – ident: B37 doi: 10.1182/blood.2019000040 – ident: B61 doi: 10.14412/2074-2711-2022-1-108-114 – ident: B36 doi: 10.1038/s41598-017-00988-x – ident: B48 doi: 10.1038/s41564-022-01143-7 – ident: B75 doi: 10.1073/pnas.1320856111 – volume: 92 issue: 6 year: 2018 ident: B80 article-title: Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses publication-title: J Virol doi: 10.1128/JVI.01535-17 – volume: 115 start-page: E10069 issue: 43 year: 2018 ident: B38 article-title: mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1811892115 – ident: B60 doi: 10.1093/jjco/hys110 – ident: B86 doi: 10.1093/infdis/jiaa224 – ident: B30 doi: 10.1016/j.immuni.2020.06.017 – ident: B84 doi: 10.1016/j.cell.2020.04.026 – ident: B68 doi: 10.1016/j.jphs.2019.05.007 – ident: B82 doi: 10.1016/j.jmb.2021.167265 – ident: B49 doi: 10.1038/s41467-021-24817-y – ident: B89 doi: 10.1016/j.cell.2020.09.050 – ident: B90 doi: 10.1016/j.celrep.2019.05.040 – reference: 33880473 - bioRxiv. 2022 Apr 06;: |
SSID | ssj0014454 |
Score | 2.505927 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1 |
SubjectTerms | Adaptive immunity Animal models Antiviral drugs Autoimmune diseases Autoimmunity Biomedical research Cancer Care and treatment Cell culture Cell growth Coronaviruses COVID-19 Disease transmission Host-virus relationships Humans Immune response Immunity, Innate Immunocompromised host Infections Influenza Inhibitor drugs Kinases Membrane Proteins MTOR Inhibitors Nuclear transport Phosphorylation Proteins Rapamycin RNA-Binding Proteins SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Sirolimus - pharmacology Targeted cancer therapy Testing Tissue culture TOR protein Viral diseases Viral infections Virus Internalization Viruses |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgSIgXxDcZAwxCwEu0xHbi-AmVimmbVJBaNvUtSvxRKrGkLO0D_z13rpstYkJIfap_iZKz787n3P2OkHe1LgzsqnWcSWFjIW0SqyoHvbLGFnmmJfNUSpOv-fGZOJ1n83Dg1oW0yp1N9IbatBrPyA-ZzGE1FiJVn1a_YuwahV9XQwuN2-QOUpdhSpec9wEXxApZYGFOYwUXB2Yh8NmHp-MTpFbz5IhX_sjT9v9tnK95p2Hm5DVXdPSA3A97SDraTvpDcss2j8jdSfhK_phMpuABwaZ11ECMfdEabNFl6RJutmxgVujSF4Wsf9OqMXTlE_IsxSN86vuM0NbR2Wg6i8ftecyekLOjL9_Hx3FomxDrXPJ1XLA640YlVZIWVkqI37RgVmnthMkUV-C1ZOGc05lLDEMp1A6EWyvNuUi45k_JXtM29jmhMjUV8sfwisFdKleANeQapAaBCNeVicjHnfBKHTjFsbXFz9LHFpKVvZwj8raHrrZEGjeBPuMM9ADkvvZ_tJeLMqhSmQmdMOuEljYVjpnCmYJVRc3AFqXSqIi8xvkrt4WkvQaXI8lhrwbhGT6LRyD_RYMJNotq03Xlybfz_wDNpgPQhwByLby4rkJRA4gPebUGyPcD5GLLKn4T8GAABHXXw-HdsiyDuenKK-WIyJt-GK_EFLrGthvEsBx28wCKyLPtKu7ljJxEAiLRiMjB-h5MxHCkWf7wZORYmK2U3P_3Y70g9xjWjaTwyw7I3vpyY1_Cbm5dv_Iq-wdEWkWr priority: 102 providerName: ProQuest |
Title | Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36264642 https://www.proquest.com/docview/2760738419 https://www.proquest.com/docview/2726923841 https://pubmed.ncbi.nlm.nih.gov/PMC9753997 https://doaj.org/article/54c02ef4c7e14f2d8fd82a8b248817d9 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgSIgXxDeFUQxCwEu0xHZi57Erm9ahDtSyqW-W449RCZKJtg_895wdNzRiEjwg9SX1L1FyZ_vukrvfIfSm0sKAV62TnDObMG7TpFQFrCtrrChyzUmgUpqeFSfn7HSRL3ZaffmcsJYeuBXcQc50SqxjmtuMOWKEM4IoURGYeRk3oXQPbN42mIrfDxjLWeQRAgt9cDqeeCK1QIX42_oEkv4_t-IdW9TPk9wxPMf30N3oMeJRe6f30Q1bP0C3p_Gb-EM0nYG9gx1shQ1E1N8b4xtyWbyEiy1r0AFehhKQ9U-saoOvQvqdxf6FPQ5dRXDj8Hw0myfj5iIhj9D58dGX8UkSmyQkuuB0nQhS5dSUqUozYTmHaE0zYkutHTN5SUuwUVw453TuUkO8FCrHi7QqNaUspZo-Rnt1U9unCPPMKM8WQxWBqygnYO-jGqQGYQfVygzQ-63wpI4M4r6RxTcZIglOZCfnAXrdQa9a2ozrQIdeAx3AM12HP0D_Mupf_k3_A_TS60-2ZaPdepUjTsEzg2DM30tAeLaL2qfTXKrNaiUnny7-ATSf9UDvIsg18OBaxRIGEJ9n0eoh3_aQly2H-HXA_R4QFrfuD2-npYyby0oS0B-ngmXw8K-6YX-mT5irbbPxGFKA7w6gAXrSzuJOzp6BiEHcOUC8N797iuiP1MuvgXrcl2GXJX_2PzT3HN0hvpYkg1--j_bWPzb2BXh462qIbvIFH6Jbh0dnn2dw9GHycRgW-C-LJ0_w |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8CgxnE10u0xHbi5AGhrmxqt7Wg7kN7C4k_SiVIytoK7Z_ib-QuSbNFTIiXSX2Kf3Hd8_l8V_t-R8jrTEUavGrlBlIYV0jjuXEawroy2kRhoCQrqZSGo7B_LPZOg9M18nuVC4PXKlc2sTTUulD4H_kWkyFoYyT8-OPsp4tVo_B0dVVCo1KLfXP-C0K2-YfBJ5jfN4zt7hz1-m5dVcBVoeQLN2JZwHXspZ4fGSkhvFGCmVgpK3QQ8xiMuoystSqwnmbIv5ZZ-O4sVpwLjysO_d4g64JDKNMh69s7oy_j5txCiKDmffbdGIZbcxmBl7C11xtgZyUd48UOWBYK-Hs7uLQftu9qXtr8du-SO7XXSruVmt0jaya_T24O63P5B2Q4hj0XrOicaojqfxQai4IZOoXOpjnoAZ2WaSiLc5rmms7KK4CG4qEBLSub0MLSw-740O0VJy57SI6vRaSPSCcvcvOEUOnrFBlreMqgl9RGYH-5AqlB6MNVqh3yfiW8RNUs5lhM43tSRjOSJY2cHfKqgc4q6o6rQNs4Aw0A2bbLB8XZJKkXbxII5TFjhZLGF5bpyOqIpVHGwPr5UscO2cT5S6rU1cZmJF3JwTuEgBDHUiKQcSPHKz2TdDmfJ4PPJ_8BOhy3QO9qkC3gh6u0TqMA8SGTVwv5toWcVDzmVwE3WkAwMKrdvFLLpDZw8-RiOTrkZdOMb-KlvdwUS8SwEOIHADnkcaXFjZyRBUlA7OsQ2dLv1kS0W_Lpt5L-HFPB41g-_fewNsmt_tHwIDkYjPafkdsMs1Z8-AQbpLM4W5rn4Esushf1Aqbk63XbjD9LW4Ki |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHcCgxnE7SVqYidx8oBQ6ajWjQ7UsqlvIfGlqzSSsrZC-2v8Os5x0mwRE-JlUp-ar5Z7fPzZJ_b5DiGvchkr2FVLNxSBdgOhPTfJIphXWuk4CqVgVkppeBjtHQX7k3CyQX6vc2HwWuWaEy1Rq1LiO_IOExF4Yxz4ScfU1yK-7vY_zH-6WEEKT1rX5TQqFznQ578gfFu8H-zCWL9mrP_pW2_PrSsMuDISfOnGLA-5SrzM82MtBIQ6MmA6kdIEKkx4AgQvYmOMDI2nGGqx5Qb6kSeS88DjkkO7N8hNwUMf55iYNMEexClhrQDtuwl0vFY1gv1CZ783wKasMOPFWmhLBvy9MFxaGdu3Ni8tg_075Ha9f6XdyuHukg1d3CNbw_qE_j4ZjmD1BT5dUAXx_Y9SYXkwTWfQ2KwAj6Azm5CyPKdZoejcXgbUFI8PqK1xQktDx93R2O2Vxy57QI6uxaAPyWZRFvoxocJXGWrX8IxBK5mJgYm5BKtBEMRlphzybm28VNZ65lhW4zS1cY1gaWNnh7xsoPNKxOMq0EccgQaAutv2i_JsmtbTOA0D6TFtAim0HximYqNilsU5Ax70hUocsoPjl1ZJrA17pF3BYZ8IoSH2xSJQe6NAL55mq8UiHXw5_g_QeNQCva1BpoQ_LrM6oQLMh5peLeSbFnJaKZpfBdxuAYFqZPvx2i3TmuoW6cXEdMiL5jH-Eq_vFbpcIYZFEEkAyCGPKi9u7Ix6SAFEwQ4RLf9uDUT7STE7sULomBSeJOLJv7u1Q7aAKdLPg8ODp-QWw_QVHz7hNtlcnq30M9hULvPndvZS8v266eIPFqeFcg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapalogs+downmodulate+intrinsic+immunity+and+promote+cell+entry+of+SARS-CoV-2&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Shi%2C+Guoli&rft.au=Chiramel%2C+Abhilash+I&rft.au=Li%2C+Tiansheng&rft.au=Lai%2C+Kin+Kui&rft.date=2022-12-15&rft.eissn=1558-8238&rft.volume=132&rft.issue=24&rft_id=info:doi/10.1172%2FJCI160766&rft_id=info%3Apmid%2F36264642&rft.externalDocID=36264642 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8238&client=summon |