Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR in...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 132; no. 24; pp. 1 - 16
Main Authors Shi, Guoli, Chiramel, Abhilash I., Li, Tiansheng, Lai, Kin Kui, Kenney, Adam D., Zani, Ashley, Eddy, Adrian C., Majdoul, Saliha, Zhang, Lizhi, Dempsey, Tirhas, Beare, Paul A., Kar, Swagata, Yewdell, Jonathan W., Best, Sonja M., Yount, Jacob S., Compton, Alex A.
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 15.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome- mediated suppression of intrinsic immunity.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
Audience Academic
Author Zhang, Lizhi
Beare, Paul A.
Zani, Ashley
Eddy, Adrian C.
Lai, Kin Kui
Yewdell, Jonathan W.
Compton, Alex A.
Li, Tiansheng
Yount, Jacob S.
Shi, Guoli
Chiramel, Abhilash I.
Best, Sonja M.
Kar, Swagata
Dempsey, Tirhas
Majdoul, Saliha
Kenney, Adam D.
AuthorAffiliation 1 HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
3 Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
5 Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
2 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
4 Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
6 Bioqual, Rockville, Maryland, USA
AuthorAffiliation_xml – name: 3 Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
– name: 6 Bioqual, Rockville, Maryland, USA
– name: 1 HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
– name: 5 Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
– name: 2 Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
– name: 4 Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
Author_xml – sequence: 1
  givenname: Guoli
  surname: Shi
  fullname: Shi, Guoli
– sequence: 2
  givenname: Abhilash I.
  surname: Chiramel
  fullname: Chiramel, Abhilash I.
– sequence: 3
  givenname: Tiansheng
  surname: Li
  fullname: Li, Tiansheng
– sequence: 4
  givenname: Kin Kui
  orcidid: 0000-0003-2694-6243
  surname: Lai
  fullname: Lai, Kin Kui
– sequence: 5
  givenname: Adam D.
  orcidid: 0000-0002-9110-1178
  surname: Kenney
  fullname: Kenney, Adam D.
– sequence: 6
  givenname: Ashley
  surname: Zani
  fullname: Zani, Ashley
– sequence: 7
  givenname: Adrian C.
  orcidid: 0000-0002-9945-2810
  surname: Eddy
  fullname: Eddy, Adrian C.
– sequence: 8
  givenname: Saliha
  orcidid: 0000-0002-0530-6354
  surname: Majdoul
  fullname: Majdoul, Saliha
– sequence: 9
  givenname: Lizhi
  surname: Zhang
  fullname: Zhang, Lizhi
– sequence: 10
  givenname: Tirhas
  surname: Dempsey
  fullname: Dempsey, Tirhas
– sequence: 11
  givenname: Paul A.
  surname: Beare
  fullname: Beare, Paul A.
– sequence: 12
  givenname: Swagata
  orcidid: 0000-0003-3702-6207
  surname: Kar
  fullname: Kar, Swagata
– sequence: 13
  givenname: Jonathan W.
  orcidid: 0000-0002-3826-1906
  surname: Yewdell
  fullname: Yewdell, Jonathan W.
– sequence: 14
  givenname: Sonja M.
  surname: Best
  fullname: Best, Sonja M.
– sequence: 15
  givenname: Jacob S.
  surname: Yount
  fullname: Yount, Jacob S.
– sequence: 16
  givenname: Alex A.
  orcidid: 0000-0002-7508-4953
  surname: Compton
  fullname: Compton, Alex A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36264642$$D View this record in MEDLINE/PubMed
BookMark eNqNk0mP0zAUxyM0iFngwBdAkZAQHDLjLXF8QaoqlqJBI7UwV8vxkrpK7BInQL89DjN0mlEPyAdbfr_3f36Lz5MT551OkpcQXEJI0dWX-QIWgBbFk-QM5nmZlQiXJwfn0-Q8hA0AkJCcPEtOcYEKUhB0lnxdiq1ofB1S5X-51quhEb1Ores764KVqW3bwdl-lwqn0m3nWx_NUjdNqiOzS71JV7PlKpv72ww9T54a0QT94n6_SL5__PBt_jm7vvm0mM-uM1lQ3McnVTlWDAgAS00pYEQSpJmUhqicYQYxoKUxRuYGKDSmVhlagIpJjAnAEl8kiztd5cWGbzvbim7HvbD874Xvai663spG85xIgLQhkmpIDFKlUSUSZYVIWUKqWNR6f6e1HapWKzmmJZqJ6NTi7JrX_idnNMeM0Sjw9l6g8z8GHXre2jBWSDjth8ARRQWLTSAwoq8foRs_dC6WKlIxzRFiD1QtYgLWGR_jylGUzyhGFMfARaSyI1StnY6PjPNhbLye8JdH-LiUbq086vBu4hCZXv_uazGEwBer5f-zN7dT9s0Bu9ai6dfBN0NvvQtT8NVhZ_Yt-Te9D1Fl50PotNkjEPDxZ_D9z4js1SNW2l6MMWMZbHPE4w8grgjg
CitedBy_id crossref_primary_10_3389_fimmu_2023_1045009
crossref_primary_10_1016_j_bbadis_2025_167733
crossref_primary_10_1038_s41467_024_45075_8
crossref_primary_10_1038_s41467_024_53792_3
crossref_primary_10_1007_s11033_022_08188_1
crossref_primary_10_1016_j_isci_2023_106169
crossref_primary_10_1016_j_coi_2024_102426
crossref_primary_10_3390_biom13060937
crossref_primary_10_1016_j_intimp_2023_111155
crossref_primary_10_3389_fimmu_2024_1303356
crossref_primary_10_3389_fphar_2024_1173240
crossref_primary_10_15252_embr_202256660
crossref_primary_10_1038_s41366_023_01352_y
crossref_primary_10_1038_s41573_023_00672_y
Cites_doi 10.1136/jitc-2020-000862
10.4049/jimmunol.2000413
10.1083/jcb.201711002
10.1002/bies.201800008
10.3389/fimmu.2020.01372
10.3389/fphar.2020.00856
10.1080/15548627.2018.1532265
10.1038/emboj.2012.32
10.1371/journal.ppat.1005095
10.1016/j.cell.2021.07.023
10.1093/infdis/jiab075
10.1016/j.devcel.2010.12.003
10.1016/j.molcel.2014.12.012
10.1016/j.cell.2012.03.017
10.1038/s41586-020-2286-9
10.1038/s41577-021-00626-8
10.1186/s13023-015-0317-7
10.1038/nri3198
10.1038/s41591-020-1070-6
10.1080/22221751.2020.1799723
10.1371/journal.pbio.3000252
10.1093/annonc/mdi113
10.1002/jmv.26009
10.1038/s41467-021-22166-4
10.1186/s12931-016-0492-7
10.1128/JVI.00562-20
10.1016/j.cell.2020.10.049
10.1016/j.celrep.2020.108371
10.1126/scisignal.2002790
10.1101/2021.12.22.473914
10.1021/acsmedchemlett.9b00215
10.1080/15548627.2015.1043077
10.1038/s41586-020-2008-3
10.1186/s12931-017-0618-6
10.1056/NEJMoa2001017
10.1186/s13046-020-01590-2
10.1096/fj.07-9574LSF
10.1073/pnas.2012197117
10.1038/ncb3114
10.1038/nrm3025
10.1038/s41586-020-2355-0
10.1016/S2666-7568(20)30068-4
10.1038/s41421-020-0153-3
10.1371/journal.pmed.0050008
10.15252/embr.201642771
10.18632/aging.103493
10.15252/embj.2020106501
10.1242/jcs.246322
10.7717/peerj.10402
10.1038/nrd3531
10.1016/j.cell.2020.02.052
10.1016/S0960-9822(07)00535-0
10.26508/lsa.202000786
10.1016/j.genrep.2020.100765
10.1128/MCB.00678-12
10.1074/jbc.R117.818237
10.1083/jcb.201902127
10.1016/j.cbi.2020.109282
10.4161/auto.19653
10.1371/journal.ppat.1001258
10.4161/auto.7.6.15287
10.1186/s12977-016-0324-3
10.1056/NEJMc2031670
10.1128/JVI.02422-20
10.1016/S0140-6736(20)30628-0
10.3389/fphar.2018.01425
10.4161/auto.7.7.14733
10.1093/infdis/jiaa666
10.18632/aging.102988
10.1038/s41564-020-0688-y
10.1016/j.molcel.2020.04.022
10.1038/d41586-020-02856-7
10.1016/j.clim.2020.108464
10.1172/JCI64099
10.1182/blood.2019000040
10.14412/2074-2711-2022-1-108-114
10.1038/s41598-017-00988-x
10.1038/s41564-022-01143-7
10.1073/pnas.1320856111
10.1128/JVI.01535-17
10.1073/pnas.1811892115
10.1093/jjco/hys110
10.1093/infdis/jiaa224
10.1016/j.immuni.2020.06.017
10.1016/j.cell.2020.04.026
10.1016/j.jphs.2019.05.007
10.1016/j.jmb.2021.167265
10.1038/s41467-021-24817-y
10.1016/j.cell.2020.09.050
10.1016/j.celrep.2019.05.040
ContentType Journal Article
Copyright COPYRIGHT 2022 American Society for Clinical Investigation
Copyright American Society for Clinical Investigation Dec 2022
2022 Shi et al. 2022 Shi et al.
Copyright_xml – notice: COPYRIGHT 2022 American Society for Clinical Investigation
– notice: Copyright American Society for Clinical Investigation Dec 2022
– notice: 2022 Shi et al. 2022 Shi et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7RV
7X7
7XB
88A
88E
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0X
7X8
5PM
DOA
DOI 10.1172/JCI160766
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SIRS Editorial
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE



ProQuest Central Student
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-8238
EndPage 16
ExternalDocumentID oai_doaj_org_article_54c02ef4c7e14f2d8fd82a8b248817d9
PMC9753997
A732737536
36264642
10_1172_JCI160766
Genre Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL154001
– fundername: NIAID NIH HHS
  grantid: R01 AI130110
– fundername: NIAID NIH HHS
  grantid: T32 AI165391
– fundername: NIAID NIH HHS
  grantid: R21 AI151230
– fundername: Intramural Research Program, NIH
  grantid: N/A
– fundername: ;
  grantid: N/A
– fundername: NIH
  grantid: AI130110,AI151230,AI142256,; HL154001
GroupedDBID ---
-~X
.55
.XZ
08G
08P
29K
354
36B
5GY
5RE
5RS
7RV
7X7
88E
8AO
8F7
8FE
8FH
8FI
8FJ
8R4
8R5
AAWTL
AAYXX
ABOCM
ABPMR
ABUWG
ACGFO
ACIHN
ACNCT
ACPRK
ADBBV
AEAQA
AENEX
AFCHL
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BCU
BEC
BENPR
BHPHI
BKEYQ
BLC
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D-I
DIK
DU5
E3Z
EBS
EJD
EMB
EX3
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
IOF
IOV
IPO
ISR
ITC
KQ8
L7B
LK8
M1P
M5~
M7P
NAPCQ
OBH
OCB
ODZKP
OFXIZ
OGEVE
OHH
OK1
OVD
OVIDX
OVT
P2P
P6G
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPM
S0X
SJFOW
SV3
TEORI
TR2
TVE
UKHRP
VVN
W2D
WH7
WOQ
WOW
X7M
XSB
YFH
YHG
YKV
YOC
ZY1
~H1
3V.
88A
CGR
CUY
CVF
ECM
EIF
INR
M0L
NPM
PMFND
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c673t-82b53d90a018e77094c42e9ccf4d593913078fffc5f0d21607bf760b9c33403c3
IEDL.DBID DOA
ISSN 1558-8238
0021-9738
IngestDate Wed Aug 27 01:29:21 EDT 2025
Thu Aug 21 18:39:01 EDT 2025
Thu Jul 10 23:32:27 EDT 2025
Sat Aug 23 12:54:51 EDT 2025
Tue Jun 17 21:34:50 EDT 2025
Thu Jun 12 23:54:32 EDT 2025
Tue Jun 10 20:22:10 EDT 2025
Fri Jun 27 05:32:59 EDT 2025
Fri Jun 27 05:52:16 EDT 2025
Thu May 22 21:31:43 EDT 2025
Thu Jan 02 22:53:37 EST 2025
Tue Jul 01 00:21:54 EDT 2025
Thu Apr 24 23:02:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords COVID-19
Lysosomes
Innate immunity
Autophagy
Language English
License http://creativecommons.org/licenses/by/4.0
This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c673t-82b53d90a018e77094c42e9ccf4d593913078fffc5f0d21607bf760b9c33403c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0530-6354
0000-0002-7508-4953
0000-0002-9945-2810
0000-0003-2694-6243
0000-0002-3826-1906
0000-0002-9110-1178
0000-0003-3702-6207
OpenAccessLink https://doaj.org/article/54c02ef4c7e14f2d8fd82a8b248817d9
PMID 36264642
PQID 2760738419
PQPubID 42166
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_54c02ef4c7e14f2d8fd82a8b248817d9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9753997
proquest_miscellaneous_2726923841
proquest_journals_2760738419
gale_infotracmisc_A732737536
gale_infotracgeneralonefile_A732737536
gale_infotracacademiconefile_A732737536
gale_incontextgauss_ISR_A732737536
gale_incontextgauss_IOV_A732737536
gale_healthsolutions_A732737536
pubmed_primary_36264642
crossref_primary_10_1172_JCI160766
crossref_citationtrail_10_1172_JCI160766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-15
PublicationDateYYYYMMDD 2022-12-15
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Ann Arbor
PublicationTitle The Journal of clinical investigation
PublicationTitleAlternate J Clin Invest
PublicationYear 2022
Publisher American Society for Clinical Investigation
Publisher_xml – name: American Society for Clinical Investigation
References B20
B64
Zang (B78) 2020; 117
B21
B65
B22
B66
B23
B67
B24
B68
B25
B69
B26
B27
B28
B29
B70
B71
B72
B73
B30
B74
B31
B75
B32
B33
B34
B35
B79
B36
Roczniak-Ferguson (B51) 2012; 5
B37
B39
Zhao (B77) 2020; 94
B1
B2
B3
B4
B5
Shi (B47) 2021; 40
B6
B7
B8
Zhou (B10) 2020; 6
B9
Winstone (B76) 2021; 95
B81
B82
B83
B84
B41
B85
B42
B86
B43
B87
B44
B88
B45
B89
B46
B48
B49
B90
Letko (B91) 2020; 11
B50
B52
B53
Majdoul (B40) 2021; 22
B54
B11
B55
Shi (B38) 2018; 115
B56
B13
B57
B14
B58
B15
B59
B16
B17
Blagosklonny (B12) 2020; 12
B19
Zhavoronkov (B18) 2020; 12
Zhao (B80) 2018; 92
B60
B61
B62
B63
33880473 - bioRxiv. 2022 Apr 06
References_xml – ident: B5
  doi: 10.1136/jitc-2020-000862
– ident: B32
  doi: 10.4049/jimmunol.2000413
– ident: B44
  doi: 10.1083/jcb.201711002
– ident: B64
  doi: 10.1002/bies.201800008
– ident: B83
  doi: 10.3389/fimmu.2020.01372
– ident: B16
  doi: 10.3389/fphar.2020.00856
– ident: B45
  doi: 10.1080/15548627.2018.1532265
– ident: B53
  doi: 10.1038/emboj.2012.32
– ident: B71
  doi: 10.1371/journal.ppat.1005095
– ident: B85
  doi: 10.1016/j.cell.2021.07.023
– ident: B6
  doi: 10.1093/infdis/jiab075
– ident: B46
  doi: 10.1016/j.devcel.2010.12.003
– ident: B70
  doi: 10.1016/j.molcel.2014.12.012
– ident: B21
  doi: 10.1016/j.cell.2012.03.017
– ident: B9
  doi: 10.1038/s41586-020-2286-9
– volume: 22
  start-page: 339
  issue: 6
  year: 2021
  ident: B40
  article-title: Lessons in self-defence: inhibition of virus entry by intrinsic immunity
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-021-00626-8
– ident: B57
  doi: 10.1186/s13023-015-0317-7
– ident: B29
  doi: 10.1038/nri3198
– ident: B55
  doi: 10.1038/s41591-020-1070-6
– ident: B11
  doi: 10.1080/22221751.2020.1799723
– ident: B54
  doi: 10.1371/journal.pbio.3000252
– ident: B23
  doi: 10.1093/annonc/mdi113
– ident: B15
  doi: 10.1002/jmv.26009
– ident: B34
  doi: 10.1038/s41467-021-22166-4
– ident: B56
  doi: 10.1186/s12931-016-0492-7
– volume: 94
  issue: 18
  year: 2020
  ident: B77
  article-title: LY6E restricts entry of human coronaviruses, including currently pandemic SARS-CoV-2
  publication-title: J Virol
  doi: 10.1128/JVI.00562-20
– ident: B8
  doi: 10.1016/j.cell.2020.10.049
– ident: B88
  doi: 10.1016/j.celrep.2020.108371
– volume: 5
  issue: 228
  year: 2012
  ident: B51
  article-title: The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
  publication-title: Sci Signal
  doi: 10.1126/scisignal.2002790
– ident: B81
  doi: 10.1101/2021.12.22.473914
– ident: B25
  doi: 10.1021/acsmedchemlett.9b00215
– ident: B74
  doi: 10.1080/15548627.2015.1043077
– ident: B2
  doi: 10.1038/s41586-020-2008-3
– ident: B35
  doi: 10.1186/s12931-017-0618-6
– ident: B1
  doi: 10.1056/NEJMoa2001017
– ident: B13
  doi: 10.1186/s13046-020-01590-2
– ident: B58
  doi: 10.1096/fj.07-9574LSF
– volume: 117
  start-page: 32105
  issue: 50
  year: 2020
  ident: B78
  article-title: Cholesterol 25-hydroxylase suppresses SARS-CoV-2 replication by blocking membrane fusion
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2012197117
– ident: B62
  doi: 10.1038/ncb3114
– ident: B28
  doi: 10.1038/nrm3025
– ident: B3
  doi: 10.1038/s41586-020-2355-0
– ident: B33
  doi: 10.1016/S2666-7568(20)30068-4
– volume: 6
  year: 2020
  ident: B10
  article-title: Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2
  publication-title: Cell Discovery
  doi: 10.1038/s41421-020-0153-3
– ident: B59
  doi: 10.1371/journal.pmed.0050008
– ident: B72
  doi: 10.15252/embr.201642771
– volume: 12
  start-page: 10004
  issue: 11
  year: 2020
  ident: B12
  article-title: From causes of aging to death from COVID-19
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.103493
– volume: 40
  issue: 3
  year: 2021
  ident: B47
  article-title: Opposing activities of IFITM proteins in SARS-CoV-2 infection
  publication-title: EMBO J
  doi: 10.15252/embj.2020106501
– ident: B63
  doi: 10.1242/jcs.246322
– ident: B87
  doi: 10.7717/peerj.10402
– ident: B26
  doi: 10.1038/nrd3531
– ident: B43
  doi: 10.1016/j.cell.2020.02.052
– ident: B22
  doi: 10.1016/S0960-9822(07)00535-0
– ident: B41
  doi: 10.26508/lsa.202000786
– ident: B17
  doi: 10.1016/j.genrep.2020.100765
– ident: B27
  doi: 10.1128/MCB.00678-12
– ident: B66
  doi: 10.1074/jbc.R117.818237
– ident: B69
  doi: 10.1083/jcb.201902127
– ident: B14
  doi: 10.1016/j.cbi.2020.109282
– ident: B52
  doi: 10.4161/auto.19653
– ident: B79
  doi: 10.1371/journal.ppat.1001258
– ident: B65
  doi: 10.4161/auto.7.6.15287
– ident: B39
  doi: 10.1186/s12977-016-0324-3
– ident: B4
  doi: 10.1056/NEJMc2031670
– ident: B73
  doi: 10.1083/jcb.201902127
– volume: 95
  issue: 9
  year: 2021
  ident: B76
  article-title: The polybasic cleavage site in SARS-CoV-2 spike modulates viral sensitivity to type I interferon and IFITM2
  publication-title: J Virol
  doi: 10.1128/JVI.02422-20
– ident: B31
  doi: 10.1016/S0140-6736(20)30628-0
– ident: B50
  doi: 10.3389/fphar.2018.01425
– ident: B67
  doi: 10.4161/auto.7.7.14733
– ident: B7
  doi: 10.1093/infdis/jiaa666
– volume: 12
  start-page: 6492
  issue: 8
  year: 2020
  ident: B18
  article-title: Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections
  publication-title: Aging (Albany NY)
  doi: 10.18632/aging.102988
– volume: 11
  start-page: 562
  issue: 4
  year: 2020
  ident: B91
  article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0688-y
– ident: B42
  doi: 10.1016/j.molcel.2020.04.022
– ident: B19
  doi: 10.1038/d41586-020-02856-7
– ident: B20
  doi: 10.1016/j.clim.2020.108464
– ident: B24
  doi: 10.1172/JCI64099
– ident: B37
  doi: 10.1182/blood.2019000040
– ident: B61
  doi: 10.14412/2074-2711-2022-1-108-114
– ident: B36
  doi: 10.1038/s41598-017-00988-x
– ident: B48
  doi: 10.1038/s41564-022-01143-7
– ident: B75
  doi: 10.1073/pnas.1320856111
– volume: 92
  issue: 6
  year: 2018
  ident: B80
  article-title: Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses
  publication-title: J Virol
  doi: 10.1128/JVI.01535-17
– volume: 115
  start-page: E10069
  issue: 43
  year: 2018
  ident: B38
  article-title: mTOR inhibitors lower an intrinsic barrier to virus infection mediated by IFITM3
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1811892115
– ident: B60
  doi: 10.1093/jjco/hys110
– ident: B86
  doi: 10.1093/infdis/jiaa224
– ident: B30
  doi: 10.1016/j.immuni.2020.06.017
– ident: B84
  doi: 10.1016/j.cell.2020.04.026
– ident: B68
  doi: 10.1016/j.jphs.2019.05.007
– ident: B82
  doi: 10.1016/j.jmb.2021.167265
– ident: B49
  doi: 10.1038/s41467-021-24817-y
– ident: B89
  doi: 10.1016/j.cell.2020.09.050
– ident: B90
  doi: 10.1016/j.celrep.2019.05.040
– reference: 33880473 - bioRxiv. 2022 Apr 06;:
SSID ssj0014454
Score 2.505927
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1
SubjectTerms Adaptive immunity
Animal models
Antiviral drugs
Autoimmune diseases
Autoimmunity
Biomedical research
Cancer
Care and treatment
Cell culture
Cell growth
Coronaviruses
COVID-19
Disease transmission
Host-virus relationships
Humans
Immune response
Immunity, Innate
Immunocompromised host
Infections
Influenza
Inhibitor drugs
Kinases
Membrane Proteins
MTOR Inhibitors
Nuclear transport
Phosphorylation
Proteins
Rapamycin
RNA-Binding Proteins
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Sirolimus - pharmacology
Targeted cancer therapy
Testing
Tissue culture
TOR protein
Viral diseases
Viral infections
Virus Internalization
Viruses
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgSIgXxDcZAwxCwEu0xHbi-AmVimmbVJBaNvUtSvxRKrGkLO0D_z13rpstYkJIfap_iZKz787n3P2OkHe1LgzsqnWcSWFjIW0SqyoHvbLGFnmmJfNUSpOv-fGZOJ1n83Dg1oW0yp1N9IbatBrPyA-ZzGE1FiJVn1a_YuwahV9XQwuN2-QOUpdhSpec9wEXxApZYGFOYwUXB2Yh8NmHp-MTpFbz5IhX_sjT9v9tnK95p2Hm5DVXdPSA3A97SDraTvpDcss2j8jdSfhK_phMpuABwaZ11ECMfdEabNFl6RJutmxgVujSF4Wsf9OqMXTlE_IsxSN86vuM0NbR2Wg6i8ftecyekLOjL9_Hx3FomxDrXPJ1XLA640YlVZIWVkqI37RgVmnthMkUV-C1ZOGc05lLDEMp1A6EWyvNuUi45k_JXtM29jmhMjUV8sfwisFdKleANeQapAaBCNeVicjHnfBKHTjFsbXFz9LHFpKVvZwj8raHrrZEGjeBPuMM9ADkvvZ_tJeLMqhSmQmdMOuEljYVjpnCmYJVRc3AFqXSqIi8xvkrt4WkvQaXI8lhrwbhGT6LRyD_RYMJNotq03Xlybfz_wDNpgPQhwByLby4rkJRA4gPebUGyPcD5GLLKn4T8GAABHXXw-HdsiyDuenKK-WIyJt-GK_EFLrGthvEsBx28wCKyLPtKu7ljJxEAiLRiMjB-h5MxHCkWf7wZORYmK2U3P_3Y70g9xjWjaTwyw7I3vpyY1_Cbm5dv_Iq-wdEWkWr
  priority: 102
  providerName: ProQuest
Title Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2
URI https://www.ncbi.nlm.nih.gov/pubmed/36264642
https://www.proquest.com/docview/2760738419
https://www.proquest.com/docview/2726923841
https://pubmed.ncbi.nlm.nih.gov/PMC9753997
https://doaj.org/article/54c02ef4c7e14f2d8fd82a8b248817d9
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgSIgXxDeFUQxCwEu0xHZi57Erm9ahDtSyqW-W449RCZKJtg_895wdNzRiEjwg9SX1L1FyZ_vukrvfIfSm0sKAV62TnDObMG7TpFQFrCtrrChyzUmgUpqeFSfn7HSRL3ZaffmcsJYeuBXcQc50SqxjmtuMOWKEM4IoURGYeRk3oXQPbN42mIrfDxjLWeQRAgt9cDqeeCK1QIX42_oEkv4_t-IdW9TPk9wxPMf30N3oMeJRe6f30Q1bP0C3p_Gb-EM0nYG9gx1shQ1E1N8b4xtyWbyEiy1r0AFehhKQ9U-saoOvQvqdxf6FPQ5dRXDj8Hw0myfj5iIhj9D58dGX8UkSmyQkuuB0nQhS5dSUqUozYTmHaE0zYkutHTN5SUuwUVw453TuUkO8FCrHi7QqNaUspZo-Rnt1U9unCPPMKM8WQxWBqygnYO-jGqQGYQfVygzQ-63wpI4M4r6RxTcZIglOZCfnAXrdQa9a2ozrQIdeAx3AM12HP0D_Mupf_k3_A_TS60-2ZaPdepUjTsEzg2DM30tAeLaL2qfTXKrNaiUnny7-ATSf9UDvIsg18OBaxRIGEJ9n0eoh3_aQly2H-HXA_R4QFrfuD2-npYyby0oS0B-ngmXw8K-6YX-mT5irbbPxGFKA7w6gAXrSzuJOzp6BiEHcOUC8N797iuiP1MuvgXrcl2GXJX_2PzT3HN0hvpYkg1--j_bWPzb2BXh462qIbvIFH6Jbh0dnn2dw9GHycRgW-C-LJ0_w
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwEviG8CgxnE10u0xHbi5AGhrmxqt7Wg7kN7C4k_SiVIytoK7Z_ib-QuSbNFTIiXSX2Kf3Hd8_l8V_t-R8jrTEUavGrlBlIYV0jjuXEawroy2kRhoCQrqZSGo7B_LPZOg9M18nuVC4PXKlc2sTTUulD4H_kWkyFoYyT8-OPsp4tVo_B0dVVCo1KLfXP-C0K2-YfBJ5jfN4zt7hz1-m5dVcBVoeQLN2JZwHXspZ4fGSkhvFGCmVgpK3QQ8xiMuoystSqwnmbIv5ZZ-O4sVpwLjysO_d4g64JDKNMh69s7oy_j5txCiKDmffbdGIZbcxmBl7C11xtgZyUd48UOWBYK-Hs7uLQftu9qXtr8du-SO7XXSruVmt0jaya_T24O63P5B2Q4hj0XrOicaojqfxQai4IZOoXOpjnoAZ2WaSiLc5rmms7KK4CG4qEBLSub0MLSw-740O0VJy57SI6vRaSPSCcvcvOEUOnrFBlreMqgl9RGYH-5AqlB6MNVqh3yfiW8RNUs5lhM43tSRjOSJY2cHfKqgc4q6o6rQNs4Aw0A2bbLB8XZJKkXbxII5TFjhZLGF5bpyOqIpVHGwPr5UscO2cT5S6rU1cZmJF3JwTuEgBDHUiKQcSPHKz2TdDmfJ4PPJ_8BOhy3QO9qkC3gh6u0TqMA8SGTVwv5toWcVDzmVwE3WkAwMKrdvFLLpDZw8-RiOTrkZdOMb-KlvdwUS8SwEOIHADnkcaXFjZyRBUlA7OsQ2dLv1kS0W_Lpt5L-HFPB41g-_fewNsmt_tHwIDkYjPafkdsMs1Z8-AQbpLM4W5rn4Esushf1Aqbk63XbjD9LW4Ki
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHcCgxnE7SVqYidx8oBQ6ajWjQ7UsqlvIfGlqzSSsrZC-2v8Os5x0mwRE-JlUp-ar5Z7fPzZJ_b5DiGvchkr2FVLNxSBdgOhPTfJIphXWuk4CqVgVkppeBjtHQX7k3CyQX6vc2HwWuWaEy1Rq1LiO_IOExF4Yxz4ScfU1yK-7vY_zH-6WEEKT1rX5TQqFznQ578gfFu8H-zCWL9mrP_pW2_PrSsMuDISfOnGLA-5SrzM82MtBIQ6MmA6kdIEKkx4AgQvYmOMDI2nGGqx5Qb6kSeS88DjkkO7N8hNwUMf55iYNMEexClhrQDtuwl0vFY1gv1CZ783wKasMOPFWmhLBvy9MFxaGdu3Ni8tg_075Ha9f6XdyuHukg1d3CNbw_qE_j4ZjmD1BT5dUAXx_Y9SYXkwTWfQ2KwAj6Azm5CyPKdZoejcXgbUFI8PqK1xQktDx93R2O2Vxy57QI6uxaAPyWZRFvoxocJXGWrX8IxBK5mJgYm5BKtBEMRlphzybm28VNZ65lhW4zS1cY1gaWNnh7xsoPNKxOMq0EccgQaAutv2i_JsmtbTOA0D6TFtAim0HximYqNilsU5Ax70hUocsoPjl1ZJrA17pF3BYZ8IoSH2xSJQe6NAL55mq8UiHXw5_g_QeNQCva1BpoQ_LrM6oQLMh5peLeSbFnJaKZpfBdxuAYFqZPvx2i3TmuoW6cXEdMiL5jH-Eq_vFbpcIYZFEEkAyCGPKi9u7Ix6SAFEwQ4RLf9uDUT7STE7sULomBSeJOLJv7u1Q7aAKdLPg8ODp-QWw_QVHz7hNtlcnq30M9hULvPndvZS8v266eIPFqeFcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapalogs+downmodulate+intrinsic+immunity+and+promote+cell+entry+of+SARS-CoV-2&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Shi%2C+Guoli&rft.au=Chiramel%2C+Abhilash+I&rft.au=Li%2C+Tiansheng&rft.au=Lai%2C+Kin+Kui&rft.date=2022-12-15&rft.eissn=1558-8238&rft.volume=132&rft.issue=24&rft_id=info:doi/10.1172%2FJCI160766&rft_id=info%3Apmid%2F36264642&rft.externalDocID=36264642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8238&client=summon