Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials

Highlights Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized. The advantages and limitations of metal oxides and 2D-materials-based sensors in...

Full description

Saved in:
Bibliographic Details
Published inNano-micro letters Vol. 12; no. 1; pp. 164 - 37
Main Authors Kumar, Rahul, Liu, Xianghong, Zhang, Jun, Kumar, Mahesh
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 13.08.2020
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Highlights Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized. The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted. Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
AbstractList Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized. The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted. Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
Highlights Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized. The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted. Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
Abstract Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
HighlightsOperations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized.The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted.Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.
ArticleNumber 164
Author Kumar, Rahul
Kumar, Mahesh
Zhang, Jun
Liu, Xianghong
Author_xml – sequence: 1
  givenname: Rahul
  surname: Kumar
  fullname: Kumar, Rahul
  organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur
– sequence: 2
  givenname: Xianghong
  surname: Liu
  fullname: Liu, Xianghong
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University
– sequence: 3
  givenname: Jun
  surname: Zhang
  fullname: Zhang, Jun
  email: jun@qdu.edu.cn
  organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University
– sequence: 4
  givenname: Mahesh
  surname: Kumar
  fullname: Kumar, Mahesh
  email: mkumar@iitj.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34138159$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLUv_AAcUiQuXgO3xR5YDEiq0VGpVBN2z5TiTraskbm1vBf8e724ptIc9jMay33uemTcvyd4UJiTkNaPvGaX6QxK04bSm66CSQi2ekQPOJK2llGyvnIGxWmmq9slhSr6lkgvNtRQvyD4IBg2T8wOy-BHCWF_ieIPR5lXE6sSm6idOKcRULaYOY_X9KuRgXfZ3NvswfayOYxirc8x2qC5--Q5TlUPFv1TnNmP0dkivyPO-JDy8zzOyOP56efStPrs4OT36fFY7pSHX0HHROjm33VzzrkE-B2V5S3vrOGrd9IC2NOlc0yqYc3Q9E1Z2jQLLOwQGM3K61e2CvTY30Y82_jbBerO5CHFpbMzeDWiUbKDX6CRaLZRqbYM9aFAtb6Sioi9an7ZaN6t2xM7hlKMdHok-fpn8lVmGO6O1pk2RmpF39wIx3K4wZTP65HAY7IRhlQyXgoMCzaBA3z6BXodVnMqoTDEJ1kjKd6MAqBJyM4M3_9f9UPBfjwuAbwEuhpQi9g8QRs16l8x2lwxdx3qXjCik5gnJ-byxv_Tuh91U2FJT-WdaYvxX9g7WH9u-24g
CitedBy_id crossref_primary_10_46670_JSST_2024_33_5_359
crossref_primary_10_1021_acssensors_3c02247
crossref_primary_10_1016_j_ccr_2022_214611
crossref_primary_10_3390_nano11040892
crossref_primary_10_1016_j_snb_2021_130557
crossref_primary_10_1016_j_cej_2024_157899
crossref_primary_10_1016_j_mencom_2021_07_008
crossref_primary_10_1039_D1TA05070B
crossref_primary_10_1039_D2MH00284A
crossref_primary_10_1360_TB_2021_1075
crossref_primary_10_1016_j_jhazmat_2021_127160
crossref_primary_10_1016_j_carbon_2022_05_008
crossref_primary_10_1016_j_apsusc_2024_159778
crossref_primary_10_1007_s10854_022_07889_4
crossref_primary_10_1109_TIM_2024_3457924
crossref_primary_10_1016_j_apsusc_2024_160664
crossref_primary_10_1021_acsami_4c08151
crossref_primary_10_1007_s40820_024_01486_2
crossref_primary_10_1007_s00339_023_06633_x
crossref_primary_10_1007_s13738_024_03026_6
crossref_primary_10_1016_j_cjsc_2023_100069
crossref_primary_10_1016_j_vacuum_2022_111777
crossref_primary_10_1016_j_jallcom_2021_159076
crossref_primary_10_3390_s24092717
crossref_primary_10_1021_acsanm_3c06222
crossref_primary_10_1007_s00339_024_08143_w
crossref_primary_10_1002_cnl2_18
crossref_primary_10_1016_j_ceramint_2024_11_152
crossref_primary_10_1021_acsomega_2c05142
crossref_primary_10_1016_j_jallcom_2023_168943
crossref_primary_10_1021_acsomega_3c09632
crossref_primary_10_3390_ma15228050
crossref_primary_10_3390_nano13162339
crossref_primary_10_1007_s10854_023_11585_2
crossref_primary_10_1007_s11837_022_05666_6
crossref_primary_10_1016_j_apsusc_2022_156008
crossref_primary_10_1088_1742_6596_2240_1_012016
crossref_primary_10_1007_s40820_022_00796_7
crossref_primary_10_1016_j_snb_2024_136396
crossref_primary_10_1021_acssensors_2c01046
crossref_primary_10_1016_j_snb_2023_134575
crossref_primary_10_1007_s40820_020_00586_z
crossref_primary_10_1016_j_snb_2022_132795
crossref_primary_10_1016_j_trac_2023_117233
crossref_primary_10_1016_j_snb_2024_136149
crossref_primary_10_1016_j_snb_2022_133196
crossref_primary_10_3390_nano11071829
crossref_primary_10_1016_j_talanta_2025_127548
crossref_primary_10_1149_2162_8777_ac2b3d
crossref_primary_10_1002_idm2_12162
crossref_primary_10_1002_advs_202205458
crossref_primary_10_1109_JSEN_2024_3389770
crossref_primary_10_1007_s10854_021_07318_y
crossref_primary_10_3390_s22218150
crossref_primary_10_3390_molecules30030566
crossref_primary_10_1016_j_jhazmat_2021_126161
crossref_primary_10_1016_j_flatc_2023_100584
crossref_primary_10_1002_er_7049
crossref_primary_10_1016_j_snb_2021_130342
crossref_primary_10_1021_acsnano_2c09314
crossref_primary_10_1021_acssensors_2c01275
crossref_primary_10_1021_acsanm_4c05523
crossref_primary_10_1088_1361_6528_ad3a6c
crossref_primary_10_2139_ssrn_3972245
crossref_primary_10_1039_D4MA00426D
crossref_primary_10_1021_acsanm_2c02753
crossref_primary_10_1016_j_snb_2023_133505
crossref_primary_10_1016_j_ceramint_2021_05_016
crossref_primary_10_1021_acsami_2c20166
crossref_primary_10_3390_nano12101628
crossref_primary_10_1002_sstr_202300503
crossref_primary_10_1021_acsami_2c05280
crossref_primary_10_4028_www_scientific_net_JNanoR_70_41
crossref_primary_10_1016_j_nanoen_2024_109672
crossref_primary_10_1021_acsaelm_4c01273
crossref_primary_10_3390_chemosensors9090263
crossref_primary_10_1016_j_cej_2023_142869
crossref_primary_10_1088_1361_6463_ad5aa6
crossref_primary_10_3389_fchem_2021_811074
crossref_primary_10_3390_ma17051009
crossref_primary_10_1016_j_vacuum_2023_112003
crossref_primary_10_1021_acsami_1c03508
crossref_primary_10_1016_j_ijhydene_2024_12_140
crossref_primary_10_1016_j_physe_2022_115144
crossref_primary_10_1016_j_snb_2024_136281
crossref_primary_10_31613_ceramist_2023_26_1_03
crossref_primary_10_1016_j_snb_2022_133216
crossref_primary_10_3389_fchem_2021_629329
crossref_primary_10_1016_j_jhazmat_2022_128836
crossref_primary_10_1016_j_ccr_2021_214151
crossref_primary_10_1021_acssensors_3c02148
crossref_primary_10_1088_2752_5724_ac72b9
crossref_primary_10_1021_acsomega_3c04665
crossref_primary_10_1002_smll_202406706
crossref_primary_10_1016_j_aca_2023_341033
crossref_primary_10_1109_JSEN_2024_3518833
crossref_primary_10_1021_acssensors_4c03489
crossref_primary_10_1002_smll_202402464
crossref_primary_10_1016_j_cej_2025_159616
crossref_primary_10_1016_j_jhazmat_2022_128270
crossref_primary_10_1016_j_snb_2021_129547
crossref_primary_10_1016_j_jallcom_2023_171688
crossref_primary_10_1002_smtd_202301521
crossref_primary_10_1016_j_jsamd_2023_100583
crossref_primary_10_1088_1742_6596_2797_1_012020
crossref_primary_10_1016_j_apsusc_2022_155357
crossref_primary_10_1016_j_ceramint_2024_07_047
crossref_primary_10_1016_j_nanoen_2023_109223
crossref_primary_10_1016_j_snb_2021_131069
crossref_primary_10_1039_D1TA10461F
crossref_primary_10_1016_j_matdes_2022_110971
crossref_primary_10_1007_s40843_020_1642_y
crossref_primary_10_3390_nano12224062
crossref_primary_10_1021_acsanm_4c05313
crossref_primary_10_1016_j_ccr_2021_214280
crossref_primary_10_1021_acsami_1c11262
crossref_primary_10_3390_ma17143502
crossref_primary_10_3390_s23031517
crossref_primary_10_1039_D1TC01857D
crossref_primary_10_1016_j_snb_2021_130665
crossref_primary_10_1088_2631_7990_ad3316
crossref_primary_10_3390_s25051439
crossref_primary_10_1021_acssensors_2c01511
crossref_primary_10_1007_s12274_022_4575_0
crossref_primary_10_1039_D3TC02762G
crossref_primary_10_1016_j_ijhydene_2020_11_268
crossref_primary_10_1039_D4TC03729D
crossref_primary_10_3390_chemosensors11090506
crossref_primary_10_1002_smll_202406964
crossref_primary_10_1021_acssensors_4c00431
crossref_primary_10_1016_j_ceramint_2021_04_095
crossref_primary_10_3390_chemosensors11030200
crossref_primary_10_3390_foods13233917
crossref_primary_10_1002_adsr_202300035
crossref_primary_10_3390_s22114103
crossref_primary_10_1021_acs_analchem_2c05143
crossref_primary_10_1016_j_ceramint_2024_08_280
crossref_primary_10_3389_fchem_2025_1538217
crossref_primary_10_1021_acs_jpclett_4c00919
crossref_primary_10_1021_acsanm_2c02153
crossref_primary_10_3390_chemosensors11100519
crossref_primary_10_1021_acs_chemrev_2c00048
crossref_primary_10_3390_s24186150
crossref_primary_10_1016_j_snb_2023_133430
crossref_primary_10_1016_j_surfin_2022_102560
crossref_primary_10_1007_s11224_025_02488_5
crossref_primary_10_3390_chemosensors10040147
crossref_primary_10_1007_s40820_024_01635_7
crossref_primary_10_1002_adma_202303523
crossref_primary_10_1016_j_rinp_2024_107770
crossref_primary_10_1021_acsanm_3c03566
crossref_primary_10_1007_s12598_023_02318_9
crossref_primary_10_1039_D4TA09078K
crossref_primary_10_1021_acssensors_3c02656
crossref_primary_10_1016_j_mseb_2021_115272
crossref_primary_10_1021_acsanm_4c06383
crossref_primary_10_1002_elsa_202100184
crossref_primary_10_3390_chemosensors13020038
crossref_primary_10_1007_s10854_023_11910_9
crossref_primary_10_1002_pssa_202400633
crossref_primary_10_1016_j_ceramint_2025_03_196
crossref_primary_10_1021_acsami_4c14793
crossref_primary_10_3390_chemosensors11040251
crossref_primary_10_1021_acsanm_2c02283
crossref_primary_10_1016_j_mtcomm_2024_109551
crossref_primary_10_3390_s21051826
crossref_primary_10_1016_j_snb_2023_134641
crossref_primary_10_1016_j_snb_2023_133760
crossref_primary_10_3390_chemosensors11040227
crossref_primary_10_1016_j_surfin_2023_102971
crossref_primary_10_1109_JSEN_2021_3113170
crossref_primary_10_1016_j_apsusc_2023_158551
crossref_primary_10_1002_adfm_202309111
crossref_primary_10_3390_chemosensors10100405
crossref_primary_10_1039_D0TC04196C
crossref_primary_10_1063_5_0132177
crossref_primary_10_1016_j_ccr_2025_216492
crossref_primary_10_3390_chemosensors10060227
crossref_primary_10_1016_j_snb_2021_130738
crossref_primary_10_2139_ssrn_3990806
crossref_primary_10_1016_j_snb_2023_134614
crossref_primary_10_1007_s12598_021_01899_7
crossref_primary_10_1016_j_jhazmat_2021_125120
crossref_primary_10_1021_acsami_3c04753
crossref_primary_10_1021_acsanm_4c02127
crossref_primary_10_1016_j_mssp_2021_106422
crossref_primary_10_1039_D3NR04040B
crossref_primary_10_1016_j_snb_2022_133115
crossref_primary_10_1007_s00339_020_04138_5
crossref_primary_10_1063_10_0028735
crossref_primary_10_1016_j_sna_2022_113769
crossref_primary_10_1021_acs_inorgchem_4c01619
crossref_primary_10_3390_coatings11070783
crossref_primary_10_1016_j_nanoen_2024_109335
crossref_primary_10_1016_j_nanoms_2021_05_011
crossref_primary_10_1109_JSEN_2022_3230753
crossref_primary_10_3390_nano12203651
crossref_primary_10_1088_1361_6528_ac1800
crossref_primary_10_1088_1742_6596_2076_1_012107
crossref_primary_10_1021_acssensors_4c00471
crossref_primary_10_1021_acsanm_1c02937
crossref_primary_10_3390_nano11061555
crossref_primary_10_1039_D1AN02070F
crossref_primary_10_26599_CF_2025_9200037
crossref_primary_10_1016_j_snb_2021_130599
crossref_primary_10_1016_j_ijhydene_2022_04_038
crossref_primary_10_1016_j_matlet_2023_134247
crossref_primary_10_1016_j_snb_2024_135803
crossref_primary_10_1021_jacs_3c05095
crossref_primary_10_1016_j_snb_2023_134674
crossref_primary_10_1021_acssensors_2c00281
crossref_primary_10_3390_chemosensors12030042
crossref_primary_10_3390_chemosensors10020078
crossref_primary_10_3390_chemosensors11070409
crossref_primary_10_1002_ange_202314891
crossref_primary_10_1016_j_mssp_2022_107271
crossref_primary_10_1039_D0RA07328H
crossref_primary_10_1007_s12598_023_02509_4
crossref_primary_10_1016_j_jallcom_2022_164375
crossref_primary_10_1016_j_cossms_2024_101160
crossref_primary_10_1002_anie_202314891
crossref_primary_10_1039_D1TC04247E
crossref_primary_10_1016_j_jece_2022_108543
crossref_primary_10_1016_j_ccr_2022_214517
crossref_primary_10_1016_j_snb_2023_134689
crossref_primary_10_1016_j_mssp_2023_107925
crossref_primary_10_1021_acssensors_2c02104
crossref_primary_10_3390_s23208648
crossref_primary_10_1021_acssensors_4c00137
crossref_primary_10_2139_ssrn_3970804
crossref_primary_10_1016_j_snb_2022_133281
crossref_primary_10_1016_j_ceramint_2023_08_171
crossref_primary_10_1016_j_cej_2021_131079
crossref_primary_10_1002_smll_202407880
crossref_primary_10_1016_j_jallcom_2022_167176
crossref_primary_10_1109_JSEN_2023_3278935
crossref_primary_10_1021_acsanm_1c01831
crossref_primary_10_1002_adfm_202408312
crossref_primary_10_1007_s10853_024_09903_y
crossref_primary_10_1016_j_buildenv_2024_111781
crossref_primary_10_1016_j_snb_2023_134657
crossref_primary_10_15251_DJNB_2023_184_1159
crossref_primary_10_1016_j_ceramint_2024_11_189
crossref_primary_10_1016_j_ijhydene_2024_07_253
crossref_primary_10_1002_ange_202501550
crossref_primary_10_2139_ssrn_4153154
crossref_primary_10_3390_nano11061422
crossref_primary_10_1007_s10854_025_14520_9
crossref_primary_10_1021_acsanm_1c00847
crossref_primary_10_1016_j_electacta_2022_140863
crossref_primary_10_1021_acssensors_3c02558
crossref_primary_10_1021_acsaem_4c01039
crossref_primary_10_1109_TIM_2024_3415782
crossref_primary_10_1016_j_ijhydene_2023_04_202
crossref_primary_10_1016_j_snb_2021_131358
crossref_primary_10_12677_APP_2024_141004
crossref_primary_10_1002_anie_202501550
crossref_primary_10_1021_acsami_3c11191
crossref_primary_10_3390_mi14050912
crossref_primary_10_1016_j_ceramint_2024_01_088
crossref_primary_10_1016_j_jhazmat_2022_129412
crossref_primary_10_1088_1361_6528_ad2383
crossref_primary_10_1007_s10854_021_07664_x
crossref_primary_10_1016_j_colsurfa_2022_129791
Cites_doi 10.1038/nmat1967
10.3390/s131014214
10.1039/c8nr04198a
10.1016/S0925-4005(03)00220-X
10.1016/j.snb.2019.127455
10.1021/cr0681039
10.1108/SR-11-2012-724
10.1016/j.snb.2017.12.052
10.1021/acssensors.9b02487
10.1016/j.snb.2017.06.155
10.1039/c6tc04416f
10.1016/j.snb.2020.127700
10.1088/1361-6528/ab1102
10.1021/nl3043079
10.1016/j.snb.2019.127287
10.1088/2053-1591/ab20b7
10.1021/acssensors.8b00461
10.1021/acssensors.7b00129
10.1016/j.snb.2015.05.031
10.3390/mi8050155
10.1002/adom.201600290
10.1016/j.ccr.2017.09.012
10.1002/adma.201503825
10.1016/j.matchemphys.2017.01.046
10.1088/1361-6528/ab2277
10.1021/nl502906a
10.1016/j.apsusc.2019.143873
10.1021/acssensors.6b00801
10.1063/1.4983310
10.1016/j.jcis.2017.04.055
10.1021/acsami.7b11244
10.1021/acsanm.9b02180
10.1038/srep05209
10.1002/admi.201800071
10.1021/acsami.7b06017
10.1016/j.snb.2019.127649
10.1016/j.sna.2020.111875
10.1016/j.snb.2013.01.082
10.1021/jacs.5b07452
10.1038/natrevmats.2016.98
10.1002/adfm.201702168
10.1002/adfm.202000435
10.1016/j.snb.2015.12.010
10.1063/1.1759071
10.1016/j.snb.2012.02.012
10.1016/j.proeng.2015.08.824
10.1039/c8ra08857h
10.3390/s18113638
10.1088/1361-6528/aade20
10.1016/j.snb.2006.09.047
10.1016/j.snb.2017.06.116
10.1002/smll.201804303
10.1016/j.carbon.2018.01.013
10.1002/admi.201500707
10.3390/mi8110333
10.1021/acsami.8b14142
10.1016/j.snb.2008.10.057
10.1088/0957-0233/24/1/012004
10.1021/acssensors.8b01077
10.1016/j.snb.2008.06.055
10.1021/nn400026u
10.1038/ncomms4252
10.1038/srep35066
10.3390/nano10010070
10.1021/acsomega.8b03540
10.1002/admt.201901062
10.1016/j.tsf.2016.09.029
10.1021/nl503857r
10.1021/jp906043k
10.1063/1.4742327
10.1021/acs.chemmater.6b00397
10.3389/fmats.2019.00158
10.1021/acsnano.8b08778
10.1021/nn405938z
10.1016/0925-4005(93)00874-X
10.1126/science.1158877
10.1039/c8cs00324f
10.1088/1361-6528/aa7cad
10.1039/c2jm16105b
10.1016/j.snb.2017.12.128
10.1016/j.jallcom.2018.12.180
10.1063/1.5042061
10.1016/j.matchemphys.2014.03.057
10.1038/s41598-017-05265-5
10.1016/j.snb.2019.127317
10.1021/acssensors.9b00150
10.1016/j.snb.2014.08.091
10.1039/c2jm16709c
10.1016/j.snb.2017.10.045
10.3390/s19112617
10.1038/ncomms9632
10.1039/c9tc02436k
10.1016/j.snb.2018.10.113
10.1016/j.snb.2016.08.158
10.1021/nn800593m
10.1016/j.snb.2004.12.075
10.1016/j.snb.2019.127334
10.1063/1.5019296
10.1021/acs.chemrev.8b00311
10.3390/s120302610
10.1039/c8ta02679c
10.1007/s00604-018-2750-5
10.1021/acsomega.9b00935
10.1039/c8cs00417j
10.1021/acssensors.7b00731
10.1016/j.scib.2018.12.009
10.1007/s13391-018-0044-z
10.1016/j.snb.2012.02.036
10.1021/acsami.7b16397
10.1023/A:1014405811371
10.1021/acsnano.8b02379
10.1007/s00604-019-3532-4
10.1016/j.snb.2015.09.075
10.1063/1.3243458
10.1002/admi.201900376
10.1109/JSEN.2019.2916879
10.1021/am400500a
10.1021/nn504481r
10.1016/j.colsurfa.2019.123621
10.1002/adfm.201801035
10.1039/c9ra01295h
10.1038/srep08052
10.1108/02602280410525977
10.1016/j.snb.2010.04.045
10.1016/j.snb.2019.127498
10.1016/S0925-4005(01)00796-1
10.1021/cm403046m
10.1080/10408436.2016.1226161
10.1021/acsomega.9b01116
10.1021/am5084122
10.1016/j.snb.2018.05.027
10.1038/nmat1849
10.1016/j.snb.2019.03.133
10.3390/s100302088
10.1002/adfm.201601562
10.1109/jsen.2019.2932106
10.1016/j.snb.2017.09.059
10.1016/j.ijhydene.2016.12.117
10.1038/nnano.2010.279
10.1039/c8nr10157d
10.1016/B978-0-12-815924-8.00008-6
10.1038/nature11458
10.1088/2053-1591/ab0bbf
10.1109/IEDM.2016.7838443
10.1038/s41699-018-0074-2
10.1021/acsami.9b19896
10.1002/chem.201803502
10.1016/j.sse.2014.06.013
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
P5Z
P62
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1007/s40820-020-00503-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic

PubMed
Publicly Available Content Database
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2150-5551
EndPage 37
ExternalDocumentID oai_doaj_org_article_6583f7ec5ea7466ba8ef3736b285604f
PMC7770837
34138159
10_1007_s40820_020_00503_4
Genre Journal Article
Review
GroupedDBID -02
-0B
-SB
-S~
0R~
4.4
5VR
5VS
8FE
8FG
92H
92I
92M
92R
93N
9D9
9DB
AAFWJ
AAJSJ
AAKKN
AAXDM
ABDBF
ABEEZ
ABJCF
ACACY
ACGFS
ACIWK
ACUHS
ACULB
ADBBV
ADINQ
ADMLS
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFUIB
AHBYD
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
BGLVJ
C1A
C24
C6C
CAJEB
CCEZO
CCPQU
CDRFL
D1I
EBLON
EBS
EJD
ESX
FA0
GROUPED_DOAJ
GX1
HCIFZ
IAO
IHR
IPNFZ
ITC
JUIAU
KB.
KQ8
KWQ
L6V
M7S
MM.
M~E
OK1
P62
PDBOC
PGMZT
PIMPY
PROAC
PTHSS
Q--
R-B
RIG
RNS
RPM
RSV
RT2
SOJ
T8R
TCJ
TGT
TR2
TUS
U1F
U1G
U5B
U5L
~LU
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PQGLB
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c673t-3d24bc59ad972d8e2936a2b0fac2e778f3ea820cc8b6392ecf14a5d863a2de313
IEDL.DBID DOA
ISSN 2311-6706
2150-5551
IngestDate Wed Aug 27 00:36:04 EDT 2025
Thu Aug 21 18:17:42 EDT 2025
Fri Jul 11 08:22:23 EDT 2025
Wed Aug 13 02:35:55 EDT 2025
Wed Aug 13 09:10:28 EDT 2025
Mon Jul 21 06:07:02 EDT 2025
Tue Jul 01 00:55:45 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Fri Feb 21 02:35:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Metal oxide
Gas sensor
Photoactivation
Room temperature
2D materials
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c673t-3d24bc59ad972d8e2936a2b0fac2e778f3ea820cc8b6392ecf14a5d863a2de313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/6583f7ec5ea7466ba8ef3736b285604f
PMID 34138159
PQID 2433064531
PQPubID 2044332
PageCount 37
ParticipantIDs doaj_primary_oai_doaj_org_article_6583f7ec5ea7466ba8ef3736b285604f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770837
proquest_miscellaneous_2542363713
proquest_journals_2473254202
proquest_journals_2433064531
pubmed_primary_34138159
crossref_primary_10_1007_s40820_020_00503_4
crossref_citationtrail_10_1007_s40820_020_00503_4
springer_journals_10_1007_s40820_020_00503_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-13
PublicationDateYYYYMMDD 2020-08-13
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-13
  day: 13
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
– name: Heidelberg
PublicationTitle Nano-micro letters
PublicationTitleAbbrev Nano-Micro Lett
PublicationTitleAlternate Nanomicro Lett
PublicationYear 2020
Publisher Springer Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Burton, Colombara, Abellon, Grozema, Peter (CR139) 2013; 25
Lee, Yoon, Kim (CR27) 2018; 3
Jiang, Tang, Zhou, Han, Qu, Duan (CR10) 2018; 10
Kumar, Goel, Kumar (CR34) 2018; 112
Fan, Srivastava, Dravid (CR43) 2009; 95
Li, Li, Wang, Lin (CR75) 2015; 219
Zhou, Gao, Guo (CR124) 2018; 6
Paolucci, Emamjomeh, Ottaviano, Cantalini (CR138) 2019; 19
Stetter, Li (CR5) 2008; 108
Tian, Yang, Yang, Qi (CR73) 2019; 578
An, Yu, Wang, Hu, Yu, Zhang (CR95) 2012; 22
Kumar, Kulriya, Mishra, Singh, Gupta, Kumar (CR32) 2018; 29
Wu, Xie, Yuan, Hao, An (CR40) 2018; 10
Arshak, Moore, Lyons, Harris, Clifford (CR2) 2004; 24
Cho, Hahm, Choi, Yoon, Kim (CR116) 2015; 5
Han, Wang, Cui, Chen, Jiang, Lin (CR51) 2012; 22
Li, Guo, Cai, Qi, Sun (CR74) 2019; 290
Geim (CR84) 2009; 324
da Silva, M’Peko, Catto, Bernardini, Mastelaro, Aguir, Ribeiro, Longo (CR68) 2017; 240
Kim, Yoo, Choi, Jung (CR122) 2014; 14
Kumar, Goel, Hojamberdiev, Kumar (CR29) 2020; 303
Comini, Faglia, Sberveglieri (CR63) 2001; 78
Donarelli, Ottaviano (CR110) 2018; 18
Su, Hadjiev, Loya, Zhang, Lei (CR141) 2015; 15
Kim, Patel, Kim, Jeong (CR134) 2018; 10
Wang, Deng, Li, Yang, Xia (CR99) 2020; 304
Huang, Jiao, Chu, Ding, Yan, Zhong, Wang (CR146) 2019; 7
Hodgkinson, Tatam (CR4) 2013; 24
Casals, Markiewicz, Fabrega, Gràcia, Cane (CR60) 2019; 4
Meng, Stolz, Mendecki, Mirica (CR7) 2019; 119
Chen, Wang, Yang, Chung, Wang (CR119) 2019; 11
Anasori, Lukatskaya, Gogotsi (CR149) 2017; 2
Lee, Park, Han, Kim, Huh (CR105) 2019; 15
Goel, Kumar, Jain, Rajamani, Roul (CR128) 2019; 30
Cho, Sim, Cho, Cho, Park (CR61) 2020; 5
Kumar, Zheng, Liu, Zhang, Kumar (CR24) 2020; 5
Yang, Chen, Yang, Meyyappan, Lai (CR90) 2017; 253
Kumar, Kaushik, Pratap, Raghavan (CR104) 2015; 7
Guo, Wen, Zhai, Wang (CR129) 2019; 64
Kumar, Goel, Agrawal, Raliya, Rajamani (CR14) 2019; 19
Sun, Liu, Meng, Liu, Jin, Kong, Liu (CR19) 2012; 12
Liu, Luo, Li, Wang, Gao, Duan (CR67) 2019; 6
Zhang, Boudiba, De Marco, Snyders, Olivier, Debliquy (CR52) 2013; 181
Xiong, Lu, Ding, Zhu, Li, Ling, Xue (CR71) 2017; 2
Trocino, Frontera, Donato, Busacca, Scarpino, Antonucci, Neri (CR77) 2014; 147
Kumar, Goel, Mishra, Gupta, Fanetti, Valant, Kumar (CR121) 2018; 5
Pang, Mendes, Bachmatiuk, Zhao, Ta, Gemming, Liu, Liu, Rummeli (CR150) 2019; 48
Geng, You, Wang, Zhang (CR98) 2017; 191
Gu, Li, Wang, Li, Xi (CR136) 2018; 256
Giberti, Malag, Guidi (CR81) 2012; 165
CR137
Peng, Zhai, Wang, Zhang, Wang, Zhao, Xie (CR47) 2010; 148
Wang, Yin, Zhang, Xiang, Gao (CR20) 2010; 10
Reddeppa, Park, Murali, Choi, Chinh (CR127) 2020; 308
Saura (CR62) 1994; 17
Chinh, Hien, Van Do, Hieu, Quang, Lee, Kim, Kim (CR36) 2019; 281
Hyodo, Urata, Kamada, Ueda, Shimizu (CR65) 2017; 253
Jacobs, Maksov, Muckley, Collins, Mahjouri-Samani (CR49) 2017; 7
Geng, Luo, Zheng, Zhang (CR83) 2017; 42
Kumar, Kulriya, Mishra, Singh, Gupta, Kumar (CR115) 2018; 29
Lakkis, Younes, Alayli, Sawan (CR6) 2014; 34
Joshi, da Silva, Shimizu, Mastelaro, M’Peko, Lin, Oliveira (CR50) 2019; 186
Kang, Pyo, Jo, Kim (CR118) 2019; 30
Liu, Ma, Pinna, Zhang (CR13) 2017; 27
Geim, Novoselov (CR86) 2007; 6
Reddeppa, Chandrakalavathi, Park, Murali, Siranjeevi (CR100) 2020; 307
Chen, Paronyan, Harutyunyan (CR89) 2012; 101
Xia, Wang, Xu, Li, Huang (CR101) 2020; 304
Espid, Taghipour (CR21) 2017; 42
Giancaterini, Emamjomeh, De Marcellis, Palange, Cantalini (CR82) 2015; 120
Gong, Li, Chai, Hu, Deng (CR38) 2010; 114
Whittles, Burton, Skelton, Walsh, Veal, Dhanak (CR142) 2016; 28
Tongay, Sahin, Ko, Luce, Fan (CR147) 2014; 5
Cho, Koh, Yoo, Kim, Jung (CR109) 2017; 2
Yan, Chen, Fuh, Li, Zhang (CR144) 2019; 9
Schedin, Geim, Morozov, Hill, Blake, Katsnelson, Novoselov (CR28) 2007; 6
Chertopalov, Mochalin (CR152) 2018; 12
Zhu, Ha, Zhao, Zhou, Huang (CR151) 2017; 352
CR76
Su, Duan, Xu, Zhou, Cai (CR44) 2017; 503
CR113
Yang, Jiang, Huai Wei (CR25) 2017
Long, Harley-Trochimczyk, Pham, Tang, Shi (CR33) 2016; 26
Hu, Zou, Su, Li, Ye (CR97) 2018; 270
Zhao, Yan, Zhang, Xu, Song (CR92) 2017; 5
Li, Gu, Yang, Du, Li (CR39) 2019; 6
Zhou, Xu, Zubair, Liao, Fang (CR130) 2015; 137
Barsan, Koziej, Weimar (CR15) 2007; 121
Ramu, Chandrakalavathi, Murali, Kumar, Sudharani (CR117) 2019; 6
Huang, Sutter, Sadowski, Cotlet, Monti (CR140) 2014; 8
Yan, Wu, Li, Shi, Moro, Ma, Ma (CR87) 2019; 4
Zheng, Xu, Zheng, Yang, Pinna, Liu, Zhang (CR126) 2020; 30
Saboor, Ueda, Kamada, Hyodo, Mortazavi, Khodadadi, Shimizu (CR66) 2016; 223
Chen, Zou, Zhang, Shen, Li (CR102) 2018; 130
Feng, Xie, Wu, Yu, Zheng (CR132) 2017; 8
Barsan, Weimar (CR18) 2001; 7
Joshi, Hayasaka, Liu, Liu, Oliveira, Lin (CR16) 2018; 185
Fowler, Allen, Tung, Yang, Kaner, Weiller (CR35) 2009; 3
Chinh, Quang, Lee, Hien, Hieu (CR78) 2016; 6
Yunusa, Hamidon, Kaiser, Awang (CR1) 2014; 4
CR85
Anichini, Czepa, Pakulski, Aliprandi, Ciesielski, Samorì (CR26) 2018; 47
Wu, Xie, Yuan, Zhang, Hu, Liu, Zhang (CR133) 2018; 3
Kumar, Kumar, Rajamani, Ranwa, Fanetti, Valant, Kumar (CR48) 2017; 28
Peng, Zhao, Wang, Zhai, Wang, Pang, Xie (CR46) 2009; 136
Cui, Shi, Xie, Wang, Lin (CR45) 2016; 227
Cui, Pu, Wells, Wen, Mao (CR30) 2015; 6
Xu, Lv, Wu, HO (CR54) 2018; 259
Choi, Kim (CR12) 2018; 14
CR17
Chizhov, Rumyantseva, Vasiliev, Filatova, Drozdov (CR56) 2014; 205
Anothainart (CR64) 2003; 93
Kumar, Goel, Kumar (CR114) 2017; 2
Zhou, Zou, Lin, Guo (CR123) 2018; 113
Xu, Ho (CR22) 2017; 8
CR11
Gu, Wang, Liu, Li, Lin (CR143) 2020; 305
Chen, Wang, Xia, Xiang (CR37) 2018; 255
Chung, Kim, Lee, Kim, Choi (CR88) 2012; 166–167
Li, Wan, Liang, Wang (CR41) 2004; 84
Wang, Bai, Dai, Liu, Liu (CR59) 2020; 304
CR94
Late, Huang, Liu, Acharya, Shirodkar (CR112) 2013; 7
Zhang, Liu, Neri, Pinna (CR8) 2016; 28
Zhang, Xie, Xu, Su, Tai, Du, Jiang (CR55) 2018; 259
Fei, Wu, Cheng, Yan, Xu (CR93) 2019; 4
Xia, Hu, Guo, Zhang, Wang (CR125) 2020; 3
Radisavljevic, Radenovic, Brivio, Giacometti, Kis (CR107) 2011; 6
Pham, Li, Bekyarova, Itkis, Mulchandani (CR120) 2019; 13
Shen, Zhong, Zhang, Li, Zhao (CR79) 2019; 498
Chizhov, Rumyantseva, Vasiliev, Filatova, Drozdov (CR57) 2016; 618
Yamazoe (CR3) 2005; 108
Ellis, Sorescu, Burkert, White, Star (CR96) 2017; 9
Chakrabarty, Banik, Gogurla, Santra, Ray, Mukherjee (CR53) 2019; 4
Huo, Yang, Wei, Li, Xia, Li (CR135) 2014; 4
Ma, Yu, Yuan, Li, Li, Yin, Fan (CR80) 2019; 782
Yang, Chen, Yang, Meyyappan (CR91) 2019; 9
CR23
Park, An, Mun, Lee (CR69) 2013; 5
Ganatra, Zhang (CR106) 2014; 8
Yang, Kang, Yue, Coey, Jiang (CR148) 2016; 3
Nasriddinov, Rumyantseva, Shatalova, Tokarev, Yaltseva (CR72) 2020; 10
Wang, Zhou, Liu, Liu, Liang (CR58) 2020; 305
Zhao, Chen, Li, Li, Lin, Li, Rumyantseva, Gaskov (CR70) 2019; 19
Chen, Liu, Peng, Chen, Wu (CR103) 2017; 9
Chiu, Tang (CR9) 2013; 13
Chen, Chen, Zhang, Zhang, Zhou, Huang (CR145) 2018; 28
De Lacy Costello, Ewen, Ratcliffe, Richards (CR42) 2008; 134
CR108
Octon, Nagareddy, Russo, Craciun, Wright (CR131) 2016; 4
Perkins, Friedman, Cobas, Campbell, Jernigan, Jonker (CR111) 2013; 13
Oxide, Donarelli (CR31) 2018; 18
AK Geim (503_CR86) 2007; 6
J Li (503_CR39) 2019; 6
R Kumar (503_CR121) 2018; 5
T Pham (503_CR120) 2019; 13
M Donarelli (503_CR110) 2018; 18
A Nasriddinov (503_CR72) 2020; 10
Y Shen (503_CR79) 2019; 498
503_CR113
TJ Whittles (503_CR142) 2016; 28
503_CR108
H Long (503_CR33) 2016; 26
H Wang (503_CR59) 2020; 304
FH Saboor (503_CR66) 2016; 223
TJ Octon (503_CR131) 2016; 4
N Barsan (503_CR15) 2007; 121
JE Ellis (503_CR96) 2017; 9
BPJ De Lacy Costello (503_CR42) 2008; 134
SY Cho (503_CR109) 2017; 2
S Yang (503_CR25) 2017
R Kumar (503_CR34) 2018; 112
S Yang (503_CR148) 2016; 3
X An (503_CR95) 2012; 22
CM Yang (503_CR91) 2019; 9
A Chen (503_CR103) 2017; 9
N Barsan (503_CR18) 2001; 7
SJ Choi (503_CR12) 2018; 14
Z Yunusa (503_CR1) 2014; 4
I Cho (503_CR61) 2020; 5
L Zhao (503_CR70) 2019; 19
Y Zhou (503_CR123) 2018; 113
J Wang (503_CR99) 2020; 304
S Cui (503_CR30) 2015; 6
D Lee (503_CR105) 2019; 15
B Liu (503_CR67) 2019; 6
FK Perkins (503_CR111) 2013; 13
ND Chinh (503_CR78) 2016; 6
YZ Chen (503_CR119) 2019; 11
J Guo (503_CR129) 2019; 64
L Peng (503_CR47) 2010; 148
JD Fowler (503_CR35) 2009; 3
503_CR137
E Lee (503_CR27) 2018; 3
L Peng (503_CR46) 2009; 136
A Giberti (503_CR81) 2012; 165
CM Yang (503_CR90) 2017; 253
B Cho (503_CR116) 2015; 5
N Goel (503_CR128) 2019; 30
L Han (503_CR51) 2012; 22
F Xu (503_CR54) 2018; 259
J Hu (503_CR97) 2018; 270
W Zheng (503_CR126) 2020; 30
C Wang (503_CR20) 2010; 10
P Chakrabarty (503_CR53) 2019; 4
503_CR76
T Hyodo (503_CR65) 2017; 253
E Espid (503_CR21) 2017; 42
M Kumar (503_CR48) 2017; 28
O Casals (503_CR60) 2019; 4
Z Feng (503_CR132) 2017; 8
C Anichini (503_CR26) 2018; 47
R Kumar (503_CR32) 2018; 29
N Huo (503_CR135) 2014; 4
Q Zhang (503_CR55) 2018; 259
M Reddeppa (503_CR100) 2020; 307
M Zhao (503_CR92) 2017; 5
H Wang (503_CR58) 2020; 305
S Kumar (503_CR104) 2015; 7
N Yamazoe (503_CR3) 2005; 108
H Fei (503_CR93) 2019; 4
D Gu (503_CR136) 2018; 256
G Oxide (503_CR31) 2018; 18
X Tian (503_CR73) 2019; 578
F Schedin (503_CR28) 2007; 6
S Trocino (503_CR77) 2014; 147
J Gong (503_CR38) 2010; 114
HS Kim (503_CR134) 2018; 10
W Li (503_CR74) 2019; 290
WJ Yan (503_CR144) 2019; 9
QH Li (503_CR41) 2004; 84
N Joshi (503_CR16) 2018; 185
Y Zhou (503_CR124) 2018; 6
H Ma (503_CR80) 2019; 782
X Yan (503_CR87) 2019; 4
Y Huang (503_CR146) 2019; 7
503_CR17
L Giancaterini (503_CR82) 2015; 120
S Park (503_CR69) 2013; 5
503_CR94
503_CR11
X Geng (503_CR83) 2017; 42
Y Xiong (503_CR71) 2017; 2
X Li (503_CR75) 2015; 219
SW Fan (503_CR43) 2009; 95
AK Geim (503_CR84) 2009; 324
K Arshak (503_CR2) 2004; 24
S Lakkis (503_CR6) 2014; 34
ND Chinh (503_CR36) 2019; 281
J Cui (503_CR45) 2016; 227
G Chen (503_CR89) 2012; 101
Y Huang (503_CR140) 2014; 8
J-S Kim (503_CR122) 2014; 14
N Joshi (503_CR50) 2019; 186
C Zhang (503_CR52) 2013; 181
Y Xia (503_CR101) 2020; 304
R Chen (503_CR37) 2018; 255
503_CR85
R Kumar (503_CR115) 2018; 29
SW Chiu (503_CR9) 2013; 13
V Paolucci (503_CR138) 2019; 19
Z Meng (503_CR7) 2019; 119
X Liu (503_CR13) 2017; 27
R Kumar (503_CR24) 2020; 5
M Chen (503_CR102) 2018; 130
LF da Silva (503_CR68) 2017; 240
J Saura (503_CR62) 1994; 17
X Geng (503_CR98) 2017; 191
DJ Late (503_CR112) 2013; 7
R Kumar (503_CR114) 2017; 2
R Ganatra (503_CR106) 2014; 8
AS Chizhov (503_CR56) 2014; 205
B Radisavljevic (503_CR107) 2011; 6
H Chen (503_CR145) 2018; 28
S Chertopalov (503_CR152) 2018; 12
S Tongay (503_CR147) 2014; 5
LA Burton (503_CR139) 2013; 25
X Su (503_CR44) 2017; 503
G Su (503_CR141) 2015; 15
R Kumar (503_CR29) 2020; 303
S Ramu (503_CR117) 2019; 6
YF Sun (503_CR19) 2012; 12
Y Kang (503_CR118) 2019; 30
Y Xia (503_CR125) 2020; 3
E Wu (503_CR133) 2018; 3
JR Stetter (503_CR5) 2008; 108
R Kumar (503_CR14) 2019; 19
AS Chizhov (503_CR57) 2016; 618
J Zhu (503_CR151) 2017; 352
E Comini (503_CR63) 2001; 78
F Xu (503_CR22) 2017; 8
M Reddeppa (503_CR127) 2020; 308
L Zhou (503_CR130) 2015; 137
E Wu (503_CR40) 2018; 10
CB Jacobs (503_CR49) 2017; 7
B Anasori (503_CR149) 2017; 2
K Anothainart (503_CR64) 2003; 93
MG Chung (503_CR88) 2012; 166–167
J Zhang (503_CR8) 2016; 28
J Pang (503_CR150) 2019; 48
Y Jiang (503_CR10) 2018; 10
503_CR23
D Gu (503_CR143) 2020; 305
J Hodgkinson (503_CR4) 2013; 24
References_xml – volume: 6
  start-page: 652
  year: 2007
  ident: CR28
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1967
– volume: 13
  start-page: 14214
  issue: 10
  year: 2013
  end-page: 14247
  ident: CR9
  article-title: Towards a chemiresistive sensor-integrated electronic nose: a review
  publication-title: Sensors
  doi: 10.3390/s131014214
– volume: 10
  start-page: 20578
  issue: 44
  year: 2018
  end-page: 20586
  ident: CR10
  article-title: A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography
  publication-title: Nanoscale
  doi: 10.1039/c8nr04198a
– volume: 93
  start-page: 580
  year: 2003
  end-page: 584
  ident: CR64
  article-title: Light enhanced NO gas sensing with tin oxide at room temperature: conductance and work function measurements
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/S0925-4005(03)00220-X
– volume: 305
  start-page: 127455
  year: 2020
  ident: CR143
  article-title: Visible-light activated room temperature NO sensing of SnS nanosheets based chemiresistive sensors
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127455
– volume: 108
  start-page: 352
  issue: 2
  year: 2008
  end-page: 366
  ident: CR5
  article-title: Amperometric gas sensors-a review
  publication-title: Chem. Rev.
  doi: 10.1021/cr0681039
– volume: 34
  start-page: 24
  issue: 1
  year: 2014
  end-page: 35
  ident: CR6
  article-title: Review of recent trends in gas sensing technologies and their miniaturization potential
  publication-title: Sens. Rev.
  doi: 10.1108/SR-11-2012-724
– volume: 259
  start-page: 269
  year: 2018
  end-page: 281
  ident: CR55
  article-title: Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.12.052
– volume: 5
  start-page: 563
  issue: 2
  year: 2020
  end-page: 570
  ident: CR61
  article-title: Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b02487
– volume: 253
  start-page: 630
  year: 2017
  end-page: 640
  ident: CR65
  article-title: Semiconductor-type SnO -based NO sensors operated at room temperature under UV-light irradiation
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.06.155
– volume: 5
  start-page: 1113
  year: 2017
  end-page: 1120
  ident: CR92
  article-title: Room temperature NH detection of Ti/graphene devices promoted by visible light illumination
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c6tc04416f
– volume: 308
  start-page: 127700
  year: 2020
  ident: CR127
  article-title: NOx gas sensors based on layer-transferred n-MoS /p-GaN heterojunction at room temperature: study of UV light illuminations and humidity
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2020.127700
– volume: 30
  start-page: 314001
  year: 2019
  ident: CR128
  article-title: A high-performance hydrogen sensor based on a reverse-biased MoS /GaN heterojunction
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab1102
– volume: 13
  start-page: 668
  year: 2013
  end-page: 673
  ident: CR111
  article-title: Chemical vapor sensing with monolayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl3043079
– volume: 304
  start-page: 127287
  year: 2020
  ident: CR59
  article-title: Visible light activated excellent NO sensing based on 2D/2D ZnO/g-C N heterojunction composites
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127287
– volume: 6
  start-page: 85075
  year: 2019
  ident: CR117
  article-title: UV enhanced NO gas sensing properties of the MoS monolayer gas sensor
  publication-title: Mater. Res. Express.
  doi: 10.1088/2053-1591/ab20b7
– volume: 3
  start-page: 1719
  issue: 9
  year: 2018
  end-page: 1726
  ident: CR133
  article-title: Ultrasensitive and fully reversible NO gas sensing based on p-type MoTe under ultraviolet illumination
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00461
– volume: 2
  start-page: 679
  issue: 5
  year: 2017
  end-page: 686
  ident: CR71
  article-title: Enhanced room temperature oxygen sensing properties of LaOCl-SnO hollow spheres by UV light illumination
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00129
– volume: 219
  start-page: 158
  year: 2015
  end-page: 163
  ident: CR75
  article-title: Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO microspheres
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2015.05.031
– volume: 8
  start-page: 155
  issue: 5
  year: 2017
  ident: CR132
  article-title: Enhanced sensitivity of MoTe chemical sensor through light illumination
  publication-title: Micromachines
  doi: 10.3390/mi8050155
– volume: 4
  start-page: 1750
  issue: 11
  year: 2016
  end-page: 1754
  ident: CR131
  article-title: Fast high-responsivity few-layer MoTe photodetectors
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600290
– volume: 352
  start-page: 306
  year: 2017
  end-page: 327
  ident: CR151
  article-title: Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.012
– volume: 28
  start-page: 795
  year: 2016
  end-page: 831
  ident: CR8
  article-title: Nanostructured materials for room-temperature gas sensors
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503825
– volume: 191
  start-page: 114
  year: 2017
  end-page: 120
  ident: CR98
  article-title: Visible light assisted nitrogen dioxide sensing using tungsten oxide-Graphene oxide nanocomposite sensors
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.01.046
– volume: 30
  start-page: 355504
  year: 2019
  ident: CR118
  article-title: Light-assisted recovery of reacted MoS for reversible NO sensing at room temperature
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab2277
– volume: 14
  start-page: 5941
  year: 2014
  end-page: 5947
  ident: CR122
  article-title: Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl502906a
– volume: 498
  start-page: 143873
  year: 2019
  ident: CR79
  article-title: In-situ growth of mesoporous In O nanorod arrays on a porous ceramic substrate for ppb-level NO detection at room temperature
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143873
– volume: 2
  start-page: 183
  year: 2017
  end-page: 189
  ident: CR109
  article-title: Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00801
– ident: CR11
– year: 2017
  ident: CR25
  article-title: Gas sensing in 2D materials
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4983310
– volume: 503
  start-page: 150
  year: 2017
  end-page: 158
  ident: CR44
  article-title: Structure and thickness-dependent gas sensing responses to NO under UV irradiation for the multilayered ZnO micro/nanostructured porous thin films
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.04.055
– ident: CR85
– volume: 9
  start-page: 37191
  issue: 42
  year: 2017
  end-page: 37200
  ident: CR103
  article-title: 2D Hybrid Nanomaterials for Selective Detection of NO and SO Using “light on and Off” Strategy
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b11244
– volume: 3
  start-page: 665
  issue: 1
  year: 2020
  end-page: 673
  ident: CR125
  article-title: Sulfur-vacancy-enriched MoS nanosheets based heterostructures for near-infrared optoelectronic NO sensing
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b02180
– volume: 4
  start-page: 5209
  year: 2014
  ident: CR135
  article-title: Photoresponsive and gas sensing field-effect transistors based on multilayer WS nanoflakes
  publication-title: Sci. Rep.
  doi: 10.1038/srep05209
– volume: 5
  start-page: 1800071
  issue: 10
  year: 2018
  ident: CR121
  article-title: Growth of MoS –MoO hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800071
– volume: 4
  start-page: 61
  year: 2014
  end-page: 75
  ident: CR1
  article-title: Gas sensors: a review
  publication-title: Sens. Transducers
– volume: 9
  start-page: 27142
  issue: 32
  year: 2017
  end-page: 27151
  ident: CR96
  article-title: Uncondensed graphitic carbon nitride on reduced graphene oxide for oxygen sensing via a photoredox mechanism
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b06017
– volume: 307
  start-page: 127649
  year: 2020
  ident: CR100
  article-title: UV-light enhanced CO gas sensors based on InGaN nanorods decorated with p-Phenylenediamine-graphene oxide composite
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127649
– volume: 303
  start-page: 111875
  year: 2020
  ident: CR29
  article-title: Transition metal dichalcogenides-based flexible gas sensors
  publication-title: Sens. Actuat. A Phys.
  doi: 10.1016/j.sna.2020.111875
– volume: 181
  start-page: 395
  year: 2013
  end-page: 401
  ident: CR52
  article-title: Room temperature responses of visible-light illuminated WO sensors to NO in sub-ppm range
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2013.01.082
– volume: 137
  start-page: 11892
  issue: 37
  year: 2015
  end-page: 11895
  ident: CR130
  article-title: Large-area synthesis of high-quality uniform few-layer MoTe
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07452
– volume: 2
  start-page: 16098
  year: 2017
  ident: CR149
  article-title: 2D metal carbides and nitrides (MXenes) for energy storage
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 27
  start-page: 1
  year: 2017
  end-page: 30
  ident: CR13
  article-title: Two-dimensional nanostructured materials for gas sensing
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702168
– volume: 30
  start-page: 2000435
  issue: 19
  year: 2020
  ident: CR126
  article-title: MoS van der waals p–n junctions enabling highly selective room-temperature NO sensor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000435
– volume: 227
  start-page: 220
  year: 2016
  end-page: 226
  ident: CR45
  article-title: UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2015.12.010
– ident: CR137
– volume: 84
  start-page: 4556
  year: 2004
  ident: CR41
  article-title: Electronic transport through individual ZnO nanowires
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1759071
– volume: 165
  start-page: 59
  issue: 1
  year: 2012
  end-page: 61
  ident: CR81
  article-title: WO sensing properties enhanced by UV illumination: an evidence of surface effect
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2012.02.012
– volume: 120
  start-page: 791
  year: 2015
  end-page: 794
  ident: CR82
  article-title: NO gas response of WO nanofibers by light and thermal activation
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.08.824
– volume: 9
  start-page: 626
  issue: 2
  year: 2019
  end-page: 635
  ident: CR144
  article-title: Photo-enhanced gas sensing of SnS with nanoscale defects
  publication-title: RSC Adv.
  doi: 10.1039/c8ra08857h
– volume: 18
  start-page: 3638
  issue: 11
  year: 2018
  ident: CR110
  article-title: 2d materials for gas sensing applications: a review on graphene oxide, MoS , WS and phosphorene
  publication-title: Sensors
  doi: 10.3390/s18113638
– volume: 29
  start-page: 46
  year: 2018
  ident: CR32
  article-title: Highly selective and reversible NO gas sensor using vertically aligned MoS flake networks
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aade20
– volume: 121
  start-page: 18
  issue: 1
  year: 2007
  end-page: 35
  ident: CR15
  article-title: Metal oxide-based gas sensor research: how to?
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2006.09.047
– volume: 253
  start-page: 77
  year: 2017
  end-page: 84
  ident: CR90
  article-title: Enhanced acetone sensing properties of monolayer graphene at room temperature by electrode spacing effect and UV illumination
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.06.116
– volume: 15
  start-page: 1804303
  issue: 2
  year: 2019
  ident: CR105
  article-title: Self-powered chemical sensing driven by graphene-based photovoltaic heterojunctions with chemically tunable built-in potentials
  publication-title: Small
  doi: 10.1002/smll.201804303
– ident: CR108
– ident: CR94
– volume: 130
  start-page: 281
  year: 2018
  end-page: 287
  ident: CR102
  article-title: Tandem gasochromic-Pd-WO /graphene/Si device for room-temperature high-performance optoelectronic hydrogen sensors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.013
– volume: 3
  start-page: 1500707
  issue: 6
  year: 2016
  ident: CR148
  article-title: Defect-modulated transistors and gas-enhanced photodetectors on ReS nanosheets
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500707
– volume: 8
  start-page: 333
  issue: 11
  year: 2017
  ident: CR22
  article-title: Light-activated metal oxide gas sensors: a review
  publication-title: Micromachines
  doi: 10.3390/mi8110333
– volume: 10
  start-page: 35664
  issue: 41
  year: 2018
  end-page: 35669
  ident: CR40
  article-title: Specific and highly sensitive detection of ketone compounds based on p-type MoTe under ultraviolet illumination
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.8b14142
– volume: 136
  start-page: 80
  issue: 1
  year: 2009
  end-page: 85
  ident: CR46
  article-title: Ultraviolet-assisted gas sensing: a potential formaldehyde detection approach at room temperature based on zinc oxide nanorods
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2008.10.057
– volume: 24
  start-page: 012004
  year: 2013
  ident: CR4
  article-title: Optical gas sensing: a review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/1/012004
– volume: 3
  start-page: 2045
  issue: 10
  year: 2018
  end-page: 2060
  ident: CR27
  article-title: Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b01077
– volume: 134
  start-page: 945
  issue: 2
  year: 2008
  end-page: 952
  ident: CR42
  article-title: Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2008.06.055
– volume: 7
  start-page: 4879
  year: 2013
  end-page: 4891
  ident: CR112
  article-title: Sensing behavior of atomically thin-layered MoS transistors
  publication-title: ACS Nano
  doi: 10.1021/nn400026u
– volume: 5
  start-page: 3252
  year: 2014
  ident: CR147
  article-title: Monolayer behaviour in bulk ReS due to electronic and vibrational decoupling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4252
– volume: 6
  start-page: 35066
  year: 2016
  ident: CR78
  article-title: NO gas sensing kinetics at room temperature under UV light irradiation of In O nanostructures
  publication-title: Sci. Rep.
  doi: 10.1038/srep35066
– volume: 10
  start-page: 70
  issue: 1
  year: 2020
  ident: CR72
  article-title: Organic-inorganic hybrid materials for room temperature light-activated sub-ppm no detection
  publication-title: Nanomaterials
  doi: 10.3390/nano10010070
– volume: 4
  start-page: 3812
  issue: 2
  year: 2019
  end-page: 3819
  ident: CR93
  article-title: Enhanced NO sensing at room temperature with graphene via monodisperse polystyrene bead decoration
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03540
– volume: 5
  start-page: 1901062
  issue: 5
  year: 2020
  ident: CR24
  article-title: MoS -based nanomaterials for room-temperature gas sensors
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201901062
– volume: 618
  start-page: 253
  year: 2016
  end-page: 262
  ident: CR57
  article-title: Visible light activation of room temperature NO gas sensors based on ZnO, SnO and In O sensitized with CdSe quantum dots
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.09.029
– volume: 15
  start-page: 506
  year: 2015
  end-page: 513
  ident: CR141
  article-title: Chemical vapor deposition of thin crystals of layered semiconductor SnS for fast photodetection application
  publication-title: Nano Lett.
  doi: 10.1021/nl503857r
– volume: 114
  start-page: 1293
  issue: 2
  year: 2010
  end-page: 1298
  ident: CR38
  article-title: UV-light-activated ZnO fibers for organic gas sensing at room temperature
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp906043k
– volume: 101
  start-page: 053119
  year: 2012
  ident: CR89
  article-title: Sub-ppt gas detection with pristine graphene
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4742327
– volume: 28
  start-page: 3718
  issue: 11
  year: 2016
  end-page: 3726
  ident: CR142
  article-title: Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS , and Sn S : experiment and theory
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00397
– volume: 6
  start-page: 158
  year: 2019
  ident: CR39
  article-title: UV light activated SnO /ZnO nanofibers for gas sensing at room temperature
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2019.00158
– volume: 13
  start-page: 3196
  issue: 3
  year: 2019
  end-page: 3205
  ident: CR120
  article-title: MoS -based optoelectronic gas sensor with sub-parts-per-billion limit of NO gas detection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08778
– volume: 8
  start-page: 4074
  issue: 5
  year: 2014
  end-page: 4099
  ident: CR106
  article-title: Few-layer MoS : a promising layered semiconductor
  publication-title: ACS Nano
  doi: 10.1021/nn405938z
– volume: 17
  start-page: 211
  issue: 3
  year: 1994
  end-page: 214
  ident: CR62
  article-title: Gas-sensing properties of SnO pyrolytic films subjected to ultraviolet radiation
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/0925-4005(93)00874-X
– volume: 324
  start-page: 1530
  year: 2009
  end-page: 1534
  ident: CR84
  article-title: Graphene: status and prospects
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 48
  start-page: 72
  issue: 1
  year: 2019
  end-page: 133
  ident: CR150
  article-title: Applications of 2D MXenes in energy conversion and storage systems
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00324f
– volume: 28
  start-page: 36
  year: 2017
  ident: CR48
  article-title: Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa7cad
– volume: 22
  start-page: 12915
  issue: 25
  year: 2012
  end-page: 12920
  ident: CR51
  article-title: Study on formaldehyde gas-sensing of In O -sensitized ZnO nanoflowers under visible light irradiation at room temperature
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16105b
– volume: 259
  start-page: 709
  year: 2018
  end-page: 716
  ident: CR54
  article-title: Light-activated gas sensing activity of ZnO nanotetrapods enhanced by plasmonic resonant energy from Au nanoparticles
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.12.128
– volume: 782
  start-page: 1121
  year: 2019
  end-page: 1126
  ident: CR80
  article-title: Room temperature photoelectric NO gas sensor based on direct growth of walnut-like In O nanostructures
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.180
– volume: 113
  start-page: 1
  year: 2018
  end-page: 7
  ident: CR123
  article-title: UV light activated NO gas sensing based on Au nanoparticles decorated few-layer MoS thin film at room temperature
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5042061
– volume: 147
  start-page: 35
  issue: 1–2
  year: 2014
  end-page: 41
  ident: CR77
  article-title: Gas sensing properties under UV radiation of In O nanostructures processed by electrospinning
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.03.057
– volume: 7
  start-page: 6053
  year: 2017
  ident: CR49
  article-title: UV-activated ZnO films on a flexible substrate for room temperature O and H O sensing
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05265-5
– volume: 304
  start-page: 127317
  year: 2020
  ident: CR99
  article-title: Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS /rGO hybrids
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127317
– volume: 18
  start-page: 3638
  year: 2018
  ident: CR31
  article-title: 2D materials for gas sensing applications: a review
  publication-title: Sensors
  doi: 10.3390/s18113638
– volume: 4
  start-page: 822
  issue: 4
  year: 2019
  end-page: 826
  ident: CR60
  article-title: A parts per billion (ppb) sensor for NO with microwatt (μW) power requirements based on micro light plates
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00150
– volume: 205
  start-page: 305
  year: 2014
  end-page: 312
  ident: CR56
  article-title: Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2014.08.091
– volume: 22
  start-page: 8525
  issue: 17
  year: 2012
  end-page: 8531
  ident: CR95
  article-title: WO nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO gas sensing
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16709c
– volume: 256
  start-page: 992
  year: 2018
  end-page: 1000
  ident: CR136
  article-title: Light enhanced VOCs sensing of WS microflakes based chemiresistive sensors powered by triboelectronic nangenerators
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.10.045
– volume: 19
  start-page: 2617
  issue: 11
  year: 2019
  ident: CR138
  article-title: Near room temperature light-activated WS -decorated rGO as NO gas sensor
  publication-title: Sensors
  doi: 10.3390/s19112617
– volume: 6
  start-page: 8632
  year: 2015
  ident: CR30
  article-title: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9632
– volume: 7
  start-page: 8616
  issue: 28
  year: 2019
  end-page: 8625
  ident: CR146
  article-title: Ultrasensitive room temperature ppb-level NO gas sensors based on SnS /rGO nanohybrids with P-N transition and optoelectronic visible light enhancement performance
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c9tc02436k
– volume: 281
  start-page: 262
  year: 2019
  end-page: 272
  ident: CR36
  article-title: Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2018.10.113
– volume: 240
  start-page: 573
  year: 2017
  end-page: 579
  ident: CR68
  article-title: UV-enhanced ozone gas sensing response of ZnO-SnO heterojunctions at room temperature
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2016.08.158
– volume: 3
  start-page: 301
  year: 2009
  end-page: 306
  ident: CR35
  article-title: Practical chemical sensors from chemically derived graphene
  publication-title: ACS Nano
  doi: 10.1021/nn800593m
– volume: 108
  start-page: 2
  issue: 1–2
  year: 2005
  end-page: 14
  ident: CR3
  article-title: Toward innovations of gas sensor technology
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2004.12.075
– volume: 304
  start-page: 127334
  year: 2020
  ident: CR101
  article-title: A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127334
– volume: 112
  start-page: 053502
  year: 2018
  ident: CR34
  article-title: High performance NO sensor using MoS nanowires network
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5019296
– volume: 119
  start-page: 478
  issue: 1
  year: 2019
  end-page: 598
  ident: CR7
  article-title: Electrically-transduced chemical sensors based on two-dimensional nanomaterials
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00311
– volume: 12
  start-page: 2610
  issue: 3
  year: 2012
  end-page: 2631
  ident: CR19
  article-title: Metal oxide nanostructures and their gas sensing properties: a review
  publication-title: Sensors
  doi: 10.3390/s120302610
– volume: 6
  start-page: 10286
  year: 2018
  end-page: 10296
  ident: CR124
  article-title: UV assisted ultrasensitive trace NO gas sensing based on few-layer MoS nanosheet-ZnO nanowire heterojunctions at room temperature
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta02679c
– volume: 185
  start-page: 213
  year: 2018
  ident: CR16
  article-title: A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-018-2750-5
– volume: 4
  start-page: 14179
  issue: 10
  year: 2019
  end-page: 14187
  ident: CR87
  article-title: High-performance UV-assisted NO sensor based on chemical vapor deposition graphene at room temperature
  publication-title: ACS Omega.
  doi: 10.1021/acsomega.9b00935
– volume: 47
  start-page: 4860
  issue: 13
  year: 2018
  end-page: 4908
  ident: CR26
  article-title: Chemical sensing with 2D materials
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00417j
– volume: 2
  start-page: 1744
  year: 2017
  end-page: 1752
  ident: CR114
  article-title: UV-activated MoS based fast and reversible NO sensor at room temperature
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.7b00731
– volume: 64
  start-page: 128
  year: 2019
  end-page: 135
  ident: CR129
  article-title: Enhanced NO gas sensing of a single-layer MoS by photogating and piezo-phototronic effects
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.12.009
– volume: 14
  start-page: 221
  year: 2018
  end-page: 260
  ident: CR12
  article-title: Recent developments in 2D nanomaterials for chemiresistive-type gas sensors
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-018-0044-z
– volume: 166–167
  start-page: 172
  year: 2012
  end-page: 176
  ident: CR88
  article-title: Highly sensitive NO gas sensor based on ozone treated graphene
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2012.02.036
– volume: 10
  start-page: 3964
  year: 2018
  end-page: 3974
  ident: CR134
  article-title: Growth of wafer-scale standing layers of WS for self-biased high-speed UV-visible-NIR optoelectronic devices
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b16397
– volume: 7
  start-page: 143
  year: 2001
  end-page: 167
  ident: CR18
  article-title: Conduction model of metal oxide gas sensors
  publication-title: J. Electroceramics
  doi: 10.1023/A:1014405811371
– volume: 12
  start-page: 6109
  issue: 6
  year: 2018
  end-page: 6116
  ident: CR152
  article-title: Environment-sensitive photoresponse of spontaneously partially oxidized Ti C MXene thin films
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02379
– volume: 186
  start-page: 418
  year: 2019
  ident: CR50
  article-title: UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-019-3532-4
– volume: 29
  start-page: 464001
  issue: 46
  year: 2018
  ident: CR115
  article-title: Highly selective and reversible NO gas sensor using vertically aligned MoS flake networks
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aade20
– volume: 223
  start-page: 429
  year: 2016
  end-page: 439
  ident: CR66
  article-title: Enhanced NO gas sensing performance of bare and Pd-loaded SnO thick film sensors under UV-light irradiation at room temperature
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2015.09.075
– volume: 95
  start-page: 142106
  year: 2009
  ident: CR43
  article-title: UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3243458
– ident: CR113
– volume: 6
  start-page: 1900376
  issue: 12
  year: 2019
  ident: CR67
  article-title: Room-temperature NO Gas sensing with ultra-sensitivity activated by ultraviolet light based on SnO monolayer array film
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900376
– volume: 19
  start-page: 7207
  issue: 17
  year: 2019
  end-page: 7214
  ident: CR70
  article-title: Room temperature formaldehyde sensing of hollow SnO /ZnO heterojunctions under uv-led activation
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2916879
– ident: CR23
– volume: 5
  start-page: 4285
  issue: 10
  year: 2013
  end-page: 4292
  ident: CR69
  article-title: UV-enhanced NO gas sensing properties of SnO -Core/ZnO-shell nanowires at room temperature
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am400500a
– volume: 8
  start-page: 10743
  issue: 10
  year: 2014
  end-page: 10755
  ident: CR140
  article-title: Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics
  publication-title: ACS Nano
  doi: 10.1021/nn504481r
– volume: 578
  start-page: 123621
  year: 2019
  ident: CR73
  article-title: A visible-light activated gas sensor based on perylenediimide-sensitized SnO for NO detection at room temperature
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2019.123621
– volume: 28
  start-page: 1801035
  issue: 20
  year: 2018
  ident: CR145
  article-title: Suspended SnS layers by light assistance for ultrasensitive ammonia detection at room temperature
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801035
– volume: 9
  start-page: 23343
  issue: 40
  year: 2019
  end-page: 23351
  ident: CR91
  article-title: Annealing effect on UV-illuminated recovery in gas response of graphene-based NO sensors
  publication-title: RSC Adv.
  doi: 10.1039/c9ra01295h
– volume: 5
  start-page: 80525
  year: 2015
  ident: CR116
  article-title: Charge-transfer-based gas sensing using atomic-layer MoS
  publication-title: Sci. Rep.
  doi: 10.1038/srep08052
– volume: 24
  start-page: 181
  issue: 2
  year: 2004
  end-page: 198
  ident: CR2
  article-title: A review of gas sensors employed in electronic nose applications
  publication-title: Sens. Rev.
  doi: 10.1108/02602280410525977
– volume: 148
  start-page: 66
  issue: 1
  year: 2010
  end-page: 73
  ident: CR47
  article-title: Size- and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2010.04.045
– volume: 305
  start-page: 127498
  year: 2020
  ident: CR58
  article-title: UV-activated ultrasensitive and fast reversible ppb NO sensing based on ZnO nanorod modified by constructing interfacial electric field with In O nanoparticles
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127498
– volume: 78
  start-page: 73
  year: 2001
  end-page: 77
  ident: CR63
  article-title: UV light activation of tin oxide thin films for NO sensing at low temperatures
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/S0925-4005(01)00796-1
– volume: 25
  start-page: 4908
  issue: 24
  year: 2013
  end-page: 4916
  ident: CR139
  article-title: Synthesis, characterization, and electronic structure of single-crystal SnS, Sn S , and SnS
  publication-title: Chem. Mater.
  doi: 10.1021/cm403046m
– volume: 42
  start-page: 416
  issue: 5
  year: 2017
  end-page: 432
  ident: CR21
  article-title: UV-LED photo-activated chemical gas sensors: a review
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2016.1226161
– volume: 4
  start-page: 12071
  issue: 7
  year: 2019
  end-page: 12080
  ident: CR53
  article-title: Light trapping-mediated room-temperature gas sensing by ordered ZnO nano structures decorated with plasmonic Au nanoparticles
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01116
– volume: 7
  start-page: 2189
  year: 2015
  end-page: 2194
  ident: CR104
  article-title: Graphene on paper: a simple, low-cost chemical sensing platform
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am5084122
– volume: 270
  start-page: 119
  year: 2018
  end-page: 129
  ident: CR97
  article-title: Light-assisted recovery for a highly-sensitive NO sensor based on RGO-CeO hybrids
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2018.05.027
– volume: 6
  start-page: 182
  year: 2007
  ident: CR86
  article-title: The rise of graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– ident: CR17
– volume: 290
  start-page: 443
  year: 2019
  end-page: 452
  ident: CR74
  article-title: UV light irradiation enhanced gas sensor selectivity of NO and SO using rGO functionalized with hollow SnO nanofibers
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.03.133
– volume: 10
  start-page: 2088
  issue: 3
  year: 2010
  end-page: 2106
  ident: CR20
  article-title: Metal oxide gas sensors: sensitivity and influencing factors
  publication-title: Sensors
  doi: 10.3390/s100302088
– volume: 26
  start-page: 5158
  year: 2016
  end-page: 5165
  ident: CR33
  article-title: High surface area MoS /graphene hybrid aerogel for ultrasensitive NO detection
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601562
– volume: 19
  start-page: 10214
  issue: 22
  year: 2019
  end-page: 10220
  ident: CR14
  article-title: Boosting sensing performance of vacancy-containing vertically aligned MoS using rGO particles
  publication-title: IEEE Sens. J.
  doi: 10.1109/jsen.2019.2932106
– ident: CR76
– volume: 255
  start-page: 2538
  year: 2018
  end-page: 2545
  ident: CR37
  article-title: Near infrared light enhanced room-temperature NO gas sensing by hierarchical ZnO nanorods functionalized with PbS quantum dots
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.09.059
– volume: 42
  start-page: 6425
  issue: 9
  year: 2017
  end-page: 6434
  ident: CR83
  article-title: Photon assisted room-temperature hydrogen sensors using PdO loaded WO nanohybrids
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.117
– volume: 6
  start-page: 147
  year: 2011
  ident: CR107
  article-title: Single-layer MoS transistors
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– volume: 11
  start-page: 10410
  issue: 21
  year: 2019
  end-page: 10419
  ident: CR119
  article-title: An indoor light-activated 3D cone-shaped MoS bilayer-based NO gas sensor with PPb-level detection at room-temperature
  publication-title: Nanoscale
  doi: 10.1039/c8nr10157d
– volume: 17
  start-page: 211
  issue: 3
  year: 1994
  ident: 503_CR62
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/0925-4005(93)00874-X
– volume: 12
  start-page: 6109
  issue: 6
  year: 2018
  ident: 503_CR152
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02379
– volume: 219
  start-page: 158
  year: 2015
  ident: 503_CR75
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2015.05.031
– volume: 34
  start-page: 24
  issue: 1
  year: 2014
  ident: 503_CR6
  publication-title: Sens. Rev.
  doi: 10.1108/SR-11-2012-724
– volume: 305
  start-page: 127455
  year: 2020
  ident: 503_CR143
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127455
– volume: 10
  start-page: 2088
  issue: 3
  year: 2010
  ident: 503_CR20
  publication-title: Sensors
  doi: 10.3390/s100302088
– volume: 255
  start-page: 2538
  year: 2018
  ident: 503_CR37
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.09.059
– ident: 503_CR23
  doi: 10.1016/B978-0-12-815924-8.00008-6
– volume: 113
  start-page: 1
  year: 2018
  ident: 503_CR123
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5042061
– volume: 10
  start-page: 3964
  year: 2018
  ident: 503_CR134
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b16397
– volume: 15
  start-page: 1804303
  issue: 2
  year: 2019
  ident: 503_CR105
  publication-title: Small
  doi: 10.1002/smll.201804303
– volume: 6
  start-page: 35066
  year: 2016
  ident: 503_CR78
  publication-title: Sci. Rep.
  doi: 10.1038/srep35066
– volume: 9
  start-page: 23343
  issue: 40
  year: 2019
  ident: 503_CR91
  publication-title: RSC Adv.
  doi: 10.1039/c9ra01295h
– volume: 308
  start-page: 127700
  year: 2020
  ident: 503_CR127
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2020.127700
– volume: 3
  start-page: 301
  year: 2009
  ident: 503_CR35
  publication-title: ACS Nano
  doi: 10.1021/nn800593m
– volume: 147
  start-page: 35
  issue: 1–2
  year: 2014
  ident: 503_CR77
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2014.03.057
– volume: 15
  start-page: 506
  year: 2015
  ident: 503_CR141
  publication-title: Nano Lett.
  doi: 10.1021/nl503857r
– volume: 3
  start-page: 2045
  issue: 10
  year: 2018
  ident: 503_CR27
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b01077
– volume: 30
  start-page: 355504
  year: 2019
  ident: 503_CR118
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab2277
– volume: 9
  start-page: 37191
  issue: 42
  year: 2017
  ident: 503_CR103
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b11244
– volume: 281
  start-page: 262
  year: 2019
  ident: 503_CR36
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2018.10.113
– volume: 5
  start-page: 1800071
  issue: 10
  year: 2018
  ident: 503_CR121
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800071
– volume: 24
  start-page: 012004
  year: 2013
  ident: 503_CR4
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/1/012004
– volume: 6
  start-page: 85075
  year: 2019
  ident: 503_CR117
  publication-title: Mater. Res. Express.
  doi: 10.1088/2053-1591/ab20b7
– ident: 503_CR85
  doi: 10.1038/nature11458
– volume: 578
  start-page: 123621
  year: 2019
  ident: 503_CR73
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2019.123621
– volume: 42
  start-page: 6425
  issue: 9
  year: 2017
  ident: 503_CR83
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.12.117
– volume: 14
  start-page: 221
  year: 2018
  ident: 503_CR12
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-018-0044-z
– volume: 618
  start-page: 253
  year: 2016
  ident: 503_CR57
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.09.029
– volume: 18
  start-page: 3638
  issue: 11
  year: 2018
  ident: 503_CR110
  publication-title: Sensors
  doi: 10.3390/s18113638
– volume: 13
  start-page: 668
  year: 2013
  ident: 503_CR111
  publication-title: Nano Lett.
  doi: 10.1021/nl3043079
– volume: 7
  start-page: 6053
  year: 2017
  ident: 503_CR49
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05265-5
– volume: 782
  start-page: 1121
  year: 2019
  ident: 503_CR80
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.12.180
– volume: 253
  start-page: 77
  year: 2017
  ident: 503_CR90
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.06.116
– volume: 191
  start-page: 114
  year: 2017
  ident: 503_CR98
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2017.01.046
– volume: 28
  start-page: 1801035
  issue: 20
  year: 2018
  ident: 503_CR145
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801035
– volume: 30
  start-page: 2000435
  issue: 19
  year: 2020
  ident: 503_CR126
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000435
– volume: 8
  start-page: 4074
  issue: 5
  year: 2014
  ident: 503_CR106
  publication-title: ACS Nano
  doi: 10.1021/nn405938z
– volume: 13
  start-page: 3196
  issue: 3
  year: 2019
  ident: 503_CR120
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b08778
– volume: 28
  start-page: 36
  year: 2017
  ident: 503_CR48
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa7cad
– volume: 9
  start-page: 626
  issue: 2
  year: 2019
  ident: 503_CR144
  publication-title: RSC Adv.
  doi: 10.1039/c8ra08857h
– volume: 259
  start-page: 709
  year: 2018
  ident: 503_CR54
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.12.128
– volume: 121
  start-page: 18
  issue: 1
  year: 2007
  ident: 503_CR15
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2006.09.047
– volume: 120
  start-page: 791
  year: 2015
  ident: 503_CR82
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.08.824
– volume: 307
  start-page: 127649
  year: 2020
  ident: 503_CR100
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127649
– volume: 22
  start-page: 12915
  issue: 25
  year: 2012
  ident: 503_CR51
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16105b
– volume: 5
  start-page: 1113
  year: 2017
  ident: 503_CR92
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c6tc04416f
– volume: 42
  start-page: 416
  issue: 5
  year: 2017
  ident: 503_CR21
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2016.1226161
– volume: 29
  start-page: 464001
  issue: 46
  year: 2018
  ident: 503_CR115
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aade20
– volume: 137
  start-page: 11892
  issue: 37
  year: 2015
  ident: 503_CR130
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07452
– volume: 6
  start-page: 147
  year: 2011
  ident: 503_CR107
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.279
– ident: 503_CR94
  doi: 10.1088/2053-1591/ab0bbf
– volume: 498
  start-page: 143873
  year: 2019
  ident: 503_CR79
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143873
– volume: 304
  start-page: 127334
  year: 2020
  ident: 503_CR101
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127334
– volume: 6
  start-page: 158
  year: 2019
  ident: 503_CR39
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2019.00158
– volume: 26
  start-page: 5158
  year: 2016
  ident: 503_CR33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601562
– ident: 503_CR11
  doi: 10.1109/IEDM.2016.7838443
– volume: 47
  start-page: 4860
  issue: 13
  year: 2018
  ident: 503_CR26
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00417j
– volume: 30
  start-page: 314001
  year: 2019
  ident: 503_CR128
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab1102
– volume: 270
  start-page: 119
  year: 2018
  ident: 503_CR97
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2018.05.027
– volume: 259
  start-page: 269
  year: 2018
  ident: 503_CR55
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.12.052
– volume: 181
  start-page: 395
  year: 2013
  ident: 503_CR52
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2013.01.082
– volume: 134
  start-page: 945
  issue: 2
  year: 2008
  ident: 503_CR42
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2008.06.055
– volume: 10
  start-page: 70
  issue: 1
  year: 2020
  ident: 503_CR72
  publication-title: Nanomaterials
  doi: 10.3390/nano10010070
– volume: 64
  start-page: 128
  year: 2019
  ident: 503_CR129
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2018.12.009
– volume: 2
  start-page: 679
  issue: 5
  year: 2017
  ident: 503_CR71
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00129
– volume: 205
  start-page: 305
  year: 2014
  ident: 503_CR56
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2014.08.091
– volume: 4
  start-page: 1750
  issue: 11
  year: 2016
  ident: 503_CR131
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600290
– volume: 8
  start-page: 155
  issue: 5
  year: 2017
  ident: 503_CR132
  publication-title: Micromachines
  doi: 10.3390/mi8050155
– volume: 12
  start-page: 2610
  issue: 3
  year: 2012
  ident: 503_CR19
  publication-title: Sensors
  doi: 10.3390/s120302610
– ident: 503_CR108
  doi: 10.1038/s41699-018-0074-2
– volume: 9
  start-page: 27142
  issue: 32
  year: 2017
  ident: 503_CR96
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.7b06017
– volume: 6
  start-page: 10286
  year: 2018
  ident: 503_CR124
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c8ta02679c
– volume: 130
  start-page: 281
  year: 2018
  ident: 503_CR102
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.01.013
– volume: 22
  start-page: 8525
  issue: 17
  year: 2012
  ident: 503_CR95
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm16709c
– volume: 4
  start-page: 14179
  issue: 10
  year: 2019
  ident: 503_CR87
  publication-title: ACS Omega.
  doi: 10.1021/acsomega.9b00935
– volume: 28
  start-page: 795
  year: 2016
  ident: 503_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503825
– volume: 8
  start-page: 10743
  issue: 10
  year: 2014
  ident: 503_CR140
  publication-title: ACS Nano
  doi: 10.1021/nn504481r
– volume: 165
  start-page: 59
  issue: 1
  year: 2012
  ident: 503_CR81
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2012.02.012
– volume: 25
  start-page: 4908
  issue: 24
  year: 2013
  ident: 503_CR139
  publication-title: Chem. Mater.
  doi: 10.1021/cm403046m
– volume: 5
  start-page: 4285
  issue: 10
  year: 2013
  ident: 503_CR69
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am400500a
– volume: 95
  start-page: 142106
  year: 2009
  ident: 503_CR43
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3243458
– volume: 166–167
  start-page: 172
  year: 2012
  ident: 503_CR88
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2012.02.036
– volume: 5
  start-page: 1901062
  issue: 5
  year: 2020
  ident: 503_CR24
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201901062
– volume: 186
  start-page: 418
  year: 2019
  ident: 503_CR50
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-019-3532-4
– volume: 84
  start-page: 4556
  year: 2004
  ident: 503_CR41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1759071
– volume: 303
  start-page: 111875
  year: 2020
  ident: 503_CR29
  publication-title: Sens. Actuat. A Phys.
  doi: 10.1016/j.sna.2020.111875
– volume: 290
  start-page: 443
  year: 2019
  ident: 503_CR74
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.03.133
– volume: 2
  start-page: 1744
  year: 2017
  ident: 503_CR114
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.7b00731
– volume: 148
  start-page: 66
  issue: 1
  year: 2010
  ident: 503_CR47
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2010.04.045
– volume: 29
  start-page: 46
  year: 2018
  ident: 503_CR32
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aade20
– volume: 10
  start-page: 35664
  issue: 41
  year: 2018
  ident: 503_CR40
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.8b14142
– volume: 352
  start-page: 306
  year: 2017
  ident: 503_CR151
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.09.012
– volume: 119
  start-page: 478
  issue: 1
  year: 2019
  ident: 503_CR7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00311
– volume: 223
  start-page: 429
  year: 2016
  ident: 503_CR66
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2015.09.075
– volume: 2
  start-page: 16098
  year: 2017
  ident: 503_CR149
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.98
– volume: 24
  start-page: 181
  issue: 2
  year: 2004
  ident: 503_CR2
  publication-title: Sens. Rev.
  doi: 10.1108/02602280410525977
– volume: 6
  start-page: 652
  year: 2007
  ident: 503_CR28
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1967
– year: 2017
  ident: 503_CR25
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4983310
– volume: 240
  start-page: 573
  year: 2017
  ident: 503_CR68
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2016.08.158
– volume: 7
  start-page: 4879
  year: 2013
  ident: 503_CR112
  publication-title: ACS Nano
  doi: 10.1021/nn400026u
– volume: 253
  start-page: 630
  year: 2017
  ident: 503_CR65
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.06.155
– volume: 7
  start-page: 143
  year: 2001
  ident: 503_CR18
  publication-title: J. Electroceramics
  doi: 10.1023/A:1014405811371
– volume: 304
  start-page: 127287
  year: 2020
  ident: 503_CR59
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127287
– ident: 503_CR76
  doi: 10.1021/acsami.9b19896
– volume: 11
  start-page: 10410
  issue: 21
  year: 2019
  ident: 503_CR119
  publication-title: Nanoscale
  doi: 10.1039/c8nr10157d
– volume: 503
  start-page: 150
  year: 2017
  ident: 503_CR44
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2017.04.055
– volume: 3
  start-page: 1719
  issue: 9
  year: 2018
  ident: 503_CR133
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.8b00461
– volume: 18
  start-page: 3638
  year: 2018
  ident: 503_CR31
  publication-title: Sensors
  doi: 10.3390/s18113638
– volume: 10
  start-page: 20578
  issue: 44
  year: 2018
  ident: 503_CR10
  publication-title: Nanoscale
  doi: 10.1039/c8nr04198a
– volume: 27
  start-page: 1
  year: 2017
  ident: 503_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702168
– volume: 14
  start-page: 5941
  year: 2014
  ident: 503_CR122
  publication-title: Nano Lett.
  doi: 10.1021/nl502906a
– volume: 4
  start-page: 5209
  year: 2014
  ident: 503_CR135
  publication-title: Sci. Rep.
  doi: 10.1038/srep05209
– volume: 4
  start-page: 61
  year: 2014
  ident: 503_CR1
  publication-title: Sens. Transducers
– volume: 2
  start-page: 183
  year: 2017
  ident: 503_CR109
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00801
– volume: 305
  start-page: 127498
  year: 2020
  ident: 503_CR58
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127498
– ident: 503_CR137
  doi: 10.1002/chem.201803502
– volume: 28
  start-page: 3718
  issue: 11
  year: 2016
  ident: 503_CR142
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00397
– volume: 5
  start-page: 3252
  year: 2014
  ident: 503_CR147
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4252
– volume: 304
  start-page: 127317
  year: 2020
  ident: 503_CR99
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2019.127317
– volume: 48
  start-page: 72
  issue: 1
  year: 2019
  ident: 503_CR150
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c8cs00324f
– volume: 6
  start-page: 8632
  year: 2015
  ident: 503_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9632
– volume: 136
  start-page: 80
  issue: 1
  year: 2009
  ident: 503_CR46
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2008.10.057
– volume: 324
  start-page: 1530
  year: 2009
  ident: 503_CR84
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 4
  start-page: 12071
  issue: 7
  year: 2019
  ident: 503_CR53
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01116
– volume: 4
  start-page: 822
  issue: 4
  year: 2019
  ident: 503_CR60
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b00150
– volume: 185
  start-page: 213
  year: 2018
  ident: 503_CR16
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-018-2750-5
– volume: 101
  start-page: 053119
  year: 2012
  ident: 503_CR89
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4742327
– volume: 3
  start-page: 665
  issue: 1
  year: 2020
  ident: 503_CR125
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b02180
– volume: 114
  start-page: 1293
  issue: 2
  year: 2010
  ident: 503_CR38
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp906043k
– volume: 8
  start-page: 333
  issue: 11
  year: 2017
  ident: 503_CR22
  publication-title: Micromachines
  doi: 10.3390/mi8110333
– volume: 108
  start-page: 2
  issue: 1–2
  year: 2005
  ident: 503_CR3
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2004.12.075
– volume: 13
  start-page: 14214
  issue: 10
  year: 2013
  ident: 503_CR9
  publication-title: Sensors
  doi: 10.3390/s131014214
– volume: 5
  start-page: 563
  issue: 2
  year: 2020
  ident: 503_CR61
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.9b02487
– ident: 503_CR17
– volume: 6
  start-page: 182
  year: 2007
  ident: 503_CR86
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1849
– volume: 7
  start-page: 8616
  issue: 28
  year: 2019
  ident: 503_CR146
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c9tc02436k
– volume: 108
  start-page: 352
  issue: 2
  year: 2008
  ident: 503_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/cr0681039
– volume: 227
  start-page: 220
  year: 2016
  ident: 503_CR45
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2015.12.010
– volume: 3
  start-page: 1500707
  issue: 6
  year: 2016
  ident: 503_CR148
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500707
– volume: 112
  start-page: 053502
  year: 2018
  ident: 503_CR34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5019296
– volume: 19
  start-page: 7207
  issue: 17
  year: 2019
  ident: 503_CR70
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2916879
– volume: 7
  start-page: 2189
  year: 2015
  ident: 503_CR104
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/am5084122
– volume: 256
  start-page: 992
  year: 2018
  ident: 503_CR136
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/j.snb.2017.10.045
– volume: 78
  start-page: 73
  year: 2001
  ident: 503_CR63
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/S0925-4005(01)00796-1
– volume: 93
  start-page: 580
  year: 2003
  ident: 503_CR64
  publication-title: Sens. Actuat. B Chem.
  doi: 10.1016/S0925-4005(03)00220-X
– volume: 19
  start-page: 2617
  issue: 11
  year: 2019
  ident: 503_CR138
  publication-title: Sensors
  doi: 10.3390/s19112617
– volume: 19
  start-page: 10214
  issue: 22
  year: 2019
  ident: 503_CR14
  publication-title: IEEE Sens. J.
  doi: 10.1109/jsen.2019.2932106
– volume: 6
  start-page: 1900376
  issue: 12
  year: 2019
  ident: 503_CR67
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201900376
– volume: 4
  start-page: 3812
  issue: 2
  year: 2019
  ident: 503_CR93
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03540
– volume: 5
  start-page: 80525
  year: 2015
  ident: 503_CR116
  publication-title: Sci. Rep.
  doi: 10.1038/srep08052
– ident: 503_CR113
  doi: 10.1016/j.sse.2014.06.013
SSID ssib052472754
ssib047348319
ssib044084216
ssj0000070760
ssib027973114
ssib051367739
Score 2.6212504
SecondaryResourceType review_article
Snippet Highlights Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D)...
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and...
HighlightsOperations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.Emerging two-dimensional (2D)...
Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D) materials-based gas...
Abstract Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 164
SubjectTerms 2D materials
Detection
Engineering
Gas sensor
Gas sensors
Illumination
Internet of Things
Light
Metal oxide
Metal oxide semiconductors
Metal oxides
Nanomaterials
Nanoscale Science and Technology
Nanotechnology
Nanotechnology and Microengineering
Optoelectronic devices
Photoactivation
Power consumption
Review
Room temperature
Selectivity
Semiconductors
Sensors
Two dimensional materials
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELage4GHid8EBjISb2CR2I7P5QUxWJmQOqaxSnuLHMdhk6DZ2kziz-cucdoV2B76Uruqc7k7f_bZ38fYa1nl0gMEYWSZC52lSox98EKVMqss0UFquuA8PTD7M_31JD-JG27LeKxyyIldoq4aT3vk76QGhYsZXKt_OL8QpBpF1dUooXGbbWEKtnbEtnb3Dg6PBo-SQMpM6zohySvrK2w1mrhd1JrQLCcCM1jzZOb4rxLihNsDaqBSVqdYl2XCQGriTZzuPh6pN6eCVmQdz4rQG7NdJwrwPyT774HMv6qy3WQ3uce2I0rlH3u3us9uhfkDdvcKd-FDNjtCyC2OA8LunpaZf3FL_h1Xxc1iyTs5JX542rQN3Zzo933f88mi-cWnAQE___b7rApL3jZcfuZT1_aR8IjNJnvHn_ZF1GgQ3oBqhaqkLn0-dtUYZGUDogfjZJnWzssAYGsVHNrEe1siFpLB15l2eWWNcrIKKlOP2WjezMNTxpX1JGFkcw21rtPSls4jXJV0xLBCh09YNtiy8JHAnHQ0fhYr6uXO_kVKH7J_oRP2ZvWb856-48beu_SKVj2Jerv7oln8KGIkFwjZVA3B58GBNqZ0NtQKlClx5OTZCdsZXnAR88GykFrRUg8T3jXNg3Mn7NWqGQOdqjduHppL7IPtyijIVMKe9O6yGihBEYvANGGw4UgbT7LZMj877cjEAQBROCTs7eBy62Fdb6lnNz_Fc3ZHdlFgRaZ22KhdXIYXCN7a8mWM0D8ljzTs
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgXOCA-CZQkJG4gaXEdjxebnwtFdICgq7UW-Q4TlsJErRJJX4-M0426UKLxCGX2JGcydh-k_G8x9hzWeXSAwRhZJkLnaVKLHzwQpUyqyzRQWoqcF59Mgdr_fEoPxqLwrrtafdtSjKu1FOxG0kjp4LCnUhiIvRVdi2n2J1StDPnuARSY5pzgySprM8x1Gjic1EziVlOpGUwc2PmUuOePm6yA4gGSl9FlbosEwZSM1bfXDysnR0uCgFchF7_PoT5RyY2bnDLW-zmiEz568GVbrMrobnDbpzjK7zL1l8RZovDgFB7oGLmH1zHv2Ek3G46HiWU-JeTtm-pWmL41_uKLzftD74KCPL551-nVeh433L5jq9cP3j_PbZevj98eyBGXQbhDaheqErq0ucLVy1AVjYgYjBOlmntvAwAtlbBoU28tyXiHxl8nWmXV9YoJ6ugMnWf7TVtEx4yrqwn2SKba6h1nZa2dB4hqqRjhRU6ecKyrS0LP5KWk3bG92KiW472L1K6yP6FTtiL6ZmfA2XHP3u_oU809SS67Xij3RwX4-wtEKapGoLPgwNtTOlsqBUoU-LIyZsTtr_9wMW4BnSF1IrCO1zkLmkGhdE5OnDCnk3NOLkpY-Oa0J5hH2xXRkGmEvZgcJdpoAQ_LILRhMGOI-28yW5Lc3oSCcQBAJE3JOzl1uXmYV1uqUf_1_0xuy7jrLAiU_tsr9-chScI4PryaZyvvwEoQTAm
  priority: 102
  providerName: Springer Nature
Title Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials
URI https://link.springer.com/article/10.1007/s40820-020-00503-4
https://www.ncbi.nlm.nih.gov/pubmed/34138159
https://www.proquest.com/docview/2433064531
https://www.proquest.com/docview/2473254202
https://www.proquest.com/docview/2542363713
https://pubmed.ncbi.nlm.nih.gov/PMC7770837
https://doaj.org/article/6583f7ec5ea7466ba8ef3736b285604f
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOCA-G6grIzEDSwS2_F4uXW33VZIW6rSSr1FjuOolWCDdlOJn8-Mk_0CChcOSaTYiZLJ2PMmtt9j7K2scukBgjCyzIXOUiWGPnihSplVluggNS1wnp6Y4wv96TK_3JD6ojlhHT1wZ7gPGCFVDcHnwYE2pnQ21AqUKaXN6UbU-2LM20im0JMkkCLTenyQZJX1BkuNJk4XtSYyy4m4DNb8mLnUGNf7QNsBaaAhrKhUl2XCQGr6FThxHR6pNqeCMrHIryL0VpSLYgB_QrC_T8T8ZTQ2BrnJI_awR6d8v7PKY3YnzJ6wBxuchU_ZxRlCbXEeEG53dMz8yC34F8yGm_mCRxklfnrVtA2tmOj-937kk3nzjU8DAn3--cd1FRa8bbg84FPXdi3gGbuYHJ6Pj0WvzSC8AdUKVUld-nzoqiHIygZEDcbJMq2dlwHA1io4tIn3tkQMJIOvM-3yyhrlZBVUpp6znVkzC7uMK-tJusjmGmpdp6UtnUeYKmlqYYWOnrBsacvC98TlpJ_xtVhRLkf7FyltZP9CJ-zd6prvHW3HX2uP6BOtahLldjyBjlj0jlj8yxETtrf8wEXfDywKqRWleNjR3VIMCjN0mcqEvVkVYwOnURs3C80N1sFyZRRkKmEvOndZPShBEIuANGGw5Uhbb7JdMru-iiTiAIDoGxL2fuly68e63VIv_4elXrH7MrYVKzK1x3ba-U14jdCuLQfsrp0cDdi9_dHBaILH0eHJ6RmeHUtNezMexHb-E1xmQZc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeIA9IO4EBhgJnsAisR3bRUIIGF3H1oGglfYWHMfZJkEz2kzAn-I3co6TtCuwve0hL7Ub-XKusc_3EfKYFyl3WnumeJ4ymcSC9Zx3TOQ8KQzCQUoscB7uqsFYvt9L91bI764WBq9VdjYxGOqicviN_DmXWkAyA7n6q6PvDFmj8HS1o9BoxGLb__oBKdvs5dYG7O8TzvvvRm8HrGUVYE5pUTNRcJm7tGeLnuaF8eDvlOV5XFrHvdamFN6CW3TO5OC9uXdlIm1aGCUsL7xIBLz3ArkoBXhyrEzvb3byyzXyQC1OJZHMWZ7AxpGIJCMW8GkpwqXpBSpnCnPkunXvTfiu8eAs8OMlCVM6Vm3dT6j-Q67omGH-F1BdmFzyrYGC4H9x87_XP_86Aw6utX-VXGljYvq6EeJrZMVPrpO1E0iJN8j4EwT4bOQhyG9AoOmmndHPkINX0xkN5E3040FVV1in0XxlfkH70-obHXpIL-iHn4eFn9G6onyDDm3d6N1NMj6XvbtFVifVxN8hVBiHhEkmlbqUZZyb3DoIjjleaCxAvSKSdGuZuRYuHVk7vmZzoOew_lmMD65_JiPydP6fowYs5Mzeb3CL5j0R6Dv8UE33s9ZuZBAgilJ7l3qrpVK5Nb4UWqgcRo56FJH1boOz1vrMMg7CiTiEIjmluVOliDyaN4NZwbMiO_HVMfSBdqGETkREbjfiMh8oBj4GwuCI6CVBWprJcsvk8CBAl2utIebXEXnWidxiWKev1N2zZ_GQXBqMhjvZztbu9j1ymQeNMCwR62S1nh77-xA21vmDoKuUfDlv4_AHIztxVg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagkxA8IH4TGGAk3sBaYju2y1thlFHomNgq7S1yHIdN2pKpzST-fO6cNG1hQ-IhL7EjOee7-HPO932EvOFFyp3Wnimep0wmsWBD5x0TOU8Kg3SQEgucp_tqbyYnx-nxWhV_OO2-TEm2NQ3I0lQ1OxdFudMXvqFMcsxw6xMITZi8SbaMgogZkK3RaHI4WfoU16jNtMoUosCyXOOrkcjuIlaUZilSmOkVU2bKJazw3ZLbQmqNyaygWZckTOlYdbU4Vw9sY70LsgBXYdm_j2T-kZcNy934Hrnb4VQ6ah3rPrnhqwfkzhp74UMy-wGgmx15AN4tMTP9bBf0EPbF9XxBg6ASPTipmxprJ9o_v-_peF6f06kHyE-__zot_II2NeW7dGqbNhYekdn409HHPdapNDCntGiYKLjMXTq0xVDzwnjAD8ryPC6t415rUwpvwSbOmRzQEPeuTKRNC6OE5YUXiXhMBlVd-aeECuNQxMikUpeyjHOTWweAleMhwwJcPiLJ0paZ6yjMUUnjLOvJl4P9sxgvtH8mI_K2f-aiJfD4Z-8POEV9TyTfDjfq-c-si-UMQJsotXept1oqlVvjS6GFymHk6NsR2V5OcNZ9ERYZlwI3e_DJu6ZZC9ir85hH5HXfDKGO-Rtb-foS-kC7UEInIiJPWnfpB4pgxAA0jYjecKSNN9lsqU5PAp241hpwuI7Iu6XLrYZ1vaWe_V_3V-TWwe44-_Zl_-tzcpuHADEsEdtk0Mwv_QtAdk3-sgve3zO8OOU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-Temperature+Gas+Sensors+Under+Photoactivation%3A+From+Metal+Oxides+to+2D+Materials&rft.jtitle=Nano-micro+letters&rft.au=Kumar%2C+Rahul&rft.au=Liu%2C+Xianghong&rft.au=Zhang%2C+Jun&rft.au=Kumar%2C+Mahesh&rft.date=2020-08-13&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft.spage=164&rft_id=info:doi/10.1007%2Fs40820-020-00503-4&rft_id=info%3Apmid%2F34138159&rft.externalDocID=34138159
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon