Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials
Highlights Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized. The advantages and limitations of metal oxides and 2D-materials-based sensors in...
Saved in:
Published in | Nano-micro letters Vol. 12; no. 1; pp. 164 - 37 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
13.08.2020
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Highlights
Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.
Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized.
The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted.
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. |
---|---|
AbstractList | Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.
Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized.
The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted.
Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. Highlights Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized. The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted. Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications.Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor's attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. Abstract Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. HighlightsOperations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.Emerging two-dimensional (2D) materials-based gas sensors under light illumination are summarized.The advantages and limitations of metal oxides and 2D-materials-based sensors in gas sensing at room temperature under photoactivation are highlighted.Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and portable sensors for rapidly growing Internet of things applications. As an important approach, light illumination has been exploited for room-temperature operation with improving gas sensor’s attributes including sensitivity, speed and selectivity. This review provides an overview of the utilization of photoactivated nanomaterials in gas sensing field. First, recent advances in gas sensing of some exciting different nanostructures and hybrids of metal oxide semiconductors under light illumination are highlighted. Later, excellent gas sensing performance of emerging two-dimensional materials-based sensors under light illumination is discussed in details with proposed gas sensing mechanism. Originated impressive features from the interaction of photons with sensing materials are elucidated in the context of modulating sensing characteristics. Finally, the review concludes with key and constructive insights into current and future perspectives in the light-activated nanomaterials for optoelectronic gas sensor applications. |
ArticleNumber | 164 |
Author | Kumar, Rahul Kumar, Mahesh Zhang, Jun Liu, Xianghong |
Author_xml | – sequence: 1 givenname: Rahul surname: Kumar fullname: Kumar, Rahul organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur – sequence: 2 givenname: Xianghong surname: Liu fullname: Liu, Xianghong organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University – sequence: 3 givenname: Jun surname: Zhang fullname: Zhang, Jun email: jun@qdu.edu.cn organization: College of Physics, Center for Marine Observation and Communications, Qingdao University, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University – sequence: 4 givenname: Mahesh surname: Kumar fullname: Kumar, Mahesh email: mkumar@iitj.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology Jodhpur |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34138159$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVARLUv_AAcUiQuXgO3xR5YDEiq0VGpVBN2z5TiTraskbm1vBf8e724ptIc9jMay33uemTcvyd4UJiTkNaPvGaX6QxK04bSm66CSQi2ekQPOJK2llGyvnIGxWmmq9slhSr6lkgvNtRQvyD4IBg2T8wOy-BHCWF_ieIPR5lXE6sSm6idOKcRULaYOY_X9KuRgXfZ3NvswfayOYxirc8x2qC5--Q5TlUPFv1TnNmP0dkivyPO-JDy8zzOyOP56efStPrs4OT36fFY7pSHX0HHROjm33VzzrkE-B2V5S3vrOGrd9IC2NOlc0yqYc3Q9E1Z2jQLLOwQGM3K61e2CvTY30Y82_jbBerO5CHFpbMzeDWiUbKDX6CRaLZRqbYM9aFAtb6Sioi9an7ZaN6t2xM7hlKMdHok-fpn8lVmGO6O1pk2RmpF39wIx3K4wZTP65HAY7IRhlQyXgoMCzaBA3z6BXodVnMqoTDEJ1kjKd6MAqBJyM4M3_9f9UPBfjwuAbwEuhpQi9g8QRs16l8x2lwxdx3qXjCik5gnJ-byxv_Tuh91U2FJT-WdaYvxX9g7WH9u-24g |
CitedBy_id | crossref_primary_10_46670_JSST_2024_33_5_359 crossref_primary_10_1021_acssensors_3c02247 crossref_primary_10_1016_j_ccr_2022_214611 crossref_primary_10_3390_nano11040892 crossref_primary_10_1016_j_snb_2021_130557 crossref_primary_10_1016_j_cej_2024_157899 crossref_primary_10_1016_j_mencom_2021_07_008 crossref_primary_10_1039_D1TA05070B crossref_primary_10_1039_D2MH00284A crossref_primary_10_1360_TB_2021_1075 crossref_primary_10_1016_j_jhazmat_2021_127160 crossref_primary_10_1016_j_carbon_2022_05_008 crossref_primary_10_1016_j_apsusc_2024_159778 crossref_primary_10_1007_s10854_022_07889_4 crossref_primary_10_1109_TIM_2024_3457924 crossref_primary_10_1016_j_apsusc_2024_160664 crossref_primary_10_1021_acsami_4c08151 crossref_primary_10_1007_s40820_024_01486_2 crossref_primary_10_1007_s00339_023_06633_x crossref_primary_10_1007_s13738_024_03026_6 crossref_primary_10_1016_j_cjsc_2023_100069 crossref_primary_10_1016_j_vacuum_2022_111777 crossref_primary_10_1016_j_jallcom_2021_159076 crossref_primary_10_3390_s24092717 crossref_primary_10_1021_acsanm_3c06222 crossref_primary_10_1007_s00339_024_08143_w crossref_primary_10_1002_cnl2_18 crossref_primary_10_1016_j_ceramint_2024_11_152 crossref_primary_10_1021_acsomega_2c05142 crossref_primary_10_1016_j_jallcom_2023_168943 crossref_primary_10_1021_acsomega_3c09632 crossref_primary_10_3390_ma15228050 crossref_primary_10_3390_nano13162339 crossref_primary_10_1007_s10854_023_11585_2 crossref_primary_10_1007_s11837_022_05666_6 crossref_primary_10_1016_j_apsusc_2022_156008 crossref_primary_10_1088_1742_6596_2240_1_012016 crossref_primary_10_1007_s40820_022_00796_7 crossref_primary_10_1016_j_snb_2024_136396 crossref_primary_10_1021_acssensors_2c01046 crossref_primary_10_1016_j_snb_2023_134575 crossref_primary_10_1007_s40820_020_00586_z crossref_primary_10_1016_j_snb_2022_132795 crossref_primary_10_1016_j_trac_2023_117233 crossref_primary_10_1016_j_snb_2024_136149 crossref_primary_10_1016_j_snb_2022_133196 crossref_primary_10_3390_nano11071829 crossref_primary_10_1016_j_talanta_2025_127548 crossref_primary_10_1149_2162_8777_ac2b3d crossref_primary_10_1002_idm2_12162 crossref_primary_10_1002_advs_202205458 crossref_primary_10_1109_JSEN_2024_3389770 crossref_primary_10_1007_s10854_021_07318_y crossref_primary_10_3390_s22218150 crossref_primary_10_3390_molecules30030566 crossref_primary_10_1016_j_jhazmat_2021_126161 crossref_primary_10_1016_j_flatc_2023_100584 crossref_primary_10_1002_er_7049 crossref_primary_10_1016_j_snb_2021_130342 crossref_primary_10_1021_acsnano_2c09314 crossref_primary_10_1021_acssensors_2c01275 crossref_primary_10_1021_acsanm_4c05523 crossref_primary_10_1088_1361_6528_ad3a6c crossref_primary_10_2139_ssrn_3972245 crossref_primary_10_1039_D4MA00426D crossref_primary_10_1021_acsanm_2c02753 crossref_primary_10_1016_j_snb_2023_133505 crossref_primary_10_1016_j_ceramint_2021_05_016 crossref_primary_10_1021_acsami_2c20166 crossref_primary_10_3390_nano12101628 crossref_primary_10_1002_sstr_202300503 crossref_primary_10_1021_acsami_2c05280 crossref_primary_10_4028_www_scientific_net_JNanoR_70_41 crossref_primary_10_1016_j_nanoen_2024_109672 crossref_primary_10_1021_acsaelm_4c01273 crossref_primary_10_3390_chemosensors9090263 crossref_primary_10_1016_j_cej_2023_142869 crossref_primary_10_1088_1361_6463_ad5aa6 crossref_primary_10_3389_fchem_2021_811074 crossref_primary_10_3390_ma17051009 crossref_primary_10_1016_j_vacuum_2023_112003 crossref_primary_10_1021_acsami_1c03508 crossref_primary_10_1016_j_ijhydene_2024_12_140 crossref_primary_10_1016_j_physe_2022_115144 crossref_primary_10_1016_j_snb_2024_136281 crossref_primary_10_31613_ceramist_2023_26_1_03 crossref_primary_10_1016_j_snb_2022_133216 crossref_primary_10_3389_fchem_2021_629329 crossref_primary_10_1016_j_jhazmat_2022_128836 crossref_primary_10_1016_j_ccr_2021_214151 crossref_primary_10_1021_acssensors_3c02148 crossref_primary_10_1088_2752_5724_ac72b9 crossref_primary_10_1021_acsomega_3c04665 crossref_primary_10_1002_smll_202406706 crossref_primary_10_1016_j_aca_2023_341033 crossref_primary_10_1109_JSEN_2024_3518833 crossref_primary_10_1021_acssensors_4c03489 crossref_primary_10_1002_smll_202402464 crossref_primary_10_1016_j_cej_2025_159616 crossref_primary_10_1016_j_jhazmat_2022_128270 crossref_primary_10_1016_j_snb_2021_129547 crossref_primary_10_1016_j_jallcom_2023_171688 crossref_primary_10_1002_smtd_202301521 crossref_primary_10_1016_j_jsamd_2023_100583 crossref_primary_10_1088_1742_6596_2797_1_012020 crossref_primary_10_1016_j_apsusc_2022_155357 crossref_primary_10_1016_j_ceramint_2024_07_047 crossref_primary_10_1016_j_nanoen_2023_109223 crossref_primary_10_1016_j_snb_2021_131069 crossref_primary_10_1039_D1TA10461F crossref_primary_10_1016_j_matdes_2022_110971 crossref_primary_10_1007_s40843_020_1642_y crossref_primary_10_3390_nano12224062 crossref_primary_10_1021_acsanm_4c05313 crossref_primary_10_1016_j_ccr_2021_214280 crossref_primary_10_1021_acsami_1c11262 crossref_primary_10_3390_ma17143502 crossref_primary_10_3390_s23031517 crossref_primary_10_1039_D1TC01857D crossref_primary_10_1016_j_snb_2021_130665 crossref_primary_10_1088_2631_7990_ad3316 crossref_primary_10_3390_s25051439 crossref_primary_10_1021_acssensors_2c01511 crossref_primary_10_1007_s12274_022_4575_0 crossref_primary_10_1039_D3TC02762G crossref_primary_10_1016_j_ijhydene_2020_11_268 crossref_primary_10_1039_D4TC03729D crossref_primary_10_3390_chemosensors11090506 crossref_primary_10_1002_smll_202406964 crossref_primary_10_1021_acssensors_4c00431 crossref_primary_10_1016_j_ceramint_2021_04_095 crossref_primary_10_3390_chemosensors11030200 crossref_primary_10_3390_foods13233917 crossref_primary_10_1002_adsr_202300035 crossref_primary_10_3390_s22114103 crossref_primary_10_1021_acs_analchem_2c05143 crossref_primary_10_1016_j_ceramint_2024_08_280 crossref_primary_10_3389_fchem_2025_1538217 crossref_primary_10_1021_acs_jpclett_4c00919 crossref_primary_10_1021_acsanm_2c02153 crossref_primary_10_3390_chemosensors11100519 crossref_primary_10_1021_acs_chemrev_2c00048 crossref_primary_10_3390_s24186150 crossref_primary_10_1016_j_snb_2023_133430 crossref_primary_10_1016_j_surfin_2022_102560 crossref_primary_10_1007_s11224_025_02488_5 crossref_primary_10_3390_chemosensors10040147 crossref_primary_10_1007_s40820_024_01635_7 crossref_primary_10_1002_adma_202303523 crossref_primary_10_1016_j_rinp_2024_107770 crossref_primary_10_1021_acsanm_3c03566 crossref_primary_10_1007_s12598_023_02318_9 crossref_primary_10_1039_D4TA09078K crossref_primary_10_1021_acssensors_3c02656 crossref_primary_10_1016_j_mseb_2021_115272 crossref_primary_10_1021_acsanm_4c06383 crossref_primary_10_1002_elsa_202100184 crossref_primary_10_3390_chemosensors13020038 crossref_primary_10_1007_s10854_023_11910_9 crossref_primary_10_1002_pssa_202400633 crossref_primary_10_1016_j_ceramint_2025_03_196 crossref_primary_10_1021_acsami_4c14793 crossref_primary_10_3390_chemosensors11040251 crossref_primary_10_1021_acsanm_2c02283 crossref_primary_10_1016_j_mtcomm_2024_109551 crossref_primary_10_3390_s21051826 crossref_primary_10_1016_j_snb_2023_134641 crossref_primary_10_1016_j_snb_2023_133760 crossref_primary_10_3390_chemosensors11040227 crossref_primary_10_1016_j_surfin_2023_102971 crossref_primary_10_1109_JSEN_2021_3113170 crossref_primary_10_1016_j_apsusc_2023_158551 crossref_primary_10_1002_adfm_202309111 crossref_primary_10_3390_chemosensors10100405 crossref_primary_10_1039_D0TC04196C crossref_primary_10_1063_5_0132177 crossref_primary_10_1016_j_ccr_2025_216492 crossref_primary_10_3390_chemosensors10060227 crossref_primary_10_1016_j_snb_2021_130738 crossref_primary_10_2139_ssrn_3990806 crossref_primary_10_1016_j_snb_2023_134614 crossref_primary_10_1007_s12598_021_01899_7 crossref_primary_10_1016_j_jhazmat_2021_125120 crossref_primary_10_1021_acsami_3c04753 crossref_primary_10_1021_acsanm_4c02127 crossref_primary_10_1016_j_mssp_2021_106422 crossref_primary_10_1039_D3NR04040B crossref_primary_10_1016_j_snb_2022_133115 crossref_primary_10_1007_s00339_020_04138_5 crossref_primary_10_1063_10_0028735 crossref_primary_10_1016_j_sna_2022_113769 crossref_primary_10_1021_acs_inorgchem_4c01619 crossref_primary_10_3390_coatings11070783 crossref_primary_10_1016_j_nanoen_2024_109335 crossref_primary_10_1016_j_nanoms_2021_05_011 crossref_primary_10_1109_JSEN_2022_3230753 crossref_primary_10_3390_nano12203651 crossref_primary_10_1088_1361_6528_ac1800 crossref_primary_10_1088_1742_6596_2076_1_012107 crossref_primary_10_1021_acssensors_4c00471 crossref_primary_10_1021_acsanm_1c02937 crossref_primary_10_3390_nano11061555 crossref_primary_10_1039_D1AN02070F crossref_primary_10_26599_CF_2025_9200037 crossref_primary_10_1016_j_snb_2021_130599 crossref_primary_10_1016_j_ijhydene_2022_04_038 crossref_primary_10_1016_j_matlet_2023_134247 crossref_primary_10_1016_j_snb_2024_135803 crossref_primary_10_1021_jacs_3c05095 crossref_primary_10_1016_j_snb_2023_134674 crossref_primary_10_1021_acssensors_2c00281 crossref_primary_10_3390_chemosensors12030042 crossref_primary_10_3390_chemosensors10020078 crossref_primary_10_3390_chemosensors11070409 crossref_primary_10_1002_ange_202314891 crossref_primary_10_1016_j_mssp_2022_107271 crossref_primary_10_1039_D0RA07328H crossref_primary_10_1007_s12598_023_02509_4 crossref_primary_10_1016_j_jallcom_2022_164375 crossref_primary_10_1016_j_cossms_2024_101160 crossref_primary_10_1002_anie_202314891 crossref_primary_10_1039_D1TC04247E crossref_primary_10_1016_j_jece_2022_108543 crossref_primary_10_1016_j_ccr_2022_214517 crossref_primary_10_1016_j_snb_2023_134689 crossref_primary_10_1016_j_mssp_2023_107925 crossref_primary_10_1021_acssensors_2c02104 crossref_primary_10_3390_s23208648 crossref_primary_10_1021_acssensors_4c00137 crossref_primary_10_2139_ssrn_3970804 crossref_primary_10_1016_j_snb_2022_133281 crossref_primary_10_1016_j_ceramint_2023_08_171 crossref_primary_10_1016_j_cej_2021_131079 crossref_primary_10_1002_smll_202407880 crossref_primary_10_1016_j_jallcom_2022_167176 crossref_primary_10_1109_JSEN_2023_3278935 crossref_primary_10_1021_acsanm_1c01831 crossref_primary_10_1002_adfm_202408312 crossref_primary_10_1007_s10853_024_09903_y crossref_primary_10_1016_j_buildenv_2024_111781 crossref_primary_10_1016_j_snb_2023_134657 crossref_primary_10_15251_DJNB_2023_184_1159 crossref_primary_10_1016_j_ceramint_2024_11_189 crossref_primary_10_1016_j_ijhydene_2024_07_253 crossref_primary_10_1002_ange_202501550 crossref_primary_10_2139_ssrn_4153154 crossref_primary_10_3390_nano11061422 crossref_primary_10_1007_s10854_025_14520_9 crossref_primary_10_1021_acsanm_1c00847 crossref_primary_10_1016_j_electacta_2022_140863 crossref_primary_10_1021_acssensors_3c02558 crossref_primary_10_1021_acsaem_4c01039 crossref_primary_10_1109_TIM_2024_3415782 crossref_primary_10_1016_j_ijhydene_2023_04_202 crossref_primary_10_1016_j_snb_2021_131358 crossref_primary_10_12677_APP_2024_141004 crossref_primary_10_1002_anie_202501550 crossref_primary_10_1021_acsami_3c11191 crossref_primary_10_3390_mi14050912 crossref_primary_10_1016_j_ceramint_2024_01_088 crossref_primary_10_1016_j_jhazmat_2022_129412 crossref_primary_10_1088_1361_6528_ad2383 crossref_primary_10_1007_s10854_021_07664_x crossref_primary_10_1016_j_colsurfa_2022_129791 |
Cites_doi | 10.1038/nmat1967 10.3390/s131014214 10.1039/c8nr04198a 10.1016/S0925-4005(03)00220-X 10.1016/j.snb.2019.127455 10.1021/cr0681039 10.1108/SR-11-2012-724 10.1016/j.snb.2017.12.052 10.1021/acssensors.9b02487 10.1016/j.snb.2017.06.155 10.1039/c6tc04416f 10.1016/j.snb.2020.127700 10.1088/1361-6528/ab1102 10.1021/nl3043079 10.1016/j.snb.2019.127287 10.1088/2053-1591/ab20b7 10.1021/acssensors.8b00461 10.1021/acssensors.7b00129 10.1016/j.snb.2015.05.031 10.3390/mi8050155 10.1002/adom.201600290 10.1016/j.ccr.2017.09.012 10.1002/adma.201503825 10.1016/j.matchemphys.2017.01.046 10.1088/1361-6528/ab2277 10.1021/nl502906a 10.1016/j.apsusc.2019.143873 10.1021/acssensors.6b00801 10.1063/1.4983310 10.1016/j.jcis.2017.04.055 10.1021/acsami.7b11244 10.1021/acsanm.9b02180 10.1038/srep05209 10.1002/admi.201800071 10.1021/acsami.7b06017 10.1016/j.snb.2019.127649 10.1016/j.sna.2020.111875 10.1016/j.snb.2013.01.082 10.1021/jacs.5b07452 10.1038/natrevmats.2016.98 10.1002/adfm.201702168 10.1002/adfm.202000435 10.1016/j.snb.2015.12.010 10.1063/1.1759071 10.1016/j.snb.2012.02.012 10.1016/j.proeng.2015.08.824 10.1039/c8ra08857h 10.3390/s18113638 10.1088/1361-6528/aade20 10.1016/j.snb.2006.09.047 10.1016/j.snb.2017.06.116 10.1002/smll.201804303 10.1016/j.carbon.2018.01.013 10.1002/admi.201500707 10.3390/mi8110333 10.1021/acsami.8b14142 10.1016/j.snb.2008.10.057 10.1088/0957-0233/24/1/012004 10.1021/acssensors.8b01077 10.1016/j.snb.2008.06.055 10.1021/nn400026u 10.1038/ncomms4252 10.1038/srep35066 10.3390/nano10010070 10.1021/acsomega.8b03540 10.1002/admt.201901062 10.1016/j.tsf.2016.09.029 10.1021/nl503857r 10.1021/jp906043k 10.1063/1.4742327 10.1021/acs.chemmater.6b00397 10.3389/fmats.2019.00158 10.1021/acsnano.8b08778 10.1021/nn405938z 10.1016/0925-4005(93)00874-X 10.1126/science.1158877 10.1039/c8cs00324f 10.1088/1361-6528/aa7cad 10.1039/c2jm16105b 10.1016/j.snb.2017.12.128 10.1016/j.jallcom.2018.12.180 10.1063/1.5042061 10.1016/j.matchemphys.2014.03.057 10.1038/s41598-017-05265-5 10.1016/j.snb.2019.127317 10.1021/acssensors.9b00150 10.1016/j.snb.2014.08.091 10.1039/c2jm16709c 10.1016/j.snb.2017.10.045 10.3390/s19112617 10.1038/ncomms9632 10.1039/c9tc02436k 10.1016/j.snb.2018.10.113 10.1016/j.snb.2016.08.158 10.1021/nn800593m 10.1016/j.snb.2004.12.075 10.1016/j.snb.2019.127334 10.1063/1.5019296 10.1021/acs.chemrev.8b00311 10.3390/s120302610 10.1039/c8ta02679c 10.1007/s00604-018-2750-5 10.1021/acsomega.9b00935 10.1039/c8cs00417j 10.1021/acssensors.7b00731 10.1016/j.scib.2018.12.009 10.1007/s13391-018-0044-z 10.1016/j.snb.2012.02.036 10.1021/acsami.7b16397 10.1023/A:1014405811371 10.1021/acsnano.8b02379 10.1007/s00604-019-3532-4 10.1016/j.snb.2015.09.075 10.1063/1.3243458 10.1002/admi.201900376 10.1109/JSEN.2019.2916879 10.1021/am400500a 10.1021/nn504481r 10.1016/j.colsurfa.2019.123621 10.1002/adfm.201801035 10.1039/c9ra01295h 10.1038/srep08052 10.1108/02602280410525977 10.1016/j.snb.2010.04.045 10.1016/j.snb.2019.127498 10.1016/S0925-4005(01)00796-1 10.1021/cm403046m 10.1080/10408436.2016.1226161 10.1021/acsomega.9b01116 10.1021/am5084122 10.1016/j.snb.2018.05.027 10.1038/nmat1849 10.1016/j.snb.2019.03.133 10.3390/s100302088 10.1002/adfm.201601562 10.1109/jsen.2019.2932106 10.1016/j.snb.2017.09.059 10.1016/j.ijhydene.2016.12.117 10.1038/nnano.2010.279 10.1039/c8nr10157d 10.1016/B978-0-12-815924-8.00008-6 10.1038/nature11458 10.1088/2053-1591/ab0bbf 10.1109/IEDM.2016.7838443 10.1038/s41699-018-0074-2 10.1021/acsami.9b19896 10.1002/chem.201803502 10.1016/j.sse.2014.06.013 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S P5Z P62 PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1007/s40820-020-00503-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2150-5551 |
EndPage | 37 |
ExternalDocumentID | oai_doaj_org_article_6583f7ec5ea7466ba8ef3736b285604f PMC7770837 34138159 10_1007_s40820_020_00503_4 |
Genre | Journal Article Review |
GroupedDBID | -02 -0B -SB -S~ 0R~ 4.4 5VR 5VS 8FE 8FG 92H 92I 92M 92R 93N 9D9 9DB AAFWJ AAJSJ AAKKN AAXDM ABDBF ABEEZ ABJCF ACACY ACGFS ACIWK ACUHS ACULB ADBBV ADINQ ADMLS AEGXH AENEX AFGXO AFKRA AFPKN AFUIB AHBYD AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG AVWKF BAPOH BCNDV BENPR BGLVJ C1A C24 C6C CAJEB CCEZO CCPQU CDRFL D1I EBLON EBS EJD ESX FA0 GROUPED_DOAJ GX1 HCIFZ IAO IHR IPNFZ ITC JUIAU KB. KQ8 KWQ L6V M7S MM. M~E OK1 P62 PDBOC PGMZT PIMPY PROAC PTHSS Q-- R-B RIG RNS RPM RSV RT2 SOJ T8R TCJ TGT TR2 TUS U1F U1G U5B U5L ~LU AASML AAYXX CITATION PHGZM PHGZT NPM PQGLB ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c673t-3d24bc59ad972d8e2936a2b0fac2e778f3ea820cc8b6392ecf14a5d863a2de313 |
IEDL.DBID | DOA |
ISSN | 2311-6706 2150-5551 |
IngestDate | Wed Aug 27 00:36:04 EDT 2025 Thu Aug 21 18:17:42 EDT 2025 Fri Jul 11 08:22:23 EDT 2025 Wed Aug 13 02:35:55 EDT 2025 Wed Aug 13 09:10:28 EDT 2025 Mon Jul 21 06:07:02 EDT 2025 Tue Jul 01 00:55:45 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Fri Feb 21 02:35:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Metal oxide Gas sensor Photoactivation Room temperature 2D materials |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c673t-3d24bc59ad972d8e2936a2b0fac2e778f3ea820cc8b6392ecf14a5d863a2de313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/6583f7ec5ea7466ba8ef3736b285604f |
PMID | 34138159 |
PQID | 2433064531 |
PQPubID | 2044332 |
PageCount | 37 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6583f7ec5ea7466ba8ef3736b285604f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7770837 proquest_miscellaneous_2542363713 proquest_journals_2473254202 proquest_journals_2433064531 pubmed_primary_34138159 crossref_primary_10_1007_s40820_020_00503_4 crossref_citationtrail_10_1007_s40820_020_00503_4 springer_journals_10_1007_s40820_020_00503_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-13 |
PublicationDateYYYYMMDD | 2020-08-13 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany – name: Heidelberg |
PublicationTitle | Nano-micro letters |
PublicationTitleAbbrev | Nano-Micro Lett |
PublicationTitleAlternate | Nanomicro Lett |
PublicationYear | 2020 |
Publisher | Springer Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Burton, Colombara, Abellon, Grozema, Peter (CR139) 2013; 25 Lee, Yoon, Kim (CR27) 2018; 3 Jiang, Tang, Zhou, Han, Qu, Duan (CR10) 2018; 10 Kumar, Goel, Kumar (CR34) 2018; 112 Fan, Srivastava, Dravid (CR43) 2009; 95 Li, Li, Wang, Lin (CR75) 2015; 219 Zhou, Gao, Guo (CR124) 2018; 6 Paolucci, Emamjomeh, Ottaviano, Cantalini (CR138) 2019; 19 Stetter, Li (CR5) 2008; 108 Tian, Yang, Yang, Qi (CR73) 2019; 578 An, Yu, Wang, Hu, Yu, Zhang (CR95) 2012; 22 Kumar, Kulriya, Mishra, Singh, Gupta, Kumar (CR32) 2018; 29 Wu, Xie, Yuan, Hao, An (CR40) 2018; 10 Arshak, Moore, Lyons, Harris, Clifford (CR2) 2004; 24 Cho, Hahm, Choi, Yoon, Kim (CR116) 2015; 5 Han, Wang, Cui, Chen, Jiang, Lin (CR51) 2012; 22 Li, Guo, Cai, Qi, Sun (CR74) 2019; 290 Geim (CR84) 2009; 324 da Silva, M’Peko, Catto, Bernardini, Mastelaro, Aguir, Ribeiro, Longo (CR68) 2017; 240 Kim, Yoo, Choi, Jung (CR122) 2014; 14 Kumar, Goel, Hojamberdiev, Kumar (CR29) 2020; 303 Comini, Faglia, Sberveglieri (CR63) 2001; 78 Donarelli, Ottaviano (CR110) 2018; 18 Su, Hadjiev, Loya, Zhang, Lei (CR141) 2015; 15 Kim, Patel, Kim, Jeong (CR134) 2018; 10 Wang, Deng, Li, Yang, Xia (CR99) 2020; 304 Huang, Jiao, Chu, Ding, Yan, Zhong, Wang (CR146) 2019; 7 Hodgkinson, Tatam (CR4) 2013; 24 Casals, Markiewicz, Fabrega, Gràcia, Cane (CR60) 2019; 4 Meng, Stolz, Mendecki, Mirica (CR7) 2019; 119 Chen, Wang, Yang, Chung, Wang (CR119) 2019; 11 Anasori, Lukatskaya, Gogotsi (CR149) 2017; 2 Lee, Park, Han, Kim, Huh (CR105) 2019; 15 Goel, Kumar, Jain, Rajamani, Roul (CR128) 2019; 30 Cho, Sim, Cho, Cho, Park (CR61) 2020; 5 Kumar, Zheng, Liu, Zhang, Kumar (CR24) 2020; 5 Yang, Chen, Yang, Meyyappan, Lai (CR90) 2017; 253 Kumar, Kaushik, Pratap, Raghavan (CR104) 2015; 7 Guo, Wen, Zhai, Wang (CR129) 2019; 64 Kumar, Goel, Agrawal, Raliya, Rajamani (CR14) 2019; 19 Sun, Liu, Meng, Liu, Jin, Kong, Liu (CR19) 2012; 12 Liu, Luo, Li, Wang, Gao, Duan (CR67) 2019; 6 Zhang, Boudiba, De Marco, Snyders, Olivier, Debliquy (CR52) 2013; 181 Xiong, Lu, Ding, Zhu, Li, Ling, Xue (CR71) 2017; 2 Trocino, Frontera, Donato, Busacca, Scarpino, Antonucci, Neri (CR77) 2014; 147 Kumar, Goel, Mishra, Gupta, Fanetti, Valant, Kumar (CR121) 2018; 5 Pang, Mendes, Bachmatiuk, Zhao, Ta, Gemming, Liu, Liu, Rummeli (CR150) 2019; 48 Geng, You, Wang, Zhang (CR98) 2017; 191 Gu, Li, Wang, Li, Xi (CR136) 2018; 256 Giberti, Malag, Guidi (CR81) 2012; 165 CR137 Peng, Zhai, Wang, Zhang, Wang, Zhao, Xie (CR47) 2010; 148 Wang, Yin, Zhang, Xiang, Gao (CR20) 2010; 10 Reddeppa, Park, Murali, Choi, Chinh (CR127) 2020; 308 Saura (CR62) 1994; 17 Chinh, Hien, Van Do, Hieu, Quang, Lee, Kim, Kim (CR36) 2019; 281 Hyodo, Urata, Kamada, Ueda, Shimizu (CR65) 2017; 253 Jacobs, Maksov, Muckley, Collins, Mahjouri-Samani (CR49) 2017; 7 Geng, Luo, Zheng, Zhang (CR83) 2017; 42 Kumar, Kulriya, Mishra, Singh, Gupta, Kumar (CR115) 2018; 29 Lakkis, Younes, Alayli, Sawan (CR6) 2014; 34 Joshi, da Silva, Shimizu, Mastelaro, M’Peko, Lin, Oliveira (CR50) 2019; 186 Kang, Pyo, Jo, Kim (CR118) 2019; 30 Liu, Ma, Pinna, Zhang (CR13) 2017; 27 Geim, Novoselov (CR86) 2007; 6 Reddeppa, Chandrakalavathi, Park, Murali, Siranjeevi (CR100) 2020; 307 Chen, Paronyan, Harutyunyan (CR89) 2012; 101 Xia, Wang, Xu, Li, Huang (CR101) 2020; 304 Espid, Taghipour (CR21) 2017; 42 Giancaterini, Emamjomeh, De Marcellis, Palange, Cantalini (CR82) 2015; 120 Gong, Li, Chai, Hu, Deng (CR38) 2010; 114 Whittles, Burton, Skelton, Walsh, Veal, Dhanak (CR142) 2016; 28 Tongay, Sahin, Ko, Luce, Fan (CR147) 2014; 5 Cho, Koh, Yoo, Kim, Jung (CR109) 2017; 2 Yan, Chen, Fuh, Li, Zhang (CR144) 2019; 9 Schedin, Geim, Morozov, Hill, Blake, Katsnelson, Novoselov (CR28) 2007; 6 Chertopalov, Mochalin (CR152) 2018; 12 Zhu, Ha, Zhao, Zhou, Huang (CR151) 2017; 352 CR76 Su, Duan, Xu, Zhou, Cai (CR44) 2017; 503 CR113 Yang, Jiang, Huai Wei (CR25) 2017 Long, Harley-Trochimczyk, Pham, Tang, Shi (CR33) 2016; 26 Hu, Zou, Su, Li, Ye (CR97) 2018; 270 Zhao, Yan, Zhang, Xu, Song (CR92) 2017; 5 Li, Gu, Yang, Du, Li (CR39) 2019; 6 Zhou, Xu, Zubair, Liao, Fang (CR130) 2015; 137 Barsan, Koziej, Weimar (CR15) 2007; 121 Ramu, Chandrakalavathi, Murali, Kumar, Sudharani (CR117) 2019; 6 Huang, Sutter, Sadowski, Cotlet, Monti (CR140) 2014; 8 Yan, Wu, Li, Shi, Moro, Ma, Ma (CR87) 2019; 4 Zheng, Xu, Zheng, Yang, Pinna, Liu, Zhang (CR126) 2020; 30 Saboor, Ueda, Kamada, Hyodo, Mortazavi, Khodadadi, Shimizu (CR66) 2016; 223 Chen, Zou, Zhang, Shen, Li (CR102) 2018; 130 Feng, Xie, Wu, Yu, Zheng (CR132) 2017; 8 Barsan, Weimar (CR18) 2001; 7 Joshi, Hayasaka, Liu, Liu, Oliveira, Lin (CR16) 2018; 185 Fowler, Allen, Tung, Yang, Kaner, Weiller (CR35) 2009; 3 Chinh, Quang, Lee, Hien, Hieu (CR78) 2016; 6 Yunusa, Hamidon, Kaiser, Awang (CR1) 2014; 4 CR85 Anichini, Czepa, Pakulski, Aliprandi, Ciesielski, Samorì (CR26) 2018; 47 Wu, Xie, Yuan, Zhang, Hu, Liu, Zhang (CR133) 2018; 3 Kumar, Kumar, Rajamani, Ranwa, Fanetti, Valant, Kumar (CR48) 2017; 28 Peng, Zhao, Wang, Zhai, Wang, Pang, Xie (CR46) 2009; 136 Cui, Shi, Xie, Wang, Lin (CR45) 2016; 227 Cui, Pu, Wells, Wen, Mao (CR30) 2015; 6 Xu, Lv, Wu, HO (CR54) 2018; 259 Choi, Kim (CR12) 2018; 14 CR17 Chizhov, Rumyantseva, Vasiliev, Filatova, Drozdov (CR56) 2014; 205 Anothainart (CR64) 2003; 93 Kumar, Goel, Kumar (CR114) 2017; 2 Zhou, Zou, Lin, Guo (CR123) 2018; 113 Xu, Ho (CR22) 2017; 8 CR11 Gu, Wang, Liu, Li, Lin (CR143) 2020; 305 Chen, Wang, Xia, Xiang (CR37) 2018; 255 Chung, Kim, Lee, Kim, Choi (CR88) 2012; 166–167 Li, Wan, Liang, Wang (CR41) 2004; 84 Wang, Bai, Dai, Liu, Liu (CR59) 2020; 304 CR94 Late, Huang, Liu, Acharya, Shirodkar (CR112) 2013; 7 Zhang, Liu, Neri, Pinna (CR8) 2016; 28 Zhang, Xie, Xu, Su, Tai, Du, Jiang (CR55) 2018; 259 Fei, Wu, Cheng, Yan, Xu (CR93) 2019; 4 Xia, Hu, Guo, Zhang, Wang (CR125) 2020; 3 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (CR107) 2011; 6 Pham, Li, Bekyarova, Itkis, Mulchandani (CR120) 2019; 13 Shen, Zhong, Zhang, Li, Zhao (CR79) 2019; 498 Chizhov, Rumyantseva, Vasiliev, Filatova, Drozdov (CR57) 2016; 618 Yamazoe (CR3) 2005; 108 Ellis, Sorescu, Burkert, White, Star (CR96) 2017; 9 Chakrabarty, Banik, Gogurla, Santra, Ray, Mukherjee (CR53) 2019; 4 Huo, Yang, Wei, Li, Xia, Li (CR135) 2014; 4 Ma, Yu, Yuan, Li, Li, Yin, Fan (CR80) 2019; 782 Yang, Chen, Yang, Meyyappan (CR91) 2019; 9 CR23 Park, An, Mun, Lee (CR69) 2013; 5 Ganatra, Zhang (CR106) 2014; 8 Yang, Kang, Yue, Coey, Jiang (CR148) 2016; 3 Nasriddinov, Rumyantseva, Shatalova, Tokarev, Yaltseva (CR72) 2020; 10 Wang, Zhou, Liu, Liu, Liang (CR58) 2020; 305 Zhao, Chen, Li, Li, Lin, Li, Rumyantseva, Gaskov (CR70) 2019; 19 Chen, Liu, Peng, Chen, Wu (CR103) 2017; 9 Chiu, Tang (CR9) 2013; 13 Chen, Chen, Zhang, Zhang, Zhou, Huang (CR145) 2018; 28 De Lacy Costello, Ewen, Ratcliffe, Richards (CR42) 2008; 134 CR108 Octon, Nagareddy, Russo, Craciun, Wright (CR131) 2016; 4 Perkins, Friedman, Cobas, Campbell, Jernigan, Jonker (CR111) 2013; 13 Oxide, Donarelli (CR31) 2018; 18 AK Geim (503_CR86) 2007; 6 J Li (503_CR39) 2019; 6 R Kumar (503_CR121) 2018; 5 T Pham (503_CR120) 2019; 13 M Donarelli (503_CR110) 2018; 18 A Nasriddinov (503_CR72) 2020; 10 Y Shen (503_CR79) 2019; 498 503_CR113 TJ Whittles (503_CR142) 2016; 28 503_CR108 H Long (503_CR33) 2016; 26 H Wang (503_CR59) 2020; 304 FH Saboor (503_CR66) 2016; 223 TJ Octon (503_CR131) 2016; 4 N Barsan (503_CR15) 2007; 121 JE Ellis (503_CR96) 2017; 9 BPJ De Lacy Costello (503_CR42) 2008; 134 SY Cho (503_CR109) 2017; 2 S Yang (503_CR25) 2017 R Kumar (503_CR34) 2018; 112 S Yang (503_CR148) 2016; 3 X An (503_CR95) 2012; 22 CM Yang (503_CR91) 2019; 9 A Chen (503_CR103) 2017; 9 N Barsan (503_CR18) 2001; 7 SJ Choi (503_CR12) 2018; 14 Z Yunusa (503_CR1) 2014; 4 I Cho (503_CR61) 2020; 5 L Zhao (503_CR70) 2019; 19 Y Zhou (503_CR123) 2018; 113 J Wang (503_CR99) 2020; 304 S Cui (503_CR30) 2015; 6 D Lee (503_CR105) 2019; 15 B Liu (503_CR67) 2019; 6 FK Perkins (503_CR111) 2013; 13 ND Chinh (503_CR78) 2016; 6 YZ Chen (503_CR119) 2019; 11 J Guo (503_CR129) 2019; 64 L Peng (503_CR47) 2010; 148 JD Fowler (503_CR35) 2009; 3 503_CR137 E Lee (503_CR27) 2018; 3 L Peng (503_CR46) 2009; 136 A Giberti (503_CR81) 2012; 165 CM Yang (503_CR90) 2017; 253 B Cho (503_CR116) 2015; 5 N Goel (503_CR128) 2019; 30 L Han (503_CR51) 2012; 22 F Xu (503_CR54) 2018; 259 J Hu (503_CR97) 2018; 270 W Zheng (503_CR126) 2020; 30 C Wang (503_CR20) 2010; 10 P Chakrabarty (503_CR53) 2019; 4 503_CR76 T Hyodo (503_CR65) 2017; 253 E Espid (503_CR21) 2017; 42 M Kumar (503_CR48) 2017; 28 O Casals (503_CR60) 2019; 4 Z Feng (503_CR132) 2017; 8 C Anichini (503_CR26) 2018; 47 R Kumar (503_CR32) 2018; 29 N Huo (503_CR135) 2014; 4 Q Zhang (503_CR55) 2018; 259 M Reddeppa (503_CR100) 2020; 307 M Zhao (503_CR92) 2017; 5 H Wang (503_CR58) 2020; 305 S Kumar (503_CR104) 2015; 7 N Yamazoe (503_CR3) 2005; 108 H Fei (503_CR93) 2019; 4 D Gu (503_CR136) 2018; 256 G Oxide (503_CR31) 2018; 18 X Tian (503_CR73) 2019; 578 F Schedin (503_CR28) 2007; 6 S Trocino (503_CR77) 2014; 147 J Gong (503_CR38) 2010; 114 HS Kim (503_CR134) 2018; 10 W Li (503_CR74) 2019; 290 WJ Yan (503_CR144) 2019; 9 QH Li (503_CR41) 2004; 84 N Joshi (503_CR16) 2018; 185 Y Zhou (503_CR124) 2018; 6 H Ma (503_CR80) 2019; 782 X Yan (503_CR87) 2019; 4 Y Huang (503_CR146) 2019; 7 503_CR17 L Giancaterini (503_CR82) 2015; 120 S Park (503_CR69) 2013; 5 503_CR94 503_CR11 X Geng (503_CR83) 2017; 42 Y Xiong (503_CR71) 2017; 2 X Li (503_CR75) 2015; 219 SW Fan (503_CR43) 2009; 95 AK Geim (503_CR84) 2009; 324 K Arshak (503_CR2) 2004; 24 S Lakkis (503_CR6) 2014; 34 ND Chinh (503_CR36) 2019; 281 J Cui (503_CR45) 2016; 227 G Chen (503_CR89) 2012; 101 Y Huang (503_CR140) 2014; 8 J-S Kim (503_CR122) 2014; 14 N Joshi (503_CR50) 2019; 186 C Zhang (503_CR52) 2013; 181 Y Xia (503_CR101) 2020; 304 R Chen (503_CR37) 2018; 255 503_CR85 R Kumar (503_CR115) 2018; 29 SW Chiu (503_CR9) 2013; 13 V Paolucci (503_CR138) 2019; 19 Z Meng (503_CR7) 2019; 119 X Liu (503_CR13) 2017; 27 R Kumar (503_CR24) 2020; 5 M Chen (503_CR102) 2018; 130 LF da Silva (503_CR68) 2017; 240 J Saura (503_CR62) 1994; 17 X Geng (503_CR98) 2017; 191 DJ Late (503_CR112) 2013; 7 R Kumar (503_CR114) 2017; 2 R Ganatra (503_CR106) 2014; 8 AS Chizhov (503_CR56) 2014; 205 B Radisavljevic (503_CR107) 2011; 6 H Chen (503_CR145) 2018; 28 S Chertopalov (503_CR152) 2018; 12 S Tongay (503_CR147) 2014; 5 LA Burton (503_CR139) 2013; 25 X Su (503_CR44) 2017; 503 G Su (503_CR141) 2015; 15 R Kumar (503_CR29) 2020; 303 S Ramu (503_CR117) 2019; 6 YF Sun (503_CR19) 2012; 12 Y Kang (503_CR118) 2019; 30 Y Xia (503_CR125) 2020; 3 E Wu (503_CR133) 2018; 3 JR Stetter (503_CR5) 2008; 108 R Kumar (503_CR14) 2019; 19 AS Chizhov (503_CR57) 2016; 618 J Zhu (503_CR151) 2017; 352 E Comini (503_CR63) 2001; 78 F Xu (503_CR22) 2017; 8 M Reddeppa (503_CR127) 2020; 308 L Zhou (503_CR130) 2015; 137 E Wu (503_CR40) 2018; 10 CB Jacobs (503_CR49) 2017; 7 B Anasori (503_CR149) 2017; 2 K Anothainart (503_CR64) 2003; 93 MG Chung (503_CR88) 2012; 166–167 J Zhang (503_CR8) 2016; 28 J Pang (503_CR150) 2019; 48 Y Jiang (503_CR10) 2018; 10 503_CR23 D Gu (503_CR143) 2020; 305 J Hodgkinson (503_CR4) 2013; 24 |
References_xml | – volume: 6 start-page: 652 year: 2007 ident: CR28 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat. Mater. doi: 10.1038/nmat1967 – volume: 13 start-page: 14214 issue: 10 year: 2013 end-page: 14247 ident: CR9 article-title: Towards a chemiresistive sensor-integrated electronic nose: a review publication-title: Sensors doi: 10.3390/s131014214 – volume: 10 start-page: 20578 issue: 44 year: 2018 end-page: 20586 ident: CR10 article-title: A chemiresistive sensor array from conductive polymer nanowires fabricated by nanoscale soft lithography publication-title: Nanoscale doi: 10.1039/c8nr04198a – volume: 93 start-page: 580 year: 2003 end-page: 584 ident: CR64 article-title: Light enhanced NO gas sensing with tin oxide at room temperature: conductance and work function measurements publication-title: Sens. Actuat. B Chem. doi: 10.1016/S0925-4005(03)00220-X – volume: 305 start-page: 127455 year: 2020 ident: CR143 article-title: Visible-light activated room temperature NO sensing of SnS nanosheets based chemiresistive sensors publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127455 – volume: 108 start-page: 352 issue: 2 year: 2008 end-page: 366 ident: CR5 article-title: Amperometric gas sensors-a review publication-title: Chem. Rev. doi: 10.1021/cr0681039 – volume: 34 start-page: 24 issue: 1 year: 2014 end-page: 35 ident: CR6 article-title: Review of recent trends in gas sensing technologies and their miniaturization potential publication-title: Sens. Rev. doi: 10.1108/SR-11-2012-724 – volume: 259 start-page: 269 year: 2018 end-page: 281 ident: CR55 article-title: Visible light-assisted room temperature gas sensing with ZnO-Ag heterostructure nanoparticles publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.12.052 – volume: 5 start-page: 563 issue: 2 year: 2020 end-page: 570 ident: CR61 article-title: Monolithic micro light-emitting diode/metal oxide nanowire gas sensor with microwatt-level power consumption publication-title: ACS Sens. doi: 10.1021/acssensors.9b02487 – volume: 253 start-page: 630 year: 2017 end-page: 640 ident: CR65 article-title: Semiconductor-type SnO -based NO sensors operated at room temperature under UV-light irradiation publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.06.155 – volume: 5 start-page: 1113 year: 2017 end-page: 1120 ident: CR92 article-title: Room temperature NH detection of Ti/graphene devices promoted by visible light illumination publication-title: J. Mater. Chem. C doi: 10.1039/c6tc04416f – volume: 308 start-page: 127700 year: 2020 ident: CR127 article-title: NOx gas sensors based on layer-transferred n-MoS /p-GaN heterojunction at room temperature: study of UV light illuminations and humidity publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2020.127700 – volume: 30 start-page: 314001 year: 2019 ident: CR128 article-title: A high-performance hydrogen sensor based on a reverse-biased MoS /GaN heterojunction publication-title: Nanotechnology doi: 10.1088/1361-6528/ab1102 – volume: 13 start-page: 668 year: 2013 end-page: 673 ident: CR111 article-title: Chemical vapor sensing with monolayer MoS publication-title: Nano Lett. doi: 10.1021/nl3043079 – volume: 304 start-page: 127287 year: 2020 ident: CR59 article-title: Visible light activated excellent NO sensing based on 2D/2D ZnO/g-C N heterojunction composites publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127287 – volume: 6 start-page: 85075 year: 2019 ident: CR117 article-title: UV enhanced NO gas sensing properties of the MoS monolayer gas sensor publication-title: Mater. Res. Express. doi: 10.1088/2053-1591/ab20b7 – volume: 3 start-page: 1719 issue: 9 year: 2018 end-page: 1726 ident: CR133 article-title: Ultrasensitive and fully reversible NO gas sensing based on p-type MoTe under ultraviolet illumination publication-title: ACS Sens. doi: 10.1021/acssensors.8b00461 – volume: 2 start-page: 679 issue: 5 year: 2017 end-page: 686 ident: CR71 article-title: Enhanced room temperature oxygen sensing properties of LaOCl-SnO hollow spheres by UV light illumination publication-title: ACS Sens. doi: 10.1021/acssensors.7b00129 – volume: 219 start-page: 158 year: 2015 end-page: 163 ident: CR75 article-title: Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO microspheres publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2015.05.031 – volume: 8 start-page: 155 issue: 5 year: 2017 ident: CR132 article-title: Enhanced sensitivity of MoTe chemical sensor through light illumination publication-title: Micromachines doi: 10.3390/mi8050155 – volume: 4 start-page: 1750 issue: 11 year: 2016 end-page: 1754 ident: CR131 article-title: Fast high-responsivity few-layer MoTe photodetectors publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600290 – volume: 352 start-page: 306 year: 2017 end-page: 327 ident: CR151 article-title: Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.012 – volume: 28 start-page: 795 year: 2016 end-page: 831 ident: CR8 article-title: Nanostructured materials for room-temperature gas sensors publication-title: Adv. Mater. doi: 10.1002/adma.201503825 – volume: 191 start-page: 114 year: 2017 end-page: 120 ident: CR98 article-title: Visible light assisted nitrogen dioxide sensing using tungsten oxide-Graphene oxide nanocomposite sensors publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.01.046 – volume: 30 start-page: 355504 year: 2019 ident: CR118 article-title: Light-assisted recovery of reacted MoS for reversible NO sensing at room temperature publication-title: Nanotechnology doi: 10.1088/1361-6528/ab2277 – volume: 14 start-page: 5941 year: 2014 end-page: 5947 ident: CR122 article-title: Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS publication-title: Nano Lett. doi: 10.1021/nl502906a – volume: 498 start-page: 143873 year: 2019 ident: CR79 article-title: In-situ growth of mesoporous In O nanorod arrays on a porous ceramic substrate for ppb-level NO detection at room temperature publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143873 – volume: 2 start-page: 183 year: 2017 end-page: 189 ident: CR109 article-title: Tunable volatile-organic-compound sensor by using Au nanoparticle incorporation on MoS publication-title: ACS Sens. doi: 10.1021/acssensors.6b00801 – ident: CR11 – year: 2017 ident: CR25 article-title: Gas sensing in 2D materials publication-title: Appl. Phys. Rev. doi: 10.1063/1.4983310 – volume: 503 start-page: 150 year: 2017 end-page: 158 ident: CR44 article-title: Structure and thickness-dependent gas sensing responses to NO under UV irradiation for the multilayered ZnO micro/nanostructured porous thin films publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.04.055 – ident: CR85 – volume: 9 start-page: 37191 issue: 42 year: 2017 end-page: 37200 ident: CR103 article-title: 2D Hybrid Nanomaterials for Selective Detection of NO and SO Using “light on and Off” Strategy publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b11244 – volume: 3 start-page: 665 issue: 1 year: 2020 end-page: 673 ident: CR125 article-title: Sulfur-vacancy-enriched MoS nanosheets based heterostructures for near-infrared optoelectronic NO sensing publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b02180 – volume: 4 start-page: 5209 year: 2014 ident: CR135 article-title: Photoresponsive and gas sensing field-effect transistors based on multilayer WS nanoflakes publication-title: Sci. Rep. doi: 10.1038/srep05209 – volume: 5 start-page: 1800071 issue: 10 year: 2018 ident: CR121 article-title: Growth of MoS –MoO hybrid microflowers via controlled vapor transport process for efficient gas sensing at room temperature publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800071 – volume: 4 start-page: 61 year: 2014 end-page: 75 ident: CR1 article-title: Gas sensors: a review publication-title: Sens. Transducers – volume: 9 start-page: 27142 issue: 32 year: 2017 end-page: 27151 ident: CR96 article-title: Uncondensed graphitic carbon nitride on reduced graphene oxide for oxygen sensing via a photoredox mechanism publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b06017 – volume: 307 start-page: 127649 year: 2020 ident: CR100 article-title: UV-light enhanced CO gas sensors based on InGaN nanorods decorated with p-Phenylenediamine-graphene oxide composite publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127649 – volume: 303 start-page: 111875 year: 2020 ident: CR29 article-title: Transition metal dichalcogenides-based flexible gas sensors publication-title: Sens. Actuat. A Phys. doi: 10.1016/j.sna.2020.111875 – volume: 181 start-page: 395 year: 2013 end-page: 401 ident: CR52 article-title: Room temperature responses of visible-light illuminated WO sensors to NO in sub-ppm range publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2013.01.082 – volume: 137 start-page: 11892 issue: 37 year: 2015 end-page: 11895 ident: CR130 article-title: Large-area synthesis of high-quality uniform few-layer MoTe publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07452 – volume: 2 start-page: 16098 year: 2017 ident: CR149 article-title: 2D metal carbides and nitrides (MXenes) for energy storage publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 27 start-page: 1 year: 2017 end-page: 30 ident: CR13 article-title: Two-dimensional nanostructured materials for gas sensing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702168 – volume: 30 start-page: 2000435 issue: 19 year: 2020 ident: CR126 article-title: MoS van der waals p–n junctions enabling highly selective room-temperature NO sensor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000435 – volume: 227 start-page: 220 year: 2016 end-page: 226 ident: CR45 article-title: UV-light illumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2015.12.010 – ident: CR137 – volume: 84 start-page: 4556 year: 2004 ident: CR41 article-title: Electronic transport through individual ZnO nanowires publication-title: Appl. Phys. Lett. doi: 10.1063/1.1759071 – volume: 165 start-page: 59 issue: 1 year: 2012 end-page: 61 ident: CR81 article-title: WO sensing properties enhanced by UV illumination: an evidence of surface effect publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2012.02.012 – volume: 120 start-page: 791 year: 2015 end-page: 794 ident: CR82 article-title: NO gas response of WO nanofibers by light and thermal activation publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.08.824 – volume: 9 start-page: 626 issue: 2 year: 2019 end-page: 635 ident: CR144 article-title: Photo-enhanced gas sensing of SnS with nanoscale defects publication-title: RSC Adv. doi: 10.1039/c8ra08857h – volume: 18 start-page: 3638 issue: 11 year: 2018 ident: CR110 article-title: 2d materials for gas sensing applications: a review on graphene oxide, MoS , WS and phosphorene publication-title: Sensors doi: 10.3390/s18113638 – volume: 29 start-page: 46 year: 2018 ident: CR32 article-title: Highly selective and reversible NO gas sensor using vertically aligned MoS flake networks publication-title: Nanotechnology doi: 10.1088/1361-6528/aade20 – volume: 121 start-page: 18 issue: 1 year: 2007 end-page: 35 ident: CR15 article-title: Metal oxide-based gas sensor research: how to? publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2006.09.047 – volume: 253 start-page: 77 year: 2017 end-page: 84 ident: CR90 article-title: Enhanced acetone sensing properties of monolayer graphene at room temperature by electrode spacing effect and UV illumination publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.06.116 – volume: 15 start-page: 1804303 issue: 2 year: 2019 ident: CR105 article-title: Self-powered chemical sensing driven by graphene-based photovoltaic heterojunctions with chemically tunable built-in potentials publication-title: Small doi: 10.1002/smll.201804303 – ident: CR108 – ident: CR94 – volume: 130 start-page: 281 year: 2018 end-page: 287 ident: CR102 article-title: Tandem gasochromic-Pd-WO /graphene/Si device for room-temperature high-performance optoelectronic hydrogen sensors publication-title: Carbon doi: 10.1016/j.carbon.2018.01.013 – volume: 3 start-page: 1500707 issue: 6 year: 2016 ident: CR148 article-title: Defect-modulated transistors and gas-enhanced photodetectors on ReS nanosheets publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500707 – volume: 8 start-page: 333 issue: 11 year: 2017 ident: CR22 article-title: Light-activated metal oxide gas sensors: a review publication-title: Micromachines doi: 10.3390/mi8110333 – volume: 10 start-page: 35664 issue: 41 year: 2018 end-page: 35669 ident: CR40 article-title: Specific and highly sensitive detection of ketone compounds based on p-type MoTe under ultraviolet illumination publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.8b14142 – volume: 136 start-page: 80 issue: 1 year: 2009 end-page: 85 ident: CR46 article-title: Ultraviolet-assisted gas sensing: a potential formaldehyde detection approach at room temperature based on zinc oxide nanorods publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2008.10.057 – volume: 24 start-page: 012004 year: 2013 ident: CR4 article-title: Optical gas sensing: a review publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/1/012004 – volume: 3 start-page: 2045 issue: 10 year: 2018 end-page: 2060 ident: CR27 article-title: Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing publication-title: ACS Sens. doi: 10.1021/acssensors.8b01077 – volume: 134 start-page: 945 issue: 2 year: 2008 end-page: 952 ident: CR42 article-title: Highly sensitive room temperature sensors based on the UV-LED activation of zinc oxide nanoparticles publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2008.06.055 – volume: 7 start-page: 4879 year: 2013 end-page: 4891 ident: CR112 article-title: Sensing behavior of atomically thin-layered MoS transistors publication-title: ACS Nano doi: 10.1021/nn400026u – volume: 5 start-page: 3252 year: 2014 ident: CR147 article-title: Monolayer behaviour in bulk ReS due to electronic and vibrational decoupling publication-title: Nat. Commun. doi: 10.1038/ncomms4252 – volume: 6 start-page: 35066 year: 2016 ident: CR78 article-title: NO gas sensing kinetics at room temperature under UV light irradiation of In O nanostructures publication-title: Sci. Rep. doi: 10.1038/srep35066 – volume: 10 start-page: 70 issue: 1 year: 2020 ident: CR72 article-title: Organic-inorganic hybrid materials for room temperature light-activated sub-ppm no detection publication-title: Nanomaterials doi: 10.3390/nano10010070 – volume: 4 start-page: 3812 issue: 2 year: 2019 end-page: 3819 ident: CR93 article-title: Enhanced NO sensing at room temperature with graphene via monodisperse polystyrene bead decoration publication-title: ACS Omega doi: 10.1021/acsomega.8b03540 – volume: 5 start-page: 1901062 issue: 5 year: 2020 ident: CR24 article-title: MoS -based nanomaterials for room-temperature gas sensors publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201901062 – volume: 618 start-page: 253 year: 2016 end-page: 262 ident: CR57 article-title: Visible light activation of room temperature NO gas sensors based on ZnO, SnO and In O sensitized with CdSe quantum dots publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.09.029 – volume: 15 start-page: 506 year: 2015 end-page: 513 ident: CR141 article-title: Chemical vapor deposition of thin crystals of layered semiconductor SnS for fast photodetection application publication-title: Nano Lett. doi: 10.1021/nl503857r – volume: 114 start-page: 1293 issue: 2 year: 2010 end-page: 1298 ident: CR38 article-title: UV-light-activated ZnO fibers for organic gas sensing at room temperature publication-title: J. Phys. Chem. C doi: 10.1021/jp906043k – volume: 101 start-page: 053119 year: 2012 ident: CR89 article-title: Sub-ppt gas detection with pristine graphene publication-title: Appl. Phys. Lett. doi: 10.1063/1.4742327 – volume: 28 start-page: 3718 issue: 11 year: 2016 end-page: 3726 ident: CR142 article-title: Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS , and Sn S : experiment and theory publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00397 – volume: 6 start-page: 158 year: 2019 ident: CR39 article-title: UV light activated SnO /ZnO nanofibers for gas sensing at room temperature publication-title: Front. Mater. doi: 10.3389/fmats.2019.00158 – volume: 13 start-page: 3196 issue: 3 year: 2019 end-page: 3205 ident: CR120 article-title: MoS -based optoelectronic gas sensor with sub-parts-per-billion limit of NO gas detection publication-title: ACS Nano doi: 10.1021/acsnano.8b08778 – volume: 8 start-page: 4074 issue: 5 year: 2014 end-page: 4099 ident: CR106 article-title: Few-layer MoS : a promising layered semiconductor publication-title: ACS Nano doi: 10.1021/nn405938z – volume: 17 start-page: 211 issue: 3 year: 1994 end-page: 214 ident: CR62 article-title: Gas-sensing properties of SnO pyrolytic films subjected to ultraviolet radiation publication-title: Sens. Actuat. B Chem. doi: 10.1016/0925-4005(93)00874-X – volume: 324 start-page: 1530 year: 2009 end-page: 1534 ident: CR84 article-title: Graphene: status and prospects publication-title: Science doi: 10.1126/science.1158877 – volume: 48 start-page: 72 issue: 1 year: 2019 end-page: 133 ident: CR150 article-title: Applications of 2D MXenes in energy conversion and storage systems publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs00324f – volume: 28 start-page: 36 year: 2017 ident: CR48 article-title: Efficient room temperature hydrogen sensor based on UV-activated ZnO nano-network publication-title: Nanotechnology doi: 10.1088/1361-6528/aa7cad – volume: 22 start-page: 12915 issue: 25 year: 2012 end-page: 12920 ident: CR51 article-title: Study on formaldehyde gas-sensing of In O -sensitized ZnO nanoflowers under visible light irradiation at room temperature publication-title: J. Mater. Chem. doi: 10.1039/c2jm16105b – volume: 259 start-page: 709 year: 2018 end-page: 716 ident: CR54 article-title: Light-activated gas sensing activity of ZnO nanotetrapods enhanced by plasmonic resonant energy from Au nanoparticles publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.12.128 – volume: 782 start-page: 1121 year: 2019 end-page: 1126 ident: CR80 article-title: Room temperature photoelectric NO gas sensor based on direct growth of walnut-like In O nanostructures publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.180 – volume: 113 start-page: 1 year: 2018 end-page: 7 ident: CR123 article-title: UV light activated NO gas sensing based on Au nanoparticles decorated few-layer MoS thin film at room temperature publication-title: Appl. Phys. Lett. doi: 10.1063/1.5042061 – volume: 147 start-page: 35 issue: 1–2 year: 2014 end-page: 41 ident: CR77 article-title: Gas sensing properties under UV radiation of In O nanostructures processed by electrospinning publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.03.057 – volume: 7 start-page: 6053 year: 2017 ident: CR49 article-title: UV-activated ZnO films on a flexible substrate for room temperature O and H O sensing publication-title: Sci. Rep. doi: 10.1038/s41598-017-05265-5 – volume: 304 start-page: 127317 year: 2020 ident: CR99 article-title: Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS /rGO hybrids publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127317 – volume: 18 start-page: 3638 year: 2018 ident: CR31 article-title: 2D materials for gas sensing applications: a review publication-title: Sensors doi: 10.3390/s18113638 – volume: 4 start-page: 822 issue: 4 year: 2019 end-page: 826 ident: CR60 article-title: A parts per billion (ppb) sensor for NO with microwatt (μW) power requirements based on micro light plates publication-title: ACS Sens. doi: 10.1021/acssensors.9b00150 – volume: 205 start-page: 305 year: 2014 end-page: 312 ident: CR56 article-title: Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2014.08.091 – volume: 22 start-page: 8525 issue: 17 year: 2012 end-page: 8531 ident: CR95 article-title: WO nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO gas sensing publication-title: J. Mater. Chem. doi: 10.1039/c2jm16709c – volume: 256 start-page: 992 year: 2018 end-page: 1000 ident: CR136 article-title: Light enhanced VOCs sensing of WS microflakes based chemiresistive sensors powered by triboelectronic nangenerators publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.10.045 – volume: 19 start-page: 2617 issue: 11 year: 2019 ident: CR138 article-title: Near room temperature light-activated WS -decorated rGO as NO gas sensor publication-title: Sensors doi: 10.3390/s19112617 – volume: 6 start-page: 8632 year: 2015 ident: CR30 article-title: Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors publication-title: Nat. Commun. doi: 10.1038/ncomms9632 – volume: 7 start-page: 8616 issue: 28 year: 2019 end-page: 8625 ident: CR146 article-title: Ultrasensitive room temperature ppb-level NO gas sensors based on SnS /rGO nanohybrids with P-N transition and optoelectronic visible light enhancement performance publication-title: J. Mater. Chem. C doi: 10.1039/c9tc02436k – volume: 281 start-page: 262 year: 2019 end-page: 272 ident: CR36 article-title: Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2018.10.113 – volume: 240 start-page: 573 year: 2017 end-page: 579 ident: CR68 article-title: UV-enhanced ozone gas sensing response of ZnO-SnO heterojunctions at room temperature publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2016.08.158 – volume: 3 start-page: 301 year: 2009 end-page: 306 ident: CR35 article-title: Practical chemical sensors from chemically derived graphene publication-title: ACS Nano doi: 10.1021/nn800593m – volume: 108 start-page: 2 issue: 1–2 year: 2005 end-page: 14 ident: CR3 article-title: Toward innovations of gas sensor technology publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2004.12.075 – volume: 304 start-page: 127334 year: 2020 ident: CR101 article-title: A room-temperature methane sensor based on Pd-decorated ZnO/rGO hybrids enhanced by visible light photocatalysis publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127334 – volume: 112 start-page: 053502 year: 2018 ident: CR34 article-title: High performance NO sensor using MoS nanowires network publication-title: Appl. Phys. Lett. doi: 10.1063/1.5019296 – volume: 119 start-page: 478 issue: 1 year: 2019 end-page: 598 ident: CR7 article-title: Electrically-transduced chemical sensors based on two-dimensional nanomaterials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00311 – volume: 12 start-page: 2610 issue: 3 year: 2012 end-page: 2631 ident: CR19 article-title: Metal oxide nanostructures and their gas sensing properties: a review publication-title: Sensors doi: 10.3390/s120302610 – volume: 6 start-page: 10286 year: 2018 end-page: 10296 ident: CR124 article-title: UV assisted ultrasensitive trace NO gas sensing based on few-layer MoS nanosheet-ZnO nanowire heterojunctions at room temperature publication-title: J. Mater. Chem. A doi: 10.1039/c8ta02679c – volume: 185 start-page: 213 year: 2018 ident: CR16 article-title: A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides publication-title: Microchim. Acta doi: 10.1007/s00604-018-2750-5 – volume: 4 start-page: 14179 issue: 10 year: 2019 end-page: 14187 ident: CR87 article-title: High-performance UV-assisted NO sensor based on chemical vapor deposition graphene at room temperature publication-title: ACS Omega. doi: 10.1021/acsomega.9b00935 – volume: 47 start-page: 4860 issue: 13 year: 2018 end-page: 4908 ident: CR26 article-title: Chemical sensing with 2D materials publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs00417j – volume: 2 start-page: 1744 year: 2017 end-page: 1752 ident: CR114 article-title: UV-activated MoS based fast and reversible NO sensor at room temperature publication-title: ACS Sensors doi: 10.1021/acssensors.7b00731 – volume: 64 start-page: 128 year: 2019 end-page: 135 ident: CR129 article-title: Enhanced NO gas sensing of a single-layer MoS by photogating and piezo-phototronic effects publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.12.009 – volume: 14 start-page: 221 year: 2018 end-page: 260 ident: CR12 article-title: Recent developments in 2D nanomaterials for chemiresistive-type gas sensors publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-018-0044-z – volume: 166–167 start-page: 172 year: 2012 end-page: 176 ident: CR88 article-title: Highly sensitive NO gas sensor based on ozone treated graphene publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2012.02.036 – volume: 10 start-page: 3964 year: 2018 end-page: 3974 ident: CR134 article-title: Growth of wafer-scale standing layers of WS for self-biased high-speed UV-visible-NIR optoelectronic devices publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b16397 – volume: 7 start-page: 143 year: 2001 end-page: 167 ident: CR18 article-title: Conduction model of metal oxide gas sensors publication-title: J. Electroceramics doi: 10.1023/A:1014405811371 – volume: 12 start-page: 6109 issue: 6 year: 2018 end-page: 6116 ident: CR152 article-title: Environment-sensitive photoresponse of spontaneously partially oxidized Ti C MXene thin films publication-title: ACS Nano doi: 10.1021/acsnano.8b02379 – volume: 186 start-page: 418 year: 2019 ident: CR50 article-title: UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature publication-title: Microchim. Acta doi: 10.1007/s00604-019-3532-4 – volume: 29 start-page: 464001 issue: 46 year: 2018 ident: CR115 article-title: Highly selective and reversible NO gas sensor using vertically aligned MoS flake networks publication-title: Nanotechnology doi: 10.1088/1361-6528/aade20 – volume: 223 start-page: 429 year: 2016 end-page: 439 ident: CR66 article-title: Enhanced NO gas sensing performance of bare and Pd-loaded SnO thick film sensors under UV-light irradiation at room temperature publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2015.09.075 – volume: 95 start-page: 142106 year: 2009 ident: CR43 article-title: UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO publication-title: Appl. Phys. Lett. doi: 10.1063/1.3243458 – ident: CR113 – volume: 6 start-page: 1900376 issue: 12 year: 2019 ident: CR67 article-title: Room-temperature NO Gas sensing with ultra-sensitivity activated by ultraviolet light based on SnO monolayer array film publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900376 – volume: 19 start-page: 7207 issue: 17 year: 2019 end-page: 7214 ident: CR70 article-title: Room temperature formaldehyde sensing of hollow SnO /ZnO heterojunctions under uv-led activation publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2916879 – ident: CR23 – volume: 5 start-page: 4285 issue: 10 year: 2013 end-page: 4292 ident: CR69 article-title: UV-enhanced NO gas sensing properties of SnO -Core/ZnO-shell nanowires at room temperature publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am400500a – volume: 8 start-page: 10743 issue: 10 year: 2014 end-page: 10755 ident: CR140 article-title: Tin disulfide-an emerging layered metal dichalcogenide semiconductor: materials properties and device characteristics publication-title: ACS Nano doi: 10.1021/nn504481r – volume: 578 start-page: 123621 year: 2019 ident: CR73 article-title: A visible-light activated gas sensor based on perylenediimide-sensitized SnO for NO detection at room temperature publication-title: Colloids Surfaces A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2019.123621 – volume: 28 start-page: 1801035 issue: 20 year: 2018 ident: CR145 article-title: Suspended SnS layers by light assistance for ultrasensitive ammonia detection at room temperature publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801035 – volume: 9 start-page: 23343 issue: 40 year: 2019 end-page: 23351 ident: CR91 article-title: Annealing effect on UV-illuminated recovery in gas response of graphene-based NO sensors publication-title: RSC Adv. doi: 10.1039/c9ra01295h – volume: 5 start-page: 80525 year: 2015 ident: CR116 article-title: Charge-transfer-based gas sensing using atomic-layer MoS publication-title: Sci. Rep. doi: 10.1038/srep08052 – volume: 24 start-page: 181 issue: 2 year: 2004 end-page: 198 ident: CR2 article-title: A review of gas sensors employed in electronic nose applications publication-title: Sens. Rev. doi: 10.1108/02602280410525977 – volume: 148 start-page: 66 issue: 1 year: 2010 end-page: 73 ident: CR47 article-title: Size- and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2010.04.045 – volume: 305 start-page: 127498 year: 2020 ident: CR58 article-title: UV-activated ultrasensitive and fast reversible ppb NO sensing based on ZnO nanorod modified by constructing interfacial electric field with In O nanoparticles publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127498 – volume: 78 start-page: 73 year: 2001 end-page: 77 ident: CR63 article-title: UV light activation of tin oxide thin films for NO sensing at low temperatures publication-title: Sens. Actuat. B Chem. doi: 10.1016/S0925-4005(01)00796-1 – volume: 25 start-page: 4908 issue: 24 year: 2013 end-page: 4916 ident: CR139 article-title: Synthesis, characterization, and electronic structure of single-crystal SnS, Sn S , and SnS publication-title: Chem. Mater. doi: 10.1021/cm403046m – volume: 42 start-page: 416 issue: 5 year: 2017 end-page: 432 ident: CR21 article-title: UV-LED photo-activated chemical gas sensors: a review publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408436.2016.1226161 – volume: 4 start-page: 12071 issue: 7 year: 2019 end-page: 12080 ident: CR53 article-title: Light trapping-mediated room-temperature gas sensing by ordered ZnO nano structures decorated with plasmonic Au nanoparticles publication-title: ACS Omega doi: 10.1021/acsomega.9b01116 – volume: 7 start-page: 2189 year: 2015 end-page: 2194 ident: CR104 article-title: Graphene on paper: a simple, low-cost chemical sensing platform publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am5084122 – volume: 270 start-page: 119 year: 2018 end-page: 129 ident: CR97 article-title: Light-assisted recovery for a highly-sensitive NO sensor based on RGO-CeO hybrids publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2018.05.027 – volume: 6 start-page: 182 year: 2007 ident: CR86 article-title: The rise of graphene publication-title: Nat. Mater. doi: 10.1038/nmat1849 – ident: CR17 – volume: 290 start-page: 443 year: 2019 end-page: 452 ident: CR74 article-title: UV light irradiation enhanced gas sensor selectivity of NO and SO using rGO functionalized with hollow SnO nanofibers publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.03.133 – volume: 10 start-page: 2088 issue: 3 year: 2010 end-page: 2106 ident: CR20 article-title: Metal oxide gas sensors: sensitivity and influencing factors publication-title: Sensors doi: 10.3390/s100302088 – volume: 26 start-page: 5158 year: 2016 end-page: 5165 ident: CR33 article-title: High surface area MoS /graphene hybrid aerogel for ultrasensitive NO detection publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601562 – volume: 19 start-page: 10214 issue: 22 year: 2019 end-page: 10220 ident: CR14 article-title: Boosting sensing performance of vacancy-containing vertically aligned MoS using rGO particles publication-title: IEEE Sens. J. doi: 10.1109/jsen.2019.2932106 – ident: CR76 – volume: 255 start-page: 2538 year: 2018 end-page: 2545 ident: CR37 article-title: Near infrared light enhanced room-temperature NO gas sensing by hierarchical ZnO nanorods functionalized with PbS quantum dots publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.09.059 – volume: 42 start-page: 6425 issue: 9 year: 2017 end-page: 6434 ident: CR83 article-title: Photon assisted room-temperature hydrogen sensors using PdO loaded WO nanohybrids publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.12.117 – volume: 6 start-page: 147 year: 2011 ident: CR107 article-title: Single-layer MoS transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 11 start-page: 10410 issue: 21 year: 2019 end-page: 10419 ident: CR119 article-title: An indoor light-activated 3D cone-shaped MoS bilayer-based NO gas sensor with PPb-level detection at room-temperature publication-title: Nanoscale doi: 10.1039/c8nr10157d – volume: 17 start-page: 211 issue: 3 year: 1994 ident: 503_CR62 publication-title: Sens. Actuat. B Chem. doi: 10.1016/0925-4005(93)00874-X – volume: 12 start-page: 6109 issue: 6 year: 2018 ident: 503_CR152 publication-title: ACS Nano doi: 10.1021/acsnano.8b02379 – volume: 219 start-page: 158 year: 2015 ident: 503_CR75 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2015.05.031 – volume: 34 start-page: 24 issue: 1 year: 2014 ident: 503_CR6 publication-title: Sens. Rev. doi: 10.1108/SR-11-2012-724 – volume: 305 start-page: 127455 year: 2020 ident: 503_CR143 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127455 – volume: 10 start-page: 2088 issue: 3 year: 2010 ident: 503_CR20 publication-title: Sensors doi: 10.3390/s100302088 – volume: 255 start-page: 2538 year: 2018 ident: 503_CR37 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.09.059 – ident: 503_CR23 doi: 10.1016/B978-0-12-815924-8.00008-6 – volume: 113 start-page: 1 year: 2018 ident: 503_CR123 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5042061 – volume: 10 start-page: 3964 year: 2018 ident: 503_CR134 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b16397 – volume: 15 start-page: 1804303 issue: 2 year: 2019 ident: 503_CR105 publication-title: Small doi: 10.1002/smll.201804303 – volume: 6 start-page: 35066 year: 2016 ident: 503_CR78 publication-title: Sci. Rep. doi: 10.1038/srep35066 – volume: 9 start-page: 23343 issue: 40 year: 2019 ident: 503_CR91 publication-title: RSC Adv. doi: 10.1039/c9ra01295h – volume: 308 start-page: 127700 year: 2020 ident: 503_CR127 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2020.127700 – volume: 3 start-page: 301 year: 2009 ident: 503_CR35 publication-title: ACS Nano doi: 10.1021/nn800593m – volume: 147 start-page: 35 issue: 1–2 year: 2014 ident: 503_CR77 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2014.03.057 – volume: 15 start-page: 506 year: 2015 ident: 503_CR141 publication-title: Nano Lett. doi: 10.1021/nl503857r – volume: 3 start-page: 2045 issue: 10 year: 2018 ident: 503_CR27 publication-title: ACS Sens. doi: 10.1021/acssensors.8b01077 – volume: 30 start-page: 355504 year: 2019 ident: 503_CR118 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab2277 – volume: 9 start-page: 37191 issue: 42 year: 2017 ident: 503_CR103 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b11244 – volume: 281 start-page: 262 year: 2019 ident: 503_CR36 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2018.10.113 – volume: 5 start-page: 1800071 issue: 10 year: 2018 ident: 503_CR121 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800071 – volume: 24 start-page: 012004 year: 2013 ident: 503_CR4 publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/24/1/012004 – volume: 6 start-page: 85075 year: 2019 ident: 503_CR117 publication-title: Mater. Res. Express. doi: 10.1088/2053-1591/ab20b7 – ident: 503_CR85 doi: 10.1038/nature11458 – volume: 578 start-page: 123621 year: 2019 ident: 503_CR73 publication-title: Colloids Surfaces A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2019.123621 – volume: 42 start-page: 6425 issue: 9 year: 2017 ident: 503_CR83 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.12.117 – volume: 14 start-page: 221 year: 2018 ident: 503_CR12 publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-018-0044-z – volume: 618 start-page: 253 year: 2016 ident: 503_CR57 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.09.029 – volume: 18 start-page: 3638 issue: 11 year: 2018 ident: 503_CR110 publication-title: Sensors doi: 10.3390/s18113638 – volume: 13 start-page: 668 year: 2013 ident: 503_CR111 publication-title: Nano Lett. doi: 10.1021/nl3043079 – volume: 7 start-page: 6053 year: 2017 ident: 503_CR49 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05265-5 – volume: 782 start-page: 1121 year: 2019 ident: 503_CR80 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.12.180 – volume: 253 start-page: 77 year: 2017 ident: 503_CR90 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.06.116 – volume: 191 start-page: 114 year: 2017 ident: 503_CR98 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2017.01.046 – volume: 28 start-page: 1801035 issue: 20 year: 2018 ident: 503_CR145 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201801035 – volume: 30 start-page: 2000435 issue: 19 year: 2020 ident: 503_CR126 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000435 – volume: 8 start-page: 4074 issue: 5 year: 2014 ident: 503_CR106 publication-title: ACS Nano doi: 10.1021/nn405938z – volume: 13 start-page: 3196 issue: 3 year: 2019 ident: 503_CR120 publication-title: ACS Nano doi: 10.1021/acsnano.8b08778 – volume: 28 start-page: 36 year: 2017 ident: 503_CR48 publication-title: Nanotechnology doi: 10.1088/1361-6528/aa7cad – volume: 9 start-page: 626 issue: 2 year: 2019 ident: 503_CR144 publication-title: RSC Adv. doi: 10.1039/c8ra08857h – volume: 259 start-page: 709 year: 2018 ident: 503_CR54 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.12.128 – volume: 121 start-page: 18 issue: 1 year: 2007 ident: 503_CR15 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2006.09.047 – volume: 120 start-page: 791 year: 2015 ident: 503_CR82 publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.08.824 – volume: 307 start-page: 127649 year: 2020 ident: 503_CR100 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127649 – volume: 22 start-page: 12915 issue: 25 year: 2012 ident: 503_CR51 publication-title: J. Mater. Chem. doi: 10.1039/c2jm16105b – volume: 5 start-page: 1113 year: 2017 ident: 503_CR92 publication-title: J. Mater. Chem. C doi: 10.1039/c6tc04416f – volume: 42 start-page: 416 issue: 5 year: 2017 ident: 503_CR21 publication-title: Crit. Rev. Solid State Mater. Sci. doi: 10.1080/10408436.2016.1226161 – volume: 29 start-page: 464001 issue: 46 year: 2018 ident: 503_CR115 publication-title: Nanotechnology doi: 10.1088/1361-6528/aade20 – volume: 137 start-page: 11892 issue: 37 year: 2015 ident: 503_CR130 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07452 – volume: 6 start-page: 147 year: 2011 ident: 503_CR107 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – ident: 503_CR94 doi: 10.1088/2053-1591/ab0bbf – volume: 498 start-page: 143873 year: 2019 ident: 503_CR79 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143873 – volume: 304 start-page: 127334 year: 2020 ident: 503_CR101 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127334 – volume: 6 start-page: 158 year: 2019 ident: 503_CR39 publication-title: Front. Mater. doi: 10.3389/fmats.2019.00158 – volume: 26 start-page: 5158 year: 2016 ident: 503_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601562 – ident: 503_CR11 doi: 10.1109/IEDM.2016.7838443 – volume: 47 start-page: 4860 issue: 13 year: 2018 ident: 503_CR26 publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs00417j – volume: 30 start-page: 314001 year: 2019 ident: 503_CR128 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab1102 – volume: 270 start-page: 119 year: 2018 ident: 503_CR97 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2018.05.027 – volume: 259 start-page: 269 year: 2018 ident: 503_CR55 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.12.052 – volume: 181 start-page: 395 year: 2013 ident: 503_CR52 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2013.01.082 – volume: 134 start-page: 945 issue: 2 year: 2008 ident: 503_CR42 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2008.06.055 – volume: 10 start-page: 70 issue: 1 year: 2020 ident: 503_CR72 publication-title: Nanomaterials doi: 10.3390/nano10010070 – volume: 64 start-page: 128 year: 2019 ident: 503_CR129 publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.12.009 – volume: 2 start-page: 679 issue: 5 year: 2017 ident: 503_CR71 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00129 – volume: 205 start-page: 305 year: 2014 ident: 503_CR56 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2014.08.091 – volume: 4 start-page: 1750 issue: 11 year: 2016 ident: 503_CR131 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600290 – volume: 8 start-page: 155 issue: 5 year: 2017 ident: 503_CR132 publication-title: Micromachines doi: 10.3390/mi8050155 – volume: 12 start-page: 2610 issue: 3 year: 2012 ident: 503_CR19 publication-title: Sensors doi: 10.3390/s120302610 – ident: 503_CR108 doi: 10.1038/s41699-018-0074-2 – volume: 9 start-page: 27142 issue: 32 year: 2017 ident: 503_CR96 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.7b06017 – volume: 6 start-page: 10286 year: 2018 ident: 503_CR124 publication-title: J. Mater. Chem. A doi: 10.1039/c8ta02679c – volume: 130 start-page: 281 year: 2018 ident: 503_CR102 publication-title: Carbon doi: 10.1016/j.carbon.2018.01.013 – volume: 22 start-page: 8525 issue: 17 year: 2012 ident: 503_CR95 publication-title: J. Mater. Chem. doi: 10.1039/c2jm16709c – volume: 4 start-page: 14179 issue: 10 year: 2019 ident: 503_CR87 publication-title: ACS Omega. doi: 10.1021/acsomega.9b00935 – volume: 28 start-page: 795 year: 2016 ident: 503_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201503825 – volume: 8 start-page: 10743 issue: 10 year: 2014 ident: 503_CR140 publication-title: ACS Nano doi: 10.1021/nn504481r – volume: 165 start-page: 59 issue: 1 year: 2012 ident: 503_CR81 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2012.02.012 – volume: 25 start-page: 4908 issue: 24 year: 2013 ident: 503_CR139 publication-title: Chem. Mater. doi: 10.1021/cm403046m – volume: 5 start-page: 4285 issue: 10 year: 2013 ident: 503_CR69 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am400500a – volume: 95 start-page: 142106 year: 2009 ident: 503_CR43 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3243458 – volume: 166–167 start-page: 172 year: 2012 ident: 503_CR88 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2012.02.036 – volume: 5 start-page: 1901062 issue: 5 year: 2020 ident: 503_CR24 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201901062 – volume: 186 start-page: 418 year: 2019 ident: 503_CR50 publication-title: Microchim. Acta doi: 10.1007/s00604-019-3532-4 – volume: 84 start-page: 4556 year: 2004 ident: 503_CR41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1759071 – volume: 303 start-page: 111875 year: 2020 ident: 503_CR29 publication-title: Sens. Actuat. A Phys. doi: 10.1016/j.sna.2020.111875 – volume: 290 start-page: 443 year: 2019 ident: 503_CR74 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.03.133 – volume: 2 start-page: 1744 year: 2017 ident: 503_CR114 publication-title: ACS Sensors doi: 10.1021/acssensors.7b00731 – volume: 148 start-page: 66 issue: 1 year: 2010 ident: 503_CR47 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2010.04.045 – volume: 29 start-page: 46 year: 2018 ident: 503_CR32 publication-title: Nanotechnology doi: 10.1088/1361-6528/aade20 – volume: 10 start-page: 35664 issue: 41 year: 2018 ident: 503_CR40 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.8b14142 – volume: 352 start-page: 306 year: 2017 ident: 503_CR151 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.09.012 – volume: 119 start-page: 478 issue: 1 year: 2019 ident: 503_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00311 – volume: 223 start-page: 429 year: 2016 ident: 503_CR66 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2015.09.075 – volume: 2 start-page: 16098 year: 2017 ident: 503_CR149 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.98 – volume: 24 start-page: 181 issue: 2 year: 2004 ident: 503_CR2 publication-title: Sens. Rev. doi: 10.1108/02602280410525977 – volume: 6 start-page: 652 year: 2007 ident: 503_CR28 publication-title: Nat. Mater. doi: 10.1038/nmat1967 – year: 2017 ident: 503_CR25 publication-title: Appl. Phys. Rev. doi: 10.1063/1.4983310 – volume: 240 start-page: 573 year: 2017 ident: 503_CR68 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2016.08.158 – volume: 7 start-page: 4879 year: 2013 ident: 503_CR112 publication-title: ACS Nano doi: 10.1021/nn400026u – volume: 253 start-page: 630 year: 2017 ident: 503_CR65 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.06.155 – volume: 7 start-page: 143 year: 2001 ident: 503_CR18 publication-title: J. Electroceramics doi: 10.1023/A:1014405811371 – volume: 304 start-page: 127287 year: 2020 ident: 503_CR59 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127287 – ident: 503_CR76 doi: 10.1021/acsami.9b19896 – volume: 11 start-page: 10410 issue: 21 year: 2019 ident: 503_CR119 publication-title: Nanoscale doi: 10.1039/c8nr10157d – volume: 503 start-page: 150 year: 2017 ident: 503_CR44 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.04.055 – volume: 3 start-page: 1719 issue: 9 year: 2018 ident: 503_CR133 publication-title: ACS Sens. doi: 10.1021/acssensors.8b00461 – volume: 18 start-page: 3638 year: 2018 ident: 503_CR31 publication-title: Sensors doi: 10.3390/s18113638 – volume: 10 start-page: 20578 issue: 44 year: 2018 ident: 503_CR10 publication-title: Nanoscale doi: 10.1039/c8nr04198a – volume: 27 start-page: 1 year: 2017 ident: 503_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702168 – volume: 14 start-page: 5941 year: 2014 ident: 503_CR122 publication-title: Nano Lett. doi: 10.1021/nl502906a – volume: 4 start-page: 5209 year: 2014 ident: 503_CR135 publication-title: Sci. Rep. doi: 10.1038/srep05209 – volume: 4 start-page: 61 year: 2014 ident: 503_CR1 publication-title: Sens. Transducers – volume: 2 start-page: 183 year: 2017 ident: 503_CR109 publication-title: ACS Sens. doi: 10.1021/acssensors.6b00801 – volume: 305 start-page: 127498 year: 2020 ident: 503_CR58 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127498 – ident: 503_CR137 doi: 10.1002/chem.201803502 – volume: 28 start-page: 3718 issue: 11 year: 2016 ident: 503_CR142 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00397 – volume: 5 start-page: 3252 year: 2014 ident: 503_CR147 publication-title: Nat. Commun. doi: 10.1038/ncomms4252 – volume: 304 start-page: 127317 year: 2020 ident: 503_CR99 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2019.127317 – volume: 48 start-page: 72 issue: 1 year: 2019 ident: 503_CR150 publication-title: Chem. Soc. Rev. doi: 10.1039/c8cs00324f – volume: 6 start-page: 8632 year: 2015 ident: 503_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms9632 – volume: 136 start-page: 80 issue: 1 year: 2009 ident: 503_CR46 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2008.10.057 – volume: 324 start-page: 1530 year: 2009 ident: 503_CR84 publication-title: Science doi: 10.1126/science.1158877 – volume: 4 start-page: 12071 issue: 7 year: 2019 ident: 503_CR53 publication-title: ACS Omega doi: 10.1021/acsomega.9b01116 – volume: 4 start-page: 822 issue: 4 year: 2019 ident: 503_CR60 publication-title: ACS Sens. doi: 10.1021/acssensors.9b00150 – volume: 185 start-page: 213 year: 2018 ident: 503_CR16 publication-title: Microchim. Acta doi: 10.1007/s00604-018-2750-5 – volume: 101 start-page: 053119 year: 2012 ident: 503_CR89 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4742327 – volume: 3 start-page: 665 issue: 1 year: 2020 ident: 503_CR125 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b02180 – volume: 114 start-page: 1293 issue: 2 year: 2010 ident: 503_CR38 publication-title: J. Phys. Chem. C doi: 10.1021/jp906043k – volume: 8 start-page: 333 issue: 11 year: 2017 ident: 503_CR22 publication-title: Micromachines doi: 10.3390/mi8110333 – volume: 108 start-page: 2 issue: 1–2 year: 2005 ident: 503_CR3 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2004.12.075 – volume: 13 start-page: 14214 issue: 10 year: 2013 ident: 503_CR9 publication-title: Sensors doi: 10.3390/s131014214 – volume: 5 start-page: 563 issue: 2 year: 2020 ident: 503_CR61 publication-title: ACS Sens. doi: 10.1021/acssensors.9b02487 – ident: 503_CR17 – volume: 6 start-page: 182 year: 2007 ident: 503_CR86 publication-title: Nat. Mater. doi: 10.1038/nmat1849 – volume: 7 start-page: 8616 issue: 28 year: 2019 ident: 503_CR146 publication-title: J. Mater. Chem. C doi: 10.1039/c9tc02436k – volume: 108 start-page: 352 issue: 2 year: 2008 ident: 503_CR5 publication-title: Chem. Rev. doi: 10.1021/cr0681039 – volume: 227 start-page: 220 year: 2016 ident: 503_CR45 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2015.12.010 – volume: 3 start-page: 1500707 issue: 6 year: 2016 ident: 503_CR148 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500707 – volume: 112 start-page: 053502 year: 2018 ident: 503_CR34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5019296 – volume: 19 start-page: 7207 issue: 17 year: 2019 ident: 503_CR70 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2916879 – volume: 7 start-page: 2189 year: 2015 ident: 503_CR104 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/am5084122 – volume: 256 start-page: 992 year: 2018 ident: 503_CR136 publication-title: Sens. Actuat. B Chem. doi: 10.1016/j.snb.2017.10.045 – volume: 78 start-page: 73 year: 2001 ident: 503_CR63 publication-title: Sens. Actuat. B Chem. doi: 10.1016/S0925-4005(01)00796-1 – volume: 93 start-page: 580 year: 2003 ident: 503_CR64 publication-title: Sens. Actuat. B Chem. doi: 10.1016/S0925-4005(03)00220-X – volume: 19 start-page: 2617 issue: 11 year: 2019 ident: 503_CR138 publication-title: Sensors doi: 10.3390/s19112617 – volume: 19 start-page: 10214 issue: 22 year: 2019 ident: 503_CR14 publication-title: IEEE Sens. J. doi: 10.1109/jsen.2019.2932106 – volume: 6 start-page: 1900376 issue: 12 year: 2019 ident: 503_CR67 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201900376 – volume: 4 start-page: 3812 issue: 2 year: 2019 ident: 503_CR93 publication-title: ACS Omega doi: 10.1021/acsomega.8b03540 – volume: 5 start-page: 80525 year: 2015 ident: 503_CR116 publication-title: Sci. Rep. doi: 10.1038/srep08052 – ident: 503_CR113 doi: 10.1016/j.sse.2014.06.013 |
SSID | ssib052472754 ssib047348319 ssib044084216 ssj0000070760 ssib027973114 ssib051367739 |
Score | 2.6212504 |
SecondaryResourceType | review_article |
Snippet | Highlights
Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.
Emerging two-dimensional (2D)... Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption and... HighlightsOperations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed.Emerging two-dimensional (2D)... Operations of metal oxide semiconductors gas sensors at room temperature under photoactivation are discussed. Emerging two-dimensional (2D) materials-based gas... Abstract Room-temperature gas sensors have aroused great attention in current gas sensor technology because of deemed demand of cheap, low power consumption... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 164 |
SubjectTerms | 2D materials Detection Engineering Gas sensor Gas sensors Illumination Internet of Things Light Metal oxide Metal oxide semiconductors Metal oxides Nanomaterials Nanoscale Science and Technology Nanotechnology Nanotechnology and Microengineering Optoelectronic devices Photoactivation Power consumption Review Room temperature Selectivity Semiconductors Sensors Two dimensional materials |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELage4GHid8EBjISb2CR2I7P5QUxWJmQOqaxSnuLHMdhk6DZ2kziz-cucdoV2B76Uruqc7k7f_bZ38fYa1nl0gMEYWSZC52lSox98EKVMqss0UFquuA8PTD7M_31JD-JG27LeKxyyIldoq4aT3vk76QGhYsZXKt_OL8QpBpF1dUooXGbbWEKtnbEtnb3Dg6PBo-SQMpM6zohySvrK2w1mrhd1JrQLCcCM1jzZOb4rxLihNsDaqBSVqdYl2XCQGriTZzuPh6pN6eCVmQdz4rQG7NdJwrwPyT774HMv6qy3WQ3uce2I0rlH3u3us9uhfkDdvcKd-FDNjtCyC2OA8LunpaZf3FL_h1Xxc1iyTs5JX542rQN3Zzo933f88mi-cWnAQE___b7rApL3jZcfuZT1_aR8IjNJnvHn_ZF1GgQ3oBqhaqkLn0-dtUYZGUDogfjZJnWzssAYGsVHNrEe1siFpLB15l2eWWNcrIKKlOP2WjezMNTxpX1JGFkcw21rtPSls4jXJV0xLBCh09YNtiy8JHAnHQ0fhYr6uXO_kVKH7J_oRP2ZvWb856-48beu_SKVj2Jerv7oln8KGIkFwjZVA3B58GBNqZ0NtQKlClx5OTZCdsZXnAR88GykFrRUg8T3jXNg3Mn7NWqGQOdqjduHppL7IPtyijIVMKe9O6yGihBEYvANGGw4UgbT7LZMj877cjEAQBROCTs7eBy62Fdb6lnNz_Fc3ZHdlFgRaZ22KhdXIYXCN7a8mWM0D8ljzTs priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgXOCA-CZQkJG4gaXEdjxebnwtFdICgq7UW-Q4TlsJErRJJX4-M0426UKLxCGX2JGcydh-k_G8x9hzWeXSAwRhZJkLnaVKLHzwQpUyqyzRQWoqcF59Mgdr_fEoPxqLwrrtafdtSjKu1FOxG0kjp4LCnUhiIvRVdi2n2J1StDPnuARSY5pzgySprM8x1Gjic1EziVlOpGUwc2PmUuOePm6yA4gGSl9FlbosEwZSM1bfXDysnR0uCgFchF7_PoT5RyY2bnDLW-zmiEz568GVbrMrobnDbpzjK7zL1l8RZovDgFB7oGLmH1zHv2Ek3G46HiWU-JeTtm-pWmL41_uKLzftD74KCPL551-nVeh433L5jq9cP3j_PbZevj98eyBGXQbhDaheqErq0ucLVy1AVjYgYjBOlmntvAwAtlbBoU28tyXiHxl8nWmXV9YoJ6ugMnWf7TVtEx4yrqwn2SKba6h1nZa2dB4hqqRjhRU6ecKyrS0LP5KWk3bG92KiW472L1K6yP6FTtiL6ZmfA2XHP3u_oU809SS67Xij3RwX4-wtEKapGoLPgwNtTOlsqBUoU-LIyZsTtr_9wMW4BnSF1IrCO1zkLmkGhdE5OnDCnk3NOLkpY-Oa0J5hH2xXRkGmEvZgcJdpoAQ_LILRhMGOI-28yW5Lc3oSCcQBAJE3JOzl1uXmYV1uqUf_1_0xuy7jrLAiU_tsr9-chScI4PryaZyvvwEoQTAm priority: 102 providerName: Springer Nature |
Title | Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials |
URI | https://link.springer.com/article/10.1007/s40820-020-00503-4 https://www.ncbi.nlm.nih.gov/pubmed/34138159 https://www.proquest.com/docview/2433064531 https://www.proquest.com/docview/2473254202 https://www.proquest.com/docview/2542363713 https://pubmed.ncbi.nlm.nih.gov/PMC7770837 https://doaj.org/article/6583f7ec5ea7466ba8ef3736b285604f |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgXOCA-G6grIzEDSwS2_F4uXW33VZIW6rSSr1FjuOolWCDdlOJn8-Mk_0CChcOSaTYiZLJ2PMmtt9j7K2scukBgjCyzIXOUiWGPnihSplVluggNS1wnp6Y4wv96TK_3JD6ojlhHT1wZ7gPGCFVDcHnwYE2pnQ21AqUKaXN6UbU-2LM20im0JMkkCLTenyQZJX1BkuNJk4XtSYyy4m4DNb8mLnUGNf7QNsBaaAhrKhUl2XCQGr6FThxHR6pNqeCMrHIryL0VpSLYgB_QrC_T8T8ZTQ2BrnJI_awR6d8v7PKY3YnzJ6wBxuchU_ZxRlCbXEeEG53dMz8yC34F8yGm_mCRxklfnrVtA2tmOj-937kk3nzjU8DAn3--cd1FRa8bbg84FPXdi3gGbuYHJ6Pj0WvzSC8AdUKVUld-nzoqiHIygZEDcbJMq2dlwHA1io4tIn3tkQMJIOvM-3yyhrlZBVUpp6znVkzC7uMK-tJusjmGmpdp6UtnUeYKmlqYYWOnrBsacvC98TlpJ_xtVhRLkf7FyltZP9CJ-zd6prvHW3HX2uP6BOtahLldjyBjlj0jlj8yxETtrf8wEXfDywKqRWleNjR3VIMCjN0mcqEvVkVYwOnURs3C80N1sFyZRRkKmEvOndZPShBEIuANGGw5Uhbb7JdMru-iiTiAIDoGxL2fuly68e63VIv_4elXrH7MrYVKzK1x3ba-U14jdCuLQfsrp0cDdi9_dHBaILH0eHJ6RmeHUtNezMexHb-E1xmQZc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeIA9IO4EBhgJnsAisR3bRUIIGF3H1oGglfYWHMfZJkEz2kzAn-I3co6TtCuwve0hL7Ub-XKusc_3EfKYFyl3WnumeJ4ymcSC9Zx3TOQ8KQzCQUoscB7uqsFYvt9L91bI764WBq9VdjYxGOqicviN_DmXWkAyA7n6q6PvDFmj8HS1o9BoxGLb__oBKdvs5dYG7O8TzvvvRm8HrGUVYE5pUTNRcJm7tGeLnuaF8eDvlOV5XFrHvdamFN6CW3TO5OC9uXdlIm1aGCUsL7xIBLz3ArkoBXhyrEzvb3byyzXyQC1OJZHMWZ7AxpGIJCMW8GkpwqXpBSpnCnPkunXvTfiu8eAs8OMlCVM6Vm3dT6j-Q67omGH-F1BdmFzyrYGC4H9x87_XP_86Aw6utX-VXGljYvq6EeJrZMVPrpO1E0iJN8j4EwT4bOQhyG9AoOmmndHPkINX0xkN5E3040FVV1in0XxlfkH70-obHXpIL-iHn4eFn9G6onyDDm3d6N1NMj6XvbtFVifVxN8hVBiHhEkmlbqUZZyb3DoIjjleaCxAvSKSdGuZuRYuHVk7vmZzoOew_lmMD65_JiPydP6fowYs5Mzeb3CL5j0R6Dv8UE33s9ZuZBAgilJ7l3qrpVK5Nb4UWqgcRo56FJH1boOz1vrMMg7CiTiEIjmluVOliDyaN4NZwbMiO_HVMfSBdqGETkREbjfiMh8oBj4GwuCI6CVBWprJcsvk8CBAl2utIebXEXnWidxiWKev1N2zZ_GQXBqMhjvZztbu9j1ymQeNMCwR62S1nh77-xA21vmDoKuUfDlv4_AHIztxVg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagkxA8IH4TGGAk3sBaYju2y1thlFHomNgq7S1yHIdN2pKpzST-fO6cNG1hQ-IhL7EjOee7-HPO932EvOFFyp3Wnimep0wmsWBD5x0TOU8Kg3SQEgucp_tqbyYnx-nxWhV_OO2-TEm2NQ3I0lQ1OxdFudMXvqFMcsxw6xMITZi8SbaMgogZkK3RaHI4WfoU16jNtMoUosCyXOOrkcjuIlaUZilSmOkVU2bKJazw3ZLbQmqNyaygWZckTOlYdbU4Vw9sY70LsgBXYdm_j2T-kZcNy934Hrnb4VQ6ah3rPrnhqwfkzhp74UMy-wGgmx15AN4tMTP9bBf0EPbF9XxBg6ASPTipmxprJ9o_v-_peF6f06kHyE-__zot_II2NeW7dGqbNhYekdn409HHPdapNDCntGiYKLjMXTq0xVDzwnjAD8ryPC6t415rUwpvwSbOmRzQEPeuTKRNC6OE5YUXiXhMBlVd-aeECuNQxMikUpeyjHOTWweAleMhwwJcPiLJ0paZ6yjMUUnjLOvJl4P9sxgvtH8mI_K2f-aiJfD4Z-8POEV9TyTfDjfq-c-si-UMQJsotXept1oqlVvjS6GFymHk6NsR2V5OcNZ9ERYZlwI3e_DJu6ZZC9ir85hH5HXfDKGO-Rtb-foS-kC7UEInIiJPWnfpB4pgxAA0jYjecKSNN9lsqU5PAp241hpwuI7Iu6XLrYZ1vaWe_V_3V-TWwe44-_Zl_-tzcpuHADEsEdtk0Mwv_QtAdk3-sgve3zO8OOU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-Temperature+Gas+Sensors+Under+Photoactivation%3A+From+Metal+Oxides+to+2D+Materials&rft.jtitle=Nano-micro+letters&rft.au=Kumar%2C+Rahul&rft.au=Liu%2C+Xianghong&rft.au=Zhang%2C+Jun&rft.au=Kumar%2C+Mahesh&rft.date=2020-08-13&rft.eissn=2150-5551&rft.volume=12&rft.issue=1&rft.spage=164&rft_id=info:doi/10.1007%2Fs40820-020-00503-4&rft_id=info%3Apmid%2F34138159&rft.externalDocID=34138159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2311-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2311-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2311-6706&client=summon |