Abstract Respondent-driven sampling (RDS) is a widely used method for sampling from hard-to-reach human populations, especially populations at higher risk for human immunodeficiency virus or acquired immune deficiency syndrome. Data are collected through a peer referral process over social networks. RDS has proven practical for data collection in many difficult settings and has been adopted by leading public health organizations around the world. Unfortunately, inference from RDS data requires many strong assumptions because the sampling design is partially beyond the control of the researcher and not fully observable. We introduce diagnostic tools for most of these assumptions and apply them in 12 high risk populations. These diagnostics empower researchers to understand their RDS data better and encourage future statistical research on RDS sampling and inference.
AbstractList Respondent-driven sampling (RDS) is a widely used method for sampling from hard-to-reach human populations, especially populations at higher risk for HIV. Data are collected through peer-referral over social networks. RDS has proven practical for data collection in many difficult settings and is widely used. Inference from RDS data requires many strong assumptions because the sampling design is partially beyond the control of the researcher and partially unobserved. We introduce diagnostic tools for most of these assumptions and apply them in 12 high risk populations. These diagnostics empower researchers to better understand their data and encourage future statistical research on RDS.
Respondent-driven sampling (RDS) is a widely used method for sampling from hard-to-reach human populations, especially populations at higher risk for human immunodeficiency virus or acquired immune deficiency syndrome. Data are collected through a peer referral process over social networks. RDS has proven practical for data collection in many difficult settings and has been adopted by leading public health organizations around the world. Unfortunately, inference from RDS data requires many strong assumptions because the sampling design is partially beyond the control of the researcher and not fully observable. We introduce diagnostic tools for most of these assumptions and apply them in 12 high risk populations. These diagnostics empower researchers to understand their RDS data better and encourage future statistical research on RDS sampling and inference.
Respondent-driven sampling (RDS) is a widely used method for sampling from hard-to-reach human populations, especially populations at higher risk for human immunodeficiency virus or acquired immune deficiency syndrome. Data are collected through a peer referral process over social networks. RDS has proven practical for data collection in many difficult settings and has been adopted by leading public health organizations around the world. Unfortunately, inference from RDS data requires many strong assumptions because the sampling design is partially beyond the control of the researcher and not fully observable. We introduce diagnostic tools for most of these assumptions and apply them in 12 high risk populations. These diagnostics empower researchers to understand their RDS data better and encourage future statistical research on RDS sampling and inference. Reprinted by permission of Blackwell Publishers
Summary Respondent‐driven sampling (RDS) is a widely used method for sampling from hard‐to‐reach human populations, especially populations at higher risk for human immunodeficiency virus or acquired immune deficiency syndrome. Data are collected through a peer referral process over social networks. RDS has proven practical for data collection in many difficult settings and has been adopted by leading public health organizations around the world. Unfortunately, inference from RDS data requires many strong assumptions because the sampling design is partially beyond the control of the researcher and not fully observable. We introduce diagnostic tools for most of these assumptions and apply them in 12 high risk populations. These diagnostics empower researchers to understand their RDS data better and encourage future statistical research on RDS sampling and inference.
Author Johnston, Lisa G.
Salganik, Matthew J.
Gile, Krista J.
Author_xml – sequence: 1
  givenname: Krista J.
  surname: Gile
  fullname: Gile, Krista J.
  email: gile@math.umass.edu
  organization: University of Massachusetts, Amherst, USA
– sequence: 2
  givenname: Lisa G.
  surname: Johnston
  fullname: Johnston, Lisa G.
  organization: Tulane University, New Orleans
– sequence: 3
  givenname: Matthew J.
  surname: Salganik
  fullname: Salganik, Matthew J.
  organization: Microsoft Research, New York
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27226702$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFDEYxoNU7Hb14l1Z8CKFqfn-uBRqV6tQFGzF3kImk1mzziZrMlvtf2_G6S5aRM0lh_f3PLxPnhyAvRCDA-AxgkeonBcpZ3OEMGTqHpggykWlJLvaAxOoOK2QUnIfHOS8hMMR4gHYxwJjLiCegMO5N4sQc-9tnrUxzZLL6xgaF_qqSf7ahVk2q3Xnw-IhuN-aLrtHt_cUfHz96vL0TXX-_uzt6cl5ZbkgqjLWwZoL1LRWmloZRQk3ddtQzpmpmWJlKdQ01GFVY-WMJNgiYjgRqJXYETIFx6PvelOvXGPLKsl0ep38yqQbHY3Xv0-C_6wX8VpTKQQivBg8vzVI8evG5V6vfLau60xwcZM1koQxyBXD_0Y5QxRTRuh_oJRhhCgaFnh2B13GTQrl0QZDKgiXxXIKnv6acxdwW04B4AjYFHNOrtXW96b3cYjtO42gHvrXQ__6Z_9FcnhHsnX9I4xG-Jvv3M1fSP3h4uJkq3kyapa5j2mnoURxJvAQvRrnPvfu-25u0hddfodg-tO7M311-XKO8VxoSX4ATlzX2w
CitedBy_id crossref_primary_10_1016_j_drugpo_2018_09_010
crossref_primary_10_1016_S2222_1808_14_60688_5
crossref_primary_10_1177_0011128719890265
crossref_primary_10_3389_fpsyg_2016_01629
crossref_primary_10_1016_j_annepidem_2017_01_002
crossref_primary_10_1089_apc_2015_0349
crossref_primary_10_2196_12034
crossref_primary_10_1016_j_drugalcdep_2019_107702
crossref_primary_10_1371_journal_pone_0231248
crossref_primary_10_1007_s10461_017_1827_1
crossref_primary_10_1111_1745_9125_12336
crossref_primary_10_1590_1980_549720190004
crossref_primary_10_1080_13645579_2020_1857964
crossref_primary_10_1007_s10461_017_1880_9
crossref_primary_10_1186_s12874_023_02042_z
crossref_primary_10_1177_0956462419826393
crossref_primary_10_3389_fpsyg_2020_594086
crossref_primary_10_1093_aje_kwad116
crossref_primary_10_1089_trgh_2021_0073
crossref_primary_10_1371_journal_pone_0262440
crossref_primary_10_1007_s12529_023_10237_3
crossref_primary_10_1371_journal_pone_0185711
crossref_primary_10_2196_11737
crossref_primary_10_1080_23322705_2017_1280316
crossref_primary_10_1111_rssa_12180
crossref_primary_10_1080_10826084_2023_2294966
crossref_primary_10_1007_s10461_015_1191_y
crossref_primary_10_1371_journal_pone_0249074
crossref_primary_10_1007_s11524_015_9966_z
crossref_primary_10_1177_00811750211003922
crossref_primary_10_1007_s10461_018_2233_z
crossref_primary_10_1093_aje_kwx208
crossref_primary_10_1214_21_EJS1899
crossref_primary_10_1093_aje_kwad074
crossref_primary_10_1186_s12936_017_1679_1
crossref_primary_10_1007_s10461_025_04679_x
crossref_primary_10_1080_00952990_2019_1584203
crossref_primary_10_1097_OLQ_0000000000000806
crossref_primary_10_1038_s41598_017_03379_4
crossref_primary_10_7448_IAS_19_3_20774
crossref_primary_10_1007_s10461_015_1269_6
crossref_primary_10_1016_j_drugalcdep_2016_11_028
crossref_primary_10_2196_15044
crossref_primary_10_1515_jos_2017_0017
crossref_primary_10_2196_12451
crossref_primary_10_1002_jia2_25138
crossref_primary_10_1002_jia2_25410
crossref_primary_10_1071_SH21061
crossref_primary_10_1093_socrel_sraa002
crossref_primary_10_1080_15332640_2017_1326864
crossref_primary_10_4054_DemRes_2024_50_47
crossref_primary_10_1002_bimj_202200136
crossref_primary_10_4467_25444972SMPP_21_007_13319
crossref_primary_10_1016_j_drugpo_2019_07_023
crossref_primary_10_1097_QAI_0000000000001255
crossref_primary_10_1186_s12889_018_6361_1
crossref_primary_10_1371_journal_pmed_1003940
crossref_primary_10_1515_em_2020_0033
crossref_primary_10_1080_10826084_2019_1625400
crossref_primary_10_1136_bmjopen_2017_018936
crossref_primary_10_2478_jos_2020_0018
crossref_primary_10_1016_j_socnet_2017_05_004
crossref_primary_10_1177_0049124116672682
crossref_primary_10_1186_s12888_023_04702_2
crossref_primary_10_1080_09540121_2018_1529294
crossref_primary_10_1080_13645579_2018_1454640
crossref_primary_10_1177_1471082X211043945
crossref_primary_10_1186_s12879_023_08690_2
crossref_primary_10_1007_s10461_015_1258_9
crossref_primary_10_1007_s10461_016_1336_7
crossref_primary_10_1016_j_eclinm_2022_101540
crossref_primary_10_1016_j_socnet_2020_05_001
crossref_primary_10_1038_s41598_023_27485_8
crossref_primary_10_1177_2050312119829983
crossref_primary_10_1093_alcalc_agad054
crossref_primary_10_1080_23322705_2021_2007461
crossref_primary_10_1016_j_drugalcdep_2021_108525
crossref_primary_10_1145_3561388
crossref_primary_10_1186_s12936_022_04390_5
crossref_primary_10_1214_23_AOAS1807
crossref_primary_10_1097_QAI_0000000000001485
crossref_primary_10_1146_annurev_statistics_031017_100704
crossref_primary_10_1136_sextrans_2015_052184
crossref_primary_10_4054_DemRes_2015_33_24
crossref_primary_10_1186_s12889_019_6942_7
crossref_primary_10_1007_s10461_019_02485_w
crossref_primary_10_1111_hiv_13496
crossref_primary_10_1214_20_EJS1718
crossref_primary_10_1080_13645579_2020_1786239
crossref_primary_10_1177_0049124115626169
crossref_primary_10_1007_s10461_024_04461_5
crossref_primary_10_1097_EDE_0000000000000362
crossref_primary_10_3390_admsci13110235
crossref_primary_10_1016_j_drugpo_2018_08_009
crossref_primary_10_30794_pausbed_1026905
crossref_primary_10_1016_j_socnet_2018_01_003
crossref_primary_10_1136_bmjopen_2021_055783
crossref_primary_10_1186_s12874_019_0842_5
crossref_primary_10_1371_journal_pone_0145296
crossref_primary_10_1214_18_AOS1700
crossref_primary_10_1097_QAI_0000000000001077
crossref_primary_10_1186_s12874_021_01208_x
crossref_primary_10_1371_journal_pone_0207507
crossref_primary_10_1016_j_jegh_2016_08_003
crossref_primary_10_1016_j_drugpo_2023_104073
crossref_primary_10_1136_bmjgh_2020_003892
crossref_primary_10_1097_QAI_0000000000002393
crossref_primary_10_1590_1980_549720190003_supl_1
crossref_primary_10_1038_s41598_022_24965_1
crossref_primary_10_1016_j_drugpo_2016_04_007
crossref_primary_10_1177_13591053241310320
crossref_primary_10_1002_sim_7973
crossref_primary_10_1186_s13063_015_1095_1
crossref_primary_10_1177_2059799116672878
crossref_primary_10_1186_s40878_016_0044_9
crossref_primary_10_1089_aid_2019_0173
crossref_primary_10_1186_s12889_020_09549_w
crossref_primary_10_1146_annurev_soc_060116_053556
crossref_primary_10_1371_journal_pone_0195959
crossref_primary_10_1007_s11524_020_00428_8
crossref_primary_10_1016_S2352_3018_23_00059_0
crossref_primary_10_1016_j_comnet_2016_09_003
crossref_primary_10_1177_0956462418784096
crossref_primary_10_1017_S1537592719003864
crossref_primary_10_1214_17_AOAS1063
crossref_primary_10_1093_jrsssc_qlae061
crossref_primary_10_1038_s41598_020_63269_0
crossref_primary_10_1371_journal_pone_0234384
crossref_primary_10_2196_38045
crossref_primary_10_1073_pnas_1617258113
crossref_primary_10_17269_s41997_022_00669_x
crossref_primary_10_1007_s10461_016_1346_5
crossref_primary_10_1371_journal_pone_0239951
crossref_primary_10_1214_18_AOAS1151
crossref_primary_10_1016_j_poetic_2021_101552
crossref_primary_10_1177_0081175017716489
crossref_primary_10_1111_rssc_12353
crossref_primary_10_1186_s13063_022_06119_w
crossref_primary_10_1080_01621459_2017_1285775
crossref_primary_10_1080_13645579_2022_2031153
crossref_primary_10_1097_MD_0000000000010573
crossref_primary_10_1007_s10461_016_1632_2
crossref_primary_10_1097_OLQ_0000000000001300
crossref_primary_10_1186_s12889_018_5085_6
crossref_primary_10_7448_IAS_19_3_21259
crossref_primary_10_4103_0971_5916_198665
crossref_primary_10_1371_journal_pone_0210183
crossref_primary_10_13060_00380288_2019_55_2_458
crossref_primary_10_1371_journal_pone_0244572
crossref_primary_10_1007_s11524_016_0123_0
crossref_primary_10_1186_s12954_017_0172_z
crossref_primary_10_1016_j_physa_2018_06_094
crossref_primary_10_1080_10826084_2016_1197265
crossref_primary_10_1016_j_annepidem_2024_05_001
crossref_primary_10_1177_0081175016665425
crossref_primary_10_1007_s10461_018_2186_2
crossref_primary_10_1016_j_spl_2015_07_003
crossref_primary_10_1111_rssa_12091
crossref_primary_10_3390_su12219102
crossref_primary_10_1093_jssam_smab057
crossref_primary_10_1093_jssam_smab056
crossref_primary_10_1186_s12889_020_09012_w
crossref_primary_10_1016_j_addbeh_2020_106536
crossref_primary_10_1111_insr_12287
crossref_primary_10_1080_15348431_2022_2156517
crossref_primary_10_1177_13591053251325690
crossref_primary_10_1038_s41598_020_59567_2
crossref_primary_10_1136_bmjopen_2015_010420
crossref_primary_10_1002_jia2_25040
crossref_primary_10_1016_j_drugpo_2024_104486
crossref_primary_10_1002_jia2_25320
crossref_primary_10_1007_s40471_022_00287_8
Cites_doi 10.1111/j.1467-9531.2009.01216.x
10.1097/01.aids.0000172879.20628.e1
10.1007/s11524-006-9105-y
10.2307/3096941
10.1007/s10461-007-9300-1
10.1002/sim.3613
10.1023/A:1014528612685
10.1214/11-EJS630
10.1016/j.annepidem.2010.11.007
10.1177/0956462412472460
10.1080/13645579.2012.661204
10.1016/S0378-8733(99)00017-9
10.1093/oso/9780198522669.003.0053
10.1007/s10461-008-9413-1
10.4236/sn.2012.12002
10.1177/0049124108318333
10.1016/j.drugpo.2008.02.014
10.1111/j.1467-985X.2011.00711.x
10.1007/s10461-013-0466-4
10.1198/jasa.2011.ap09475
10.1007/s10461-012-0394-8
10.1016/j.drugpo.2007.11.014
10.1016/j.socnet.2013.10.001
10.1007/s10461-005-9031-0
10.1097/OLQ.0b013e31827fd650
10.1097/EDE.0b013e31823ac17c
10.1016/j.annepidem.2012.02.012
10.1214/ss/1177011136
10.1371/journal.pone.0006777
10.1214/13-EJS772
10.1016/j.drugpo.2008.02.013
10.1007/s11524-006-9104-z
10.1111/j.0081-1750.2004.00152.x
10.1007/s10461-013-0451-y
10.1111/j.1467-9531.2010.01223.x
10.1097/EDE.0b013e31823b6979
10.1007/s10461-012-0147-8
10.1146/annurev.so.16.080190.002251
10.1073/pnas.1000261107
10.1007/s10461-005-9030-1
10.1007/s10461-008-9421-1
10.1097/QAD.0b013e32833d207d
10.1007/s10461-005-9012-3
10.2174/1874613601206010077
10.1371/journal.pone.0049417
10.1136/sextrans-2012-050703
10.1007/s11524-009-9365-4
10.1093/aje/kwr246
10.1097/QAI.0b013e31821e9a36
10.1146/annurev.an.13.100184.002431
10.1590/S0102-311X2011001300005
10.1016/j.drugalcdep.2012.05.036
10.1016/j.drugalcdep.2004.10.011
10.1177/0081175012461248
10.1177/0049124113494576
10.1525/sp.2002.49.1.11
ContentType Journal Article
Copyright Copyright © 2015 The Royal Statistical Society and John Wiley & Sons Ltd.
2014 Royal Statistical Society
Copyright Blackwell Publishing Ltd. Jan 2015
Copyright_xml – notice: Copyright © 2015 The Royal Statistical Society and John Wiley & Sons Ltd.
– notice: 2014 Royal Statistical Society
– notice: Copyright Blackwell Publishing Ltd. Jan 2015
DBID BSCLL
24P
AAYXX
CITATION
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
DOI 10.1111/rssa.12059
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
PubMed
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)
MEDLINE - Academic


CrossRef
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Public Health
EISSN 1467-985X
EndPage 269
ExternalDocumentID PMC4877136
3588313961
27226702
10_1111_rssa_12059
RSSA12059
43965726
ark_67375_WNG_XTBD22D7_8
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: National Science Foundation
  funderid: CNS‐0905086; SES‐1230081
– fundername: National Institutes of Health‐National Institute of Child Health and Development
  funderid: R01‐HD062366; R24‐HD047879
– fundername: National Agricultural Statistics Service
– fundername: National Institutes of Health
  funderid: R21‐A604273
– fundername: NICHD NIH HHS
  grantid: R24 HD047879
– fundername: NIA NIH HHS
  grantid: R21 AG042737
– fundername: NICHD NIH HHS
  grantid: R01 HD062366
– fundername: NICHD NIH HHS
  grantid: P2C HD047879
GroupedDBID -~X
.3N
.GA
.Y3
05W
07C
10A
1OB
1OC
1OL
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAONW
AARHZ
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABFAN
ABIVO
ABPFR
ABPQH
ABPTD
ABWST
ABXSQ
ABYAD
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVYC
AFXHP
AFZJQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EJD
EMK
EOH
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
UB1
VUG
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
YQT
ZGI
ZL0
ZZTAW
~IA
~WT
AANHP
AAWIL
ABAWQ
ABDFA
ACHJO
ACRPL
ACYXJ
ADNMO
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
AMVHM
NU-
24P
AAYXX
CITATION
NPM
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
7X8
5PM
ID FETCH-LOGICAL-c6739-ace0b671dfc8ab9a9436abfd4665ab5959641dd4e29b29ea832c13a6371f82e33
IEDL.DBID DR2
ISSN 0964-1998
IngestDate Thu Aug 21 17:57:50 EDT 2025
Fri Jul 11 11:09:26 EDT 2025
Thu Jul 10 18:41:05 EDT 2025
Fri Jul 11 06:12:41 EDT 2025
Wed Aug 13 06:40:50 EDT 2025
Mon Jul 21 05:51:52 EDT 2025
Tue Jul 01 00:50:55 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Wed Jan 22 17:12:30 EST 2025
Thu Jul 03 22:43:48 EDT 2025
Wed Oct 30 09:52:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords HIV/AIDS
diagnostics
hard-to-reach populations
respondent-driven sampling
exploratory data analysis
non-ignorable design
survey sampling
social networks
link-tracing sampling
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6739-ace0b671dfc8ab9a9436abfd4665ab5959641dd4e29b29ea832c13a6371f82e33
Notes istex:AD3773709533D4CDCCDC5BDBA83901141160560C
National Science Foundation - No. CNS-0905086; No. SES-1230081
ark:/67375/WNG-XTBD22D7-8
'Supporting information: Diagnostics for respondent-driven sampling'.
National Institutes of Health-National Institute of Child Health and Development - No. R01-HD062366; No. R24-HD047879
National Institutes of Health - No. R21-A604273
ArticleID:RSSA12059
National Agricultural Statistics Service
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssa.12059
PMID 27226702
PQID 1654736845
PQPubID 105636
PageCount 29
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4877136
proquest_miscellaneous_1835506952
proquest_miscellaneous_1651424534
proquest_miscellaneous_1645211416
proquest_journals_1654736845
pubmed_primary_27226702
crossref_citationtrail_10_1111_rssa_12059
crossref_primary_10_1111_rssa_12059
wiley_primary_10_1111_rssa_12059_RSSA12059
jstor_primary_43965726
istex_primary_ark_67375_WNG_XTBD22D7_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series A, Statistics in society
PublicationTitleAlternate J. R. Stat. Soc. A
PublicationYear 2015
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Oxford University Press
References Wejnert, C. (2009) An empirical test of respondent-driven sampling: point estimates, variance, degree measures, and out-of-equilibrium data. Sociol. Methodol., 39, 73-116.
Frost, S. D., Brouwer, K. C., Firestone Cruz, M. A., Ramos, R., Ramos, M. E., Lozada, R. M., Magis-Rodriguez, C. and Strathdee, S. A. (2006) Respondent-driven sampling of injection drug users in two US-Mexico border cities: recruitment dynamics and impact on estimates of HIV and Syphilis prevalence. J. Urb. Hlth, 83, 83-97.
Iguchi, M. Y., Ober, A. J., Berry, S. H., Fain, T., Heckathorn, D. D., Gorbach, P. M., Heimer, R., Kozlov, A., Ouellet, L. J., Shoptaw, S. and Zule, W. A. (2009) Simultaneous recruitment of drug users and men who have sex with men in the United States and Russia using respondent-driven sampling: sampling methods and implications. J. Urb. Hlth, 86, suppl. 1, 5-31.
Volz, E. and Heckathorn, D. D. (2008) Probability based estimation theory for respondent driven sampling. J. Off. Statist., 24, 79-97.
Wang, J., Carlson, R. G., Falck, R. S., Siegal, H. A., Rahman, A. and Li, L. (2005) Respondent-driven sampling to recruit MDMA users: a methodological assessment. Drug Alc. Depend., 78, 147-157.
Stormer, A., Tun, W., Guli, L., Harxhi, A., Bodanovskaia, Z., Yakovleva, A., Rusakova, M., Levina, O., Bani, R., Rjepaj, K. and Bino, S. (2006) An analysis of respondent driven sampling with injection drug users (IDU) in Albania and the Russian Federation. J. Urb. Hlth, 83, 73-82.
Lansky, A., Drake, A., Wejnert, C., Pham, H., Cribbin, M. and Heckathorn, D. D. (2012) Assessing the assumptions of respondent-driven sampling in the National HIV Behavioral Surveillance System among injecting drug users. Open AIDS J., 6, 77-82.
Broadhead, R. S. (2008) Notes on a cautionary (tall) tale about respondent-driven sampling: a critique of Scott's ethnography. Int. J. Drug Poly, 19, 235-237.
Wejnert, C., Pham, H., Krishna, N., Le, B. and DiNenno, E. (2012) Estimating design effect and calculating sample size for respondent-driven sampling studies of injection drug users in the United States. AIDS Behav., 16, 797-806.
Marsden, P. V. (1990) Network data and measurement. A. Rev. Sociol., 16, 435-463.
McCreesh, N., Frost, S. D. W., Seeley, J., Katongole, J., Tarsh, M. N., Ndunguse, R., Jichi, F., Lunel, N. L., Maher, D., Johnston, L. G., Sonnenberg, P., Copas, A. J., Hayes, R. J. and White, R. G. (2012) Evaluation of respondent-driven sampling. Epidemiology, 23, 138-147.
Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences. Statist. Sci., 7, 457-472.
Heckathorn, D. D. (1997) Respondent-driven sampling: a new approach to the study of hidden populations. Socl Prob., 44, 174-199.
Nesterko, S. and Blitzstein, J. (2014) Bias-variance and breadth-depth tradeoffs in respondent-driven sampling. J. Statist. Computn Simuln, to be published.
Johnston, L. G., Chen, Y.-H., Silva-Santisteban, A. and Raymond, H. F. (2013) An empirical examination of respondent driven sampling design effects among HIV risk groups from studies conducted around the world. AIDS Behav., 17, 2202-2210.
Ramirez-Valles, J., Heckathorn, D. D., Vázquez, R., Diaz, R. M. and Campbell, R. T. (2005a) From networks to populations: the development and application of respondent-driven sampling among IDUs and Latino gay men. AIDS Behav., 9, 387-402.
Barbosa Júnior, A., Pati Pascom, A. R., Szwarcwald, C. L., Kendall, C. and McFarland, W. (2011) Transfer of sampling methods for studies on most-at-risk populations (MARPs) in Brazil. Cad. Sde Publ., 27, suppl. S1, S36-S44.
Johnston, L. G., Caballero, T., Dolores, Y. and Values, H. M. (2013) HIV, Hepatitis B/C and Syphilis prevalence and risk behaviors among gay/trans/men who have sex with men, Dominican Republic. Int. J. STD AIDS, 24313-321.
Lansky, A., Abdul-Quader, A. S., Cribbin, M., Hall, T., Finlayson, T. J., Garfein, R. S., Lin, L. S. and Sullivan, P. S. (2007) Developing an HIV behavioral surveillance system for injecting drug users: the National HIV Behavioral Surveillance System. Publ. Hlth Rep., 122, suppl. 1, 48-55.
Lu, X. (2013) Linked ego networks: improving estimate reliability and validity with respondent-driven sampling. Socl Netwrks, 35, 669-685.
Ouellet, L. J. (2008) Cautionary comments on an ethnographic tale gone wrong. Int. J. Drug Poly, 19, 238-240.
Bernard, H. R., Hallett, T., Iovita, A., Johnsen, E. C., Lyerla, R., McCarty, C., Mahy, M., Salganik, M. J., Saliuk, T., Scutelniciuc, O., Shelley, G. A., Sirinirund, P., Weir, S. and Stroup, D. F. (2010) Counting hard-to-count populations: the network scale-up method for public health. Sexlly Transmttd Infect., 86, suppl. 2, ii11-ii15.
Scott, G. (2008) "They got their program, and I got mine": a cautionary tale concerning the ethical implications of using respondent-driven sampling to study injection drug users. Int. J. Drug Poly, 19, 42-51.
Bengtsson, L. and Thorson, A. (2010) Global HIV surveillance among MSM: is risk behavior seriously underestimated? AIDS, 24, 2301-2303.
Brewer, D. D. (2000) Forgetting in the recall-based elicitation of personal and social networks. Socl Netwrks, 22, 29-43.
Lu, X., Bengtsson, L., Britton, T., Camitz, M., Kim, B. J., Thorson, A. and Liljeros, F. (2012) The sensitivity of respondent-driven sampling. J. R. Statist. Soc. A, 175, 191-216.
Rudolph, A. E., Fuller, C. M. and Latkin, C. (2013) The importance of measuring and accounting for potential biases in respondent-driven samples. AIDS Behav., 17, 2244-2252.
Wejnert, C. and Heckathorn, D. D. (2008) Web-based network sampling efficiency and efficacy of respondent-driven sampling for online research. Sociol. Meth. Res., 37, 105-134.
Bernard, H. R., Killworth, P., Kronenfeld, D. and Sailer, L. (1984) The problem of informant accuracy: the validity of retrospective data. A. Rev. Anthrop., 13, 495-517.
Johnston, L. G., Prybylski, D., Raymond, H. F., Mirzazadeh, A., Manopaiboon, C. and McFarland, W. (2013) Incorporating the service multiplier method in respondent-driven sampling surveys to estimate the size of hidden and hard-to-reach populations. Sexlly Transmttd Dis., 40, 304-310.
Johnston, L. G., Khanam, R., Reza, M., Khan, S. I., Banu, S., Alam, M. S., Rahman, M. and Azim, T. (2008) The effectiveness of respondent driven sampling for recruiting males who have sex with males in Dhaka, Bangladesh. AIDS Behav., 12, 294-304.
Goel, S. and Salganik, M. J. (2009) Respondent-driven sampling as Markov chain Monte Carlo. Statist. Med., 28, 2202-2229.
McCreesh, N., Tarsh, M. N., Seeley, J., Katongole, J. and White, R. G. (2013) Community understanding of respondent-driven sampling in a medical research setting in Uganda: importance for the use of RDS for public health research. Int. J. Socl Res. Methodol., 16, 269-284.
Salganik, M. J., Fazito, D., Bertoni, N., Abdo, A. H., Mello, M. B. and Bastos, F. I. (2011) Assessing network scale-up estimates for groups most at risk of HIV/AIDS: evidence from a multiple-method study of heavy drug users in Curitiba, Brazil. Am. J. Epidem., 174, 1190-1196.
Salganik, M. J. and Heckathorn, D. D. (2004) Sampling and estimation in hidden populations using respondent-driven sampling. Sociol. Methodol., 34, 193-240.
Szwarcwald, C. L., de Souza Júnior, P. R. B., Damacena, G. N., Junior, A. B.and Kendall, C. (2011) Analysis of data collected by RDS among sex workers in 10 Brazilian cities, 2009: estimation of the prevalence of HIV, variance, and design effect. J. Acq. Immune Defic. Synd., 57, suppl., S129-S135.
Rudolph, A. E., Crawford, N. D., Latkin, C., Heimer, R., Benjamin, E. O., Jones, K. C. and Fuller, C. M. (2011) Subpopulations of illicit drug users reached by targeted street outreach and respondent-driven sampling strategies: implications for research and public health practice. Ann. Epidem., 21, 280-289.
Malekinejad, M., Johnston, L. G., Kendall, C., Kerr, L. R., Rifkin, M. R. and Rutherford, G. W. (2008) Using respondent-driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review. AIDS Behav., 12, 105-130.
Kerr, L. R. F. S., Kendall, C., Pontes, M. K., Werneck, G. L., McFarland, W., Mello, M. B., Martins, T. A. and Macena, R. H. M. (2011) Selective participation in a RDS survey among MSM in Ceara, Brazil: a qualitative and quantitative assessment. J. Bras. Doenc. Sexmnte Transmiss., 23, 126-133.
Liu, H., Li, J., Ha, T. and Li, J. (2012) Assessment of random recruitment assumption in respondent-driven sampling in egocentric network data. Socl Netwrkng, 1, 13-21.
Burt, R. D. and Thiede, H. (2012) Evaluating consistency in repeat surveys of injection drug users recruited by respondent-driven sampling in the Seattle area: results from the NHBS-IDU1 and NHBS-IDU2 surveys. Ann. Epidem., 22, 354-363.
Gile, K. J. (2011) Improved inference for respondent-driven sampling data with application to HIV prevalence estimation. J. Am. Statist. Ass., 106, 135-146.
Salganik, M. J. (2012) Commentary: Respondent-driven sampling in the real world. Epidemiology, 23, 148-150.
Goel, S. and Salganik, M. J. (2010) Assessing respondent-driven sampling. Proc. Natn. Acad. Sci. USA, 107, 6743-6747.
White, R. G., Lansky, A., Goel, S., Wilson, D., Hladik, W., Hakim, A. and Frost, S. D. (2012) Respondent driven sampling-where we are and where should we be going? Sexlly Transmttd Infectns, 88, 397-399.
Heckathorn, D. D. (2002) Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations. Socl Prob., 49, 11-34.
Heckathorn, D., Semaan, S., Broadhead, R. and Hughes, J. (2002) Extensions of respondent-driven sampling: a new approach to the study of injection drug users aged 18-25. AIDS Behav., 6, 55-67.
Magnani, R., Sabin, K., Saidel, T. and Heckathorn, D. (2005) Review of sampling hard-to-reach and hidden populations for HIV surveillance. AIDS, 19, suppl., S67-S72.
Tomas, A. and Gile, K. J. (2011) The effect of differential recruitment, non-response and non-recruitment on estimators for respondent-driven sam
2009; 86
2010; 107
1997; 44
1990; 16
2013; 24
2008; 37
2005b; 9
2011; 57
2012; 16
2013; 7
2012; 126
2002; 49
1992; 7
2012; 175
2013; 17
2010; 24
2013; 16
2004; 34
1984; 13
2011; 21
2008; 24
2011; 23
2011; 27
2012; 23
2012; 22
2005; 78
2012
2011
2010
2013; 40
2000; 22
2008; 19
2002; 6
2007; 122
2013; 42
2009
2008
2008; 12
1992
2002
2011; 174
2011; 5
2010; 40
2009; 28
2010; 86
2005; 19
2006; 83
2011; 106
2012; 1
2013; 35
2005; 9
2005a; 9
2014
2013
2009; 4
2012; 6
2012; 7
2012; 88
2012; 42
2009; 39
Johnston (2023022801271406300_) 2008
Bernard (2023022801271406300_) 2010; 86
Wang (2023022801271406300_) 2005; 78
McCreesh (2023022801271406300_) 2012; 23
White (2023022801271406300_) 2012; 88
R Core Team (2023022801271406300_) 2012
Handcock (2023022801271406300_) 2011
Handcock (2023022801271406300_) 2012
Heckathorn (2023022801271406300_) 2002; 49
Burt (2023022801271406300_) 2012; 22
Handcock (2023022801271406300_) 2013
Lansky (2023022801271406300_) 2012; 6
Heimer (2023022801271406300_) 2005; 9
de Mello (2023022801271406300_) 2008
Magnani (2023022801271406300_) 2005; 19
Salganik (2023022801271406300_) 2012; 23
Montealegre (2023022801271406300_) 2013; 17
Johnston (2023022801271406300_) 2013; 17
Poon (2023022801271406300_) 2009; 4
Brewer (2023022801271406300_) 2000; 22
Volz (2023022801271406300_) 2008; 24
Salganik (2023022801271406300_) 2011; 174
Broadhead (2023022801271406300_) 2008; 19
Mills (2023022801271406300_) 2012; 126
Heckathorn (2023022801271406300_) 1997; 44
Lu (2023022801271406300_) 2013; 7
Handcock (2023022801271406300_) 2009
Gile (2023022801271406300_) 2010; 40
Lansky (2023022801271406300_) 2007; 122
Johnston (2023022801271406300_) 2013
Johnston (2023022801271406300_) 2013; 24
Malekinejad (2023022801271406300_) 2008; 12
Wejnert (2023022801271406300_) 2008; 37
Szwarcwald (2023022801271406300_) 2011; 57
Bengtsson (2023022801271406300_) 2010; 24
Goel (2023022801271406300_) 2009; 28
Goel (2023022801271406300_) 2010; 107
UNAIDS (2023022801271406300_) 2010
Lu (2023022801271406300_) 2012; 175
Marsden (2023022801271406300_) 1990; 16
Salganik (2023022801271406300_) 2004; 34
Barbosa Júnior (2023022801271406300_) 2011; 27
Gelman (2023022801271406300_) 1992; 7
Ouellet (2023022801271406300_) 2008; 19
Gile (2023022801271406300_) 2011; 106
Mouw (2023022801271406300_) 2012; 42
Scott (2023022801271406300_) 2008; 19
Ramirez-Valles (2023022801271406300_) 2005; 9
Rudolph (2023022801271406300_) 2013; 17
Wejnert (2023022801271406300_) 2009; 39
Johnston (2023022801271406300_) 2013; 40
Nesterko (2023022801271406300_) 2014
Stormer (2023022801271406300_) 2006; 83
Kerr (2023022801271406300_) 2011; 23
Johnston (2023022801271406300_) 2008; 12
Rudolph (2023022801271406300_) 2011; 21
Tomas (2023022801271406300_) 2011; 5
Gile (2023022801271406300_) 2011
Lu (2023022801271406300_) 2013; 35
Borgatti (2023022801271406300_) 2002
Frost (2023022801271406300_) 2006; 83
Raftery (2023022801271406300_) 1992
McCreesh (2023022801271406300_) 2013; 16
Yamanis (2023022801271406300_) 2013; 42
Bernard (2023022801271406300_) 1984; 13
Wejnert (2023022801271406300_) 2012; 16
Liu (2023022801271406300_) 2012; 1
Heckathorn (2023022801271406300_) 2002; 6
Iguchi (2023022801271406300_) 2009; 86
Bengtsson (2023022801271406300_) 2012; 7
References_xml – reference: Johnston, L. G., Khanam, R., Reza, M., Khan, S. I., Banu, S., Alam, M. S., Rahman, M. and Azim, T. (2008) The effectiveness of respondent driven sampling for recruiting males who have sex with males in Dhaka, Bangladesh. AIDS Behav., 12, 294-304.
– reference: Scott, G. (2008) "They got their program, and I got mine": a cautionary tale concerning the ethical implications of using respondent-driven sampling to study injection drug users. Int. J. Drug Poly, 19, 42-51.
– reference: Bengtsson, L. and Thorson, A. (2010) Global HIV surveillance among MSM: is risk behavior seriously underestimated? AIDS, 24, 2301-2303.
– reference: Tomas, A. and Gile, K. J. (2011) The effect of differential recruitment, non-response and non-recruitment on estimators for respondent-driven sampling. Electron. J. Statist., 5, 899-934.
– reference: Lu, X. (2013) Linked ego networks: improving estimate reliability and validity with respondent-driven sampling. Socl Netwrks, 35, 669-685.
– reference: Stormer, A., Tun, W., Guli, L., Harxhi, A., Bodanovskaia, Z., Yakovleva, A., Rusakova, M., Levina, O., Bani, R., Rjepaj, K. and Bino, S. (2006) An analysis of respondent driven sampling with injection drug users (IDU) in Albania and the Russian Federation. J. Urb. Hlth, 83, 73-82.
– reference: Wang, J., Carlson, R. G., Falck, R. S., Siegal, H. A., Rahman, A. and Li, L. (2005) Respondent-driven sampling to recruit MDMA users: a methodological assessment. Drug Alc. Depend., 78, 147-157.
– reference: Heckathorn, D., Semaan, S., Broadhead, R. and Hughes, J. (2002) Extensions of respondent-driven sampling: a new approach to the study of injection drug users aged 18-25. AIDS Behav., 6, 55-67.
– reference: Johnston, L. G., Prybylski, D., Raymond, H. F., Mirzazadeh, A., Manopaiboon, C. and McFarland, W. (2013) Incorporating the service multiplier method in respondent-driven sampling surveys to estimate the size of hidden and hard-to-reach populations. Sexlly Transmttd Dis., 40, 304-310.
– reference: White, R. G., Lansky, A., Goel, S., Wilson, D., Hladik, W., Hakim, A. and Frost, S. D. (2012) Respondent driven sampling-where we are and where should we be going? Sexlly Transmttd Infectns, 88, 397-399.
– reference: Wejnert, C. (2009) An empirical test of respondent-driven sampling: point estimates, variance, degree measures, and out-of-equilibrium data. Sociol. Methodol., 39, 73-116.
– reference: Burt, R. D. and Thiede, H. (2012) Evaluating consistency in repeat surveys of injection drug users recruited by respondent-driven sampling in the Seattle area: results from the NHBS-IDU1 and NHBS-IDU2 surveys. Ann. Epidem., 22, 354-363.
– reference: Heckathorn, D. D. (2002) Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations. Socl Prob., 49, 11-34.
– reference: Iguchi, M. Y., Ober, A. J., Berry, S. H., Fain, T., Heckathorn, D. D., Gorbach, P. M., Heimer, R., Kozlov, A., Ouellet, L. J., Shoptaw, S. and Zule, W. A. (2009) Simultaneous recruitment of drug users and men who have sex with men in the United States and Russia using respondent-driven sampling: sampling methods and implications. J. Urb. Hlth, 86, suppl. 1, 5-31.
– reference: Johnston, L. G., Malekinejad, M., Kendall, C., Iuppa, I. M. and Rutherford, G. W. (2008) Implementation challenges to using respondent-driven sampling methodology for HIV biological and behavioral surveillance: field experiences in international settings. AIDS Behav., 12, suppl. 1, 131-141.
– reference: Lansky, A., Drake, A., Wejnert, C., Pham, H., Cribbin, M. and Heckathorn, D. D. (2012) Assessing the assumptions of respondent-driven sampling in the National HIV Behavioral Surveillance System among injecting drug users. Open AIDS J., 6, 77-82.
– reference: Frost, S. D., Brouwer, K. C., Firestone Cruz, M. A., Ramos, R., Ramos, M. E., Lozada, R. M., Magis-Rodriguez, C. and Strathdee, S. A. (2006) Respondent-driven sampling of injection drug users in two US-Mexico border cities: recruitment dynamics and impact on estimates of HIV and Syphilis prevalence. J. Urb. Hlth, 83, 83-97.
– reference: Bernard, H. R., Killworth, P., Kronenfeld, D. and Sailer, L. (1984) The problem of informant accuracy: the validity of retrospective data. A. Rev. Anthrop., 13, 495-517.
– reference: Lu, X., Malmros, J., Liljeros, F. and Britton, T. (2013) Respondent-driven sampling on directed networks. Electron. J. Statist., 7, 292-322.
– reference: Yamanis, T. J., Merli, M. G., Neely, W. W., Tian, F. F., Moody, J., Tu, X. and Gao, E. (2013) An empirical analysis of the impact of recruitment patterns on RDS estimates among a socially ordered population of female sex workers in China. Sociol. Meth. Res., 42, 392-425.
– reference: Volz, E. and Heckathorn, D. D. (2008) Probability based estimation theory for respondent driven sampling. J. Off. Statist., 24, 79-97.
– reference: Gile, K. J. (2011) Improved inference for respondent-driven sampling data with application to HIV prevalence estimation. J. Am. Statist. Ass., 106, 135-146.
– reference: McCreesh, N., Tarsh, M. N., Seeley, J., Katongole, J. and White, R. G. (2013) Community understanding of respondent-driven sampling in a medical research setting in Uganda: importance for the use of RDS for public health research. Int. J. Socl Res. Methodol., 16, 269-284.
– reference: Rudolph, A. E., Fuller, C. M. and Latkin, C. (2013) The importance of measuring and accounting for potential biases in respondent-driven samples. AIDS Behav., 17, 2244-2252.
– reference: Magnani, R., Sabin, K., Saidel, T. and Heckathorn, D. (2005) Review of sampling hard-to-reach and hidden populations for HIV surveillance. AIDS, 19, suppl., S67-S72.
– reference: Salganik, M. J. (2012) Commentary: Respondent-driven sampling in the real world. Epidemiology, 23, 148-150.
– reference: Johnston, L. G., Caballero, T., Dolores, Y. and Values, H. M. (2013) HIV, Hepatitis B/C and Syphilis prevalence and risk behaviors among gay/trans/men who have sex with men, Dominican Republic. Int. J. STD AIDS, 24313-321.
– reference: Lansky, A., Abdul-Quader, A. S., Cribbin, M., Hall, T., Finlayson, T. J., Garfein, R. S., Lin, L. S. and Sullivan, P. S. (2007) Developing an HIV behavioral surveillance system for injecting drug users: the National HIV Behavioral Surveillance System. Publ. Hlth Rep., 122, suppl. 1, 48-55.
– reference: Goel, S. and Salganik, M. J. (2009) Respondent-driven sampling as Markov chain Monte Carlo. Statist. Med., 28, 2202-2229.
– reference: Nesterko, S. and Blitzstein, J. (2014) Bias-variance and breadth-depth tradeoffs in respondent-driven sampling. J. Statist. Computn Simuln, to be published.
– reference: Liu, H., Li, J., Ha, T. and Li, J. (2012) Assessment of random recruitment assumption in respondent-driven sampling in egocentric network data. Socl Netwrkng, 1, 13-21.
– reference: Kerr, L. R. F. S., Kendall, C., Pontes, M. K., Werneck, G. L., McFarland, W., Mello, M. B., Martins, T. A. and Macena, R. H. M. (2011) Selective participation in a RDS survey among MSM in Ceara, Brazil: a qualitative and quantitative assessment. J. Bras. Doenc. Sexmnte Transmiss., 23, 126-133.
– reference: Ramirez-Valles, J., Heckathorn, D. D., Vázquez, R., Diaz, R. M. and Campbell, R. T. (2005b) The fit between theory and data in respondent-driven sampling: Response to Heimer. AIDS Behav., 9, 409-414.
– reference: Heimer, R. (2005) Critical issues and further questions about respondent-driven sampling: comment on Ramirez-Valles, et al. (2005). AIDS Behav., 9, 403-408.
– reference: Bernard, H. R., Hallett, T., Iovita, A., Johnsen, E. C., Lyerla, R., McCarty, C., Mahy, M., Salganik, M. J., Saliuk, T., Scutelniciuc, O., Shelley, G. A., Sirinirund, P., Weir, S. and Stroup, D. F. (2010) Counting hard-to-count populations: the network scale-up method for public health. Sexlly Transmttd Infect., 86, suppl. 2, ii11-ii15.
– reference: Marsden, P. V. (1990) Network data and measurement. A. Rev. Sociol., 16, 435-463.
– reference: Ramirez-Valles, J., Heckathorn, D. D., Vázquez, R., Diaz, R. M. and Campbell, R. T. (2005a) From networks to populations: the development and application of respondent-driven sampling among IDUs and Latino gay men. AIDS Behav., 9, 387-402.
– reference: Gile, K. J. and Handcock, M. S. (2010) Respondent-driven sampling: an assessment of current methodology. Sociol. Methodol., 40, 285-327.
– reference: Mills, H., Colijn, C., Vickerman, P., Leslie, D., Hope, V. and Hickman, M. (2012) Respondent driven sampling and community structure in a population of injecting drug users, Bristol, UK. Drug Alc. Depend., 126, 324-332.
– reference: Barbosa Júnior, A., Pati Pascom, A. R., Szwarcwald, C. L., Kendall, C. and McFarland, W. (2011) Transfer of sampling methods for studies on most-at-risk populations (MARPs) in Brazil. Cad. Sde Publ., 27, suppl. S1, S36-S44.
– reference: Ouellet, L. J. (2008) Cautionary comments on an ethnographic tale gone wrong. Int. J. Drug Poly, 19, 238-240.
– reference: Rudolph, A. E., Crawford, N. D., Latkin, C., Heimer, R., Benjamin, E. O., Jones, K. C. and Fuller, C. M. (2011) Subpopulations of illicit drug users reached by targeted street outreach and respondent-driven sampling strategies: implications for research and public health practice. Ann. Epidem., 21, 280-289.
– reference: Heckathorn, D. D. (1997) Respondent-driven sampling: a new approach to the study of hidden populations. Socl Prob., 44, 174-199.
– reference: Gelman, A. and Rubin, D. B. (1992) Inference from iterative simulation using multiple sequences. Statist. Sci., 7, 457-472.
– reference: Lu, X., Bengtsson, L., Britton, T., Camitz, M., Kim, B. J., Thorson, A. and Liljeros, F. (2012) The sensitivity of respondent-driven sampling. J. R. Statist. Soc. A, 175, 191-216.
– reference: Brewer, D. D. (2000) Forgetting in the recall-based elicitation of personal and social networks. Socl Netwrks, 22, 29-43.
– reference: Szwarcwald, C. L., de Souza Júnior, P. R. B., Damacena, G. N., Junior, A. B.and Kendall, C. (2011) Analysis of data collected by RDS among sex workers in 10 Brazilian cities, 2009: estimation of the prevalence of HIV, variance, and design effect. J. Acq. Immune Defic. Synd., 57, suppl., S129-S135.
– reference: Goel, S. and Salganik, M. J. (2010) Assessing respondent-driven sampling. Proc. Natn. Acad. Sci. USA, 107, 6743-6747.
– reference: Mouw, T. and Verdery, A. M. (2012) Network sampling with memory: a proposal for more efficient sampling from social networks. Sociol. Methodol., 42, 206-256.
– reference: Wejnert, C. and Heckathorn, D. D. (2008) Web-based network sampling efficiency and efficacy of respondent-driven sampling for online research. Sociol. Meth. Res., 37, 105-134.
– reference: Poon, A. F. Y., Brouwer, K. C., Strathdee, S. A., Firestone-Cruz, M., Lozada, R. M., Kosakovsky Pond, S. L., Heckathorn, D. D. and Frost, S. D. W. (2009) Parsing social network survey data from hidden populations using stochastic context-free grammars. PLOS ONE, 4, article e6777.
– reference: Malekinejad, M., Johnston, L. G., Kendall, C., Kerr, L. R., Rifkin, M. R. and Rutherford, G. W. (2008) Using respondent-driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review. AIDS Behav., 12, 105-130.
– reference: McCreesh, N., Frost, S. D. W., Seeley, J., Katongole, J., Tarsh, M. N., Ndunguse, R., Jichi, F., Lunel, N. L., Maher, D., Johnston, L. G., Sonnenberg, P., Copas, A. J., Hayes, R. J. and White, R. G. (2012) Evaluation of respondent-driven sampling. Epidemiology, 23, 138-147.
– reference: Wejnert, C., Pham, H., Krishna, N., Le, B. and DiNenno, E. (2012) Estimating design effect and calculating sample size for respondent-driven sampling studies of injection drug users in the United States. AIDS Behav., 16, 797-806.
– reference: Broadhead, R. S. (2008) Notes on a cautionary (tall) tale about respondent-driven sampling: a critique of Scott's ethnography. Int. J. Drug Poly, 19, 235-237.
– reference: Johnston, L. G., Chen, Y.-H., Silva-Santisteban, A. and Raymond, H. F. (2013) An empirical examination of respondent driven sampling design effects among HIV risk groups from studies conducted around the world. AIDS Behav., 17, 2202-2210.
– reference: Salganik, M. J. and Heckathorn, D. D. (2004) Sampling and estimation in hidden populations using respondent-driven sampling. Sociol. Methodol., 34, 193-240.
– reference: Salganik, M. J., Fazito, D., Bertoni, N., Abdo, A. H., Mello, M. B. and Bastos, F. I. (2011) Assessing network scale-up estimates for groups most at risk of HIV/AIDS: evidence from a multiple-method study of heavy drug users in Curitiba, Brazil. Am. J. Epidem., 174, 1190-1196.
– year: 2011
– volume: 37
  start-page: 105
  year: 2008
  end-page: 134
  article-title: Web‐based network sampling efficiency and efficacy of respondent‐driven sampling for online research
  publication-title: Sociol. Meth. Res.
– volume: 88
  start-page: 397
  year: 2012
  end-page: 399
  article-title: Respondent driven sampling—where we are and where should we be going
  publication-title: Sexlly Transmttd Infectns
– volume: 7
  start-page: article e49417
  year: 2012
– volume: 23
  start-page: 126
  year: 2011
  end-page: 133
  article-title: Selective participation in a RDS survey among MSM in Ceara, Brazil: a qualitative and quantitative assessment
  publication-title: J. Bras. Doenc. Sexmnte Transmiss.
– year: 2009
– volume: 19
  start-page: 42
  year: 2008
  end-page: 51
  article-title: “They got their program, and I got mine”: a cautionary tale concerning the ethical implications of using respondent‐driven sampling to study injection drug users
  publication-title: Int. J. Drug Poly
– volume: 83
  start-page: 83
  year: 2006
  end-page: 97
  article-title: Respondent‐driven sampling of injection drug users in two US–Mexico border cities: recruitment dynamics and impact on estimates of HIV and Syphilis prevalence
  publication-title: J. Urb. Hlth
– volume: 24
  start-page: 2301
  year: 2010
  end-page: 2303
  article-title: Global HIV surveillance among MSM: is risk behavior seriously underestimated
  publication-title: AIDS
– volume: 83
  start-page: 73
  year: 2006
  end-page: 82
  article-title: An analysis of respondent driven sampling with injection drug users (IDU) in Albania and the Russian Federation
  publication-title: J. Urb. Hlth
– volume: 7
  start-page: 292
  year: 2013
  end-page: 322
  article-title: Respondent‐driven sampling on directed networks
  publication-title: Electron. J. Statist.
– year: 2014
  article-title: Bias‐variance and breadth‐depth tradeoffs in respondent‐driven sampling
  publication-title: J. Statist. Computn Simuln
– volume: 24
  start-page: 313
  year: 2013
  end-page: 321
  article-title: HIV, Hepatitis B/C and Syphilis prevalence and risk behaviors among gay/trans/men who have sex with men, Dominican Republic
  publication-title: Int. J. STD AIDS
– volume: 13
  start-page: 495
  year: 1984
  end-page: 517
  article-title: The problem of informant accuracy: the validity of retrospective data
  publication-title: A. Rev. Anthrop.
– volume: 174
  start-page: 1190
  year: 2011
  end-page: 1196
  article-title: Assessing network scale‐up estimates for groups most at risk of HIV/AIDS: evidence from a multiple‐method study of heavy drug users in Curitiba, Brazil
  publication-title: Am. J. Epidem.
– volume: 1
  start-page: 13
  year: 2012
  end-page: 21
  article-title: Assessment of random recruitment assumption in respondent‐driven sampling in egocentric network data
  publication-title: Socl Netwrkng
– volume: 39
  start-page: 73
  year: 2009
  end-page: 116
  article-title: An empirical test of respondent‐driven sampling: point estimates, variance, degree measures, and out‐of‐equilibrium data
  publication-title: Sociol. Methodol.
– volume: 42
  start-page: 392
  year: 2013
  end-page: 425
  article-title: An empirical analysis of the impact of recruitment patterns on RDS estimates among a socially ordered population of female sex workers in China
  publication-title: Sociol. Meth. Res.
– start-page: 763
  year: 1992
  end-page: 773
– volume: 27
  start-page: S36
  year: 2011
  end-page: S44
  article-title: Transfer of sampling methods for studies on most‐at‐risk populations (MARPs) in Brazil
  publication-title: Cad. Sde Publ.
– volume: 86
  start-page: ii11
  year: 2010
  end-page: ii15
  article-title: Counting hard‐to‐count populations: the network scale‐up method for public health
  publication-title: Sexlly Transmttd Infect.
– volume: 19
  start-page: S67
  year: 2005
  end-page: S72
  article-title: Review of sampling hard‐to‐reach and hidden populations for HIV surveillance
  publication-title: AIDS
– volume: 34
  start-page: 193
  year: 2004
  end-page: 240
  article-title: Sampling and estimation in hidden populations using respondent‐driven sampling
  publication-title: Sociol. Methodol.
– volume: 9
  start-page: 403
  year: 2005
  end-page: 408
  article-title: Critical issues and further questions about respondent‐driven sampling: comment on Ramirez‐Valles, . (2005).
  publication-title: AIDS Behav.
– volume: 40
  start-page: 304
  year: 2013
  end-page: 310
  article-title: Incorporating the service multiplier method in respondent‐driven sampling surveys to estimate the size of hidden and hard‐to‐reach populations
  publication-title: Sexlly Transmttd Dis.
– year: 2008
– volume: 23
  start-page: 138
  year: 2012
  end-page: 147
  article-title: Evaluation of respondent‐driven sampling
  publication-title: Epidemiology
– volume: 44
  start-page: 174
  year: 1997
  end-page: 199
  article-title: Respondent‐driven sampling: a new approach to the study of hidden populations
  publication-title: Socl Prob.
– volume: 4
  year: 2009
  article-title: Parsing social network survey data from hidden populations using stochastic context‐free grammars
  publication-title: PLOS ONE
– volume: 9
  start-page: 387
  year: 2005a
  end-page: 402
  article-title: From networks to populations: the development and application of respondent‐driven sampling among IDUs and Latino gay men
  publication-title: AIDS Behav.
– volume: 28
  start-page: 2202
  year: 2009
  end-page: 2229
  article-title: Respondent‐driven sampling as Markov chain Monte Carlo
  publication-title: Statist. Med.
– volume: 49
  start-page: 11
  year: 2002
  end-page: 34
  article-title: Respondent‐driven sampling II: deriving valid population estimates from chain‐referral samples of hidden populations
  publication-title: Socl Prob.
– volume: 40
  start-page: 285
  year: 2010
  end-page: 327
  article-title: Respondent‐driven sampling: an assessment of current methodology
  publication-title: Sociol. Methodol.
– volume: 126
  start-page: 324
  year: 2012
  end-page: 332
  article-title: Respondent driven sampling and community structure in a population of injecting drug users, Bristol, UK.
  publication-title: Drug Alc. Depend.
– volume: 106
  start-page: 135
  year: 2011
  end-page: 146
  article-title: Improved inference for respondent‐driven sampling data with application to HIV prevalence estimation
  publication-title: J. Am. Statist. Ass.
– volume: 19
  start-page: 238
  year: 2008
  end-page: 240
  article-title: Cautionary comments on an ethnographic tale gone wrong
  publication-title: Int. J. Drug Poly
– volume: 22
  start-page: 354
  year: 2012
  end-page: 363
  article-title: Evaluating consistency in repeat surveys of injection drug users recruited by respondent‐driven sampling in the Seattle area: results from the NHBS‐IDU1 and NHBS‐IDU2 surveys
  publication-title: Ann. Epidem.
– volume: 107
  start-page: 6743
  year: 2010
  end-page: 6747
  article-title: Assessing respondent‐driven sampling
  publication-title: Proc. Natn. Acad. Sci. USA
– volume: 16
  start-page: 269
  year: 2013
  end-page: 284
  article-title: Community understanding of respondent‐driven sampling in a medical research setting in Uganda: importance for the use of RDS for public health research
  publication-title: Int. J. Socl Res. Methodol
– volume: 6
  start-page: 55
  year: 2002
  end-page: 67
  article-title: Extensions of respondent‐driven sampling: a new approach to the study of injection drug users aged 18‐25
  publication-title: AIDS Behav.
– volume: 42
  start-page: 206
  year: 2012
  end-page: 256
  article-title: Network sampling with memory: a proposal for more efficient sampling from social networks
  publication-title: Sociol. Methodol.
– volume: 16
  start-page: 797
  year: 2012
  end-page: 806
  article-title: Estimating design effect and calculating sample size for respondent‐driven sampling studies of injection drug users in the United States
  publication-title: AIDS Behav.
– volume: 21
  start-page: 280
  year: 2011
  end-page: 289
  article-title: Subpopulations of illicit drug users reached by targeted street outreach and respondent‐driven sampling strategies: implications for research and public health practice
  publication-title: Ann. Epidem.
– volume: 17
  start-page: 2244
  year: 2013
  end-page: 2252
  article-title: The importance of measuring and accounting for potential biases in respondent‐driven samples
  publication-title: AIDS Behav.
– volume: 57
  start-page: S129
  year: 2011
  end-page: S135
  article-title: Analysis of data collected by RDS among sex workers in 10 Brazilian cities, 2009: estimation of the prevalence of HIV, variance, and design effect
  publication-title: J. Acq. Immune Defic. Synd.
– volume: 86
  start-page: 5
  year: 2009
  end-page: 31
  article-title: Simultaneous recruitment of drug users and men who have sex with men in the United States and Russia using respondent‐driven sampling: sampling methods and implications
  publication-title: J. Urb. Hlth
– volume: 12
  start-page: 131
  year: 2008
  end-page: 141
  article-title: Implementation challenges to using respondent‐driven sampling methodology for HIV biological and behavioral surveillance: field experiences in international settings
  publication-title: AIDS Behav.
– volume: 7
  start-page: 457
  year: 1992
  end-page: 472
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Statist. Sci.
– volume: 19
  start-page: 235
  year: 2008
  end-page: 237
  article-title: Notes on a cautionary (tall) tale about respondent‐driven sampling: a critique of Scott's ethnography
  publication-title: Int. J. Drug Poly
– year: 2010
– year: 2012
– volume: 17
  start-page: 2313
  year: 2013
  end-page: 2340
– volume: 23
  start-page: 148
  year: 2012
  end-page: 150
  article-title: Commentary: Respondent‐driven sampling in the real world
  publication-title: Epidemiology
– volume: 17
  start-page: 2202
  year: 2013
  end-page: 2210
  article-title: An empirical examination of respondent driven sampling design effects among HIV risk groups from studies conducted around the world
  publication-title: AIDS Behav.
– volume: 35
  start-page: 669
  year: 2013
  end-page: 685
  article-title: Linked ego networks: improving estimate reliability and validity with respondent‐driven sampling
  publication-title: Socl Netwrks
– volume: 175
  start-page: 191
  year: 2012
  end-page: 216
  article-title: The sensitivity of respondent‐driven sampling
  publication-title: J. R. Statist. Soc. A
– volume: 22
  start-page: 29
  year: 2000
  end-page: 43
  article-title: Forgetting in the recall‐based elicitation of personal and social networks
  publication-title: Socl Netwrks
– volume: 9
  start-page: 409
  year: 2005b
  end-page: 414
  article-title: The fit between theory and data in respondent‐driven sampling: Response to Heimer
  publication-title: AIDS Behav.
– year: 2002
– volume: 12
  start-page: 294
  year: 2008
  end-page: 304
  article-title: The effectiveness of respondent driven sampling for recruiting males who have sex with males in Dhaka, Bangladesh
  publication-title: AIDS Behav.
– volume: 5
  start-page: 899
  year: 2011
  end-page: 934
  article-title: The effect of differential recruitment, non‐response and non‐recruitment on estimators for respondent‐driven sampling
  publication-title: Electron. J. Statist.
– volume: 122
  start-page: 48
  year: 2007
  end-page: 55
  article-title: Developing an HIV behavioral surveillance system for injecting drug users: the National HIV Behavioral Surveillance System
  publication-title: Publ. Hlth Rep.
– volume: 78
  start-page: 147
  year: 2005
  end-page: 157
  article-title: Respondent‐driven sampling to recruit MDMA users: a methodological assessment
  publication-title: Drug Alc. Depend.
– volume: 24
  start-page: 79
  year: 2008
  end-page: 97
  article-title: Probability based estimation theory for respondent driven sampling
  publication-title: J. Off. Statist.
– volume: 12
  start-page: 105
  year: 2008
  end-page: 130
  article-title: Using respondent‐driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review
  publication-title: AIDS Behav.
– volume: 16
  start-page: 435
  year: 1990
  end-page: 463
  article-title: Network data and measurement
  publication-title: A. Rev. Sociol.
– volume: 6
  start-page: 77
  year: 2012
  end-page: 82
  article-title: Assessing the assumptions of respondent‐driven sampling in the National HIV Behavioral Surveillance System among injecting drug users
  publication-title: Open AIDS J.
– year: 2013
– volume: 86
  start-page: ii11
  year: 2010
  ident: 2023022801271406300_
  article-title: Counting hard-to-count populations: the network scale-up method for public health
  publication-title: Sexlly Transmttd Infect.
– volume-title: Technical Report
  year: 2008
  ident: 2023022801271406300_
– volume: 39
  start-page: 73
  year: 2009
  ident: 2023022801271406300_
  article-title: An empirical test of respondent-driven sampling: point estimates, variance, degree measures, and out-of-equilibrium data
  publication-title: Sociol. Methodol.
  doi: 10.1111/j.1467-9531.2009.01216.x
– volume: 19
  start-page: S67
  year: 2005
  ident: 2023022801271406300_
  article-title: Review of sampling hard-to-reach and hidden populations for HIV surveillance
  publication-title: AIDS
  doi: 10.1097/01.aids.0000172879.20628.e1
– volume: 83
  start-page: 73
  year: 2006
  ident: 2023022801271406300_
  article-title: An analysis of respondent driven sampling with injection drug users (IDU) in Albania and the Russian Federation
  publication-title: J. Urb. Hlth
  doi: 10.1007/s11524-006-9105-y
– volume: 44
  start-page: 174
  year: 1997
  ident: 2023022801271406300_
  article-title: Respondent-driven sampling: a new approach to the study of hidden populations
  publication-title: Socl Prob.
  doi: 10.2307/3096941
– volume: 12
  start-page: 294
  year: 2008
  ident: 2023022801271406300_
  article-title: The effectiveness of respondent driven sampling for recruiting males who have sex with males in Dhaka, Bangladesh
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-007-9300-1
– volume: 122
  start-page: 48
  year: 2007
  ident: 2023022801271406300_
  article-title: Developing an HIV behavioral surveillance system for injecting drug users: the National HIV Behavioral Surveillance System
  publication-title: Publ. Hlth Rep.
– volume: 28
  start-page: 2202
  year: 2009
  ident: 2023022801271406300_
  article-title: Respondent-driven sampling as Markov chain Monte Carlo
  publication-title: Statist. Med.
  doi: 10.1002/sim.3613
– volume-title: Guidelines on Estimating the Size of Populations Most at Risk to HIV.
  year: 2010
  ident: 2023022801271406300_
– volume: 24
  start-page: 79
  year: 2008
  ident: 2023022801271406300_
  article-title: Probability based estimation theory for respondent driven sampling
  publication-title: J. Off. Statist.
– volume: 6
  start-page: 55
  year: 2002
  ident: 2023022801271406300_
  article-title: Extensions of respondent-driven sampling: a new approach to the study of injection drug users aged 18-25
  publication-title: AIDS Behav.
  doi: 10.1023/A:1014528612685
– year: 2009
  ident: 2023022801271406300_
  article-title: RDS: R functions for respondent-driven sampling
  publication-title: R Package Version 0.10
– volume: 5
  start-page: 899
  year: 2011
  ident: 2023022801271406300_
  article-title: The effect of differential recruitment, non-response and non-recruitment on estimators for respondent-driven sampling
  publication-title: Electron. J. Statist.
  doi: 10.1214/11-EJS630
– year: 2008
  ident: 2023022801271406300_
  article-title: Introduction to respondent-driven sampling
  publication-title: Technical Report
– volume: 21
  start-page: 280
  year: 2011
  ident: 2023022801271406300_
  article-title: Subpopulations of illicit drug users reached by targeted street outreach and respondent-driven sampling strategies: implications for research and public health practice
  publication-title: Ann. Epidem.
  doi: 10.1016/j.annepidem.2010.11.007
– volume: 24
  start-page: 313
  year: 2013
  ident: 2023022801271406300_
  article-title: HIV, Hepatitis B/C and Syphilis prevalence and risk behaviors among gay/trans/men who have sex with men, Dominican Republic
  publication-title: Int. J. STD AIDS
  doi: 10.1177/0956462412472460
– volume: 16
  start-page: 269
  year: 2013
  ident: 2023022801271406300_
  article-title: Community understanding of respondent-driven sampling in a medical research setting in Uganda: importance for the use of RDS for public health research
  publication-title: Int. J. Socl Res. Methodol
  doi: 10.1080/13645579.2012.661204
– volume-title: Technical Report
  year: 2002
  ident: 2023022801271406300_
– volume: 22
  start-page: 29
  year: 2000
  ident: 2023022801271406300_
  article-title: Forgetting in the recall-based elicitation of personal and social networks
  publication-title: Socl Netwrks
  doi: 10.1016/S0378-8733(99)00017-9
– start-page: 763
  volume-title: Bayesian Statistics 4
  year: 1992
  ident: 2023022801271406300_
  doi: 10.1093/oso/9780198522669.003.0053
– volume: 12
  start-page: 131
  year: 2008
  ident: 2023022801271406300_
  article-title: Implementation challenges to using respondent-driven sampling methodology for HIV biological and behavioral surveillance: field experiences in international settings
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-008-9413-1
– volume: 1
  start-page: 13
  year: 2012
  ident: 2023022801271406300_
  article-title: Assessment of random recruitment assumption in respondent-driven sampling in egocentric network data
  publication-title: Socl Netwrkng
  doi: 10.4236/sn.2012.12002
– volume: 37
  start-page: 105
  year: 2008
  ident: 2023022801271406300_
  article-title: Web-based network sampling efficiency and efficacy of respondent-driven sampling for online research
  publication-title: Sociol. Meth. Res.
  doi: 10.1177/0049124108318333
– volume: 19
  start-page: 235
  year: 2008
  ident: 2023022801271406300_
  article-title: Notes on a cautionary (tall) tale about respondent-driven sampling: a critique of Scott's ethnography
  publication-title: Int. J. Drug Poly
  doi: 10.1016/j.drugpo.2008.02.014
– volume: 175
  start-page: 191
  year: 2012
  ident: 2023022801271406300_
  article-title: The sensitivity of respondent-driven sampling
  publication-title: J. R. Statist. Soc. A
  doi: 10.1111/j.1467-985X.2011.00711.x
– volume: 17
  start-page: 2313
  year: 2013
  ident: 2023022801271406300_
  article-title: Respondent driven sampling for HIV biological and behavioral surveillance in Latin America and the Caribbean
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-013-0466-4
– volume: 106
  start-page: 135
  year: 2011
  ident: 2023022801271406300_
  article-title: Improved inference for respondent-driven sampling data with application to HIV prevalence estimation
  publication-title: J. Am. Statist. Ass.
  doi: 10.1198/jasa.2011.ap09475
– volume: 17
  start-page: 2202
  year: 2013
  ident: 2023022801271406300_
  article-title: An empirical examination of respondent driven sampling design effects among HIV risk groups from studies conducted around the world
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-012-0394-8
– volume: 19
  start-page: 42
  year: 2008
  ident: 2023022801271406300_
  article-title: “They got their program, and I got mine”: a cautionary tale concerning the ethical implications of using respondent-driven sampling to study injection drug users
  publication-title: Int. J. Drug Poly
  doi: 10.1016/j.drugpo.2007.11.014
– volume: 35
  start-page: 669
  year: 2013
  ident: 2023022801271406300_
  article-title: Linked ego networks: improving estimate reliability and validity with respondent-driven sampling
  publication-title: Socl Netwrks
  doi: 10.1016/j.socnet.2013.10.001
– volume: 9
  start-page: 409
  year: 2005
  ident: 2023022801271406300_
  article-title: The fit between theory and data in respondent-driven sampling: Response to Heimer
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-005-9031-0
– volume: 40
  start-page: 304
  year: 2013
  ident: 2023022801271406300_
  article-title: Incorporating the service multiplier method in respondent-driven sampling surveys to estimate the size of hidden and hard-to-reach populations
  publication-title: Sexlly Transmttd Dis.
  doi: 10.1097/OLQ.0b013e31827fd650
– volume: 23
  start-page: 138
  year: 2012
  ident: 2023022801271406300_
  article-title: Evaluation of respondent-driven sampling
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31823ac17c
– volume: 22
  start-page: 354
  year: 2012
  ident: 2023022801271406300_
  article-title: Evaluating consistency in repeat surveys of injection drug users recruited by respondent-driven sampling in the Seattle area: results from the NHBS-IDU1 and NHBS-IDU2 surveys
  publication-title: Ann. Epidem.
  doi: 10.1016/j.annepidem.2012.02.012
– volume: 7
  start-page: 457
  year: 1992
  ident: 2023022801271406300_
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1177011136
– volume: 4
  start-page: article e6777
  year: 2009
  ident: 2023022801271406300_
  article-title: Parsing social network survey data from hidden populations using stochastic context-free grammars
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0006777
– volume-title: Technical Report
  year: 2013
  ident: 2023022801271406300_
– volume: 7
  start-page: 292
  year: 2013
  ident: 2023022801271406300_
  article-title: Respondent-driven sampling on directed networks
  publication-title: Electron. J. Statist.
  doi: 10.1214/13-EJS772
– volume: 19
  start-page: 238
  year: 2008
  ident: 2023022801271406300_
  article-title: Cautionary comments on an ethnographic tale gone wrong
  publication-title: Int. J. Drug Poly
  doi: 10.1016/j.drugpo.2008.02.013
– volume: 83
  start-page: 83
  year: 2006
  ident: 2023022801271406300_
  article-title: Respondent-driven sampling of injection drug users in two US–Mexico border cities: recruitment dynamics and impact on estimates of HIV and Syphilis prevalence
  publication-title: J. Urb. Hlth
  doi: 10.1007/s11524-006-9104-z
– year: 2014
  ident: 2023022801271406300_
  article-title: Bias-variance and breadth-depth tradeoffs in respondent-driven sampling
  publication-title: J. Statist. Computn Simuln
– volume: 34
  start-page: 193
  year: 2004
  ident: 2023022801271406300_
  article-title: Sampling and estimation in hidden populations using respondent-driven sampling
  publication-title: Sociol. Methodol.
  doi: 10.1111/j.0081-1750.2004.00152.x
– volume: 17
  start-page: 2244
  year: 2013
  ident: 2023022801271406300_
  article-title: The importance of measuring and accounting for potential biases in respondent-driven samples
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-013-0451-y
– volume: 40
  start-page: 285
  year: 2010
  ident: 2023022801271406300_
  article-title: Respondent-driven sampling: an assessment of current methodology
  publication-title: Sociol. Methodol.
  doi: 10.1111/j.1467-9531.2010.01223.x
– volume: 23
  start-page: 148
  year: 2012
  ident: 2023022801271406300_
  article-title: Commentary: Respondent-driven sampling in the real world
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e31823b6979
– volume: 16
  start-page: 797
  year: 2012
  ident: 2023022801271406300_
  article-title: Estimating design effect and calculating sample size for respondent-driven sampling studies of injection drug users in the United States
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-012-0147-8
– volume: 16
  start-page: 435
  year: 1990
  ident: 2023022801271406300_
  article-title: Network data and measurement
  publication-title: A. Rev. Sociol.
  doi: 10.1146/annurev.so.16.080190.002251
– volume: 107
  start-page: 6743
  year: 2010
  ident: 2023022801271406300_
  article-title: Assessing respondent-driven sampling
  publication-title: Proc. Natn. Acad. Sci. USA
  doi: 10.1073/pnas.1000261107
– volume: 9
  start-page: 403
  year: 2005
  ident: 2023022801271406300_
  article-title: Critical issues and further questions about respondent-driven sampling: comment on Ramirez-Valles
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-005-9030-1
– volume: 12
  start-page: 105
  year: 2008
  ident: 2023022801271406300_
  article-title: Using respondent-driven sampling methodology for HIV biological and behavioral surveillance in international settings: a systematic review
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-008-9421-1
– volume: 24
  start-page: 2301
  year: 2010
  ident: 2023022801271406300_
  article-title: Global HIV surveillance among MSM: is risk behavior seriously underestimated?
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e32833d207d
– volume: 9
  start-page: 387
  year: 2005
  ident: 2023022801271406300_
  article-title: From networks to populations: the development and application of respondent-driven sampling among IDUs and Latino gay men
  publication-title: AIDS Behav.
  doi: 10.1007/s10461-005-9012-3
– volume: 6
  start-page: 77
  year: 2012
  ident: 2023022801271406300_
  article-title: Assessing the assumptions of respondent-driven sampling in the National HIV Behavioral Surveillance System among injecting drug users
  publication-title: Open AIDS J.
  doi: 10.2174/1874613601206010077
– volume: 7
  start-page: article e49417
  issue: 11
  year: 2012
  ident: 2023022801271406300_
  article-title: Implementation of web-based respondent-driven sampling among men who have sex with men in Vietnam
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0049417
– volume: 88
  start-page: 397
  year: 2012
  ident: 2023022801271406300_
  article-title: Respondent driven sampling—where we are and where should we be going?
  publication-title: Sexlly Transmttd Infectns
  doi: 10.1136/sextrans-2012-050703
– year: 2011
  ident: 2023022801271406300_
  article-title: Network model-assisted inference from respondent-driven sampling data
– volume: 86
  start-page: 5
  year: 2009
  ident: 2023022801271406300_
  article-title: Simultaneous recruitment of drug users and men who have sex with men in the United States and Russia using respondent-driven sampling: sampling methods and implications
  publication-title: J. Urb. Hlth
  doi: 10.1007/s11524-009-9365-4
– volume: 174
  start-page: 1190
  year: 2011
  ident: 2023022801271406300_
  article-title: Assessing network scale-up estimates for groups most at risk of HIV/AIDS: evidence from a multiple-method study of heavy drug users in Curitiba, Brazil
  publication-title: Am. J. Epidem.
  doi: 10.1093/aje/kwr246
– volume: 57
  start-page: S129
  year: 2011
  ident: 2023022801271406300_
  article-title: Analysis of data collected by RDS among sex workers in 10 Brazilian cities, 2009: estimation of the prevalence of HIV, variance, and design effect
  publication-title: J. Acq. Immune Defic. Synd.
  doi: 10.1097/QAI.0b013e31821e9a36
– volume: 13
  start-page: 495
  year: 1984
  ident: 2023022801271406300_
  article-title: The problem of informant accuracy: the validity of retrospective data
  publication-title: A. Rev. Anthrop.
  doi: 10.1146/annurev.an.13.100184.002431
– year: 2011
  ident: 2023022801271406300_
  article-title: size: estimating hidden population size using respondent driven sampling data
  publication-title: R Package Version 0.20
– year: 2012
  ident: 2023022801271406300_
  article-title: Estimating hidden population size using respondent-driven sampling data
  publication-title: Working Paper
– volume: 27
  start-page: S36
  year: 2011
  ident: 2023022801271406300_
  article-title: Transfer of sampling methods for studies on most-at-risk populations (MARPs) in Brazil
  publication-title: Cad. Sde Publ.
  doi: 10.1590/S0102-311X2011001300005
– volume-title: Data, version 1.0.
  year: 2013
  ident: 2023022801271406300_
– volume: 126
  start-page: 324
  year: 2012
  ident: 2023022801271406300_
  article-title: Respondent driven sampling and community structure in a population of injecting drug users, Bristol, UK.
  publication-title: Drug Alc. Depend.
  doi: 10.1016/j.drugalcdep.2012.05.036
– volume: 23
  start-page: 126
  year: 2011
  ident: 2023022801271406300_
  article-title: Selective participation in a RDS survey among MSM in Ceara, Brazil: a qualitative and quantitative assessment
  publication-title: J. Bras. Doenc. Sexmnte Transmiss.
– volume: 78
  start-page: 147
  year: 2005
  ident: 2023022801271406300_
  article-title: Respondent-driven sampling to recruit MDMA users: a methodological assessment
  publication-title: Drug Alc. Depend.
  doi: 10.1016/j.drugalcdep.2004.10.011
– volume: 42
  start-page: 206
  year: 2012
  ident: 2023022801271406300_
  article-title: Network sampling with memory: a proposal for more efficient sampling from social networks
  publication-title: Sociol. Methodol.
  doi: 10.1177/0081175012461248
– volume: 42
  start-page: 392
  year: 2013
  ident: 2023022801271406300_
  article-title: An empirical analysis of the impact of recruitment patterns on RDS estimates among a socially ordered population of female sex workers in China
  publication-title: Sociol. Meth. Res.
  doi: 10.1177/0049124113494576
– volume-title: R: a Language and Environment for Statistical Computing
  year: 2012
  ident: 2023022801271406300_
– volume: 49
  start-page: 11
  year: 2002
  ident: 2023022801271406300_
  article-title: Respondent-driven sampling II: deriving valid population estimates from chain-referral samples of hidden populations
  publication-title: Socl Prob.
  doi: 10.1525/sp.2002.49.1.11
SSID ssj0000077
Score 2.4929013
Snippet Respondent-driven sampling (RDS) is a widely used method for sampling from hard-to-reach human populations, especially populations at higher risk for human...
Summary Respondent‐driven sampling (RDS) is a widely used method for sampling from hard‐to‐reach human populations, especially populations at higher risk for...
Respondent-driven sampling (RDS) is a widely used method for sampling from hard-to-reach human populations, especially populations at higher risk for HIV. Data...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 241
SubjectTerms Acquired immune deficiency syndrome
AIDS
Coupons
Data collection
Diagnostic software
Diagnostics
Diseases
Estimation bias
Estimators
Exploratory data analysis
Hard-to-reach populations
Health risk assessment
HIV
Human immunodeficiency virus
Inference
Link tracing sampling
Non-ignorable design
Organizations
Population
Population estimates
Populations
Public health
Respiratory distress syndrome
Respondent-driven sampling
Risk
Sampling
Sampling bias
Sampling techniques
Social networks
Statistical analysis
Statistics
Survey sampling
Title Diagnostics for respondent-driven sampling
URI https://api.istex.fr/ark:/67375/WNG-XTBD22D7-8/fulltext.pdf
https://www.jstor.org/stable/43965726
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssa.12059
https://www.ncbi.nlm.nih.gov/pubmed/27226702
https://www.proquest.com/docview/1654736845
https://www.proquest.com/docview/1645211416
https://www.proquest.com/docview/1651424534
https://www.proquest.com/docview/1835506952
https://pubmed.ncbi.nlm.nih.gov/PMC4877136
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD7U-lIfvFSr0VpWFEExS-aegC_VtRahRXrBfZEwk5moVFJJdkF88if4G_0lzplc3NWyoG8J8wWSM-dMvkm--QbgUZkoXVgm_CSnZDG3Oou1LZJY2NJmpHSaEFw7fHAo90_5m6mYrsHzfi1M6w8xfHDDygjjNRa4Ns1CkddNo8eEenrgB2AUayEjOlrwjkrCtoueonNUU6SdNynKeH5fuvQ2uoyB_doLEy-inH8rJxcZbXgl7V2D9_3DtEqUs_F8ZsbFtz98Hv_3aa_D1Y6rjnbb5LoBa67ahCsHg9FrswkbSFZbr-eb8GzS6vbwbOTJ8KgOAlxcCvzz-w9b48A6ajRq2KsPt-B079XJy_24240hLqRivgsLlxipiC2LVJtMZ5xJbUrLpRTaiEz4QBNruaOZoZnTfqgoCNOSKVKm1DG2BevVeeXuwAh_9XLOuKcSlCujdCYzpXnKXFokjpoInvS9khedVTnumPE576csGI48hCOChwP2S2vQcSHqcejcAaLrM5S0KZG_O3ydT09eTCidqDyNYCv0_gD0hE0KRWUE23065F2ZNzkJWzfLlIsIHgzNvkDxr4uu3PkcMdxTJOKJ7yqMwBWHgvEVGM-VRSIzQSO43WbhcJNUeRatEt-ilvJzAKCJ-HJL9eljMBP3E1blqyeCpyH9VsQwPzo-3g1Hd_8FfA82PMkU7WerbVif1XN33xO5mdmBS5S_3Qll-wtYnEVo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVge2A88DEYBAYUgZBApIq_48dBGQXWPmyd6JvlxA6bhjKUtBLiiZ_Ab-SX4OukoYWpErwl8o2UXN_rHNvH5yL0tEikyS3lfpJT0JhZo2Jj8yTmtrAKF85gDGeHR2MxPGbvp3zacnPgLEyjD9EtuEFmhPEaEhwWpJeyvKpr08fE44PLaBNKeocZ1eGSelQSCi96kM6AT5G26qRA5Pn97Mr_aBNc-3VBTbwIdP7NnVzGtOGntH-9qbxaBy1D4KKc9eezrJ9_-0Pp8b-_9wa61sLV3l4TXzfRJVduo6ujTuu13kZbgFcbuedb6OWgoe7BXc_j4V4VOLhwGvjn9x-2grG1VxugsZefbqPj_TeT18O4LcgQ50JS34u5SzIhsS3y1GTKKEaFyQrLhOAm44p7T2NrmSMqI8oZP1rkmBpBJS5S4ijdQRvleenuoh7s9jJGmUcThMlMGiWUNCylLs0TR7IIPV90i85btXIomvFZL2Yt4A4d3BGhJ53tl0aj40KrZ6F3OxNTnQGrTXL9cfxWTyevBoQMpE4jtBO6vzP0mE1wSUSEdhfxoNtMrzUO1ZtFyniEHnfNPkdh48WU7nwONsyjJOyx7zobDocOOWVrbDxc5olQnEToThOG3UsS6YG0THyLXAnQzgB0xFdbytOToCfu56wSU_9uL0L8rfGhPjw62gtX9_7F-BG6MpyMDvTBu_GH-2jLY07erGLtoo1ZNXcPPK6bZQ9D9v4C1vpIrA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAGP2oLUh98FKtjVaNKIJilsw9A75U41ovXaQX3BcJk8ykSiUtm10Qn_wJ_kZ_iTOTi7taFvQtYU4g-eb7JmeSM2cAHpaxUIUmzE5yShJRrWSkdBFHTJdaotIohNza4b0R3z2ib8ZsvALPurUwjT9E_8HNVYYfr12Bn-lyrsgnda0GCFt6cAHWKI8Tl9Pp_px5VOz3XbQcnTo5RdKakzodz-9rF15Hay6yXztl4nmc82_p5Dyl9e-k4RX42D1NI0U5Gcym-aD49ofR4_8-7lW43JLVcKfJrmuwYqoNuLTXO73WG7Du2Gpj9nwdnqaNcM-dhZYNhxOvwHVrgX9-_6EnbmQNa-VE7NXxDTgavjx8sRu12zFEBRfE9mFh4pwLpMsiUblUkhKu8lJTzpnKmWQ20EhrarDMsTTKjhUFIooTgcoEG0I2YbU6rcwWhO5fL6WEWi6BqciFklwKRRNikiI2OA_gcdcrWdF6lbstM75k3ZzFhSPz4QjgQY89axw6zkU98p3bQ9TkxGnaBMs-jF5l48PnKcapyJIANn3v90DL2DgTmAew3aVD1tZ5nSG_dzNPKAvgft9sK9T9dlGVOZ05DLUcCVnmuwzD3JJDRugSjCXLLOaS4QBuNlnY3yQWlkaL2LaIhfzsAc5FfLGl-vzJu4nbGatAxN7bE59-S2KY7R8c7PijW_8CvgcX36fD7N3r0dvbsG4JJ2s-YW3D6nQyM3csqZvmd33t_gLq0Udk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostics+for+respondent-driven+sampling&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Gile%2C+Krista+J&rft.au=Johnston%2C+Lisa+G&rft.au=Salganik%2C+Matthew+J&rft.date=2015-01-01&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=178&rft.issue=1&rft.spage=241&rft.epage=269&rft_id=info:doi/10.1111%2Frssa.12059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon