Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube-Graphene Hybrid Architectures for Lithium-Sulfur Batteries

Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 26; no. 7; pp. 1112 - 1119
Main Authors Ding, Yuan-Li, Kopold, Peter, Hahn, Kersten, van Aken, Peter A., Maier, Joachim, Yu, Yan
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 16.02.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT–graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium–sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g−1 at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application. Using a facile and green solid‐state growth strategy, 3D, well‐interconnected, highly nitrogen‐doped carbon nanotube–graphene hybrid structures are designed and fabricated by using Ni foam as growth substrate and catalyst, glucose as carbon sources, and dicyandiamide as nitrogen sources. When used as cathode hosts for Li–S batteries, the obtained product shows superior lithium‐storage capability.
AbstractList Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT–graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium–sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g −1 at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application.
Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid-state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT-graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium-sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g super(-1) at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application. Using a facile and green solid-state growth strategy, 3D, well-interconnected, highly nitrogen-doped carbon nanotube-graphene hybrid structures are designed and fabricated by using Ni foam as growth substrate and catalyst, glucose as carbon sources, and dicyandiamide as nitrogen sources. When used as cathode hosts for Li-S batteries, the obtained product shows superior lithium-storage capability.
Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT–graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium–sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g−1 at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application. Using a facile and green solid‐state growth strategy, 3D, well‐interconnected, highly nitrogen‐doped carbon nanotube–graphene hybrid structures are designed and fabricated by using Ni foam as growth substrate and catalyst, glucose as carbon sources, and dicyandiamide as nitrogen sources. When used as cathode hosts for Li–S batteries, the obtained product shows superior lithium‐storage capability.
Author Ding, Yuan-Li
Maier, Joachim
Yu, Yan
Kopold, Peter
Hahn, Kersten
van Aken, Peter A.
Author_xml – sequence: 1
  givenname: Yuan-Li
  surname: Ding
  fullname: Ding, Yuan-Li
  organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
– sequence: 2
  givenname: Peter
  surname: Kopold
  fullname: Kopold, Peter
  organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
– sequence: 3
  givenname: Kersten
  surname: Hahn
  fullname: Hahn, Kersten
  organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
– sequence: 4
  givenname: Peter A.
  surname: van Aken
  fullname: van Aken, Peter A.
  organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
– sequence: 5
  givenname: Joachim
  surname: Maier
  fullname: Maier, Joachim
  organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
– sequence: 6
  givenname: Yan
  surname: Yu
  fullname: Yu, Yan
  email: yanyumse@ustc.edu.cn
  organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany
BookMark eNqFkUtvEzEURkeoSLSFLWsv2Tj4Na9lSElSKU1VAio7y-MHY5jYqe1RyX_gR-MoVVQhoXpzvfjO1b3nXhRnzjtdFO8xmmCEyEehzHZCEC4RIy17VZzjCleQItKcnf74-5viIsafCOG6puy8-DMX0g4abPxgFdwkkTRYBP-YeuANoFfgXg8DvHZJB-md0zJpBdY2Bf9DO_jFyh7MROi8A2vhfBo7DRdB7HrtNFjuu2AVmAbZ25TJMegIjA9gZVNvxy3cjIMZA_gkUm5vdXxbvDZiiPrdU70svs0_f50t4ep2cT2brqCs8tAQU6YqZsrW1LgjkihMyrJsVKVEQyrZybYmVJfUVK0qu6pSLD_aYFY3RhJD6WXx4dh3F_zDqGPiWxtlXlQ47cfIcYMQq0uGWY6yY1QGH2PQhkubJVnvUhB24Bjxg3x-kM9P8jM2-QfbBbsVYf9_oD0Cj_ka-xfSfHo1v3nOwiNrY9K_T6wIv3j2VZf8fr3g6O6wTmaX9C_93Kl-
CitedBy_id crossref_primary_10_1007_s00706_023_03160_6
crossref_primary_10_1016_j_ensm_2017_10_013
crossref_primary_10_1002_adfm_202103893
crossref_primary_10_1002_smll_202003391
crossref_primary_10_1002_smll_202101930
crossref_primary_10_1016_j_jpowsour_2016_11_114
crossref_primary_10_1002_adma_201905923
crossref_primary_10_1002_aesr_202200145
crossref_primary_10_1016_j_apsusc_2022_154773
crossref_primary_10_1039_D0TC03554H
crossref_primary_10_1007_s12274_017_1659_3
crossref_primary_10_1002_aenm_201900911
crossref_primary_10_1016_j_est_2024_111900
crossref_primary_10_1021_acssuschemeng_8b01843
crossref_primary_10_1002_smll_201805173
crossref_primary_10_1039_C9NR03278A
crossref_primary_10_1039_C9CC07693J
crossref_primary_10_1016_j_cej_2022_138451
crossref_primary_10_1039_C8TA03968B
crossref_primary_10_1039_C7TA04962E
crossref_primary_10_2139_ssrn_3954691
crossref_primary_10_1007_s12274_020_3055_7
crossref_primary_10_1007_s12598_020_01439_9
crossref_primary_10_1016_j_est_2023_108339
crossref_primary_10_1002_admi_201600450
crossref_primary_10_1016_j_matdes_2018_04_078
crossref_primary_10_1016_j_scib_2018_04_003
crossref_primary_10_3390_app7101036
crossref_primary_10_1016_j_jelechem_2018_01_037
crossref_primary_10_1021_acsami_9b20426
crossref_primary_10_1039_D0NR07230C
crossref_primary_10_1016_j_est_2024_113775
crossref_primary_10_1002_anie_201704324
crossref_primary_10_1002_smll_202002511
crossref_primary_10_1002_aenm_202201585
crossref_primary_10_1002_adma_201602009
crossref_primary_10_1016_j_est_2022_104235
crossref_primary_10_1039_C7NR02368E
crossref_primary_10_1007_s40820_020_00449_7
crossref_primary_10_1002_anie_201909339
crossref_primary_10_1039_C7RA02174G
crossref_primary_10_1002_aenm_201904010
crossref_primary_10_1039_C6EE02326F
crossref_primary_10_1007_s10853_021_06469_x
crossref_primary_10_1016_j_flatc_2024_100635
crossref_primary_10_1021_acsaem_2c02767
crossref_primary_10_1021_acsnano_8b08822
crossref_primary_10_1016_j_jpowsour_2024_234996
crossref_primary_10_1002_cey2_96
crossref_primary_10_1016_j_jechem_2019_03_034
crossref_primary_10_1002_adma_201606823
crossref_primary_10_1039_C9TA11572B
crossref_primary_10_1039_C8TA11615F
crossref_primary_10_1016_S1872_5805_21_60072_0
crossref_primary_10_1021_acsami_1c13484
crossref_primary_10_1021_acsami_8b06054
crossref_primary_10_1021_acsnano_8b06511
crossref_primary_10_1002_slct_202002090
crossref_primary_10_1016_j_jallcom_2019_151887
crossref_primary_10_1016_j_jechem_2020_03_071
crossref_primary_10_1016_j_jechem_2019_11_018
crossref_primary_10_1039_C8TA01483C
crossref_primary_10_1016_j_electacta_2017_07_082
crossref_primary_10_1016_j_jallcom_2021_160728
crossref_primary_10_1016_j_mtener_2018_03_007
crossref_primary_10_1002_adma_201901125
crossref_primary_10_1039_C6NR04923K
crossref_primary_10_1016_j_carbon_2023_04_006
crossref_primary_10_1016_j_matchemphys_2021_125578
crossref_primary_10_1002_smll_201906634
crossref_primary_10_1039_C7TA01346A
crossref_primary_10_1039_C7NR00999B
crossref_primary_10_1002_aenm_202201493
crossref_primary_10_1016_j_jpowsour_2016_12_008
crossref_primary_10_1002_adsu_201700081
crossref_primary_10_1021_acsami_7b18894
crossref_primary_10_1002_cplu_201900554
crossref_primary_10_1021_acsaem_2c02421
crossref_primary_10_1149_2_0361810jes
crossref_primary_10_1002_cnma_201800078
crossref_primary_10_1016_j_ensm_2021_08_023
crossref_primary_10_1016_j_cej_2017_05_154
crossref_primary_10_1002_sstr_202400354
crossref_primary_10_1016_j_jallcom_2018_02_225
crossref_primary_10_1021_acsnano_1c02567
crossref_primary_10_1016_j_carbon_2017_03_035
crossref_primary_10_1039_C8TA02655F
crossref_primary_10_1016_j_snb_2016_10_101
crossref_primary_10_3389_fchem_2020_00254
crossref_primary_10_1021_acsami_7b12556
crossref_primary_10_1039_C6TA10786A
crossref_primary_10_1021_acsami_7b08181
crossref_primary_10_1088_1361_6528_aa6143
crossref_primary_10_1002_admi_201700783
crossref_primary_10_1002_smll_202106640
crossref_primary_10_1016_j_ensm_2019_05_013
crossref_primary_10_1007_s12274_020_2622_2
crossref_primary_10_1016_j_nanoen_2017_05_064
crossref_primary_10_1016_j_cej_2019_122852
crossref_primary_10_1016_j_ensm_2018_08_013
crossref_primary_10_1002_celc_201801445
crossref_primary_10_1002_adma_201601759
crossref_primary_10_1021_acs_energyfuels_1c01509
crossref_primary_10_1002_smll_201600809
crossref_primary_10_1007_s11581_020_03645_y
crossref_primary_10_1002_advs_201800080
crossref_primary_10_1002_adma_201906357
crossref_primary_10_1002_smll_202002518
crossref_primary_10_1039_D0NA01019G
crossref_primary_10_1021_acsaem_1c04061
crossref_primary_10_1002_batt_202200196
crossref_primary_10_1016_j_est_2024_115007
crossref_primary_10_1016_j_apcatb_2017_05_056
crossref_primary_10_1088_1361_6528_aa8dd9
crossref_primary_10_1016_j_electacta_2017_10_138
crossref_primary_10_2139_ssrn_4001269
crossref_primary_10_1002_smll_202303599
crossref_primary_10_1016_j_apmt_2019_06_003
crossref_primary_10_1142_S1793604720510509
crossref_primary_10_1016_j_coche_2016_08_004
crossref_primary_10_1002_adfm_202113316
crossref_primary_10_1016_j_carbon_2021_12_036
crossref_primary_10_1002_adfm_201904819
crossref_primary_10_1016_j_cclet_2022_01_016
crossref_primary_10_1002_eem2_12152
crossref_primary_10_1007_s12274_016_1374_5
crossref_primary_10_1021_acsami_7b09808
crossref_primary_10_3390_ijms24087291
crossref_primary_10_1007_s11581_019_03047_9
crossref_primary_10_1039_C8RA01577E
crossref_primary_10_1039_C9TA11500E
crossref_primary_10_1016_j_jallcom_2019_05_184
crossref_primary_10_1002_admi_201700686
crossref_primary_10_1016_j_matchar_2019_03_032
crossref_primary_10_1016_j_nanoen_2018_12_019
crossref_primary_10_1002_inf2_12040
crossref_primary_10_1021_acssuschemeng_7b03460
crossref_primary_10_1039_C8CC07623E
crossref_primary_10_1002_adfm_201705264
crossref_primary_10_3390_batteries9010045
crossref_primary_10_1021_acs_energyfuels_8b01453
crossref_primary_10_1039_D2TA04984H
crossref_primary_10_1088_1361_6528_ac3f15
crossref_primary_10_3390_ma14092448
crossref_primary_10_1016_j_mattod_2018_04_007
crossref_primary_10_1021_acsami_9b02844
crossref_primary_10_1039_C7NR03342G
crossref_primary_10_1021_acsami_8b11227
crossref_primary_10_1021_jacs_7b05371
crossref_primary_10_1016_j_jallcom_2020_158445
crossref_primary_10_1021_acsami_6b14687
crossref_primary_10_1016_j_carbon_2020_08_070
crossref_primary_10_1002_ange_202415036
crossref_primary_10_1007_s11051_019_4726_8
crossref_primary_10_1016_j_apsusc_2020_145529
crossref_primary_10_1002_admi_201800766
crossref_primary_10_1016_j_jallcom_2017_09_131
crossref_primary_10_1016_j_apenergy_2018_10_036
crossref_primary_10_1016_j_jallcom_2022_165668
crossref_primary_10_1016_j_joule_2022_01_015
crossref_primary_10_1002_celc_202200549
crossref_primary_10_1016_j_energy_2023_127794
crossref_primary_10_1002_anie_202110699
crossref_primary_10_1039_C6RA05560E
crossref_primary_10_20964_2018_08_66
crossref_primary_10_1016_j_carbon_2016_10_035
crossref_primary_10_1016_j_mtener_2018_06_001
crossref_primary_10_1002_slct_201803285
crossref_primary_10_1016_j_ijhydene_2016_08_004
crossref_primary_10_1002_er_5965
crossref_primary_10_1002_cssc_201902659
crossref_primary_10_1016_j_micromeso_2021_111355
crossref_primary_10_1039_D2NJ01662A
crossref_primary_10_1016_j_nanoen_2017_04_051
crossref_primary_10_1039_C9QI00054B
crossref_primary_10_1039_D1EE00166C
crossref_primary_10_1002_smll_202202495
crossref_primary_10_1021_acsami_8b17590
crossref_primary_10_1016_j_matlet_2018_02_004
crossref_primary_10_1016_j_cclet_2024_109675
crossref_primary_10_1021_acsnano_0c05951
crossref_primary_10_1021_acsnano_1c03183
crossref_primary_10_1002_adma_201805134
crossref_primary_10_2139_ssrn_4138992
crossref_primary_10_1016_j_ensm_2019_04_042
crossref_primary_10_1016_j_jallcom_2020_158461
crossref_primary_10_1016_j_jallcom_2020_157011
crossref_primary_10_1021_acsami_0c03621
crossref_primary_10_3390_nano11051164
crossref_primary_10_1016_j_jallcom_2020_153692
crossref_primary_10_1016_j_ensm_2019_04_039
crossref_primary_10_1021_acsanm_4c02122
crossref_primary_10_1002_adfm_201705015
crossref_primary_10_1039_C8NR05102J
crossref_primary_10_1016_j_apsusc_2023_158321
crossref_primary_10_1016_j_ensm_2021_11_045
crossref_primary_10_1016_j_ceramint_2019_09_295
crossref_primary_10_1021_acsami_1c17448
crossref_primary_10_1016_j_cclet_2023_109267
crossref_primary_10_1016_j_apcatb_2019_118415
crossref_primary_10_1016_j_nanoen_2020_104685
crossref_primary_10_1016_j_electacta_2021_138179
crossref_primary_10_1007_s11244_022_01581_x
crossref_primary_10_1016_j_compositesb_2019_107381
crossref_primary_10_1016_j_jpowsour_2019_226778
crossref_primary_10_1016_j_electacta_2022_140549
crossref_primary_10_1016_j_jcis_2021_10_073
crossref_primary_10_1021_acsaem_4c01480
crossref_primary_10_1021_acsenergylett_7b00164
crossref_primary_10_1039_D1TA10805K
crossref_primary_10_1002_slct_201904685
crossref_primary_10_1016_j_nanoms_2021_11_003
crossref_primary_10_1016_j_carbon_2020_06_017
crossref_primary_10_1016_j_jelechem_2021_115564
crossref_primary_10_1088_1755_1315_680_1_012094
crossref_primary_10_1002_adfm_201707520
crossref_primary_10_1016_j_jpowsour_2016_11_038
crossref_primary_10_1016_j_jechem_2021_05_006
crossref_primary_10_1021_acsnano_7b03227
crossref_primary_10_1021_acsomega_9b02287
crossref_primary_10_1039_C7TA01265A
crossref_primary_10_1039_C7QM00405B
crossref_primary_10_1002_ente_201700531
crossref_primary_10_1016_j_gee_2017_09_003
crossref_primary_10_1039_C6TA07864H
crossref_primary_10_1021_acsnano_0c00799
crossref_primary_10_1002_cnma_201600065
crossref_primary_10_1002_aenm_201701110
crossref_primary_10_1039_C7RA07418B
crossref_primary_10_1016_j_jallcom_2019_02_181
crossref_primary_10_1039_D3NJ01249B
crossref_primary_10_1002_aenm_201700260
crossref_primary_10_1088_1361_6528_ab5477
crossref_primary_10_1002_adfm_201900875
crossref_primary_10_1039_C7TA00799J
crossref_primary_10_1002_ange_201704324
crossref_primary_10_1002_ange_201909339
crossref_primary_10_1039_C6TA10242E
crossref_primary_10_1007_s00339_021_05177_2
crossref_primary_10_1007_s41918_018_0016_x
crossref_primary_10_1016_j_synthmet_2020_116644
crossref_primary_10_1016_j_jcis_2023_10_096
crossref_primary_10_3390_nano8090700
crossref_primary_10_1016_j_isci_2018_07_021
crossref_primary_10_1016_j_jallcom_2025_179118
crossref_primary_10_1021_acsenergylett_6b00033
crossref_primary_10_1088_2516_1075_abea09
crossref_primary_10_1002_aenm_201600917
crossref_primary_10_1039_C9NR05670J
crossref_primary_10_1002_anie_202415036
crossref_primary_10_1039_C8CS00904J
crossref_primary_10_1016_j_jpowsour_2016_10_012
crossref_primary_10_1039_D1MA00247C
crossref_primary_10_1007_s12274_019_2356_1
crossref_primary_10_1016_j_ijhydene_2019_04_159
crossref_primary_10_1016_j_synthmet_2025_117847
crossref_primary_10_12677_NAT_2022_124037
crossref_primary_10_1021_acsaem_7b00049
crossref_primary_10_1149_2_0061801jes
crossref_primary_10_1016_j_electacta_2018_04_021
crossref_primary_10_1039_C7RA09332B
crossref_primary_10_1016_j_scib_2020_01_021
crossref_primary_10_1002_adfm_202107166
crossref_primary_10_1007_s40820_019_0341_6
crossref_primary_10_1002_adma_201806547
crossref_primary_10_1002_slct_202202626
crossref_primary_10_1016_j_ensm_2020_04_022
crossref_primary_10_1021_acsenergylett_7b00009
crossref_primary_10_1088_1361_6528_ab4841
crossref_primary_10_1016_j_jallcom_2018_04_234
crossref_primary_10_3389_fenrg_2020_615558
crossref_primary_10_1039_C9TA05347F
crossref_primary_10_1016_j_electacta_2018_07_222
crossref_primary_10_1039_D1NA00012H
crossref_primary_10_1016_j_cclet_2020_09_007
crossref_primary_10_1016_j_carbon_2019_01_055
crossref_primary_10_1002_ange_202110699
crossref_primary_10_3389_fenrg_2019_00157
crossref_primary_10_1002_adfm_201604265
crossref_primary_10_1039_C6TA01945E
crossref_primary_10_1039_C7TA09676C
crossref_primary_10_1016_j_ceramint_2021_07_239
crossref_primary_10_1016_j_apsadv_2023_100517
crossref_primary_10_1016_j_cej_2019_122551
Cites_doi 10.1039/c3ee41444b
10.1002/ange.201101287
10.1002/anie.201402662
10.1002/adma.201401191
10.1016/j.carbon.2012.03.022
10.1002/adma.201402488
10.1002/chem.200601759
10.1002/advs.201500071
10.1039/c2jm33732k
10.1038/nature04969
10.1039/c1jm00049g
10.1038/ncomms2327
10.1039/c0ee00699h
10.1016/j.jpowsour.2014.05.111
10.1038/nmat2460
10.1021/nn203393d
10.1002/adma.201401243
10.1039/C4TA06255H
10.1002/aenm.201402263
10.1038/ncomms6261
10.1021/ja412943h
10.1021/nn304037d
10.1021/cm4021657
10.1021/acs.nanolett.5b00064
10.1038/nmat3001
10.1016/j.nanoen.2015.05.017
10.1021/nl504705z
10.1002/anie.201203207
10.1039/C4EE00531G
10.1021/ja904595t
10.1038/ncomms2234
10.1126/science.1095140
10.1016/j.carbon.2008.11.047
10.1126/science.1104276
10.1002/adfm.201302631
10.1002/smll.201402502
10.1021/ja308170k
10.1002/admi.201400227
10.1126/science.1168049
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201504294
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1616-3028
EndPage 1119
ExternalDocumentID 10_1002_adfm_201504294
ADFM201504294
ark_67375_WNG_0Q414394_H
Genre article
GrantInformation_xml – fundername: Recruitment Program of Global Experts
– fundername: European Union Seventh Framework Programme
  funderid: FP7/2007‐2013; 312483
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology
– fundername: New Century Excellent Talents in University
  funderid: NCET‐12‐0515
– fundername: Alexander von Humboldt Foundation
– fundername: Fundamental Research Funds for the Central Universities
  funderid: WK2060140014; WK2060140016
– fundername: National Natural Science Foundation of China
  funderid: 21171015; 21373195
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AAYCA
ACYXJ
AFWVQ
ALVPJ
AANHP
AAYXX
ACRPL
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c6734-134d64f59f71b2c2d125558d6da826cbc9723e53f69d5b66d4444381478fc2f33
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 12:39:49 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Tue Jul 01 01:30:22 EDT 2025
Wed Jan 22 16:25:13 EST 2025
Wed Oct 30 09:56:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6734-134d64f59f71b2c2d125558d6da826cbc9723e53f69d5b66d4444381478fc2f33
Notes Alexander von Humboldt Foundation
New Century Excellent Talents in University - No. NCET-12-0515
Collaborative Innovation Center of Suzhou Nano Science and Technology
istex:23076938E15582D4F85CC2283207EC7C61B698DC
European Union Seventh Framework Programme - No. FP7/2007-2013; No. 312483
ArticleID:ADFM201504294
ark:/67375/WNG-0Q414394-H
Recruitment Program of Global Experts
Fundamental Research Funds for the Central Universities - No. WK2060140014; No. WK2060140016
National Natural Science Foundation of China - No. 21171015; No. 21373195
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1800475414
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1800475414
crossref_citationtrail_10_1002_adfm_201504294
crossref_primary_10_1002_adfm_201504294
wiley_primary_10_1002_adfm_201504294_ADFM201504294
istex_primary_ark_67375_WNG_0Q414394_H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 16, 2016
PublicationDateYYYYMMDD 2016-02-16
PublicationDate_xml – month: 02
  year: 2016
  text: February 16, 2016
  day: 16
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, J. Mater. Chem. 2011, 21, 5430.
a) M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051
L. Sun, W. Kong, Y. Jiang, H. Wu, K. Jiang, J. Wang, S. Fan, J. Mater. Chem. A 2015, 3, 5305.
L. Chen, L. L. Shaw, J. Power Sources 2014, 267, 770.
b) Y.-L. Ding, Y. Wen, C. Wu, P. A. van Aken, J. Maier, Y. Yu, Nano Lett. 2015, 15, 1388
S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358.
L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci. 2011, 4, 2682.
H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, C. J. Brinker, Science 2004, 304, 567.
L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 123, 7270.
c) Y.-L. Ding, Y. Wen, P. A. van Aken, J. Maier, Y. Yu, Small 2015, 11, 2011.
c) G. Zhou, Y. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263.
S. Yuan, Z. Guo, L. Wang, S. Hu, Y. Wang, Y. Xia, Adv. Sci. 2015, 2, 1500071.
b) H.-J. Peng, T.-Z. Hou, Q. Zhang, J.-Q. Huang, X.-B. Cheng, M.-Q. Guo, Z. Yuan, L.-Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227
Y. Ito, Y. Tanabe, H. J. Qiu, K. Sugawara, S. Heguri, N. H. Tu, K. K. Huynh, T. Fujita, T. Takahashi, K. Tanigaki, M. Chen, Angew. Chem. Int. Ed. 2014, 53, 4822.
a) X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500
Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. A. Chen, S. Huang, ACS Nano 2012, 6, 205.
b) F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 2014, 5, 5261.
a) Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331
Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R. O. Raji, C. Kittrell, R. H. Hauge, J. M. Tour, Nat. Commun. 2012, 3, 1225.
a) J. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y.-B. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 2014, 24, 1243
Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424.
b) C. Nan, Z. Lin, H. Liao, M.-K. Song, Y. Li, E. J. Cairns, J. Am. Chem. Soc. 2014, 136, 4659.
J. P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 2013, 6, 2839.
J. Robertson, J. Mater. Chem. 2012, 22, 19858.
T. Sharifi, F. Nitze, H. R. Barzegar, C.-W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, T. Wågberg, Carbon 2012, 50, 3535.
a) J. L. Xie, C. X. Guo, C. M. Li, Energy Environ. Sci. 2014, 7, 2559
b) X.-H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 9689.
M.-Q. Zhao, X.-F. Liu, Q. Zhang, G.-L. Tian, J.-Q. Huang, W. Zhu, F. Wei, ACS Nano 2012, 6, 10759.
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
a) B. V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chem. Eur. J. 2007, 13, 4969
C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100.
J.-M. Ge, B. Zhang, L.-B. Lv, H.-H. Wang, T.-N. Ye, X. Wei, J. Su, K.-X. Wang, X.-H. Li, J.-S. Chen, Nano Energy 2015, 15, 567.
B. Li, S. Li, J. Liu, B. Wang, S. Yang, Nano Lett. 2015, 15, 3073.
J. Maier, Chem. Mater. 2014, 26, 348.
C. Vallés, M. Pérez-Mendoza, W. K. Maser, M. T. Martínez, L. Alvarez, J. L. Sauvajol, A. M. Benito, Carbon 2009, 47, 998.
Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200.
Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Adv. Mater. 2014, 26, 5113.
b) S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2012, 134, 18510.
2015; 2
2009; 47
2015; 15
2013 2014; 4 136
2014 2015 2015; 7 15 11
2009 2012; 8 134
2015; 3
2007 2012; 13 51
2014; 26
2011; 10
2009; 131
2011; 4
2004; 306
2004; 304
2013; 6
2014 2014; 26 5
2012; 50
2014 2014 2015; 24 1 5
2012; 3
2011; 21
2012; 6
2012; 22
2006; 442
2011; 123
2009; 323
2014; 53
2014; 267
e_1_2_6_30_3
e_1_2_6_10_1
e_1_2_6_30_2
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_15_2
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_5_3
e_1_2_6_7_1
e_1_2_6_5_2
e_1_2_6_6_1
e_1_2_6_1_1
e_1_2_6_25_1
e_1_2_6_23_2
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_22_2
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: L. Sun, W. Kong, Y. Jiang, H. Wu, K. Jiang, J. Wang, S. Fan, J. Mater. Chem. A 2015, 3, 5305.
– reference: J.-M. Ge, B. Zhang, L.-B. Lv, H.-H. Wang, T.-N. Ye, X. Wei, J. Su, K.-X. Wang, X.-H. Li, J.-S. Chen, Nano Energy 2015, 15, 567.
– reference: T. Sharifi, F. Nitze, H. R. Barzegar, C.-W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, T. Wågberg, Carbon 2012, 50, 3535.
– reference: C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100.
– reference: a) Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331;
– reference: c) Y.-L. Ding, Y. Wen, P. A. van Aken, J. Maier, Y. Yu, Small 2015, 11, 2011.
– reference: b) C. Nan, Z. Lin, H. Liao, M.-K. Song, Y. Li, E. J. Cairns, J. Am. Chem. Soc. 2014, 136, 4659.
– reference: S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282.
– reference: L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci. 2011, 4, 2682.
– reference: Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Adv. Mater. 2014, 26, 5113.
– reference: a) B. V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chem. Eur. J. 2007, 13, 4969;
– reference: B. Li, S. Li, J. Liu, B. Wang, S. Yang, Nano Lett. 2015, 15, 3073.
– reference: J. Maier, Chem. Mater. 2014, 26, 348.
– reference: H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, J. Mater. Chem. 2011, 21, 5430.
– reference: L. Chen, L. L. Shaw, J. Power Sources 2014, 267, 770.
– reference: M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358.
– reference: J. Robertson, J. Mater. Chem. 2012, 22, 19858.
– reference: a) J. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y.-B. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 2014, 24, 1243;
– reference: b) X.-H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 9689.
– reference: M.-Q. Zhao, X.-F. Liu, Q. Zhang, G.-L. Tian, J.-Q. Huang, W. Zhu, F. Wei, ACS Nano 2012, 6, 10759.
– reference: J. P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 2013, 6, 2839.
– reference: c) G. Zhou, Y. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263.
– reference: b) Y.-L. Ding, Y. Wen, C. Wu, P. A. van Aken, J. Maier, Y. Yu, Nano Lett. 2015, 15, 1388;
– reference: b) S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2012, 134, 18510.
– reference: L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 123, 7270.
– reference: Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R. O. Raji, C. Kittrell, R. H. Hauge, J. M. Tour, Nat. Commun. 2012, 3, 1225.
– reference: K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
– reference: S. Yuan, Z. Guo, L. Wang, S. Hu, Y. Wang, Y. Xia, Adv. Sci. 2015, 2, 1500071.
– reference: a) M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051;
– reference: Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. A. Chen, S. Huang, ACS Nano 2012, 6, 205.
– reference: b) F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 2014, 5, 5261.
– reference: H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, C. J. Brinker, Science 2004, 304, 567.
– reference: a) J. L. Xie, C. X. Guo, C. M. Li, Energy Environ. Sci. 2014, 7, 2559;
– reference: a) X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500;
– reference: Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424.
– reference: Y. Ito, Y. Tanabe, H. J. Qiu, K. Sugawara, S. Heguri, N. H. Tu, K. K. Huynh, T. Fujita, T. Takahashi, K. Tanigaki, M. Chen, Angew. Chem. Int. Ed. 2014, 53, 4822.
– reference: Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200.
– reference: C. Vallés, M. Pérez-Mendoza, W. K. Maser, M. T. Martínez, L. Alvarez, J. L. Sauvajol, A. M. Benito, Carbon 2009, 47, 998.
– reference: b) H.-J. Peng, T.-Z. Hou, Q. Zhang, J.-Q. Huang, X.-B. Cheng, M.-Q. Guo, Z. Yuan, L.-Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227;
– volume: 123
  start-page: 7270
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 306
  start-page: 1358
  year: 2004
  publication-title: Science
– volume: 2
  start-page: 1500071
  year: 2015
  publication-title: Adv. Sci.
– volume: 3
  start-page: 5305
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 304
  start-page: 567
  year: 2004
  publication-title: Science
– volume: 24 1 5
  start-page: 1243 1400227 1402263
  year: 2014 2014 2015
  publication-title: Adv. Funct. Mater. Adv. Mater. Interfaces Adv. Energy Mater.
– volume: 50
  start-page: 3535
  year: 2012
  publication-title: Carbon
– volume: 442
  start-page: 282
  year: 2006
  publication-title: Nature
– volume: 47
  start-page: 998
  year: 2009
  publication-title: Carbon
– volume: 6
  start-page: 10759
  year: 2012
  publication-title: ACS Nano
– volume: 15
  start-page: 567
  year: 2015
  publication-title: Nano Energy
– volume: 7 15 11
  start-page: 2559 1388 2011
  year: 2014 2015 2015
  publication-title: Energy Environ. Sci. Nano Lett. Small
– volume: 22
  start-page: 19858
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 131
  start-page: 13200
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2682
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 26
  start-page: 5113
  year: 2014
  publication-title: Adv. Mater.
– volume: 13 51
  start-page: 4969 9689
  year: 2007 2012
  publication-title: Chem. Eur. J. Angew. Chem. Int. Ed.
– volume: 267
  start-page: 770
  year: 2014
  publication-title: J. Power Sources
– volume: 15
  start-page: 3073
  year: 2015
  publication-title: Nano Lett.
– volume: 323
  start-page: 760
  year: 2009
  publication-title: Science
– volume: 6
  start-page: 205
  year: 2012
  publication-title: ACS Nano
– volume: 8 134
  start-page: 500 18510
  year: 2009 2012
  publication-title: Nat. Mater. J. Am. Chem. Soc.
– volume: 21
  start-page: 5430
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 53
  start-page: 4822
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 6100
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2839
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 4 136
  start-page: 1331 4659
  year: 2013 2014
  publication-title: Nat. Commun. J. Am. Chem. Soc.
– volume: 26
  start-page: 348
  year: 2014
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1225
  year: 2012
  publication-title: Nat. Commun.
– volume: 10
  start-page: 424
  year: 2011
  publication-title: Nat. Mater.
– volume: 26 5
  start-page: 7051 5261
  year: 2014 2014
  publication-title: Adv. Mater. Nat. Commun.
– ident: e_1_2_6_8_1
  doi: 10.1039/c3ee41444b
– ident: e_1_2_6_10_1
  doi: 10.1002/ange.201101287
– ident: e_1_2_6_13_1
  doi: 10.1002/anie.201402662
– ident: e_1_2_6_28_1
  doi: 10.1002/adma.201401191
– ident: e_1_2_6_16_1
  doi: 10.1016/j.carbon.2012.03.022
– ident: e_1_2_6_19_1
  doi: 10.1002/adma.201402488
– ident: e_1_2_6_15_1
  doi: 10.1002/chem.200601759
– ident: e_1_2_6_25_1
  doi: 10.1002/advs.201500071
– ident: e_1_2_6_17_1
  doi: 10.1039/c2jm33732k
– ident: e_1_2_6_7_1
  doi: 10.1038/nature04969
– ident: e_1_2_6_12_1
  doi: 10.1039/c1jm00049g
– ident: e_1_2_6_23_1
  doi: 10.1038/ncomms2327
– ident: e_1_2_6_21_1
  doi: 10.1039/c0ee00699h
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jpowsour.2014.05.111
– ident: e_1_2_6_22_1
  doi: 10.1038/nmat2460
– ident: e_1_2_6_9_1
  doi: 10.1021/nn203393d
– ident: e_1_2_6_3_1
  doi: 10.1002/adma.201401243
– ident: e_1_2_6_26_1
  doi: 10.1039/C4TA06255H
– ident: e_1_2_6_30_3
  doi: 10.1002/aenm.201402263
– ident: e_1_2_6_19_2
  doi: 10.1038/ncomms6261
– ident: e_1_2_6_23_2
  doi: 10.1021/ja412943h
– ident: e_1_2_6_27_1
  doi: 10.1021/nn304037d
– ident: e_1_2_6_4_1
  doi: 10.1021/cm4021657
– ident: e_1_2_6_24_1
  doi: 10.1021/acs.nanolett.5b00064
– ident: e_1_2_6_14_1
  doi: 10.1038/nmat3001
– ident: e_1_2_6_31_1
  doi: 10.1016/j.nanoen.2015.05.017
– ident: e_1_2_6_5_2
  doi: 10.1021/nl504705z
– ident: e_1_2_6_15_2
  doi: 10.1002/anie.201203207
– ident: e_1_2_6_5_1
  doi: 10.1039/C4EE00531G
– ident: e_1_2_6_18_1
  doi: 10.1021/ja904595t
– ident: e_1_2_6_2_1
  doi: 10.1038/ncomms2234
– ident: e_1_2_6_1_1
  doi: 10.1126/science.1095140
– ident: e_1_2_6_20_1
  doi: 10.1016/j.carbon.2008.11.047
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1104276
– ident: e_1_2_6_30_1
  doi: 10.1002/adfm.201302631
– ident: e_1_2_6_5_3
  doi: 10.1002/smll.201402502
– ident: e_1_2_6_22_2
  doi: 10.1021/ja308170k
– ident: e_1_2_6_30_2
  doi: 10.1002/admi.201400227
– ident: e_1_2_6_11_1
  doi: 10.1126/science.1168049
SSID ssj0017734
Score 2.609251
Snippet Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1112
SubjectTerms Architecture
Carbon
carbon nanotubes
Cathodes
Graphene
Lithium sulfur batteries
Nanostructure
nitrogen doping
solid-state growth
Strategy
Three dimensional
Title Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube-Graphene Hybrid Architectures for Lithium-Sulfur Batteries
URI https://api.istex.fr/ark:/67375/WNG-0Q414394-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201504294
https://www.proquest.com/docview/1800475414
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBajfdketnUXll2KBmN7chvZsuw8hmZJGE1gy0rzJiRZoqGePRwb1j71JxQK-4H9JTvHTtxkMAabn2wk36RzpO_onPOJkHeRixVLGANFEl2PByrwtPWNx5XVuusrFmpMcJ5MxfiEf5qH840s_oYfol1wQ82ox2tUcKWXh3ekoSpxmEkOgAaGVCQExYAtREVfWv4oFkWNW1kwDPBi8zVrY9c_3L59a1baxQb-sQU5N4FrPfMMHxG1_uYm4OT8oCr1gbn8jc7xf37qMXm4gqW038jRHrlnsyfkwQZZ4VPyc6gMPJPO8nSR3F5d1zCVjsCML89o7mgwoKc2TaGkXmU0GEFjAM_S6aIscpBTKME0fnqkCp1nFMb1vKy0vb26GSFrNgy6dHyBCWS0v-HdWFKA1fR4UZ4tqm9Qd1alripowwsKZv4zcjL8-PVo7K12dfCMgO7wWMATwV3YcxHTvvETgFhhGCciUWDqGG1wHzQbBk70klALkXA4AFfwKHbGd0HwnOxkeWZfEGpM3DOAURVy5IONr8BatEqhwweAIRcd4q17VZoV5TnuvJHKhqzZl9jesm3vDvnQ1v_ekH38seb7Wkjaaqo4xxC5KJSn05HsfuYMU47luEPerqVIguKiN0ZlNq-WksXI1Im7sHeIX8vEX94p-4PhpL16-S83vSL34byOOmfiNdkpi8q-AVBV6n2y2x9Mjmf7tQL9Asm1HvM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKewAOvCuWp5EQnNKuE8fJHlctuwF2V4K2am-W7TjqqiFBaSIBp_6ESpX6A_tLOpNs0l0khAS5JXZe9oz9jT3zDSFvgyRULGYMFEn0He4pz9HWNQ5XVuu-q5ivMcB5OhPRAf905LfehBgL0_BDdAtuqBn1eI0KjgvS2zesoSpOMJQcEA2MqfwW2cC03rVV9bVjkGJB0GwsC4YuXuyo5W3su9ur96_MSxvYxD9WQOcydK3nntF9otuvblxOTraqUm-ZX78ROv7Xbz0g9xbIlA4bUXpI1mz2iNxd4it8TC5HysBD6V6ezuOrs_MaqdIxWPLlMc0T6u3SQ5umUFIvNBp0ojEAaelsXhY5iCqUYCQ_3VGFzjMKQ3teVtpenV2MkTgbxl0a_cQYMjpc2uA4pYCs6WReHs-rb1B3r0qTqqANNShY-k_IwejD_k7kLBI7OEZAfzjM47HgiT9IAqZd48aAsnw_jEWswNox2mAqNOt7iRjEvhYi5nAAtOBBmBg38bxNsp7lmX1KqDHhwABMVUiTD2a-AoPRKoV7PoANuegRp-1WaRas55h8I5UNX7Mrsb1l19498r6r_73h-_hjzXe1lHTVVHGCXnKBLw9nY9n_whlGHcuoR960YiRBd3FDRmU2r04lC5GsExOx94hbC8Vf3imHu6Npd_bsX256TW5H-9OJnHycfX5O7sD12gmdiRdkvSwq-xIwVqlf1Vp0DZMvIXo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRAcyltseRkJwSltnDhO9rjqkl2gXQGl6t4sv6KuuiRVmkjAqT8BCYkf2F_CTLIbdpEQEuSW2HnZM_Y3npnPhDyPs0QxyxgokvA9HqrQ0y4wHldOaz9QLNKY4HwwEeMj_mYaTVey-Ft-iG7BDTWjGa9Rwc9stvuLNFTZDDPJAdDAkMqvkk0u_ATlevihI5Bicdz6lQXDCC82XdI2-sHu-v1r09ImtvDnNcy5ilybqSe9SdTyo9uIk9OdutI75utvfI7_81e3yNYCl9JBK0i3yRWX3yE3VtgK75IfqTLwTHpYzGf28uJbg1PpCOz46oQWGQ2H9NjN51DSLDMaDKExAGjpZFaVBQgqlGAeP91TpS5yCgN7UdXaXV58HyFtNoy6dPwFM8joYMW9cU4BV9P9WXUyqz9B3cN6ntUlbYlBwc6_R47SVx_3xt5iWwfPCOgOj4XcCp5F_SxmOjCBBYwVRYkVVoGtY7TBjdBcFGaibyMthOVwALDgcZKZIAvD-2QjL3L3gFBjkr4BkKqQJB-MfAXmolMKPT6ADLnoEW_Zq9IsOM9x6425bNmaA4ntLbv27pGXXf2zlu3jjzVfNELSVVPlKcbIxZE8noyk_54zzDmW4x55tpQiCZqL7hiVu6I-lyxBqk7chr1HgkYm_vJOORimB93Z9r_c9JRcezdM5f7ryduH5DpcbiLQmXhENqqydo8BYFX6SaNDPwE3TyAy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Solid%E2%80%90State+Growth+of+3D+Well%E2%80%90Interconnected+Nitrogen%E2%80%90Rich+Carbon+Nanotube%E2%80%93Graphene+Hybrid+Architectures+for+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Ding%2C+Yuan%E2%80%90Li&rft.au=Kopold%2C+Peter&rft.au=Hahn%2C+Kersten&rft.au=van+Aken%2C+Peter+A.&rft.date=2016-02-16&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=7&rft.spage=1112&rft.epage=1119&rft_id=info:doi/10.1002%2Fadfm.201504294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201504294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon