Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube-Graphene Hybrid Architectures for Lithium-Sulfur Batteries
Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state...
Saved in:
Published in | Advanced functional materials Vol. 26; no. 7; pp. 1112 - 1119 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
16.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT–graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium–sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g−1 at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application.
Using a facile and green solid‐state growth strategy, 3D, well‐interconnected, highly nitrogen‐doped carbon nanotube–graphene hybrid structures are designed and fabricated by using Ni foam as growth substrate and catalyst, glucose as carbon sources, and dicyandiamide as nitrogen sources. When used as cathode hosts for Li–S batteries, the obtained product shows superior lithium‐storage capability. |
---|---|
AbstractList | Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT–graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium–sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g
−1
at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application. Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid-state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT-graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium-sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g super(-1) at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application. Using a facile and green solid-state growth strategy, 3D, well-interconnected, highly nitrogen-doped carbon nanotube-graphene hybrid structures are designed and fabricated by using Ni foam as growth substrate and catalyst, glucose as carbon sources, and dicyandiamide as nitrogen sources. When used as cathode hosts for Li-S batteries, the obtained product shows superior lithium-storage capability. Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties in energy conversion and storage because of the synergistic combination of the advantages of each building block. Herein, a facile solid‐state growth strategy is reported for the first time to fabricate highly nitrogen doped CNT–graphene 3D nanostructures without the necessity to use chemical vapor deposition. As cathode hosts for lithium–sulfur batteries, the hybrid architectures exhibit reversible capacities of 1314 and 922 mAh g−1 at 0.2 and 1 C, respectively, and a capacity retention of 97% after 200 cycles at a high rate of 2 C, revealing their great potential for energy storage application. Using a facile and green solid‐state growth strategy, 3D, well‐interconnected, highly nitrogen‐doped carbon nanotube–graphene hybrid structures are designed and fabricated by using Ni foam as growth substrate and catalyst, glucose as carbon sources, and dicyandiamide as nitrogen sources. When used as cathode hosts for Li–S batteries, the obtained product shows superior lithium‐storage capability. |
Author | Ding, Yuan-Li Maier, Joachim Yu, Yan Kopold, Peter Hahn, Kersten van Aken, Peter A. |
Author_xml | – sequence: 1 givenname: Yuan-Li surname: Ding fullname: Ding, Yuan-Li organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany – sequence: 2 givenname: Peter surname: Kopold fullname: Kopold, Peter organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany – sequence: 3 givenname: Kersten surname: Hahn fullname: Hahn, Kersten organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany – sequence: 4 givenname: Peter A. surname: van Aken fullname: van Aken, Peter A. organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany – sequence: 5 givenname: Joachim surname: Maier fullname: Maier, Joachim organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany – sequence: 6 givenname: Yan surname: Yu fullname: Yu, Yan email: yanyumse@ustc.edu.cn organization: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569, Stuttgart, Germany |
BookMark | eNqFkUtvEzEURkeoSLSFLWsv2Tj4Na9lSElSKU1VAio7y-MHY5jYqe1RyX_gR-MoVVQhoXpzvfjO1b3nXhRnzjtdFO8xmmCEyEehzHZCEC4RIy17VZzjCleQItKcnf74-5viIsafCOG6puy8-DMX0g4abPxgFdwkkTRYBP-YeuANoFfgXg8DvHZJB-md0zJpBdY2Bf9DO_jFyh7MROi8A2vhfBo7DRdB7HrtNFjuu2AVmAbZ25TJMegIjA9gZVNvxy3cjIMZA_gkUm5vdXxbvDZiiPrdU70svs0_f50t4ep2cT2brqCs8tAQU6YqZsrW1LgjkihMyrJsVKVEQyrZybYmVJfUVK0qu6pSLD_aYFY3RhJD6WXx4dh3F_zDqGPiWxtlXlQ47cfIcYMQq0uGWY6yY1QGH2PQhkubJVnvUhB24Bjxg3x-kM9P8jM2-QfbBbsVYf9_oD0Cj_ka-xfSfHo1v3nOwiNrY9K_T6wIv3j2VZf8fr3g6O6wTmaX9C_93Kl- |
CitedBy_id | crossref_primary_10_1007_s00706_023_03160_6 crossref_primary_10_1016_j_ensm_2017_10_013 crossref_primary_10_1002_adfm_202103893 crossref_primary_10_1002_smll_202003391 crossref_primary_10_1002_smll_202101930 crossref_primary_10_1016_j_jpowsour_2016_11_114 crossref_primary_10_1002_adma_201905923 crossref_primary_10_1002_aesr_202200145 crossref_primary_10_1016_j_apsusc_2022_154773 crossref_primary_10_1039_D0TC03554H crossref_primary_10_1007_s12274_017_1659_3 crossref_primary_10_1002_aenm_201900911 crossref_primary_10_1016_j_est_2024_111900 crossref_primary_10_1021_acssuschemeng_8b01843 crossref_primary_10_1002_smll_201805173 crossref_primary_10_1039_C9NR03278A crossref_primary_10_1039_C9CC07693J crossref_primary_10_1016_j_cej_2022_138451 crossref_primary_10_1039_C8TA03968B crossref_primary_10_1039_C7TA04962E crossref_primary_10_2139_ssrn_3954691 crossref_primary_10_1007_s12274_020_3055_7 crossref_primary_10_1007_s12598_020_01439_9 crossref_primary_10_1016_j_est_2023_108339 crossref_primary_10_1002_admi_201600450 crossref_primary_10_1016_j_matdes_2018_04_078 crossref_primary_10_1016_j_scib_2018_04_003 crossref_primary_10_3390_app7101036 crossref_primary_10_1016_j_jelechem_2018_01_037 crossref_primary_10_1021_acsami_9b20426 crossref_primary_10_1039_D0NR07230C crossref_primary_10_1016_j_est_2024_113775 crossref_primary_10_1002_anie_201704324 crossref_primary_10_1002_smll_202002511 crossref_primary_10_1002_aenm_202201585 crossref_primary_10_1002_adma_201602009 crossref_primary_10_1016_j_est_2022_104235 crossref_primary_10_1039_C7NR02368E crossref_primary_10_1007_s40820_020_00449_7 crossref_primary_10_1002_anie_201909339 crossref_primary_10_1039_C7RA02174G crossref_primary_10_1002_aenm_201904010 crossref_primary_10_1039_C6EE02326F crossref_primary_10_1007_s10853_021_06469_x crossref_primary_10_1016_j_flatc_2024_100635 crossref_primary_10_1021_acsaem_2c02767 crossref_primary_10_1021_acsnano_8b08822 crossref_primary_10_1016_j_jpowsour_2024_234996 crossref_primary_10_1002_cey2_96 crossref_primary_10_1016_j_jechem_2019_03_034 crossref_primary_10_1002_adma_201606823 crossref_primary_10_1039_C9TA11572B crossref_primary_10_1039_C8TA11615F crossref_primary_10_1016_S1872_5805_21_60072_0 crossref_primary_10_1021_acsami_1c13484 crossref_primary_10_1021_acsami_8b06054 crossref_primary_10_1021_acsnano_8b06511 crossref_primary_10_1002_slct_202002090 crossref_primary_10_1016_j_jallcom_2019_151887 crossref_primary_10_1016_j_jechem_2020_03_071 crossref_primary_10_1016_j_jechem_2019_11_018 crossref_primary_10_1039_C8TA01483C crossref_primary_10_1016_j_electacta_2017_07_082 crossref_primary_10_1016_j_jallcom_2021_160728 crossref_primary_10_1016_j_mtener_2018_03_007 crossref_primary_10_1002_adma_201901125 crossref_primary_10_1039_C6NR04923K crossref_primary_10_1016_j_carbon_2023_04_006 crossref_primary_10_1016_j_matchemphys_2021_125578 crossref_primary_10_1002_smll_201906634 crossref_primary_10_1039_C7TA01346A crossref_primary_10_1039_C7NR00999B crossref_primary_10_1002_aenm_202201493 crossref_primary_10_1016_j_jpowsour_2016_12_008 crossref_primary_10_1002_adsu_201700081 crossref_primary_10_1021_acsami_7b18894 crossref_primary_10_1002_cplu_201900554 crossref_primary_10_1021_acsaem_2c02421 crossref_primary_10_1149_2_0361810jes crossref_primary_10_1002_cnma_201800078 crossref_primary_10_1016_j_ensm_2021_08_023 crossref_primary_10_1016_j_cej_2017_05_154 crossref_primary_10_1002_sstr_202400354 crossref_primary_10_1016_j_jallcom_2018_02_225 crossref_primary_10_1021_acsnano_1c02567 crossref_primary_10_1016_j_carbon_2017_03_035 crossref_primary_10_1039_C8TA02655F crossref_primary_10_1016_j_snb_2016_10_101 crossref_primary_10_3389_fchem_2020_00254 crossref_primary_10_1021_acsami_7b12556 crossref_primary_10_1039_C6TA10786A crossref_primary_10_1021_acsami_7b08181 crossref_primary_10_1088_1361_6528_aa6143 crossref_primary_10_1002_admi_201700783 crossref_primary_10_1002_smll_202106640 crossref_primary_10_1016_j_ensm_2019_05_013 crossref_primary_10_1007_s12274_020_2622_2 crossref_primary_10_1016_j_nanoen_2017_05_064 crossref_primary_10_1016_j_cej_2019_122852 crossref_primary_10_1016_j_ensm_2018_08_013 crossref_primary_10_1002_celc_201801445 crossref_primary_10_1002_adma_201601759 crossref_primary_10_1021_acs_energyfuels_1c01509 crossref_primary_10_1002_smll_201600809 crossref_primary_10_1007_s11581_020_03645_y crossref_primary_10_1002_advs_201800080 crossref_primary_10_1002_adma_201906357 crossref_primary_10_1002_smll_202002518 crossref_primary_10_1039_D0NA01019G crossref_primary_10_1021_acsaem_1c04061 crossref_primary_10_1002_batt_202200196 crossref_primary_10_1016_j_est_2024_115007 crossref_primary_10_1016_j_apcatb_2017_05_056 crossref_primary_10_1088_1361_6528_aa8dd9 crossref_primary_10_1016_j_electacta_2017_10_138 crossref_primary_10_2139_ssrn_4001269 crossref_primary_10_1002_smll_202303599 crossref_primary_10_1016_j_apmt_2019_06_003 crossref_primary_10_1142_S1793604720510509 crossref_primary_10_1016_j_coche_2016_08_004 crossref_primary_10_1002_adfm_202113316 crossref_primary_10_1016_j_carbon_2021_12_036 crossref_primary_10_1002_adfm_201904819 crossref_primary_10_1016_j_cclet_2022_01_016 crossref_primary_10_1002_eem2_12152 crossref_primary_10_1007_s12274_016_1374_5 crossref_primary_10_1021_acsami_7b09808 crossref_primary_10_3390_ijms24087291 crossref_primary_10_1007_s11581_019_03047_9 crossref_primary_10_1039_C8RA01577E crossref_primary_10_1039_C9TA11500E crossref_primary_10_1016_j_jallcom_2019_05_184 crossref_primary_10_1002_admi_201700686 crossref_primary_10_1016_j_matchar_2019_03_032 crossref_primary_10_1016_j_nanoen_2018_12_019 crossref_primary_10_1002_inf2_12040 crossref_primary_10_1021_acssuschemeng_7b03460 crossref_primary_10_1039_C8CC07623E crossref_primary_10_1002_adfm_201705264 crossref_primary_10_3390_batteries9010045 crossref_primary_10_1021_acs_energyfuels_8b01453 crossref_primary_10_1039_D2TA04984H crossref_primary_10_1088_1361_6528_ac3f15 crossref_primary_10_3390_ma14092448 crossref_primary_10_1016_j_mattod_2018_04_007 crossref_primary_10_1021_acsami_9b02844 crossref_primary_10_1039_C7NR03342G crossref_primary_10_1021_acsami_8b11227 crossref_primary_10_1021_jacs_7b05371 crossref_primary_10_1016_j_jallcom_2020_158445 crossref_primary_10_1021_acsami_6b14687 crossref_primary_10_1016_j_carbon_2020_08_070 crossref_primary_10_1002_ange_202415036 crossref_primary_10_1007_s11051_019_4726_8 crossref_primary_10_1016_j_apsusc_2020_145529 crossref_primary_10_1002_admi_201800766 crossref_primary_10_1016_j_jallcom_2017_09_131 crossref_primary_10_1016_j_apenergy_2018_10_036 crossref_primary_10_1016_j_jallcom_2022_165668 crossref_primary_10_1016_j_joule_2022_01_015 crossref_primary_10_1002_celc_202200549 crossref_primary_10_1016_j_energy_2023_127794 crossref_primary_10_1002_anie_202110699 crossref_primary_10_1039_C6RA05560E crossref_primary_10_20964_2018_08_66 crossref_primary_10_1016_j_carbon_2016_10_035 crossref_primary_10_1016_j_mtener_2018_06_001 crossref_primary_10_1002_slct_201803285 crossref_primary_10_1016_j_ijhydene_2016_08_004 crossref_primary_10_1002_er_5965 crossref_primary_10_1002_cssc_201902659 crossref_primary_10_1016_j_micromeso_2021_111355 crossref_primary_10_1039_D2NJ01662A crossref_primary_10_1016_j_nanoen_2017_04_051 crossref_primary_10_1039_C9QI00054B crossref_primary_10_1039_D1EE00166C crossref_primary_10_1002_smll_202202495 crossref_primary_10_1021_acsami_8b17590 crossref_primary_10_1016_j_matlet_2018_02_004 crossref_primary_10_1016_j_cclet_2024_109675 crossref_primary_10_1021_acsnano_0c05951 crossref_primary_10_1021_acsnano_1c03183 crossref_primary_10_1002_adma_201805134 crossref_primary_10_2139_ssrn_4138992 crossref_primary_10_1016_j_ensm_2019_04_042 crossref_primary_10_1016_j_jallcom_2020_158461 crossref_primary_10_1016_j_jallcom_2020_157011 crossref_primary_10_1021_acsami_0c03621 crossref_primary_10_3390_nano11051164 crossref_primary_10_1016_j_jallcom_2020_153692 crossref_primary_10_1016_j_ensm_2019_04_039 crossref_primary_10_1021_acsanm_4c02122 crossref_primary_10_1002_adfm_201705015 crossref_primary_10_1039_C8NR05102J crossref_primary_10_1016_j_apsusc_2023_158321 crossref_primary_10_1016_j_ensm_2021_11_045 crossref_primary_10_1016_j_ceramint_2019_09_295 crossref_primary_10_1021_acsami_1c17448 crossref_primary_10_1016_j_cclet_2023_109267 crossref_primary_10_1016_j_apcatb_2019_118415 crossref_primary_10_1016_j_nanoen_2020_104685 crossref_primary_10_1016_j_electacta_2021_138179 crossref_primary_10_1007_s11244_022_01581_x crossref_primary_10_1016_j_compositesb_2019_107381 crossref_primary_10_1016_j_jpowsour_2019_226778 crossref_primary_10_1016_j_electacta_2022_140549 crossref_primary_10_1016_j_jcis_2021_10_073 crossref_primary_10_1021_acsaem_4c01480 crossref_primary_10_1021_acsenergylett_7b00164 crossref_primary_10_1039_D1TA10805K crossref_primary_10_1002_slct_201904685 crossref_primary_10_1016_j_nanoms_2021_11_003 crossref_primary_10_1016_j_carbon_2020_06_017 crossref_primary_10_1016_j_jelechem_2021_115564 crossref_primary_10_1088_1755_1315_680_1_012094 crossref_primary_10_1002_adfm_201707520 crossref_primary_10_1016_j_jpowsour_2016_11_038 crossref_primary_10_1016_j_jechem_2021_05_006 crossref_primary_10_1021_acsnano_7b03227 crossref_primary_10_1021_acsomega_9b02287 crossref_primary_10_1039_C7TA01265A crossref_primary_10_1039_C7QM00405B crossref_primary_10_1002_ente_201700531 crossref_primary_10_1016_j_gee_2017_09_003 crossref_primary_10_1039_C6TA07864H crossref_primary_10_1021_acsnano_0c00799 crossref_primary_10_1002_cnma_201600065 crossref_primary_10_1002_aenm_201701110 crossref_primary_10_1039_C7RA07418B crossref_primary_10_1016_j_jallcom_2019_02_181 crossref_primary_10_1039_D3NJ01249B crossref_primary_10_1002_aenm_201700260 crossref_primary_10_1088_1361_6528_ab5477 crossref_primary_10_1002_adfm_201900875 crossref_primary_10_1039_C7TA00799J crossref_primary_10_1002_ange_201704324 crossref_primary_10_1002_ange_201909339 crossref_primary_10_1039_C6TA10242E crossref_primary_10_1007_s00339_021_05177_2 crossref_primary_10_1007_s41918_018_0016_x crossref_primary_10_1016_j_synthmet_2020_116644 crossref_primary_10_1016_j_jcis_2023_10_096 crossref_primary_10_3390_nano8090700 crossref_primary_10_1016_j_isci_2018_07_021 crossref_primary_10_1016_j_jallcom_2025_179118 crossref_primary_10_1021_acsenergylett_6b00033 crossref_primary_10_1088_2516_1075_abea09 crossref_primary_10_1002_aenm_201600917 crossref_primary_10_1039_C9NR05670J crossref_primary_10_1002_anie_202415036 crossref_primary_10_1039_C8CS00904J crossref_primary_10_1016_j_jpowsour_2016_10_012 crossref_primary_10_1039_D1MA00247C crossref_primary_10_1007_s12274_019_2356_1 crossref_primary_10_1016_j_ijhydene_2019_04_159 crossref_primary_10_1016_j_synthmet_2025_117847 crossref_primary_10_12677_NAT_2022_124037 crossref_primary_10_1021_acsaem_7b00049 crossref_primary_10_1149_2_0061801jes crossref_primary_10_1016_j_electacta_2018_04_021 crossref_primary_10_1039_C7RA09332B crossref_primary_10_1016_j_scib_2020_01_021 crossref_primary_10_1002_adfm_202107166 crossref_primary_10_1007_s40820_019_0341_6 crossref_primary_10_1002_adma_201806547 crossref_primary_10_1002_slct_202202626 crossref_primary_10_1016_j_ensm_2020_04_022 crossref_primary_10_1021_acsenergylett_7b00009 crossref_primary_10_1088_1361_6528_ab4841 crossref_primary_10_1016_j_jallcom_2018_04_234 crossref_primary_10_3389_fenrg_2020_615558 crossref_primary_10_1039_C9TA05347F crossref_primary_10_1016_j_electacta_2018_07_222 crossref_primary_10_1039_D1NA00012H crossref_primary_10_1016_j_cclet_2020_09_007 crossref_primary_10_1016_j_carbon_2019_01_055 crossref_primary_10_1002_ange_202110699 crossref_primary_10_3389_fenrg_2019_00157 crossref_primary_10_1002_adfm_201604265 crossref_primary_10_1039_C6TA01945E crossref_primary_10_1039_C7TA09676C crossref_primary_10_1016_j_ceramint_2021_07_239 crossref_primary_10_1016_j_apsadv_2023_100517 crossref_primary_10_1016_j_cej_2019_122551 |
Cites_doi | 10.1039/c3ee41444b 10.1002/ange.201101287 10.1002/anie.201402662 10.1002/adma.201401191 10.1016/j.carbon.2012.03.022 10.1002/adma.201402488 10.1002/chem.200601759 10.1002/advs.201500071 10.1039/c2jm33732k 10.1038/nature04969 10.1039/c1jm00049g 10.1038/ncomms2327 10.1039/c0ee00699h 10.1016/j.jpowsour.2014.05.111 10.1038/nmat2460 10.1021/nn203393d 10.1002/adma.201401243 10.1039/C4TA06255H 10.1002/aenm.201402263 10.1038/ncomms6261 10.1021/ja412943h 10.1021/nn304037d 10.1021/cm4021657 10.1021/acs.nanolett.5b00064 10.1038/nmat3001 10.1016/j.nanoen.2015.05.017 10.1021/nl504705z 10.1002/anie.201203207 10.1039/C4EE00531G 10.1021/ja904595t 10.1038/ncomms2234 10.1126/science.1095140 10.1016/j.carbon.2008.11.047 10.1126/science.1104276 10.1002/adfm.201302631 10.1002/smll.201402502 10.1021/ja308170k 10.1002/admi.201400227 10.1126/science.1168049 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201504294 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1616-3028 |
EndPage | 1119 |
ExternalDocumentID | 10_1002_adfm_201504294 ADFM201504294 ark_67375_WNG_0Q414394_H |
Genre | article |
GrantInformation_xml | – fundername: Recruitment Program of Global Experts – fundername: European Union Seventh Framework Programme funderid: FP7/2007‐2013; 312483 – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology – fundername: New Century Excellent Talents in University funderid: NCET‐12‐0515 – fundername: Alexander von Humboldt Foundation – fundername: Fundamental Research Funds for the Central Universities funderid: WK2060140014; WK2060140016 – fundername: National Natural Science Foundation of China funderid: 21171015; 21373195 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AAYCA ACYXJ AFWVQ ALVPJ AANHP AAYXX ACRPL ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c6734-134d64f59f71b2c2d125558d6da826cbc9723e53f69d5b66d4444381478fc2f33 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 12:39:49 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Tue Jul 01 01:30:22 EDT 2025 Wed Jan 22 16:25:13 EST 2025 Wed Oct 30 09:56:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6734-134d64f59f71b2c2d125558d6da826cbc9723e53f69d5b66d4444381478fc2f33 |
Notes | Alexander von Humboldt Foundation New Century Excellent Talents in University - No. NCET-12-0515 Collaborative Innovation Center of Suzhou Nano Science and Technology istex:23076938E15582D4F85CC2283207EC7C61B698DC European Union Seventh Framework Programme - No. FP7/2007-2013; No. 312483 ArticleID:ADFM201504294 ark:/67375/WNG-0Q414394-H Recruitment Program of Global Experts Fundamental Research Funds for the Central Universities - No. WK2060140014; No. WK2060140016 National Natural Science Foundation of China - No. 21171015; No. 21373195 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1800475414 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1800475414 crossref_citationtrail_10_1002_adfm_201504294 crossref_primary_10_1002_adfm_201504294 wiley_primary_10_1002_adfm_201504294_ADFM201504294 istex_primary_ark_67375_WNG_0Q414394_H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 16, 2016 |
PublicationDateYYYYMMDD | 2016-02-16 |
PublicationDate_xml | – month: 02 year: 2016 text: February 16, 2016 day: 16 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, J. Mater. Chem. 2011, 21, 5430. a) M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051 L. Sun, W. Kong, Y. Jiang, H. Wu, K. Jiang, J. Wang, S. Fan, J. Mater. Chem. A 2015, 3, 5305. L. Chen, L. L. Shaw, J. Power Sources 2014, 267, 770. b) Y.-L. Ding, Y. Wen, C. Wu, P. A. van Aken, J. Maier, Y. Yu, Nano Lett. 2015, 15, 1388 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282. M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358. L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci. 2011, 4, 2682. H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, C. J. Brinker, Science 2004, 304, 567. L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 123, 7270. c) Y.-L. Ding, Y. Wen, P. A. van Aken, J. Maier, Y. Yu, Small 2015, 11, 2011. c) G. Zhou, Y. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263. S. Yuan, Z. Guo, L. Wang, S. Hu, Y. Wang, Y. Xia, Adv. Sci. 2015, 2, 1500071. b) H.-J. Peng, T.-Z. Hou, Q. Zhang, J.-Q. Huang, X.-B. Cheng, M.-Q. Guo, Z. Yuan, L.-Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227 Y. Ito, Y. Tanabe, H. J. Qiu, K. Sugawara, S. Heguri, N. H. Tu, K. K. Huynh, T. Fujita, T. Takahashi, K. Tanigaki, M. Chen, Angew. Chem. Int. Ed. 2014, 53, 4822. a) X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500 Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. A. Chen, S. Huang, ACS Nano 2012, 6, 205. b) F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 2014, 5, 5261. a) Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331 Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R. O. Raji, C. Kittrell, R. H. Hauge, J. M. Tour, Nat. Commun. 2012, 3, 1225. a) J. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y.-B. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 2014, 24, 1243 Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424. b) C. Nan, Z. Lin, H. Liao, M.-K. Song, Y. Li, E. J. Cairns, J. Am. Chem. Soc. 2014, 136, 4659. J. P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 2013, 6, 2839. J. Robertson, J. Mater. Chem. 2012, 22, 19858. T. Sharifi, F. Nitze, H. R. Barzegar, C.-W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, T. Wågberg, Carbon 2012, 50, 3535. a) J. L. Xie, C. X. Guo, C. M. Li, Energy Environ. Sci. 2014, 7, 2559 b) X.-H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 9689. M.-Q. Zhao, X.-F. Liu, Q. Zhang, G.-L. Tian, J.-Q. Huang, W. Zhu, F. Wei, ACS Nano 2012, 6, 10759. K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760. a) B. V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chem. Eur. J. 2007, 13, 4969 C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100. J.-M. Ge, B. Zhang, L.-B. Lv, H.-H. Wang, T.-N. Ye, X. Wei, J. Su, K.-X. Wang, X.-H. Li, J.-S. Chen, Nano Energy 2015, 15, 567. B. Li, S. Li, J. Liu, B. Wang, S. Yang, Nano Lett. 2015, 15, 3073. J. Maier, Chem. Mater. 2014, 26, 348. C. Vallés, M. Pérez-Mendoza, W. K. Maser, M. T. Martínez, L. Alvarez, J. L. Sauvajol, A. M. Benito, Carbon 2009, 47, 998. Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200. Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Adv. Mater. 2014, 26, 5113. b) S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2012, 134, 18510. 2015; 2 2009; 47 2015; 15 2013 2014; 4 136 2014 2015 2015; 7 15 11 2009 2012; 8 134 2015; 3 2007 2012; 13 51 2014; 26 2011; 10 2009; 131 2011; 4 2004; 306 2004; 304 2013; 6 2014 2014; 26 5 2012; 50 2014 2014 2015; 24 1 5 2012; 3 2011; 21 2012; 6 2012; 22 2006; 442 2011; 123 2009; 323 2014; 53 2014; 267 e_1_2_6_30_3 e_1_2_6_10_1 e_1_2_6_30_2 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_15_2 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_5_3 e_1_2_6_7_1 e_1_2_6_5_2 e_1_2_6_6_1 e_1_2_6_1_1 e_1_2_6_25_1 e_1_2_6_23_2 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_22_2 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: L. Sun, W. Kong, Y. Jiang, H. Wu, K. Jiang, J. Wang, S. Fan, J. Mater. Chem. A 2015, 3, 5305. – reference: J.-M. Ge, B. Zhang, L.-B. Lv, H.-H. Wang, T.-N. Ye, X. Wei, J. Su, K.-X. Wang, X.-H. Li, J.-S. Chen, Nano Energy 2015, 15, 567. – reference: T. Sharifi, F. Nitze, H. R. Barzegar, C.-W. Tai, M. Mazurkiewicz, A. Malolepszy, L. Stobinski, T. Wågberg, Carbon 2012, 50, 3535. – reference: C. Tang, Q. Zhang, M.-Q. Zhao, J.-Q. Huang, X.-B. Cheng, G.-L. Tian, H.-J. Peng, F. Wei, Adv. Mater. 2014, 26, 6100. – reference: a) Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Yang, M. T. McDowell, P.-C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331; – reference: c) Y.-L. Ding, Y. Wen, P. A. van Aken, J. Maier, Y. Yu, Small 2015, 11, 2011. – reference: b) C. Nan, Z. Lin, H. Liao, M.-K. Song, Y. Li, E. J. Cairns, J. Am. Chem. Soc. 2014, 136, 4659. – reference: S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282. – reference: L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Energy Environ. Sci. 2011, 4, 2682. – reference: Y. Zhao, W. Wu, J. Li, Z. Xu, L. Guan, Adv. Mater. 2014, 26, 5113. – reference: a) B. V. Lotsch, M. Döblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, W. Schnick, Chem. Eur. J. 2007, 13, 4969; – reference: B. Li, S. Li, J. Liu, B. Wang, S. Yang, Nano Lett. 2015, 15, 3073. – reference: J. Maier, Chem. Mater. 2014, 26, 348. – reference: H. Wang, C. Zhang, Z. Liu, L. Wang, P. Han, H. Xu, K. Zhang, S. Dong, J. Yao, G. Cui, J. Mater. Chem. 2011, 21, 5430. – reference: L. Chen, L. L. Shaw, J. Power Sources 2014, 267, 770. – reference: M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358. – reference: J. Robertson, J. Mater. Chem. 2012, 22, 19858. – reference: a) J. Song, T. Xu, M. L. Gordin, P. Zhu, D. Lv, Y.-B. Jiang, Y. Chen, Y. Duan, D. Wang, Adv. Funct. Mater. 2014, 24, 1243; – reference: b) X.-H. Li, S. Kurasch, U. Kaiser, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 9689. – reference: M.-Q. Zhao, X.-F. Liu, Q. Zhang, G.-L. Tian, J.-Q. Huang, W. Zhu, F. Wei, ACS Nano 2012, 6, 10759. – reference: J. P. Paraknowitsch, A. Thomas, Energy Environ. Sci. 2013, 6, 2839. – reference: c) G. Zhou, Y. Zhao, A. Manthiram, Adv. Energy Mater. 2015, 5, 1402263. – reference: b) Y.-L. Ding, Y. Wen, C. Wu, P. A. van Aken, J. Maier, Y. Yu, Nano Lett. 2015, 15, 1388; – reference: b) S. Xin, L. Gu, N.-H. Zhao, Y.-X. Yin, L.-J. Zhou, Y.-G. Guo, L.-J. Wan, J. Am. Chem. Soc. 2012, 134, 18510. – reference: L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Angew. Chem. Int. Ed. 2011, 123, 7270. – reference: Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.-R. O. Raji, C. Kittrell, R. H. Hauge, J. M. Tour, Nat. Commun. 2012, 3, 1225. – reference: K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760. – reference: S. Yuan, Z. Guo, L. Wang, S. Hu, Y. Wang, Y. Xia, Adv. Sci. 2015, 2, 1500071. – reference: a) M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, F. Wei, Adv. Mater. 2014, 26, 7051; – reference: Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X. A. Chen, S. Huang, ACS Nano 2012, 6, 205. – reference: b) F. Zheng, Y. Yang, Q. Chen, Nat. Commun. 2014, 5, 5261. – reference: H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. López, C. J. Brinker, Science 2004, 304, 567. – reference: a) J. L. Xie, C. X. Guo, C. M. Li, Energy Environ. Sci. 2014, 7, 2559; – reference: a) X. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500; – reference: Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424. – reference: Y. Ito, Y. Tanabe, H. J. Qiu, K. Sugawara, S. Heguri, N. H. Tu, K. K. Huynh, T. Fujita, T. Takahashi, K. Tanigaki, M. Chen, Angew. Chem. Int. Ed. 2014, 53, 4822. – reference: Y. Tang, B. L. Allen, D. R. Kauffman, A. Star, J. Am. Chem. Soc. 2009, 131, 13200. – reference: C. Vallés, M. Pérez-Mendoza, W. K. Maser, M. T. Martínez, L. Alvarez, J. L. Sauvajol, A. M. Benito, Carbon 2009, 47, 998. – reference: b) H.-J. Peng, T.-Z. Hou, Q. Zhang, J.-Q. Huang, X.-B. Cheng, M.-Q. Guo, Z. Yuan, L.-Y. He, F. Wei, Adv. Mater. Interfaces 2014, 1, 1400227; – volume: 123 start-page: 7270 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 306 start-page: 1358 year: 2004 publication-title: Science – volume: 2 start-page: 1500071 year: 2015 publication-title: Adv. Sci. – volume: 3 start-page: 5305 year: 2015 publication-title: J. Mater. Chem. A – volume: 304 start-page: 567 year: 2004 publication-title: Science – volume: 24 1 5 start-page: 1243 1400227 1402263 year: 2014 2014 2015 publication-title: Adv. Funct. Mater. Adv. Mater. Interfaces Adv. Energy Mater. – volume: 50 start-page: 3535 year: 2012 publication-title: Carbon – volume: 442 start-page: 282 year: 2006 publication-title: Nature – volume: 47 start-page: 998 year: 2009 publication-title: Carbon – volume: 6 start-page: 10759 year: 2012 publication-title: ACS Nano – volume: 15 start-page: 567 year: 2015 publication-title: Nano Energy – volume: 7 15 11 start-page: 2559 1388 2011 year: 2014 2015 2015 publication-title: Energy Environ. Sci. Nano Lett. Small – volume: 22 start-page: 19858 year: 2012 publication-title: J. Mater. Chem. – volume: 131 start-page: 13200 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2682 year: 2011 publication-title: Energy Environ. Sci. – volume: 26 start-page: 5113 year: 2014 publication-title: Adv. Mater. – volume: 13 51 start-page: 4969 9689 year: 2007 2012 publication-title: Chem. Eur. J. Angew. Chem. Int. Ed. – volume: 267 start-page: 770 year: 2014 publication-title: J. Power Sources – volume: 15 start-page: 3073 year: 2015 publication-title: Nano Lett. – volume: 323 start-page: 760 year: 2009 publication-title: Science – volume: 6 start-page: 205 year: 2012 publication-title: ACS Nano – volume: 8 134 start-page: 500 18510 year: 2009 2012 publication-title: Nat. Mater. J. Am. Chem. Soc. – volume: 21 start-page: 5430 year: 2011 publication-title: J. Mater. Chem. – volume: 53 start-page: 4822 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 26 start-page: 6100 year: 2014 publication-title: Adv. Mater. – volume: 6 start-page: 2839 year: 2013 publication-title: Energy Environ. Sci. – volume: 4 136 start-page: 1331 4659 year: 2013 2014 publication-title: Nat. Commun. J. Am. Chem. Soc. – volume: 26 start-page: 348 year: 2014 publication-title: Chem. Mater. – volume: 3 start-page: 1225 year: 2012 publication-title: Nat. Commun. – volume: 10 start-page: 424 year: 2011 publication-title: Nat. Mater. – volume: 26 5 start-page: 7051 5261 year: 2014 2014 publication-title: Adv. Mater. Nat. Commun. – ident: e_1_2_6_8_1 doi: 10.1039/c3ee41444b – ident: e_1_2_6_10_1 doi: 10.1002/ange.201101287 – ident: e_1_2_6_13_1 doi: 10.1002/anie.201402662 – ident: e_1_2_6_28_1 doi: 10.1002/adma.201401191 – ident: e_1_2_6_16_1 doi: 10.1016/j.carbon.2012.03.022 – ident: e_1_2_6_19_1 doi: 10.1002/adma.201402488 – ident: e_1_2_6_15_1 doi: 10.1002/chem.200601759 – ident: e_1_2_6_25_1 doi: 10.1002/advs.201500071 – ident: e_1_2_6_17_1 doi: 10.1039/c2jm33732k – ident: e_1_2_6_7_1 doi: 10.1038/nature04969 – ident: e_1_2_6_12_1 doi: 10.1039/c1jm00049g – ident: e_1_2_6_23_1 doi: 10.1038/ncomms2327 – ident: e_1_2_6_21_1 doi: 10.1039/c0ee00699h – ident: e_1_2_6_29_1 doi: 10.1016/j.jpowsour.2014.05.111 – ident: e_1_2_6_22_1 doi: 10.1038/nmat2460 – ident: e_1_2_6_9_1 doi: 10.1021/nn203393d – ident: e_1_2_6_3_1 doi: 10.1002/adma.201401243 – ident: e_1_2_6_26_1 doi: 10.1039/C4TA06255H – ident: e_1_2_6_30_3 doi: 10.1002/aenm.201402263 – ident: e_1_2_6_19_2 doi: 10.1038/ncomms6261 – ident: e_1_2_6_23_2 doi: 10.1021/ja412943h – ident: e_1_2_6_27_1 doi: 10.1021/nn304037d – ident: e_1_2_6_4_1 doi: 10.1021/cm4021657 – ident: e_1_2_6_24_1 doi: 10.1021/acs.nanolett.5b00064 – ident: e_1_2_6_14_1 doi: 10.1038/nmat3001 – ident: e_1_2_6_31_1 doi: 10.1016/j.nanoen.2015.05.017 – ident: e_1_2_6_5_2 doi: 10.1021/nl504705z – ident: e_1_2_6_15_2 doi: 10.1002/anie.201203207 – ident: e_1_2_6_5_1 doi: 10.1039/C4EE00531G – ident: e_1_2_6_18_1 doi: 10.1021/ja904595t – ident: e_1_2_6_2_1 doi: 10.1038/ncomms2234 – ident: e_1_2_6_1_1 doi: 10.1126/science.1095140 – ident: e_1_2_6_20_1 doi: 10.1016/j.carbon.2008.11.047 – ident: e_1_2_6_6_1 doi: 10.1126/science.1104276 – ident: e_1_2_6_30_1 doi: 10.1002/adfm.201302631 – ident: e_1_2_6_5_3 doi: 10.1002/smll.201402502 – ident: e_1_2_6_22_2 doi: 10.1021/ja308170k – ident: e_1_2_6_30_2 doi: 10.1002/admi.201400227 – ident: e_1_2_6_11_1 doi: 10.1126/science.1168049 |
SSID | ssj0017734 |
Score | 2.609251 |
Snippet | Constructing 3D carbon structures built from carbon nanotubes (CNTs) and graphene has been considered as an effective approach to achieve superior properties... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1112 |
SubjectTerms | Architecture Carbon carbon nanotubes Cathodes Graphene Lithium sulfur batteries Nanostructure nitrogen doping solid-state growth Strategy Three dimensional |
Title | Facile Solid-State Growth of 3D Well-Interconnected Nitrogen-Rich Carbon Nanotube-Graphene Hybrid Architectures for Lithium-Sulfur Batteries |
URI | https://api.istex.fr/ark:/67375/WNG-0Q414394-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201504294 https://www.proquest.com/docview/1800475414 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBajfdketnUXll2KBmN7chvZsuw8hmZJGE1gy0rzJiRZoqGePRwb1j71JxQK-4H9JTvHTtxkMAabn2wk36RzpO_onPOJkHeRixVLGANFEl2PByrwtPWNx5XVuusrFmpMcJ5MxfiEf5qH840s_oYfol1wQ82ox2tUcKWXh3ekoSpxmEkOgAaGVCQExYAtREVfWv4oFkWNW1kwDPBi8zVrY9c_3L59a1baxQb-sQU5N4FrPfMMHxG1_uYm4OT8oCr1gbn8jc7xf37qMXm4gqW038jRHrlnsyfkwQZZ4VPyc6gMPJPO8nSR3F5d1zCVjsCML89o7mgwoKc2TaGkXmU0GEFjAM_S6aIscpBTKME0fnqkCp1nFMb1vKy0vb26GSFrNgy6dHyBCWS0v-HdWFKA1fR4UZ4tqm9Qd1alripowwsKZv4zcjL8-PVo7K12dfCMgO7wWMATwV3YcxHTvvETgFhhGCciUWDqGG1wHzQbBk70klALkXA4AFfwKHbGd0HwnOxkeWZfEGpM3DOAURVy5IONr8BatEqhwweAIRcd4q17VZoV5TnuvJHKhqzZl9jesm3vDvnQ1v_ekH38seb7Wkjaaqo4xxC5KJSn05HsfuYMU47luEPerqVIguKiN0ZlNq-WksXI1Im7sHeIX8vEX94p-4PhpL16-S83vSL34byOOmfiNdkpi8q-AVBV6n2y2x9Mjmf7tQL9Asm1HvM |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKewAOvCuWp5EQnNKuE8fJHlctuwF2V4K2am-W7TjqqiFBaSIBp_6ESpX6A_tLOpNs0l0khAS5JXZe9oz9jT3zDSFvgyRULGYMFEn0He4pz9HWNQ5XVuu-q5ivMcB5OhPRAf905LfehBgL0_BDdAtuqBn1eI0KjgvS2zesoSpOMJQcEA2MqfwW2cC03rVV9bVjkGJB0GwsC4YuXuyo5W3su9ur96_MSxvYxD9WQOcydK3nntF9otuvblxOTraqUm-ZX78ROv7Xbz0g9xbIlA4bUXpI1mz2iNxd4it8TC5HysBD6V6ezuOrs_MaqdIxWPLlMc0T6u3SQ5umUFIvNBp0ojEAaelsXhY5iCqUYCQ_3VGFzjMKQ3teVtpenV2MkTgbxl0a_cQYMjpc2uA4pYCs6WReHs-rb1B3r0qTqqANNShY-k_IwejD_k7kLBI7OEZAfzjM47HgiT9IAqZd48aAsnw_jEWswNox2mAqNOt7iRjEvhYi5nAAtOBBmBg38bxNsp7lmX1KqDHhwABMVUiTD2a-AoPRKoV7PoANuegRp-1WaRas55h8I5UNX7Mrsb1l19498r6r_73h-_hjzXe1lHTVVHGCXnKBLw9nY9n_whlGHcuoR960YiRBd3FDRmU2r04lC5GsExOx94hbC8Vf3imHu6Npd_bsX256TW5H-9OJnHycfX5O7sD12gmdiRdkvSwq-xIwVqlf1Vp0DZMvIXo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRAcyltseRkJwSltnDhO9rjqkl2gXQGl6t4sv6KuuiRVmkjAqT8BCYkf2F_CTLIbdpEQEuSW2HnZM_Y3npnPhDyPs0QxyxgokvA9HqrQ0y4wHldOaz9QLNKY4HwwEeMj_mYaTVey-Ft-iG7BDTWjGa9Rwc9stvuLNFTZDDPJAdDAkMqvkk0u_ATlevihI5Bicdz6lQXDCC82XdI2-sHu-v1r09ImtvDnNcy5ilybqSe9SdTyo9uIk9OdutI75utvfI7_81e3yNYCl9JBK0i3yRWX3yE3VtgK75IfqTLwTHpYzGf28uJbg1PpCOz46oQWGQ2H9NjN51DSLDMaDKExAGjpZFaVBQgqlGAeP91TpS5yCgN7UdXaXV58HyFtNoy6dPwFM8joYMW9cU4BV9P9WXUyqz9B3cN6ntUlbYlBwc6_R47SVx_3xt5iWwfPCOgOj4XcCp5F_SxmOjCBBYwVRYkVVoGtY7TBjdBcFGaibyMthOVwALDgcZKZIAvD-2QjL3L3gFBjkr4BkKqQJB-MfAXmolMKPT6ADLnoEW_Zq9IsOM9x6425bNmaA4ntLbv27pGXXf2zlu3jjzVfNELSVVPlKcbIxZE8noyk_54zzDmW4x55tpQiCZqL7hiVu6I-lyxBqk7chr1HgkYm_vJOORimB93Z9r_c9JRcezdM5f7ryduH5DpcbiLQmXhENqqydo8BYFX6SaNDPwE3TyAy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+Solid%E2%80%90State+Growth+of+3D+Well%E2%80%90Interconnected+Nitrogen%E2%80%90Rich+Carbon+Nanotube%E2%80%93Graphene+Hybrid+Architectures+for+Lithium%E2%80%93Sulfur+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Ding%2C+Yuan%E2%80%90Li&rft.au=Kopold%2C+Peter&rft.au=Hahn%2C+Kersten&rft.au=van+Aken%2C+Peter+A.&rft.date=2016-02-16&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=26&rft.issue=7&rft.spage=1112&rft.epage=1119&rft_id=info:doi/10.1002%2Fadfm.201504294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adfm_201504294 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |