Consistency and differences between centrality measures across distinct classes of networks

The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which the...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 14; no. 7; p. e0220061
Main Authors Oldham, Stuart, Fulcher, Ben, Parkes, Linden, Arnatkevic̆iūtė, Aurina, Suo, Chao, Fornito, Alex
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.07.2019
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks.
AbstractList The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks.The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks.
The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks.
Audience Academic
Author Arnatkevic̆iūtė, Aurina
Suo, Chao
Oldham, Stuart
Fornito, Alex
Parkes, Linden
Fulcher, Ben
AuthorAffiliation 1 The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
2 School of Physics, The University of Sydney, Sydney, New South Wales, Australia
University of Texas at Austin, UNITED STATES
AuthorAffiliation_xml – name: 1 The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
– name: University of Texas at Austin, UNITED STATES
– name: 2 School of Physics, The University of Sydney, Sydney, New South Wales, Australia
Author_xml – sequence: 1
  givenname: Stuart
  orcidid: 0000-0002-9619-6102
  surname: Oldham
  fullname: Oldham, Stuart
– sequence: 2
  givenname: Ben
  surname: Fulcher
  fullname: Fulcher, Ben
– sequence: 3
  givenname: Linden
  surname: Parkes
  fullname: Parkes, Linden
– sequence: 4
  givenname: Aurina
  surname: Arnatkevic̆iūtė
  fullname: Arnatkevic̆iūtė, Aurina
– sequence: 5
  givenname: Chao
  surname: Suo
  fullname: Suo, Chao
– sequence: 6
  givenname: Alex
  surname: Fornito
  fullname: Fornito, Alex
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31348798$$D View this record in MEDLINE/PubMed
BookMark eNqNk12L1DAUhousuB_6D0QLgujFjEnTJqkXwjL4MbCw4NeNFyFNT2YydpLdJFXn35uZ6S7TZREppenJ856TvJxzmh1ZZyHLnmI0xYThNyvXeyu76VUKT1FRIETxg-wE16SY0AKRo4P1cXYawgqhinBKH2XHBJOSs5qfZD9mzgYTIli1yaVt89ZoDT79QsgbiL8BbK7ARi87Ezf5GmTofdqTyrsQEh6isSrmqpMhpLjTuU0y53-Gx9lDLbsAT4bvWfbtw_uvs0-Ti8uP89n5xURRRvCEK8Z1ejGRuOGEyUqVUCrcgGSKUNxQ3qq6ppohXtQtQgrVHOtWk4JrYIicZc_3ea86F8TgSxBFQcuqxlXFEzHfE62TK3HlzVr6jXDSiF3A-YWQPhrVgVAKNZppzYEUZSkRp21TUChlXWgJClKud0O1vllDO3gzSjresWYpFu6XoJQixLeHeTUk8O66hxDF2gQFXSctuH537ooxyihN6Is76P23G6iFTBcwVrtUV22TivOqLmnBaU0SNb2HSk8La6NSE2mT4iPB65EgMRH-xIXsQxDzL5__n738PmZfHrBLkF1cBtf10aRWHIPPDp2-tfimexNQ7oFdL3rQtwhGYjskN3aJ7ZCIYUiS7O0dmTJRbssnR0z3b_FfKAAZcg
CitedBy_id crossref_primary_10_1093_bfgp_elaa015
crossref_primary_10_1371_journal_pone_0284180
crossref_primary_10_1007_s11135_022_01416_7
crossref_primary_10_1038_s41598_022_05564_6
crossref_primary_10_1007_s10578_022_01432_6
crossref_primary_10_1038_s41598_023_37570_7
crossref_primary_10_1016_j_csbj_2021_06_004
crossref_primary_10_1080_19490976_2022_2051999
crossref_primary_10_1038_s41598_023_49891_8
crossref_primary_10_1162_netn_a_00324
crossref_primary_10_1111_2041_210X_13949
crossref_primary_10_1038_s41598_025_86166_w
crossref_primary_10_1007_s11571_024_10101_4
crossref_primary_10_1371_journal_pone_0233276
crossref_primary_10_1089_brain_2019_0667
crossref_primary_10_15622_ia_2020_19_6_7
crossref_primary_10_1177_10323732241301106
crossref_primary_10_1002_jnr_25392
crossref_primary_10_3390_ph16060797
crossref_primary_10_1002_eap_2221
crossref_primary_10_1016_j_bpsgos_2021_11_008
crossref_primary_10_1055_a_2361_2840
crossref_primary_10_1177_14680173251318561
crossref_primary_10_1016_j_jtrangeo_2021_103255
crossref_primary_10_1016_j_future_2024_107553
crossref_primary_10_1162_qss_a_00293
crossref_primary_10_1099_mgen_0_000862
crossref_primary_10_3389_fbinf_2022_1045368
crossref_primary_10_5874_jfsr_27_4_280
crossref_primary_10_1162_netn_a_00278
crossref_primary_10_1109_ACCESS_2021_3134759
crossref_primary_10_1162_netn_a_00153
crossref_primary_10_1038_s41598_022_07570_0
crossref_primary_10_1371_journal_pone_0230274
crossref_primary_10_1038_s41598_021_89549_x
crossref_primary_10_1016_j_artmed_2021_102216
crossref_primary_10_3389_fgene_2022_1084727
crossref_primary_10_1007_s10619_021_07321_6
crossref_primary_10_1007_s41109_020_00288_w
crossref_primary_10_15622_ia_23_5_4
crossref_primary_10_3389_fpsyg_2021_719657
crossref_primary_10_1007_s11525_022_09394_0
crossref_primary_10_1016_j_patter_2020_100052
crossref_primary_10_1038_s41398_023_02426_1
crossref_primary_10_1103_PhysRevE_105_044317
crossref_primary_10_1016_j_eswa_2023_122010
crossref_primary_10_1016_j_copsyc_2021_10_010
crossref_primary_10_3390_su14148538
crossref_primary_10_1093_cz_zoad023
crossref_primary_10_1007_s42001_023_00229_4
crossref_primary_10_1073_pnas_2303568120
crossref_primary_10_1038_s42005_022_00949_5
crossref_primary_10_3390_cancers15020556
crossref_primary_10_1016_j_ijdrr_2021_102579
crossref_primary_10_1007_s11682_024_00923_5
crossref_primary_10_1016_j_pscychresns_2021_111356
crossref_primary_10_3390_ani11092682
crossref_primary_10_1049_iet_its_2020_0301
crossref_primary_10_1093_comnet_cnac033
crossref_primary_10_3389_fphys_2021_801622
crossref_primary_10_1371_journal_pone_0242875
crossref_primary_10_1007_s10207_023_00731_w
crossref_primary_10_1186_s12891_024_07539_2
crossref_primary_10_1111_jcap_12421
crossref_primary_10_1016_j_sciaf_2022_e01461
crossref_primary_10_1016_j_compedu_2020_104120
crossref_primary_10_1061_JBENF2_BEENG_7045
crossref_primary_10_3389_fninf_2021_715421
crossref_primary_10_1016_j_samod_2024_100031
crossref_primary_10_1080_03075079_2023_2254799
crossref_primary_10_1007_s12572_024_00381_8
crossref_primary_10_1016_j_est_2023_108192
crossref_primary_10_1007_s11192_022_04343_4
crossref_primary_10_3390_rs16091613
crossref_primary_10_1038_s43588_024_00735_z
crossref_primary_10_3389_fdata_2022_797584
crossref_primary_10_1016_j_biopsych_2021_03_016
crossref_primary_10_1371_journal_pone_0228334
crossref_primary_10_1016_j_cose_2020_101869
crossref_primary_10_1098_rstb_2023_0349
crossref_primary_10_1016_j_neuroimage_2021_118027
crossref_primary_10_1016_j_physa_2020_125483
crossref_primary_10_1371_journal_pone_0296045
crossref_primary_10_3390_ijgi9030140
crossref_primary_10_1109_ACCESS_2020_3038306
crossref_primary_10_1016_j_techfore_2020_120119
crossref_primary_10_1002_prot_26417
crossref_primary_10_1016_j_ocecoaman_2023_106919
crossref_primary_10_1093_heapol_czac025
crossref_primary_10_1111_pirs_12529
crossref_primary_10_3390_electronics12020340
crossref_primary_10_1007_s12038_022_00253_y
crossref_primary_10_1038_s41514_024_00151_7
crossref_primary_10_3389_fcomm_2021_753329
crossref_primary_10_1016_j_jksuci_2021_06_010
crossref_primary_10_1111_1365_2656_13986
crossref_primary_10_1007_s00216_021_03699_5
crossref_primary_10_1103_PhysRevE_107_014126
crossref_primary_10_1515_jib_2022_0029
crossref_primary_10_1093_bib_bbaa357
crossref_primary_10_1145_3649134
crossref_primary_10_1038_s41598_022_04823_w
crossref_primary_10_1177_08933189241239185
crossref_primary_10_1016_j_neuroimage_2021_118870
crossref_primary_10_1080_0022250X_2020_1765776
crossref_primary_10_1093_braincomms_fcab156
crossref_primary_10_1007_s10618_022_00826_3
crossref_primary_10_1080_01969722_2022_2062545
crossref_primary_10_3389_fmicb_2023_1234817
crossref_primary_10_1007_s11301_020_00200_x
crossref_primary_10_1155_2024_6635476
crossref_primary_10_1073_pnas_2403682121
crossref_primary_10_1002_cpe_7657
crossref_primary_10_1080_00207179_2023_2204969
crossref_primary_10_1016_j_neuri_2022_100100
crossref_primary_10_1016_j_pnpbp_2021_110346
crossref_primary_10_1371_journal_pone_0270407
crossref_primary_10_1007_s10207_020_00533_4
crossref_primary_10_1103_PhysRevLett_131_227101
crossref_primary_10_1103_PhysRevE_103_022302
crossref_primary_10_1186_s40649_020_00079_4
crossref_primary_10_1109_ACCESS_2022_3216416
crossref_primary_10_1016_j_clinph_2021_09_011
crossref_primary_10_1590_0101_7438_2021_041_00249751
crossref_primary_10_1016_j_apenergy_2024_122854
crossref_primary_10_1016_j_ress_2021_107798
crossref_primary_10_1016_j_neuroimage_2020_117252
crossref_primary_10_1080_03637751_2022_2067346
crossref_primary_10_1073_pnas_1903403116
crossref_primary_10_1016_j_chaos_2021_111529
crossref_primary_10_1080_19336896_2023_2186674
crossref_primary_10_1016_j_socnet_2023_11_006
crossref_primary_10_1002_hbm_26587
crossref_primary_10_18414_KSZ_2021_9_901
crossref_primary_10_2478_mgr_2022_0007
crossref_primary_10_1155_2024_9220756
crossref_primary_10_1016_j_ijcip_2022_100522
crossref_primary_10_1007_s41109_021_00388_1
crossref_primary_10_1103_PhysRevE_109_034310
crossref_primary_10_3390_en16207131
crossref_primary_10_1016_j_fooweb_2024_e00336
crossref_primary_10_1007_s13235_024_00585_4
crossref_primary_10_1016_j_carres_2023_108986
crossref_primary_10_1016_j_ress_2022_108578
crossref_primary_10_1093_cercor_bhab349
crossref_primary_10_3390_biomedicines10030724
crossref_primary_10_1016_j_psyneuen_2024_107262
crossref_primary_10_1016_j_chaos_2022_112627
crossref_primary_10_3389_fnimg_2023_1115965
crossref_primary_10_3390_ijgi9110674
crossref_primary_10_1007_s10755_025_09794_0
crossref_primary_10_1002_hbm_25088
crossref_primary_10_1016_j_neuroimage_2022_119211
crossref_primary_10_1088_2632_072X_ada845
crossref_primary_10_1016_j_bpj_2021_11_2888
crossref_primary_10_1021_acs_jpcb_3c03886
crossref_primary_10_1038_s41598_020_66650_1
crossref_primary_10_1103_PhysRevE_105_014315
crossref_primary_10_1109_ACCESS_2020_3009525
crossref_primary_10_1098_rsif_2022_0906
crossref_primary_10_1109_TSMC_2024_3510633
crossref_primary_10_1007_s11033_023_08657_1
crossref_primary_10_1016_j_ijdrr_2021_102141
crossref_primary_10_1038_s41598_023_44518_4
crossref_primary_10_1103_PhysRevResearch_5_033123
crossref_primary_10_1109_ACCESS_2020_3044064
crossref_primary_10_1016_j_ejsobi_2021_103378
crossref_primary_10_1109_ACCESS_2021_3131987
crossref_primary_10_1080_09640568_2021_2008329
crossref_primary_10_3390_app10165689
crossref_primary_10_1111_joa_13828
crossref_primary_10_1002_ajpa_24988
crossref_primary_10_1016_j_neuroimage_2024_120914
crossref_primary_10_1186_s12991_023_00449_y
crossref_primary_10_3390_biology11070963
crossref_primary_10_1007_s11060_021_03935_z
crossref_primary_10_1142_S012918312150090X
Cites_doi 10.1016/j.neuron.2013.07.035
10.1016/0378-8733(78)90021-7
10.1038/30918
10.1126/science.1065103
10.1016/S0378-8733(98)00010-0
10.1073/pnas.1208933109
10.5486/PMD.1959.6.3-4.12
10.1109/TPAMI.1979.4766909
10.1016/j.neuroimage.2012.02.018
10.1523/JNEUROSCI.3480-12.2013
10.1002/spe.4380211102
10.1080/13645579.2014.888238
10.1016/j.ins.2011.12.027
10.1038/35075138
10.1016/j.neuroimage.2009.10.003
10.1007/BF02289527
10.1080/0022250X.1972.9989806
10.1103/PhysRevE.80.016118
10.1098/rsif.2013.0048
10.1016/0378-8733(89)90016-6
10.1140/epjb/e2006-00330-7
10.1088/1742-5468/2008/10/P10008
10.1371/journal.pone.0143111
10.1371/journal.pone.0059613
10.1016/j.physa.2008.11.011
10.1098/rsta.2015.0202
10.1038/srep00336
10.1016/j.socnet.2004.11.009
10.1093/comnet/cnt007
10.1038/nphys1746
10.1016/j.socnet.2017.03.010
10.1038/ncomms10168
10.1007/s10588-009-9063-5
10.1007/BF02289026
10.1038/nrn.2017.149
10.1103/PhysRevE.71.056103
10.1016/j.swevo.2016.06.004
10.1103/PhysRevLett.87.198701
10.1007/978-3-540-31856-9_44
10.1371/journal.pone.0058070
10.1016/j.socnet.2005.11.005
10.1080/01621459.1963.10500845
10.1140/epjb/e2007-00033-7
10.1103/PhysRevE.69.026113
10.1016/j.socnet.2017.12.003
10.1038/nature03288
10.1371/journal.pone.0090283
10.1209/epl/i2005-10441-3
10.1016/j.ecocom.2007.02.018
10.1002/asi.21128
10.1016/j.socnet.2004.11.008
10.4236/sn.2013.21003
10.1371/journal.pone.0115503
10.1186/1752-0509-3-102
ContentType Journal Article
Copyright COPYRIGHT 2019 Public Library of Science
2019 Oldham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 Oldham et al 2019 Oldham et al
Copyright_xml – notice: COPYRIGHT 2019 Public Library of Science
– notice: 2019 Oldham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 Oldham et al 2019 Oldham et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0220061
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Public Health Database (NC LIVE)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Engineering Database (NC LIVE)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Agricultural Science Database

MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Consistency of centrality measures across networks
EISSN 1932-6203
ExternalDocumentID 2264591558
oai_doaj_org_article_cc0bf7ff8e3244a086db26e4a92faece
PMC6660088
A594628693
31348798
10_1371_journal_pone_0220061
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Australia
Victoria Australia
GeographicLocations_xml – name: Victoria Australia
– name: Australia
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
3V.
ADRAZ
BBORY
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
PMFND
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c6731-8c78fc7813a1b837a5c4e4c1bea7c361b68dc996f70829d00c0981fdf328fe703
IEDL.DBID M48
ISSN 1932-6203
IngestDate Fri Nov 26 17:13:13 EST 2021
Wed Aug 27 01:14:46 EDT 2025
Thu Aug 21 18:12:43 EDT 2025
Fri Jul 11 01:04:58 EDT 2025
Fri Jul 25 10:26:25 EDT 2025
Tue Jun 17 21:00:02 EDT 2025
Tue Jun 10 20:53:17 EDT 2025
Fri Jun 27 04:01:55 EDT 2025
Fri Jun 27 03:59:10 EDT 2025
Thu May 22 21:20:34 EDT 2025
Wed Feb 19 02:30:16 EST 2025
Tue Jul 01 01:28:44 EDT 2025
Thu Apr 24 23:11:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6731-8c78fc7813a1b837a5c4e4c1bea7c361b68dc996f70829d00c0981fdf328fe703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-9619-6102
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0220061
PMID 31348798
PQID 2264591558
PQPubID 1436336
ParticipantIDs plos_journals_2264591558
doaj_primary_oai_doaj_org_article_cc0bf7ff8e3244a086db26e4a92faece
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660088
proquest_miscellaneous_2265776766
proquest_journals_2264591558
gale_infotracmisc_A594628693
gale_infotracacademiconefile_A594628693
gale_incontextgauss_ISR_A594628693
gale_incontextgauss_IOV_A594628693
gale_healthsolutions_A594628693
pubmed_primary_31348798
crossref_primary_10_1371_journal_pone_0220061
crossref_citationtrail_10_1371_journal_pone_0220061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190726
PublicationDateYYYYMMDD 2019-07-26
PublicationDate_xml – month: 7
  year: 2019
  text: 20190726
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2019
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References J Goñi (ref11) 2013; 8
X Qi (ref46) 2012; 194
DJ Watts (ref63) 1998; 393
P Erdős (ref58) 1959; 6
U Brandes (ref74) 2005
S Achard (ref8) 2012; 109
D Koschützki (ref33) 2004
M Ashtiani (ref32) 2018; 12
A Ghasemian (ref55) 2018
TW Valente (ref27) 2008; 28
KE Joyce (ref43) 2010
G. Sabidussi (ref47) 1966; 31
PJ Kim (ref14) 2007; 55
E Estrada (ref48) 2005; 71
JD Noh (ref49) 2004; 92
T Gili (ref9) 2013; 33
R Guimerà (ref24) 2005; 433
L Page (ref42) 1998; 54
M Kitsak (ref30) 2010; 6
S Maslov (ref59) 2002; 296
DL Davies (ref71) 1979; PAMI-1
E Hancer (ref72) 2017; 32
J Ronqui (ref17) 2015
SP Borgatti (ref1) 2005; 27
X Qi (ref45) 2013; 02
E Estrada (ref52) 2009; 388
F Bloch (ref26) 2016
M Benzi (ref21) 2013; 1
TL Frantz (ref25) 2009; 15
H Jeong (ref6) 2001; 411
J Andreotti (ref34) 2014; 9
LC Freeman (ref3) 1978; 1
E. Estrada (ref22) 2006; 52
C Lozares (ref31) 2015; 18
MEJ Newman (ref53) 2005; 27
DC Van Essen (ref57) 2012; 62
E. Estrada (ref13) 2007; 4
S. Fortunato (ref38) 2010; 486
L Lü (ref44) 2016; 7
VD Blondel (ref66) 2008; 2008
W Hwang (ref54) 2008
X Wang (ref35) 2018
IT Jolliffe (ref60) 2016; 374
BH Good (ref69) 2010; 81
A Clauset (ref56) 2016
V Latora (ref64) 2001; 87
D Schoch (ref18) 2016; 19
E. Estrada (ref23) 2006; 73
BD Fulcher (ref36) 2013; 10
A Lancichinetti (ref68) 2012; 2
MEJ Newman (ref62) 2010
M Jalili (ref12) 2015; 10
A Lancichinetti (ref67) 2009; 80
M Rubinov (ref37) 2010; 52
BG Tabachnick (ref61) 2014
L. Katz (ref41) 1953; 18
E Yan (ref7) 2009; 60
C Li (ref16) 2015; 88
Phillip Bonacich (ref40) 1972; 2
TMJ Fruchterman (ref73) 1991; 21
G del Rio (ref15) 2009; 3
D Schoch (ref20) 2017; 50
JD Power (ref39) 2013; 79
S Iyer (ref28) 2013; 8
DC Bell (ref5) 1999; 21
F Blöchl (ref50) 2011; 83
K Stephenson (ref51) 1989; 11
K Batool (ref29) 2014; 9
SP Borgatti (ref2) 2006; 28
MEJ Newman (ref65) 2004; 69
A Avena-Koenigsberger (ref10) 2017; 19
A Fornito (ref4) 2016
JH Ward (ref70) 1963
D. Schoch (ref19) 2018; 54
References_xml – volume: 79
  start-page: 798
  year: 2013
  ident: ref39
  article-title: Evidence for hubs in human functional brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.035
– volume: 1
  start-page: 215
  year: 1978
  ident: ref3
  article-title: Centrality in social networks conceptual clarification
  publication-title: Soc Networks
  doi: 10.1016/0378-8733(78)90021-7
– volume: 393
  start-page: 440
  year: 1998
  ident: ref63
  article-title: Collective dynamics of’small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
– volume: 296
  start-page: 910
  year: 2002
  ident: ref59
  article-title: Specificity and Stability in Topology of Protein Networks
  publication-title: Science
  doi: 10.1126/science.1065103
– volume: 21
  start-page: 1
  year: 1999
  ident: ref5
  article-title: Centrality measures for disease transmission networks
  publication-title: Soc Networks
  doi: 10.1016/S0378-8733(98)00010-0
– volume: 109
  start-page: 20608
  year: 2012
  ident: ref8
  article-title: Hubs of brain functional networks are radically reorganized in comatose patients
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1208933109
– volume: 6
  start-page: 290
  year: 1959
  ident: ref58
  article-title: The Evolution of Random Graphs
  publication-title: Publ Math Debrecen
  doi: 10.5486/PMD.1959.6.3-4.12
– volume: 12
  start-page: 1
  year: 2018
  ident: ref32
  article-title: A systematic survey of centrality measures for protein-protein interaction networks
  publication-title: BMC Syst Biol. BMC Systems Biology
– year: 2010
  ident: ref62
– year: 2016
  ident: ref4
  article-title: Fundamentals of Brain Network Analysis
– start-page: 1
  year: 2018
  ident: ref55
  article-title: Evaluating Overfit and Underfit in Models of Network Community Structure
  publication-title: arXiv
– volume: PAMI-1
  start-page: 224
  year: 1979
  ident: ref71
  article-title: A Cluster Separation Measure
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.1979.4766909
– volume: 62
  start-page: 2222
  year: 2012
  ident: ref57
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 33
  start-page: 4024
  year: 2013
  ident: ref9
  article-title: The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3480-12.2013
– volume: 486
  start-page: 75
  year: 2010
  ident: ref38
  article-title: Community detection in graphs
  publication-title: Phys Rep. Elsevier B.V.
– start-page: 336
  year: 2008
  ident: ref54
  article-title: Bridging Centrality: Identifying Bridging Nodes In Scale-free Networks
  publication-title: Proc 14th ACM SIGKDD Int Conf Knowl Discov data Min
– volume: 21
  start-page: 1129
  year: 1991
  ident: ref73
  article-title: Graph drawing by force‐directed placement
  publication-title: Softw Pract Exp
  doi: 10.1002/spe.4380211102
– volume: 18
  start-page: 209
  year: 2015
  ident: ref31
  article-title: The structure of global centrality measures
  publication-title: Int J Soc Res Methodol
  doi: 10.1080/13645579.2014.888238
– volume: 194
  start-page: 240
  year: 2012
  ident: ref46
  article-title: Laplacian centrality: A new centrality measure for weighted networks
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2011.12.027
– volume: 411
  start-page: 41
  year: 2001
  ident: ref6
  article-title: Lethality and centrality in protein networks
  publication-title: Nature
  doi: 10.1038/35075138
– volume: 52
  start-page: 1059
  year: 2010
  ident: ref37
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 31
  start-page: 581
  year: 1966
  ident: ref47
  article-title: The centrality index of a graph
  publication-title: Psychometrika
  doi: 10.1007/BF02289527
– volume: 92
  start-page: 1
  year: 2004
  ident: ref49
  article-title: Random Walks on Complex Networks
  publication-title: Phys Rev Lett
– volume: 2
  start-page: 113
  year: 1972
  ident: ref40
  article-title: Factoring and weighting approaches to status scores and clique identification
  publication-title: J Math Sociol
  doi: 10.1080/0022250X.1972.9989806
– volume: 80
  start-page: 1
  year: 2009
  ident: ref67
  article-title: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities
  publication-title: Phys Rev E—Stat Nonlinear, Soft Matter Phys
  doi: 10.1103/PhysRevE.80.016118
– volume: 88
  start-page: 1
  year: 2015
  ident: ref16
  article-title: Correlation between centrality metrics and their application to the opinion model
  publication-title: Eur Phys J B
– volume: 10
  start-page: 20130048
  year: 2013
  ident: ref36
  article-title: Highly comparative time-series analysis: the empirical structure of time series and their methods
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2013.0048
– volume: 11
  start-page: 1
  year: 1989
  ident: ref51
  article-title: Rethinking centrality: Methods and examples
  publication-title: Soc Networks
  doi: 10.1016/0378-8733(89)90016-6
– volume: 52
  start-page: 563
  year: 2006
  ident: ref22
  article-title: Network robustness to targeted attacks. the interplay of expansibility and degree distribution
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2006-00330-7
– volume: 2008
  start-page: P10008
  year: 2008
  ident: ref66
  article-title: Fast unfolding of communities in large networks
  publication-title: J Stat Mech Theory Exp
  doi: 10.1088/1742-5468/2008/10/P10008
– year: 2015
  ident: ref17
  article-title: Analyzing complex networks through correlations in centrality measurements
  publication-title: J Stat Mech Theory Exp
– volume: 10
  start-page: 1
  year: 2015
  ident: ref12
  article-title: CentiServer: A comprehensive resource, web-based application and R package for centrality analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143111
– start-page: 1
  year: 2018
  ident: ref35
  article-title: Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification
  publication-title: Hum Brain Mapp
– volume: 28
  start-page: 16
  year: 2008
  ident: ref27
  article-title: How Correlated Are Network Centrality Measures?
  publication-title: Connections
– start-page: 199
  year: 2004
  ident: ref33
  article-title: Comparison of Centralities for Biological Networks
  publication-title: Proc Ger Conf Bioinforma
– volume: 19
  start-page: 1
  year: 2016
  ident: ref18
  article-title: Re-conceptualizing centrality in social networks
  publication-title: Eur J Appl Math
– volume: 8
  year: 2013
  ident: ref28
  article-title: Attack Robustness and Centrality of Complex Networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0059613
– volume: 388
  start-page: 764
  year: 2009
  ident: ref52
  article-title: Communicability betweenness in complex networks
  publication-title: Phys A Stat Mech its Appl
  doi: 10.1016/j.physa.2008.11.011
– volume: 374
  year: 2016
  ident: ref60
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philos Trans R Soc A Math Phys Eng Sci
  doi: 10.1098/rsta.2015.0202
– year: 2016
  ident: ref56
  article-title: The Colorado Index of Complex Networks
– volume: 2
  year: 2012
  ident: ref68
  article-title: Consensus clustering in complex networks
  publication-title: Sci Rep
  doi: 10.1038/srep00336
– volume: 27
  start-page: 39
  year: 2005
  ident: ref53
  article-title: A measure of betweenness centrality based on random walks
  publication-title: Soc Networks
  doi: 10.1016/j.socnet.2004.11.009
– volume: 1
  start-page: 124
  year: 2013
  ident: ref21
  article-title: Total communicability as a centrality measure
  publication-title: J Complex Networks
  doi: 10.1093/comnet/cnt007
– volume: 6
  start-page: 36
  year: 2010
  ident: ref30
  article-title: Identifying influential spreaders in complex networks
  publication-title: Nat Phys
  doi: 10.1038/nphys1746
– volume: 50
  start-page: 46
  year: 2017
  ident: ref20
  article-title: Correlations among centrality indices and a class of uniquely ranked graphs
  publication-title: Soc Networks
  doi: 10.1016/j.socnet.2017.03.010
– volume: 7
  start-page: 10168
  year: 2016
  ident: ref44
  article-title: The H-index of a network node and its relation to degree and coreness
  publication-title: Nat Commun
  doi: 10.1038/ncomms10168
– volume: 15
  start-page: 303
  year: 2009
  ident: ref25
  article-title: Robustness of centrality measures under uncertainty: Examining the role of network topology
  publication-title: Comput Math Organ Theory
  doi: 10.1007/s10588-009-9063-5
– volume: 18
  start-page: 39
  year: 1953
  ident: ref41
  article-title: A new status index derived from sociometric analysis
  publication-title: Psychometrika
  doi: 10.1007/BF02289026
– volume: 19
  start-page: 17
  year: 2017
  ident: ref10
  article-title: Communication dynamics in complex brain networks
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn.2017.149
– volume: 54
  start-page: 1
  year: 1998
  ident: ref42
  article-title: The PageRank Citation Ranking: Bringing Order to the Web
  publication-title: World Wide Web Internet Web Inf Syst
– volume: 71
  start-page: 29
  year: 2005
  ident: ref48
  article-title: Rodriguez-Velazquez J a. Subgraph Centrality in Complex Networks
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.71.056103
– volume: 32
  start-page: 49
  year: 2017
  ident: ref72
  article-title: A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number
  publication-title: Swarm Evol Comput. Elsevier
  doi: 10.1016/j.swevo.2016.06.004
– start-page: 5
  year: 2010
  ident: ref43
  article-title: A new measure of centrality for brain networks
  publication-title: PLoS One
– volume: 81
  start-page: 1
  year: 2010
  ident: ref69
  article-title: Performance of modularity maximization in practical contexts
  publication-title: Phys Rev E—Stat Nonlinear, Soft Matter Phys
– volume: 87
  start-page: 198701
  year: 2001
  ident: ref64
  article-title: Efficient behavior of small-world networks
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.87.198701
– start-page: 533
  year: 2005
  ident: ref74
  article-title: Centrality measures based on current flow
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-540-31856-9_44
– volume: 8
  year: 2013
  ident: ref11
  article-title: Exploring the Morphospace of Communication Efficiency in Complex Networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058070
– volume: 28
  start-page: 466
  year: 2006
  ident: ref2
  article-title: A Graph-theoretic perspective on centrality
  publication-title: Soc Networks
  doi: 10.1016/j.socnet.2005.11.005
– start-page: 236
  year: 1963
  ident: ref70
  article-title: Hierarchical Grouping to Optimize an Objective Function
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1963.10500845
– volume: 55
  start-page: 109
  year: 2007
  ident: ref14
  article-title: Reliability of rank order in sampled networks
  publication-title: Eur Phys J B
  doi: 10.1140/epjb/e2007-00033-7
– volume: 69
  start-page: 026113
  year: 2004
  ident: ref65
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.026113
– volume: 54
  start-page: 50
  year: 2018
  ident: ref19
  article-title: Centrality without indices: Partial rankings and rank probabilities in networks
  publication-title: Soc Networks
  doi: 10.1016/j.socnet.2017.12.003
– volume: 433
  start-page: 895
  year: 2005
  ident: ref24
  article-title: Functional cartography of complex metabolic networks
  publication-title: Nature
  doi: 10.1038/nature03288
– volume: 9
  year: 2014
  ident: ref29
  article-title: Towards a methodology for validation of centrality measures in complex networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0090283
– year: 2014
  ident: ref61
  article-title: Using multivariate statistics
– volume: 73
  start-page: 649
  year: 2006
  ident: ref23
  article-title: Spectral scaling and good expansion properties in complex networks
  publication-title: Europhys Lett
  doi: 10.1209/epl/i2005-10441-3
– volume: 4
  start-page: 48
  year: 2007
  ident: ref13
  article-title: Characterization of topological keystone species. Local, global and “meso-scale” centralities in food webs
  publication-title: Ecol Complex
  doi: 10.1016/j.ecocom.2007.02.018
– volume: 83
  start-page: 1
  year: 2011
  ident: ref50
  article-title: Vertex centralities in input-output networks reveal the structure of modern economies
  publication-title: Phys Rev E—Stat Nonlinear
– volume: 60
  start-page: 2107
  year: 2009
  ident: ref7
  article-title: Applying centrality measures to impact analysis: A coauthorship network analysis
  publication-title: J Am Soc Inf Sci Technol
  doi: 10.1002/asi.21128
– volume: 27
  start-page: 55
  year: 2005
  ident: ref1
  article-title: Centrality and network flow
  publication-title: Soc Networks
  doi: 10.1016/j.socnet.2004.11.008
– volume: 02
  start-page: 19
  year: 2013
  ident: ref45
  article-title: Terrorist Networks, Network Energy and Node Removal: A New Measure of Centrality Based on Laplacian Energy
  publication-title: Soc Netw
  doi: 10.4236/sn.2013.21003
– year: 2016
  ident: ref26
  article-title: Centrality Measures in Networks
  publication-title: Centrality Measures in Networks
– volume: 9
  start-page: 1
  year: 2014
  ident: ref34
  article-title: Validation of network communicability metrics for the analysis of brain structural networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0115503
– volume: 3
  start-page: 102
  year: 2009
  ident: ref15
  article-title: How to identify essential genes from molecular networks
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-3-102
SSID ssj0053866
Score 2.6516385
Snippet The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0220061
SubjectTerms Analysis
Cluster Analysis
Clustering
Clustering (Computers)
Collaboration
Computer and Information Sciences
Correlation
Correlation analysis
Engineering and Technology
Humans
Mental health
Models, Theoretical
Modularity
Multivariate Analysis
Network architectures
Network topologies
Networks
Neural Networks, Computer
Nodes
Physical Sciences
Principal Component Analysis
Principal components analysis
Research and Analysis Methods
Social networks
Social Sciences
Theory
Topology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggylcDBQxCAg5p4zixk2NBVAUJkICiShws27ELUklWZPfAv2fGdqIGVSoHDnuxX3azM-PxTDLzTMgzzztXNkbnvvJVXjHvc6NFnXcFjHsppe3wOeT7D-L4pHp3Wp9eOOoLa8IiPXAU3IG1hfHS-8bB1l9piMA7UwpX6bb02lmH3hf2vCmZij4YVrEQqVGOS3aQ9LK_Hnq3j72lhWCLjSjw9c9eebU-H8bLQs6_KycvbEVHN8mNFEPSw3jvO-Sa62-RnbRKR_oiUUm_vE2-hfM4R4yLf1Pdd3Q6DwVxqUSLpl-BcJz-jE8MR6rDTQMcPEBvN9RikA3jg6d9LBwf75CTozdfXh_n6TiF3ArJWd5Y2Xj4MK6ZgbxU17ZylWXGaWm5YEY0nYX0x0vst-2KwhZtw3znedl4B57hLln1IMBdQg0rXVG6uoXNrWoLbcBlth5ZbgXEO95nhE-yVTZxjeORF-cqvECTkHNEUSnUiEoayUg-X7WOXBtX4F-h2mYsMmWHAbAflexHXWU_GXmMSlex7XRe7-qwbkPbbssz8jQgkC2jx3KcM70dR_X249d_AH3-tAA9TyA_gDisTi0Q8J-QhWuB3FsgYc3bxfQumugklVFhO3SNVP8NXDmZ7eXTT-Zp_FIssevdsA2YGqmdhMjIvWjls2Q545DYtnC1XNj_QvTLmf7H90BWDukxhJnN_f-hqwfkOsSrLbaClmKPrDa_tu4hxIQb8ygs_z9OdmQk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_geOEFMb5WNiAgJOAhW9O0SfuEBmIaSIAEDJ3EQ5WkyUDa2mO9e-C_x07TQtEEPNxL4tz17NixU_tnQh570bisNJr53Ocs594zo2XBmhTGvVLKNngP-fadPDrO3yyLZbxw62Na5WgTg6FuOot35PtY8FkgmHn5fPWdYdcofLsaW2hcJlcQugxTutRyCrhAl6WM5XJC8f0onb1V17o9rDBNJZ8dRwG1f7LNi9Vp11_keP6ZP_nbgXR4nVyLniQ9GES_RS659gbZirra06cRUPrZTfIldOXs0Tv-QXXb0LErCtLFRC0afwWccno23Bv2VIeHBnKwA61dU4uuNox3nrZD-nh_ixwfvvr08ojFpgrMSiU4K60qPXy40NxAdKoLm7vccuO0skJyI8vGQhDkFVbdNmlq06rkvvEiK70D-3CbLFpg4DahhmcuzVxRwRGXV6k2YDgrj1i3Erwe7xMiRt7WNiKOY-OL0zq8RlMQeQysqlEidZRIQti0ajUgbvyD_gWKbaJFvOww0J2f1FH9amtT45X3pQMHMtcQxzUmky7XVea1sy4hD1Do9VB8Oml9fVBUoXi3Egl5FCgQM6PFpJwTven7-vX7z_9B9PHDjOhJJPIdsMPqWAgB_wmxuGaUuzNK0Hw7m97GLTpypa9_6QisHLftxdMPp2n8Uky0a123CTQFAjxJmZA7wy6fOCu4gPC2gtVqtv9nrJ_PtN--BshyCJLB2Szv_v2xdshV8EexqI5lcpcs1ucbdw98vrW5HxT7J3gpWcA
  priority: 102
  providerName: ProQuest
Title Consistency and differences between centrality measures across distinct classes of networks
URI https://www.ncbi.nlm.nih.gov/pubmed/31348798
https://www.proquest.com/docview/2264591558
https://www.proquest.com/docview/2265776766
https://pubmed.ncbi.nlm.nih.gov/PMC6660088
https://doaj.org/article/cc0bf7ff8e3244a086db26e4a92faece
http://dx.doi.org/10.1371/journal.pone.0220061
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnwtMEpASMBDqjgfdvKA0DatDKQNNCiqxENkO_ZAKklpWon999w5TkRQ0XhoHuyf0_Zsn39n--4IeW7iUkeZFIFJTBIk1JhACpYGZQjlhnOuStyHPDtnp7Pk_Tyd75AuZ6sTYLPVtMN8UrPVYvLr59UbmPCvbdYGTrtGk2Vd6Ql6joZoD-3C2sRxqp4l_bkCzG57eomsJWBRGDtnun-9ZbBY2Zj-veYeLRd1s42W_n278o_lanqb3HI80z9sB8Ye2dHVHbLnZnLjv3Thpl_dJV9tzs4GufOVL6rS73KmIM5d4_LdtwBl93-0u4qNL-yPBjhoiUqtfYVEHMpr41ft5fLmHplNTz4fnwYu5UKgGI9pkCmeGfjQWFAJtqtIVaITRaUWXMWMSpaVCkwkw9EntwxDFeYZNaWJo8xo0B73yagCAe4TX9JIh5FOc1gAkzwUEtRqbjASLgNOZIxH4k62hXLxyDEtxqKwh2wc7JJWVAX2SOF6xCNB32rZxuO4Bn-E3dZjMZq2LahXl4WbnIVSoTTcmEwDvUwEWHmljJhORB4ZoZX2yBPs9KJ1Te11QnGY5ta1N4898swiMKJGhVd2LsWmaYp3H778B-jTxQD0woFMDeJQwrlJwH_CSF0D5MEACXpBDar3cYh2UmkKdJlOMR1ABi27Ybu9-mlfjS_Fa3iVrjcWk2L4J8Y88qAd5b1kYxqD8ZtDaz4Y_wPRD2uq799sQHMwoYGKZg-vFfMjchMIK3rdBRE7IKP1aqMfAylcyzG5weccntkxxef07ZjsHp2cf7wY222WsdUDvwERw2ej
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQNs7DTg4IlUe1pQ8kaNFKHIzj2AWpJEuzK9Q_xW9kxnECQRVw6SEX-3Me4_F4xpkHIQ9tXJooK1RgE5sECbM2KBRPgzKEdiuE0CWeQ-7t88lh8maaTpfIjy4WBt0qO5noBHVZazwj38CAzxSTmWfPZ98CrBqFf1e7EhotW-yY0-9gsjXPtl_B_D6Koq3XBy8nga8qEGguYhZkWmQWLhYrVoB5plKdmESzwiihY84KnpUarAArMOy0DEMd5hmzpY2jzBpYIHDfC-QibLwhrigx7Q08kB2c-_C8WLANzw3rs7oy6xjRGnI22P5clYB-LxjNjuvmLEX3T3_N3zbAravkitdc6WbLastkyVTXyLKXDQ194hNYP71OProqoA1q46dUVSXtqrAgzjuGUf8UMALo1_acsqHKvTTAQe5Uek41qvbQXltate7qzQ1yeC7kvklGFRBwhdCCRSaMTJrDlprkoSpAUOcWc-ty0LKsHZO4o63UPsM5Fto4lu63nQBLpyWVxBmRfkbGJOhHzdoMH__Av8Bp67GYn9s11CdH0i93qXVYWGFtZkBhTRTYjWURcZOoPLLKaDMmazjpsg127aWM3ExzFyycx2PywCEwR0eFTkBHatE0cvvth_8AvX83AD32IFsDObTygRfwTZj7a4BcHSBB0uhB9wqyaEeVRv5akzCyY9uzu-_33XhTdOyrTL1wmBQTSnE-JrdaLu8pG7MYzOkcRosB_w9IP-ypvnx2KdLBKAflNrv999daI5cmB3u7cnd7f-cOuQy6MAb0BRFfJaP5ycLcBX1zXtxzi5yST-ctVX4CcGWWCQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJqoFCDQMAh3TgPOzkgVCirLoWCoEUrcQiOYxekkizNrlD_Gr-OGccJBFXApYdc7M95jMfjGWcehNw3UanDtJC-iU3sx8wYv5A88csA2o0QQpV4Dvl6j-8cxC9nyWyF_OhiYdCtspOJVlCXtcIz8jEGfCaYzDwdG-cW8XZ78nT-zccKUvintSun0bLIrj75DuZb82S6DXP9IAwnL_af7_iuwoCvuIiYnyqRGrhYJFkBpppMVKxjxQothYo4K3haKrAIjMAQ1DIIVJClzJQmClOjYbHAfc-R8yJKGK4xMeuNPZAjnLtQvUiwseOMzXld6U2Mbg04G2yFtmJAvy-M5kd1c5rS-6fv5m-b4eQyueS0WLrVst0qWdHVFbLq5ERDH7lk1o-vko-2ImiDmvkJlVVJu4osiHNOYtQ9BQwC-rU9s2yotC8NcJBBlVpQhWo-tNeGVq3renONHJwJua-TUQUEXCO0YKEOQp1ksL3GWSALENqZwTy7HDQuYzwSdbTNlct2jkU3jnL7C0-A1dOSKscZyd2MeMTvR83bbB__wD_DaeuxmKvbNtTHh7lb-rlSQWGEMakG5TWWYEOWRch1LLPQSK20RzZw0vM28LWXOPlWktnA4SzyyD2LwHwdFXL-oVw2TT598-E_QO_fDUAPHcjUQA4lXRAGfBPmARsg1wdIkDpq0L2GLNpRpcl_rU8Y2bHt6d13-268KTr5VbpeWkyCyaU498iNlst7ykYsAtM6g9FiwP8D0g97qi-fbbp0MNBB0U1v_v21NsgFkCf5q-ne7i1yEdRijO3zQ75ORovjpb4NqueiuGPXOCWfzlqo_ARmlpo_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistency+and+differences+between+centrality+measures+across+distinct+classes+of+networks&rft.jtitle=PloS+one&rft.au=Parkes%2C+Linden&rft.au=Suo%2C+Chao&rft.au=Fulcher%2C+Ben&rft.au=Arnatkevic%C3%8Ciut%C3%84%2C+Aurina&rft.date=2019-07-26&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.pone.0220061&rft.externalDBID=n%2Fa&rft.externalDocID=A594628693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon