Consistency and differences between centrality measures across distinct classes of networks
The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which the...
Saved in:
Published in | PloS one Vol. 14; no. 7; p. e0220061 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
26.07.2019
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks. |
---|---|
AbstractList | The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks.The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks. The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or be influenced by, other nodes via its connection topology. Many different centrality measures have been proposed, but the degree to which they offer unique information, and whether it is advantageous to use multiple centrality measures to define node roles, is unclear. Here we calculate correlations between 17 different centrality measures across 212 diverse real-world networks, examine how these correlations relate to variations in network density and global topology, and investigate whether nodes can be clustered into distinct classes according to their centrality profiles. We find that centrality measures are generally positively correlated to each other, the strength of these correlations varies across networks, and network modularity plays a key role in driving these cross-network variations. Data-driven clustering of nodes based on centrality profiles can distinguish different roles, including topological cores of highly central nodes and peripheries of less central nodes. Our findings illustrate how network topology shapes the pattern of correlations between centrality measures and demonstrate how a comparative approach to network centrality can inform the interpretation of nodal roles in complex networks. |
Audience | Academic |
Author | Arnatkevic̆iūtė, Aurina Suo, Chao Oldham, Stuart Fornito, Alex Parkes, Linden Fulcher, Ben |
AuthorAffiliation | 1 The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia 2 School of Physics, The University of Sydney, Sydney, New South Wales, Australia University of Texas at Austin, UNITED STATES |
AuthorAffiliation_xml | – name: 1 The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia – name: University of Texas at Austin, UNITED STATES – name: 2 School of Physics, The University of Sydney, Sydney, New South Wales, Australia |
Author_xml | – sequence: 1 givenname: Stuart orcidid: 0000-0002-9619-6102 surname: Oldham fullname: Oldham, Stuart – sequence: 2 givenname: Ben surname: Fulcher fullname: Fulcher, Ben – sequence: 3 givenname: Linden surname: Parkes fullname: Parkes, Linden – sequence: 4 givenname: Aurina surname: Arnatkevic̆iūtė fullname: Arnatkevic̆iūtė, Aurina – sequence: 5 givenname: Chao surname: Suo fullname: Suo, Chao – sequence: 6 givenname: Alex surname: Fornito fullname: Fornito, Alex |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31348798$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk12L1DAUhousuB_6D0QLgujFjEnTJqkXwjL4MbCw4NeNFyFNT2YydpLdJFXn35uZ6S7TZREppenJ856TvJxzmh1ZZyHLnmI0xYThNyvXeyu76VUKT1FRIETxg-wE16SY0AKRo4P1cXYawgqhinBKH2XHBJOSs5qfZD9mzgYTIli1yaVt89ZoDT79QsgbiL8BbK7ARi87Ezf5GmTofdqTyrsQEh6isSrmqpMhpLjTuU0y53-Gx9lDLbsAT4bvWfbtw_uvs0-Ti8uP89n5xURRRvCEK8Z1ejGRuOGEyUqVUCrcgGSKUNxQ3qq6ppohXtQtQgrVHOtWk4JrYIicZc_3ea86F8TgSxBFQcuqxlXFEzHfE62TK3HlzVr6jXDSiF3A-YWQPhrVgVAKNZppzYEUZSkRp21TUChlXWgJClKud0O1vllDO3gzSjresWYpFu6XoJQixLeHeTUk8O66hxDF2gQFXSctuH537ooxyihN6Is76P23G6iFTBcwVrtUV22TivOqLmnBaU0SNb2HSk8La6NSE2mT4iPB65EgMRH-xIXsQxDzL5__n738PmZfHrBLkF1cBtf10aRWHIPPDp2-tfimexNQ7oFdL3rQtwhGYjskN3aJ7ZCIYUiS7O0dmTJRbssnR0z3b_FfKAAZcg |
CitedBy_id | crossref_primary_10_1093_bfgp_elaa015 crossref_primary_10_1371_journal_pone_0284180 crossref_primary_10_1007_s11135_022_01416_7 crossref_primary_10_1038_s41598_022_05564_6 crossref_primary_10_1007_s10578_022_01432_6 crossref_primary_10_1038_s41598_023_37570_7 crossref_primary_10_1016_j_csbj_2021_06_004 crossref_primary_10_1080_19490976_2022_2051999 crossref_primary_10_1038_s41598_023_49891_8 crossref_primary_10_1162_netn_a_00324 crossref_primary_10_1111_2041_210X_13949 crossref_primary_10_1038_s41598_025_86166_w crossref_primary_10_1007_s11571_024_10101_4 crossref_primary_10_1371_journal_pone_0233276 crossref_primary_10_1089_brain_2019_0667 crossref_primary_10_15622_ia_2020_19_6_7 crossref_primary_10_1177_10323732241301106 crossref_primary_10_1002_jnr_25392 crossref_primary_10_3390_ph16060797 crossref_primary_10_1002_eap_2221 crossref_primary_10_1016_j_bpsgos_2021_11_008 crossref_primary_10_1055_a_2361_2840 crossref_primary_10_1177_14680173251318561 crossref_primary_10_1016_j_jtrangeo_2021_103255 crossref_primary_10_1016_j_future_2024_107553 crossref_primary_10_1162_qss_a_00293 crossref_primary_10_1099_mgen_0_000862 crossref_primary_10_3389_fbinf_2022_1045368 crossref_primary_10_5874_jfsr_27_4_280 crossref_primary_10_1162_netn_a_00278 crossref_primary_10_1109_ACCESS_2021_3134759 crossref_primary_10_1162_netn_a_00153 crossref_primary_10_1038_s41598_022_07570_0 crossref_primary_10_1371_journal_pone_0230274 crossref_primary_10_1038_s41598_021_89549_x crossref_primary_10_1016_j_artmed_2021_102216 crossref_primary_10_3389_fgene_2022_1084727 crossref_primary_10_1007_s10619_021_07321_6 crossref_primary_10_1007_s41109_020_00288_w crossref_primary_10_15622_ia_23_5_4 crossref_primary_10_3389_fpsyg_2021_719657 crossref_primary_10_1007_s11525_022_09394_0 crossref_primary_10_1016_j_patter_2020_100052 crossref_primary_10_1038_s41398_023_02426_1 crossref_primary_10_1103_PhysRevE_105_044317 crossref_primary_10_1016_j_eswa_2023_122010 crossref_primary_10_1016_j_copsyc_2021_10_010 crossref_primary_10_3390_su14148538 crossref_primary_10_1093_cz_zoad023 crossref_primary_10_1007_s42001_023_00229_4 crossref_primary_10_1073_pnas_2303568120 crossref_primary_10_1038_s42005_022_00949_5 crossref_primary_10_3390_cancers15020556 crossref_primary_10_1016_j_ijdrr_2021_102579 crossref_primary_10_1007_s11682_024_00923_5 crossref_primary_10_1016_j_pscychresns_2021_111356 crossref_primary_10_3390_ani11092682 crossref_primary_10_1049_iet_its_2020_0301 crossref_primary_10_1093_comnet_cnac033 crossref_primary_10_3389_fphys_2021_801622 crossref_primary_10_1371_journal_pone_0242875 crossref_primary_10_1007_s10207_023_00731_w crossref_primary_10_1186_s12891_024_07539_2 crossref_primary_10_1111_jcap_12421 crossref_primary_10_1016_j_sciaf_2022_e01461 crossref_primary_10_1016_j_compedu_2020_104120 crossref_primary_10_1061_JBENF2_BEENG_7045 crossref_primary_10_3389_fninf_2021_715421 crossref_primary_10_1016_j_samod_2024_100031 crossref_primary_10_1080_03075079_2023_2254799 crossref_primary_10_1007_s12572_024_00381_8 crossref_primary_10_1016_j_est_2023_108192 crossref_primary_10_1007_s11192_022_04343_4 crossref_primary_10_3390_rs16091613 crossref_primary_10_1038_s43588_024_00735_z crossref_primary_10_3389_fdata_2022_797584 crossref_primary_10_1016_j_biopsych_2021_03_016 crossref_primary_10_1371_journal_pone_0228334 crossref_primary_10_1016_j_cose_2020_101869 crossref_primary_10_1098_rstb_2023_0349 crossref_primary_10_1016_j_neuroimage_2021_118027 crossref_primary_10_1016_j_physa_2020_125483 crossref_primary_10_1371_journal_pone_0296045 crossref_primary_10_3390_ijgi9030140 crossref_primary_10_1109_ACCESS_2020_3038306 crossref_primary_10_1016_j_techfore_2020_120119 crossref_primary_10_1002_prot_26417 crossref_primary_10_1016_j_ocecoaman_2023_106919 crossref_primary_10_1093_heapol_czac025 crossref_primary_10_1111_pirs_12529 crossref_primary_10_3390_electronics12020340 crossref_primary_10_1007_s12038_022_00253_y crossref_primary_10_1038_s41514_024_00151_7 crossref_primary_10_3389_fcomm_2021_753329 crossref_primary_10_1016_j_jksuci_2021_06_010 crossref_primary_10_1111_1365_2656_13986 crossref_primary_10_1007_s00216_021_03699_5 crossref_primary_10_1103_PhysRevE_107_014126 crossref_primary_10_1515_jib_2022_0029 crossref_primary_10_1093_bib_bbaa357 crossref_primary_10_1145_3649134 crossref_primary_10_1038_s41598_022_04823_w crossref_primary_10_1177_08933189241239185 crossref_primary_10_1016_j_neuroimage_2021_118870 crossref_primary_10_1080_0022250X_2020_1765776 crossref_primary_10_1093_braincomms_fcab156 crossref_primary_10_1007_s10618_022_00826_3 crossref_primary_10_1080_01969722_2022_2062545 crossref_primary_10_3389_fmicb_2023_1234817 crossref_primary_10_1007_s11301_020_00200_x crossref_primary_10_1155_2024_6635476 crossref_primary_10_1073_pnas_2403682121 crossref_primary_10_1002_cpe_7657 crossref_primary_10_1080_00207179_2023_2204969 crossref_primary_10_1016_j_neuri_2022_100100 crossref_primary_10_1016_j_pnpbp_2021_110346 crossref_primary_10_1371_journal_pone_0270407 crossref_primary_10_1007_s10207_020_00533_4 crossref_primary_10_1103_PhysRevLett_131_227101 crossref_primary_10_1103_PhysRevE_103_022302 crossref_primary_10_1186_s40649_020_00079_4 crossref_primary_10_1109_ACCESS_2022_3216416 crossref_primary_10_1016_j_clinph_2021_09_011 crossref_primary_10_1590_0101_7438_2021_041_00249751 crossref_primary_10_1016_j_apenergy_2024_122854 crossref_primary_10_1016_j_ress_2021_107798 crossref_primary_10_1016_j_neuroimage_2020_117252 crossref_primary_10_1080_03637751_2022_2067346 crossref_primary_10_1073_pnas_1903403116 crossref_primary_10_1016_j_chaos_2021_111529 crossref_primary_10_1080_19336896_2023_2186674 crossref_primary_10_1016_j_socnet_2023_11_006 crossref_primary_10_1002_hbm_26587 crossref_primary_10_18414_KSZ_2021_9_901 crossref_primary_10_2478_mgr_2022_0007 crossref_primary_10_1155_2024_9220756 crossref_primary_10_1016_j_ijcip_2022_100522 crossref_primary_10_1007_s41109_021_00388_1 crossref_primary_10_1103_PhysRevE_109_034310 crossref_primary_10_3390_en16207131 crossref_primary_10_1016_j_fooweb_2024_e00336 crossref_primary_10_1007_s13235_024_00585_4 crossref_primary_10_1016_j_carres_2023_108986 crossref_primary_10_1016_j_ress_2022_108578 crossref_primary_10_1093_cercor_bhab349 crossref_primary_10_3390_biomedicines10030724 crossref_primary_10_1016_j_psyneuen_2024_107262 crossref_primary_10_1016_j_chaos_2022_112627 crossref_primary_10_3389_fnimg_2023_1115965 crossref_primary_10_3390_ijgi9110674 crossref_primary_10_1007_s10755_025_09794_0 crossref_primary_10_1002_hbm_25088 crossref_primary_10_1016_j_neuroimage_2022_119211 crossref_primary_10_1088_2632_072X_ada845 crossref_primary_10_1016_j_bpj_2021_11_2888 crossref_primary_10_1021_acs_jpcb_3c03886 crossref_primary_10_1038_s41598_020_66650_1 crossref_primary_10_1103_PhysRevE_105_014315 crossref_primary_10_1109_ACCESS_2020_3009525 crossref_primary_10_1098_rsif_2022_0906 crossref_primary_10_1109_TSMC_2024_3510633 crossref_primary_10_1007_s11033_023_08657_1 crossref_primary_10_1016_j_ijdrr_2021_102141 crossref_primary_10_1038_s41598_023_44518_4 crossref_primary_10_1103_PhysRevResearch_5_033123 crossref_primary_10_1109_ACCESS_2020_3044064 crossref_primary_10_1016_j_ejsobi_2021_103378 crossref_primary_10_1109_ACCESS_2021_3131987 crossref_primary_10_1080_09640568_2021_2008329 crossref_primary_10_3390_app10165689 crossref_primary_10_1111_joa_13828 crossref_primary_10_1002_ajpa_24988 crossref_primary_10_1016_j_neuroimage_2024_120914 crossref_primary_10_1186_s12991_023_00449_y crossref_primary_10_3390_biology11070963 crossref_primary_10_1007_s11060_021_03935_z crossref_primary_10_1142_S012918312150090X |
Cites_doi | 10.1016/j.neuron.2013.07.035 10.1016/0378-8733(78)90021-7 10.1038/30918 10.1126/science.1065103 10.1016/S0378-8733(98)00010-0 10.1073/pnas.1208933109 10.5486/PMD.1959.6.3-4.12 10.1109/TPAMI.1979.4766909 10.1016/j.neuroimage.2012.02.018 10.1523/JNEUROSCI.3480-12.2013 10.1002/spe.4380211102 10.1080/13645579.2014.888238 10.1016/j.ins.2011.12.027 10.1038/35075138 10.1016/j.neuroimage.2009.10.003 10.1007/BF02289527 10.1080/0022250X.1972.9989806 10.1103/PhysRevE.80.016118 10.1098/rsif.2013.0048 10.1016/0378-8733(89)90016-6 10.1140/epjb/e2006-00330-7 10.1088/1742-5468/2008/10/P10008 10.1371/journal.pone.0143111 10.1371/journal.pone.0059613 10.1016/j.physa.2008.11.011 10.1098/rsta.2015.0202 10.1038/srep00336 10.1016/j.socnet.2004.11.009 10.1093/comnet/cnt007 10.1038/nphys1746 10.1016/j.socnet.2017.03.010 10.1038/ncomms10168 10.1007/s10588-009-9063-5 10.1007/BF02289026 10.1038/nrn.2017.149 10.1103/PhysRevE.71.056103 10.1016/j.swevo.2016.06.004 10.1103/PhysRevLett.87.198701 10.1007/978-3-540-31856-9_44 10.1371/journal.pone.0058070 10.1016/j.socnet.2005.11.005 10.1080/01621459.1963.10500845 10.1140/epjb/e2007-00033-7 10.1103/PhysRevE.69.026113 10.1016/j.socnet.2017.12.003 10.1038/nature03288 10.1371/journal.pone.0090283 10.1209/epl/i2005-10441-3 10.1016/j.ecocom.2007.02.018 10.1002/asi.21128 10.1016/j.socnet.2004.11.008 10.4236/sn.2013.21003 10.1371/journal.pone.0115503 10.1186/1752-0509-3-102 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2019 Public Library of Science 2019 Oldham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 Oldham et al 2019 Oldham et al |
Copyright_xml | – notice: COPYRIGHT 2019 Public Library of Science – notice: 2019 Oldham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 Oldham et al 2019 Oldham et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0220061 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Public Health Database (NC LIVE) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database (NC LIVE) Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Engineering Database (NC LIVE) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Consistency of centrality measures across networks |
EISSN | 1932-6203 |
ExternalDocumentID | 2264591558 oai_doaj_org_article_cc0bf7ff8e3244a086db26e4a92faece PMC6660088 A594628693 31348798 10_1371_journal_pone_0220061 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Australia Victoria Australia |
GeographicLocations_xml | – name: Victoria Australia – name: Australia |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 3V. ADRAZ BBORY CGR CUY CVF ECM EIF IPNFZ NPM RIG PMFND 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c6731-8c78fc7813a1b837a5c4e4c1bea7c361b68dc996f70829d00c0981fdf328fe703 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Fri Nov 26 17:13:13 EST 2021 Wed Aug 27 01:14:46 EDT 2025 Thu Aug 21 18:12:43 EDT 2025 Fri Jul 11 01:04:58 EDT 2025 Fri Jul 25 10:26:25 EDT 2025 Tue Jun 17 21:00:02 EDT 2025 Tue Jun 10 20:53:17 EDT 2025 Fri Jun 27 04:01:55 EDT 2025 Fri Jun 27 03:59:10 EDT 2025 Thu May 22 21:20:34 EDT 2025 Wed Feb 19 02:30:16 EST 2025 Tue Jul 01 01:28:44 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6731-8c78fc7813a1b837a5c4e4c1bea7c361b68dc996f70829d00c0981fdf328fe703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-9619-6102 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0220061 |
PMID | 31348798 |
PQID | 2264591558 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_2264591558 doaj_primary_oai_doaj_org_article_cc0bf7ff8e3244a086db26e4a92faece pubmedcentral_primary_oai_pubmedcentral_nih_gov_6660088 proquest_miscellaneous_2265776766 proquest_journals_2264591558 gale_infotracmisc_A594628693 gale_infotracacademiconefile_A594628693 gale_incontextgauss_ISR_A594628693 gale_incontextgauss_IOV_A594628693 gale_healthsolutions_A594628693 pubmed_primary_31348798 crossref_primary_10_1371_journal_pone_0220061 crossref_citationtrail_10_1371_journal_pone_0220061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190726 |
PublicationDateYYYYMMDD | 2019-07-26 |
PublicationDate_xml | – month: 7 year: 2019 text: 20190726 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2019 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | J Goñi (ref11) 2013; 8 X Qi (ref46) 2012; 194 DJ Watts (ref63) 1998; 393 P Erdős (ref58) 1959; 6 U Brandes (ref74) 2005 S Achard (ref8) 2012; 109 D Koschützki (ref33) 2004 M Ashtiani (ref32) 2018; 12 A Ghasemian (ref55) 2018 TW Valente (ref27) 2008; 28 KE Joyce (ref43) 2010 G. Sabidussi (ref47) 1966; 31 PJ Kim (ref14) 2007; 55 E Estrada (ref48) 2005; 71 JD Noh (ref49) 2004; 92 T Gili (ref9) 2013; 33 R Guimerà (ref24) 2005; 433 L Page (ref42) 1998; 54 M Kitsak (ref30) 2010; 6 S Maslov (ref59) 2002; 296 DL Davies (ref71) 1979; PAMI-1 E Hancer (ref72) 2017; 32 J Ronqui (ref17) 2015 SP Borgatti (ref1) 2005; 27 X Qi (ref45) 2013; 02 E Estrada (ref52) 2009; 388 F Bloch (ref26) 2016 M Benzi (ref21) 2013; 1 TL Frantz (ref25) 2009; 15 H Jeong (ref6) 2001; 411 J Andreotti (ref34) 2014; 9 LC Freeman (ref3) 1978; 1 E. Estrada (ref22) 2006; 52 C Lozares (ref31) 2015; 18 MEJ Newman (ref53) 2005; 27 DC Van Essen (ref57) 2012; 62 E. Estrada (ref13) 2007; 4 S. Fortunato (ref38) 2010; 486 L Lü (ref44) 2016; 7 VD Blondel (ref66) 2008; 2008 W Hwang (ref54) 2008 X Wang (ref35) 2018 IT Jolliffe (ref60) 2016; 374 BH Good (ref69) 2010; 81 A Clauset (ref56) 2016 V Latora (ref64) 2001; 87 D Schoch (ref18) 2016; 19 E. Estrada (ref23) 2006; 73 BD Fulcher (ref36) 2013; 10 A Lancichinetti (ref68) 2012; 2 MEJ Newman (ref62) 2010 M Jalili (ref12) 2015; 10 A Lancichinetti (ref67) 2009; 80 M Rubinov (ref37) 2010; 52 BG Tabachnick (ref61) 2014 L. Katz (ref41) 1953; 18 E Yan (ref7) 2009; 60 C Li (ref16) 2015; 88 Phillip Bonacich (ref40) 1972; 2 TMJ Fruchterman (ref73) 1991; 21 G del Rio (ref15) 2009; 3 D Schoch (ref20) 2017; 50 JD Power (ref39) 2013; 79 S Iyer (ref28) 2013; 8 DC Bell (ref5) 1999; 21 F Blöchl (ref50) 2011; 83 K Stephenson (ref51) 1989; 11 K Batool (ref29) 2014; 9 SP Borgatti (ref2) 2006; 28 MEJ Newman (ref65) 2004; 69 A Avena-Koenigsberger (ref10) 2017; 19 A Fornito (ref4) 2016 JH Ward (ref70) 1963 D. Schoch (ref19) 2018; 54 |
References_xml | – volume: 79 start-page: 798 year: 2013 ident: ref39 article-title: Evidence for hubs in human functional brain networks publication-title: Neuron doi: 10.1016/j.neuron.2013.07.035 – volume: 1 start-page: 215 year: 1978 ident: ref3 article-title: Centrality in social networks conceptual clarification publication-title: Soc Networks doi: 10.1016/0378-8733(78)90021-7 – volume: 393 start-page: 440 year: 1998 ident: ref63 article-title: Collective dynamics of’small-world’ networks publication-title: Nature doi: 10.1038/30918 – volume: 296 start-page: 910 year: 2002 ident: ref59 article-title: Specificity and Stability in Topology of Protein Networks publication-title: Science doi: 10.1126/science.1065103 – volume: 21 start-page: 1 year: 1999 ident: ref5 article-title: Centrality measures for disease transmission networks publication-title: Soc Networks doi: 10.1016/S0378-8733(98)00010-0 – volume: 109 start-page: 20608 year: 2012 ident: ref8 article-title: Hubs of brain functional networks are radically reorganized in comatose patients publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1208933109 – volume: 6 start-page: 290 year: 1959 ident: ref58 article-title: The Evolution of Random Graphs publication-title: Publ Math Debrecen doi: 10.5486/PMD.1959.6.3-4.12 – volume: 12 start-page: 1 year: 2018 ident: ref32 article-title: A systematic survey of centrality measures for protein-protein interaction networks publication-title: BMC Syst Biol. BMC Systems Biology – year: 2010 ident: ref62 – year: 2016 ident: ref4 article-title: Fundamentals of Brain Network Analysis – start-page: 1 year: 2018 ident: ref55 article-title: Evaluating Overfit and Underfit in Models of Network Community Structure publication-title: arXiv – volume: PAMI-1 start-page: 224 year: 1979 ident: ref71 article-title: A Cluster Separation Measure publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.1979.4766909 – volume: 62 start-page: 2222 year: 2012 ident: ref57 article-title: The Human Connectome Project: A data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 33 start-page: 4024 year: 2013 ident: ref9 article-title: The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3480-12.2013 – volume: 486 start-page: 75 year: 2010 ident: ref38 article-title: Community detection in graphs publication-title: Phys Rep. Elsevier B.V. – start-page: 336 year: 2008 ident: ref54 article-title: Bridging Centrality: Identifying Bridging Nodes In Scale-free Networks publication-title: Proc 14th ACM SIGKDD Int Conf Knowl Discov data Min – volume: 21 start-page: 1129 year: 1991 ident: ref73 article-title: Graph drawing by force‐directed placement publication-title: Softw Pract Exp doi: 10.1002/spe.4380211102 – volume: 18 start-page: 209 year: 2015 ident: ref31 article-title: The structure of global centrality measures publication-title: Int J Soc Res Methodol doi: 10.1080/13645579.2014.888238 – volume: 194 start-page: 240 year: 2012 ident: ref46 article-title: Laplacian centrality: A new centrality measure for weighted networks publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2011.12.027 – volume: 411 start-page: 41 year: 2001 ident: ref6 article-title: Lethality and centrality in protein networks publication-title: Nature doi: 10.1038/35075138 – volume: 52 start-page: 1059 year: 2010 ident: ref37 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 31 start-page: 581 year: 1966 ident: ref47 article-title: The centrality index of a graph publication-title: Psychometrika doi: 10.1007/BF02289527 – volume: 92 start-page: 1 year: 2004 ident: ref49 article-title: Random Walks on Complex Networks publication-title: Phys Rev Lett – volume: 2 start-page: 113 year: 1972 ident: ref40 article-title: Factoring and weighting approaches to status scores and clique identification publication-title: J Math Sociol doi: 10.1080/0022250X.1972.9989806 – volume: 80 start-page: 1 year: 2009 ident: ref67 article-title: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities publication-title: Phys Rev E—Stat Nonlinear, Soft Matter Phys doi: 10.1103/PhysRevE.80.016118 – volume: 88 start-page: 1 year: 2015 ident: ref16 article-title: Correlation between centrality metrics and their application to the opinion model publication-title: Eur Phys J B – volume: 10 start-page: 20130048 year: 2013 ident: ref36 article-title: Highly comparative time-series analysis: the empirical structure of time series and their methods publication-title: J R Soc Interface doi: 10.1098/rsif.2013.0048 – volume: 11 start-page: 1 year: 1989 ident: ref51 article-title: Rethinking centrality: Methods and examples publication-title: Soc Networks doi: 10.1016/0378-8733(89)90016-6 – volume: 52 start-page: 563 year: 2006 ident: ref22 article-title: Network robustness to targeted attacks. the interplay of expansibility and degree distribution publication-title: Eur Phys J B doi: 10.1140/epjb/e2006-00330-7 – volume: 2008 start-page: P10008 year: 2008 ident: ref66 article-title: Fast unfolding of communities in large networks publication-title: J Stat Mech Theory Exp doi: 10.1088/1742-5468/2008/10/P10008 – year: 2015 ident: ref17 article-title: Analyzing complex networks through correlations in centrality measurements publication-title: J Stat Mech Theory Exp – volume: 10 start-page: 1 year: 2015 ident: ref12 article-title: CentiServer: A comprehensive resource, web-based application and R package for centrality analysis publication-title: PLoS One doi: 10.1371/journal.pone.0143111 – start-page: 1 year: 2018 ident: ref35 article-title: Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification publication-title: Hum Brain Mapp – volume: 28 start-page: 16 year: 2008 ident: ref27 article-title: How Correlated Are Network Centrality Measures? publication-title: Connections – start-page: 199 year: 2004 ident: ref33 article-title: Comparison of Centralities for Biological Networks publication-title: Proc Ger Conf Bioinforma – volume: 19 start-page: 1 year: 2016 ident: ref18 article-title: Re-conceptualizing centrality in social networks publication-title: Eur J Appl Math – volume: 8 year: 2013 ident: ref28 article-title: Attack Robustness and Centrality of Complex Networks publication-title: PLoS One doi: 10.1371/journal.pone.0059613 – volume: 388 start-page: 764 year: 2009 ident: ref52 article-title: Communicability betweenness in complex networks publication-title: Phys A Stat Mech its Appl doi: 10.1016/j.physa.2008.11.011 – volume: 374 year: 2016 ident: ref60 article-title: Principal component analysis: a review and recent developments publication-title: Philos Trans R Soc A Math Phys Eng Sci doi: 10.1098/rsta.2015.0202 – year: 2016 ident: ref56 article-title: The Colorado Index of Complex Networks – volume: 2 year: 2012 ident: ref68 article-title: Consensus clustering in complex networks publication-title: Sci Rep doi: 10.1038/srep00336 – volume: 27 start-page: 39 year: 2005 ident: ref53 article-title: A measure of betweenness centrality based on random walks publication-title: Soc Networks doi: 10.1016/j.socnet.2004.11.009 – volume: 1 start-page: 124 year: 2013 ident: ref21 article-title: Total communicability as a centrality measure publication-title: J Complex Networks doi: 10.1093/comnet/cnt007 – volume: 6 start-page: 36 year: 2010 ident: ref30 article-title: Identifying influential spreaders in complex networks publication-title: Nat Phys doi: 10.1038/nphys1746 – volume: 50 start-page: 46 year: 2017 ident: ref20 article-title: Correlations among centrality indices and a class of uniquely ranked graphs publication-title: Soc Networks doi: 10.1016/j.socnet.2017.03.010 – volume: 7 start-page: 10168 year: 2016 ident: ref44 article-title: The H-index of a network node and its relation to degree and coreness publication-title: Nat Commun doi: 10.1038/ncomms10168 – volume: 15 start-page: 303 year: 2009 ident: ref25 article-title: Robustness of centrality measures under uncertainty: Examining the role of network topology publication-title: Comput Math Organ Theory doi: 10.1007/s10588-009-9063-5 – volume: 18 start-page: 39 year: 1953 ident: ref41 article-title: A new status index derived from sociometric analysis publication-title: Psychometrika doi: 10.1007/BF02289026 – volume: 19 start-page: 17 year: 2017 ident: ref10 article-title: Communication dynamics in complex brain networks publication-title: Nat Rev Neurosci doi: 10.1038/nrn.2017.149 – volume: 54 start-page: 1 year: 1998 ident: ref42 article-title: The PageRank Citation Ranking: Bringing Order to the Web publication-title: World Wide Web Internet Web Inf Syst – volume: 71 start-page: 29 year: 2005 ident: ref48 article-title: Rodriguez-Velazquez J a. Subgraph Centrality in Complex Networks publication-title: Phys Rev E doi: 10.1103/PhysRevE.71.056103 – volume: 32 start-page: 49 year: 2017 ident: ref72 article-title: A comprehensive survey of traditional, merge-split and evolutionary approaches proposed for determination of cluster number publication-title: Swarm Evol Comput. Elsevier doi: 10.1016/j.swevo.2016.06.004 – start-page: 5 year: 2010 ident: ref43 article-title: A new measure of centrality for brain networks publication-title: PLoS One – volume: 81 start-page: 1 year: 2010 ident: ref69 article-title: Performance of modularity maximization in practical contexts publication-title: Phys Rev E—Stat Nonlinear, Soft Matter Phys – volume: 87 start-page: 198701 year: 2001 ident: ref64 article-title: Efficient behavior of small-world networks publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.87.198701 – start-page: 533 year: 2005 ident: ref74 article-title: Centrality measures based on current flow publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-540-31856-9_44 – volume: 8 year: 2013 ident: ref11 article-title: Exploring the Morphospace of Communication Efficiency in Complex Networks publication-title: PLoS One doi: 10.1371/journal.pone.0058070 – volume: 28 start-page: 466 year: 2006 ident: ref2 article-title: A Graph-theoretic perspective on centrality publication-title: Soc Networks doi: 10.1016/j.socnet.2005.11.005 – start-page: 236 year: 1963 ident: ref70 article-title: Hierarchical Grouping to Optimize an Objective Function publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1963.10500845 – volume: 55 start-page: 109 year: 2007 ident: ref14 article-title: Reliability of rank order in sampled networks publication-title: Eur Phys J B doi: 10.1140/epjb/e2007-00033-7 – volume: 69 start-page: 026113 year: 2004 ident: ref65 article-title: Finding and evaluating community structure in networks publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.026113 – volume: 54 start-page: 50 year: 2018 ident: ref19 article-title: Centrality without indices: Partial rankings and rank probabilities in networks publication-title: Soc Networks doi: 10.1016/j.socnet.2017.12.003 – volume: 433 start-page: 895 year: 2005 ident: ref24 article-title: Functional cartography of complex metabolic networks publication-title: Nature doi: 10.1038/nature03288 – volume: 9 year: 2014 ident: ref29 article-title: Towards a methodology for validation of centrality measures in complex networks publication-title: PLoS One doi: 10.1371/journal.pone.0090283 – year: 2014 ident: ref61 article-title: Using multivariate statistics – volume: 73 start-page: 649 year: 2006 ident: ref23 article-title: Spectral scaling and good expansion properties in complex networks publication-title: Europhys Lett doi: 10.1209/epl/i2005-10441-3 – volume: 4 start-page: 48 year: 2007 ident: ref13 article-title: Characterization of topological keystone species. Local, global and “meso-scale” centralities in food webs publication-title: Ecol Complex doi: 10.1016/j.ecocom.2007.02.018 – volume: 83 start-page: 1 year: 2011 ident: ref50 article-title: Vertex centralities in input-output networks reveal the structure of modern economies publication-title: Phys Rev E—Stat Nonlinear – volume: 60 start-page: 2107 year: 2009 ident: ref7 article-title: Applying centrality measures to impact analysis: A coauthorship network analysis publication-title: J Am Soc Inf Sci Technol doi: 10.1002/asi.21128 – volume: 27 start-page: 55 year: 2005 ident: ref1 article-title: Centrality and network flow publication-title: Soc Networks doi: 10.1016/j.socnet.2004.11.008 – volume: 02 start-page: 19 year: 2013 ident: ref45 article-title: Terrorist Networks, Network Energy and Node Removal: A New Measure of Centrality Based on Laplacian Energy publication-title: Soc Netw doi: 10.4236/sn.2013.21003 – year: 2016 ident: ref26 article-title: Centrality Measures in Networks publication-title: Centrality Measures in Networks – volume: 9 start-page: 1 year: 2014 ident: ref34 article-title: Validation of network communicability metrics for the analysis of brain structural networks publication-title: PLoS One doi: 10.1371/journal.pone.0115503 – volume: 3 start-page: 102 year: 2009 ident: ref15 article-title: How to identify essential genes from molecular networks publication-title: BMC Syst Biol doi: 10.1186/1752-0509-3-102 |
SSID | ssj0053866 |
Score | 2.6516385 |
Snippet | The roles of different nodes within a network are often understood through centrality analysis, which aims to quantify the capacity of a node to influence, or... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0220061 |
SubjectTerms | Analysis Cluster Analysis Clustering Clustering (Computers) Collaboration Computer and Information Sciences Correlation Correlation analysis Engineering and Technology Humans Mental health Models, Theoretical Modularity Multivariate Analysis Network architectures Network topologies Networks Neural Networks, Computer Nodes Physical Sciences Principal Component Analysis Principal components analysis Research and Analysis Methods Social networks Social Sciences Theory Topology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQnrggylcDBQxCAg5p4zixk2NBVAUJkICiShws27ELUklWZPfAv2fGdqIGVSoHDnuxX3azM-PxTDLzTMgzzztXNkbnvvJVXjHvc6NFnXcFjHsppe3wOeT7D-L4pHp3Wp9eOOoLa8IiPXAU3IG1hfHS-8bB1l9piMA7UwpX6bb02lmH3hf2vCmZij4YVrEQqVGOS3aQ9LK_Hnq3j72lhWCLjSjw9c9eebU-H8bLQs6_KycvbEVHN8mNFEPSw3jvO-Sa62-RnbRKR_oiUUm_vE2-hfM4R4yLf1Pdd3Q6DwVxqUSLpl-BcJz-jE8MR6rDTQMcPEBvN9RikA3jg6d9LBwf75CTozdfXh_n6TiF3ArJWd5Y2Xj4MK6ZgbxU17ZylWXGaWm5YEY0nYX0x0vst-2KwhZtw3znedl4B57hLln1IMBdQg0rXVG6uoXNrWoLbcBlth5ZbgXEO95nhE-yVTZxjeORF-cqvECTkHNEUSnUiEoayUg-X7WOXBtX4F-h2mYsMmWHAbAflexHXWU_GXmMSlex7XRe7-qwbkPbbssz8jQgkC2jx3KcM70dR_X249d_AH3-tAA9TyA_gDisTi0Q8J-QhWuB3FsgYc3bxfQumugklVFhO3SNVP8NXDmZ7eXTT-Zp_FIssevdsA2YGqmdhMjIvWjls2Q545DYtnC1XNj_QvTLmf7H90BWDukxhJnN_f-hqwfkOsSrLbaClmKPrDa_tu4hxIQb8ygs_z9OdmQk priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDI_geOEFMb5WNiAgJOAhW9O0SfuEBmIaSIAEDJ3EQ5WkyUDa2mO9e-C_x07TQtEEPNxL4tz17NixU_tnQh570bisNJr53Ocs594zo2XBmhTGvVLKNngP-fadPDrO3yyLZbxw62Na5WgTg6FuOot35PtY8FkgmHn5fPWdYdcofLsaW2hcJlcQugxTutRyCrhAl6WM5XJC8f0onb1V17o9rDBNJZ8dRwG1f7LNi9Vp11_keP6ZP_nbgXR4nVyLniQ9GES_RS659gbZirra06cRUPrZTfIldOXs0Tv-QXXb0LErCtLFRC0afwWccno23Bv2VIeHBnKwA61dU4uuNox3nrZD-nh_ixwfvvr08ojFpgrMSiU4K60qPXy40NxAdKoLm7vccuO0skJyI8vGQhDkFVbdNmlq06rkvvEiK70D-3CbLFpg4DahhmcuzVxRwRGXV6k2YDgrj1i3Erwe7xMiRt7WNiKOY-OL0zq8RlMQeQysqlEidZRIQti0ajUgbvyD_gWKbaJFvOww0J2f1FH9amtT45X3pQMHMtcQxzUmky7XVea1sy4hD1Do9VB8Oml9fVBUoXi3Egl5FCgQM6PFpJwTven7-vX7z_9B9PHDjOhJJPIdsMPqWAgB_wmxuGaUuzNK0Hw7m97GLTpypa9_6QisHLftxdMPp2n8Uky0a123CTQFAjxJmZA7wy6fOCu4gPC2gtVqtv9nrJ_PtN--BshyCJLB2Szv_v2xdshV8EexqI5lcpcs1ucbdw98vrW5HxT7J3gpWcA priority: 102 providerName: ProQuest |
Title | Consistency and differences between centrality measures across distinct classes of networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31348798 https://www.proquest.com/docview/2264591558 https://www.proquest.com/docview/2265776766 https://pubmed.ncbi.nlm.nih.gov/PMC6660088 https://doaj.org/article/cc0bf7ff8e3244a086db26e4a92faece http://dx.doi.org/10.1371/journal.pone.0220061 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnwtMEpASMBDqjgfdvKA0DatDKQNNCiqxENkO_ZAKklpWon999w5TkRQ0XhoHuyf0_Zsn39n--4IeW7iUkeZFIFJTBIk1JhACpYGZQjlhnOuStyHPDtnp7Pk_Tyd75AuZ6sTYLPVtMN8UrPVYvLr59UbmPCvbdYGTrtGk2Vd6Ql6joZoD-3C2sRxqp4l_bkCzG57eomsJWBRGDtnun-9ZbBY2Zj-veYeLRd1s42W_n278o_lanqb3HI80z9sB8Ye2dHVHbLnZnLjv3Thpl_dJV9tzs4GufOVL6rS73KmIM5d4_LdtwBl93-0u4qNL-yPBjhoiUqtfYVEHMpr41ft5fLmHplNTz4fnwYu5UKgGI9pkCmeGfjQWFAJtqtIVaITRaUWXMWMSpaVCkwkw9EntwxDFeYZNaWJo8xo0B73yagCAe4TX9JIh5FOc1gAkzwUEtRqbjASLgNOZIxH4k62hXLxyDEtxqKwh2wc7JJWVAX2SOF6xCNB32rZxuO4Bn-E3dZjMZq2LahXl4WbnIVSoTTcmEwDvUwEWHmljJhORB4ZoZX2yBPs9KJ1Te11QnGY5ta1N4898swiMKJGhVd2LsWmaYp3H778B-jTxQD0woFMDeJQwrlJwH_CSF0D5MEACXpBDar3cYh2UmkKdJlOMR1ABi27Ybu9-mlfjS_Fa3iVrjcWk2L4J8Y88qAd5b1kYxqD8ZtDaz4Y_wPRD2uq799sQHMwoYGKZg-vFfMjchMIK3rdBRE7IKP1aqMfAylcyzG5weccntkxxef07ZjsHp2cf7wY222WsdUDvwERw2ej |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKcoALory6UKhBIOCQNs7DTg4IlUe1pQ8kaNFKHIzj2AWpJEuzK9Q_xW9kxnECQRVw6SEX-3Me4_F4xpkHIQ9tXJooK1RgE5sECbM2KBRPgzKEdiuE0CWeQ-7t88lh8maaTpfIjy4WBt0qO5noBHVZazwj38CAzxSTmWfPZ98CrBqFf1e7EhotW-yY0-9gsjXPtl_B_D6Koq3XBy8nga8qEGguYhZkWmQWLhYrVoB5plKdmESzwiihY84KnpUarAArMOy0DEMd5hmzpY2jzBpYIHDfC-QibLwhrigx7Q08kB2c-_C8WLANzw3rs7oy6xjRGnI22P5clYB-LxjNjuvmLEX3T3_N3zbAravkitdc6WbLastkyVTXyLKXDQ194hNYP71OProqoA1q46dUVSXtqrAgzjuGUf8UMALo1_acsqHKvTTAQe5Uek41qvbQXltate7qzQ1yeC7kvklGFRBwhdCCRSaMTJrDlprkoSpAUOcWc-ty0LKsHZO4o63UPsM5Fto4lu63nQBLpyWVxBmRfkbGJOhHzdoMH__Av8Bp67GYn9s11CdH0i93qXVYWGFtZkBhTRTYjWURcZOoPLLKaDMmazjpsg127aWM3ExzFyycx2PywCEwR0eFTkBHatE0cvvth_8AvX83AD32IFsDObTygRfwTZj7a4BcHSBB0uhB9wqyaEeVRv5akzCyY9uzu-_33XhTdOyrTL1wmBQTSnE-JrdaLu8pG7MYzOkcRosB_w9IP-ypvnx2KdLBKAflNrv999daI5cmB3u7cnd7f-cOuQy6MAb0BRFfJaP5ycLcBX1zXtxzi5yST-ctVX4CcGWWCQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKIiEuiPJqoFCDQMAh3TgPOzkgVCirLoWCoEUrcQiOYxekkizNrlD_Gr-OGccJBFXApYdc7M95jMfjGWcehNw3UanDtJC-iU3sx8wYv5A88csA2o0QQpV4Dvl6j-8cxC9nyWyF_OhiYdCtspOJVlCXtcIz8jEGfCaYzDwdG-cW8XZ78nT-zccKUvintSun0bLIrj75DuZb82S6DXP9IAwnL_af7_iuwoCvuIiYnyqRGrhYJFkBpppMVKxjxQothYo4K3haKrAIjMAQ1DIIVJClzJQmClOjYbHAfc-R8yJKGK4xMeuNPZAjnLtQvUiwseOMzXld6U2Mbg04G2yFtmJAvy-M5kd1c5rS-6fv5m-b4eQyueS0WLrVst0qWdHVFbLq5ERDH7lk1o-vko-2ImiDmvkJlVVJu4osiHNOYtQ9BQwC-rU9s2yotC8NcJBBlVpQhWo-tNeGVq3renONHJwJua-TUQUEXCO0YKEOQp1ksL3GWSALENqZwTy7HDQuYzwSdbTNlct2jkU3jnL7C0-A1dOSKscZyd2MeMTvR83bbB__wD_DaeuxmKvbNtTHh7lb-rlSQWGEMakG5TWWYEOWRch1LLPQSK20RzZw0vM28LWXOPlWktnA4SzyyD2LwHwdFXL-oVw2TT598-E_QO_fDUAPHcjUQA4lXRAGfBPmARsg1wdIkDpq0L2GLNpRpcl_rU8Y2bHt6d13-268KTr5VbpeWkyCyaU498iNlst7ykYsAtM6g9FiwP8D0g97qi-fbbp0MNBB0U1v_v21NsgFkCf5q-ne7i1yEdRijO3zQ75ORovjpb4NqueiuGPXOCWfzlqo_ARmlpo_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistency+and+differences+between+centrality+measures+across+distinct+classes+of+networks&rft.jtitle=PloS+one&rft.au=Parkes%2C+Linden&rft.au=Suo%2C+Chao&rft.au=Fulcher%2C+Ben&rft.au=Arnatkevic%C3%8Ciut%C3%84%2C+Aurina&rft.date=2019-07-26&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=14&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.pone.0220061&rft.externalDBID=n%2Fa&rft.externalDocID=A594628693 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |