Prediction of hand, foot, and mouth disease epidemics in Japan using a long short-term memory approach

Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annua...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 17; no. 7; p. e0271820
Main Authors Yoshida, Kazuhiro, Fujimoto, Tsuguto, Muramatsu, Masamichi, Shimizu, Hiroyuki
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 28.07.2022
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan.
AbstractList Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan.
Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan.
Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan.Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan.
Audience Academic
Author Yoshida, Kazuhiro
Fujimoto, Tsuguto
Shimizu, Hiroyuki
Muramatsu, Masamichi
AuthorAffiliation Hanyang University, REPUBLIC OF KOREA
1 Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
2 Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
AuthorAffiliation_xml – name: 1 Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
– name: Hanyang University, REPUBLIC OF KOREA
– name: 2 Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
Author_xml – sequence: 1
  givenname: Kazuhiro
  orcidid: 0000-0002-8052-3420
  surname: Yoshida
  fullname: Yoshida, Kazuhiro
– sequence: 2
  givenname: Tsuguto
  surname: Fujimoto
  fullname: Fujimoto, Tsuguto
– sequence: 3
  givenname: Masamichi
  surname: Muramatsu
  fullname: Muramatsu, Masamichi
– sequence: 4
  givenname: Hiroyuki
  surname: Shimizu
  fullname: Shimizu, Hiroyuki
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35900968$$D View this record in MEDLINE/PubMed
BookMark eNqNk22L1DAQx4uceHer30A0IIjC7Zo0ffSFcBw-rByc-PQ2TNNkm6VNapKK9-1Nd3vH9jjE9EXC5Df_6UxmTqMjbbSIoqcErwjNyZutGayGdtUH8wrHOSli_CA6ISWNl1mM6dHB-Tg6dW6LcUqLLHsUHdO0xLjMipNIfrGiVtwro5GRqAFdnyFpjD9D4Yg6M_gG1coJcAKJXtWiU9whpdFn6EGjwSm9QYBaEzbXGOuXXtgOdaIz9hpB31sDvHkcPZTQOvFk2hfRjw_vv198Wl5efVxfnF8ueZZTvKwoIVVNMhknRVlKXiWYB0scyzImnKdJIUFUSQap5EWVgyxpmtO4ACmqgiSELqLne92-NY5NJXIszso0ZE4oDcR6T9QGtqy3qgN7zQwotjMYu2FgveKtYKLCWUpq4CnUCaa8qsqUJ3mNS1zndR4HrXdTtKHqRM2F9hbamej8RquGbcxvVtJxJUHg1SRgza9BOM865bhoW9DCDLv_zsJD5Uke0Bd30Puzm6gNhASUlibE5aMoO88JKXCehnZYRKt7qPDtXjf0k1TBPnN4PXMIjBd__AYG59j629f_Z69-ztmXB2wjoPWNM-0wtqObg88OK31b4ptGDkCyB7g1zlkhbxGC2TgvN-Vi47ywaV6C29s7blx5GMOHiqj2385_AS7vGuE
CitedBy_id crossref_primary_10_1016_j_scitotenv_2023_169375
crossref_primary_10_1016_j_scitotenv_2025_178896
crossref_primary_10_1063_5_0174824
crossref_primary_10_1016_j_scitotenv_2023_165926
crossref_primary_10_1186_s12889_023_15543_9
crossref_primary_10_1016_j_jiac_2024_102601
crossref_primary_10_1371_journal_pntd_0011587
Cites_doi 10.1017/S0950268818000705
10.1186/s12911-015-0236-5
10.1162/089976600300015015
10.1038/nature14539
10.1038/s41598-020-68840-3
10.1186/1743-422X-11-157
10.1097/INF.0000000000001242
10.1016/j.clindermatol.2014.12.011
10.1111/1348-0421.12041
10.1038/s41598-019-44469-9
10.1097/QCO.0000000000000187
10.1162/neco.1997.9.8.1735
10.3390/v7122947
10.1038/s41598-019-52044-5
10.1016/S1473-3099(10)70194-8
10.1155/2021/6697522
10.7883/yoken.JJID.2018.532
10.3390/ijms20205201
10.1186/s12859-019-3131-8
10.5582/bst.2017.01257
10.3390/ijerph15081596
10.1038/s41598-019-54495-2
10.1126/science.aat6777
10.1038/s41579-018-0005-4
10.1017/S0950268817001820
10.1186/1471-2458-14-358
10.1098/rsif.2018.0507
10.1590/s1678-9946201860070
10.1016/j.jbi.2018.02.014
10.1371/journal.pone.0082861
10.3390/ijerph18116174
10.1016/S0169-7439(97)00061-0
10.3949/ccjm.81a.13132
ContentType Journal Article
Copyright COPYRIGHT 2022 Public Library of Science
2022 Yoshida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 Yoshida et al 2022 Yoshida et al
Copyright_xml – notice: COPYRIGHT 2022 Public Library of Science
– notice: 2022 Yoshida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 Yoshida et al 2022 Yoshida et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0271820
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Agricultural Science Database



CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Prediction of hand, foot and mouth disease in Japan
EISSN 1932-6203
ExternalDocumentID 2695866133
oai_doaj_org_article_eb0651dac5ad403cbb95c47d090d7d72
PMC9333334
A711807520
35900968
10_1371_journal_pone_0271820
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations China
Japan
GeographicLocations_xml – name: China
– name: Japan
GrantInformation_xml – fundername: ;
  grantid: 22kf0108627
– fundername: ;
  grantid: 21fk0108084j0003
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
PJZUB
PPXIY
PQGLB
RIG
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c6730-b311bd16f24899fcb40c11b22f921cc548faeb46a5fc8b7af9357328afeb81413
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Aug 06 00:16:12 EDT 2023
Wed Aug 27 01:11:52 EDT 2025
Thu Aug 21 18:18:19 EDT 2025
Fri Jul 11 02:40:13 EDT 2025
Fri Jul 25 10:28:39 EDT 2025
Tue Jun 17 20:56:44 EDT 2025
Tue Jun 10 20:33:19 EDT 2025
Fri Jun 27 04:07:09 EDT 2025
Fri Jun 27 03:36:52 EDT 2025
Thu May 22 21:16:50 EDT 2025
Mon Jul 21 05:46:02 EDT 2025
Tue Jul 01 02:20:06 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6730-b311bd16f24899fcb40c11b22f921cc548faeb46a5fc8b7af9357328afeb81413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-8052-3420
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0271820
PMID 35900968
PQID 2695866133
PQPubID 1436336
PageCount e0271820
ParticipantIDs plos_journals_2695866133
doaj_primary_oai_doaj_org_article_eb0651dac5ad403cbb95c47d090d7d72
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9333334
proquest_miscellaneous_2696009747
proquest_journals_2695866133
gale_infotracmisc_A711807520
gale_infotracacademiconefile_A711807520
gale_incontextgauss_ISR_A711807520
gale_incontextgauss_IOV_A711807520
gale_healthsolutions_A711807520
pubmed_primary_35900968
crossref_primary_10_1371_journal_pone_0271820
crossref_citationtrail_10_1371_journal_pone_0271820
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220728
PublicationDateYYYYMMDD 2022-07-28
PublicationDate_xml – month: 7
  year: 2022
  text: 20220728
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2022
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References I Sutskever (pone.0271820.ref032) 2008; 21
J Baggen (pone.0271820.ref001) 2018; 16
K Mizuta (pone.0271820.ref011) 2013; 57
B Di (pone.0271820.ref012) 2014; 11
GL Repass (pone.0271820.ref006) 2014; 81
S Takahashi (pone.0271820.ref007) 2018; 15
M Pons-Salort (pone.0271820.ref002) 2015; 28
YK Chang (pone.0271820.ref009) 2018; 60
Y Chen (pone.0271820.ref026) 2018; 81
BD Kimmis (pone.0271820.ref014) 2018; 102
J Gu (pone.0271820.ref022) 2019; 9
J Zhang (pone.0271820.ref039) 2018; 146
ZC Zhuang (pone.0271820.ref018) 2015; 7
X Chen (pone.0271820.ref010) 2013; 10
G Gonzalez (pone.0271820.ref017) 2019; 20
D Svozil (pone.0271820.ref031) 1997; 39
S Hochreiter (pone.0271820.ref033) 1997; 9
Y Wang (pone.0271820.ref024) 2020; 10
JH Tang (pone.0271820.ref027) 2015; 15
D Kanbayashi (pone.0271820.ref013) 2019; 72
pone.0271820.ref003
pone.0271820.ref004
R Zhang (pone.0271820.ref023) 2021; 18
T Solomon (pone.0271820.ref008) 2010; 10
WM Koh (pone.0271820.ref015) 2016; 35
A Krizhevsky (pone.0271820.ref030) 2012; 25
(pone.0271820.ref035) 2017; 38
S Chae (pone.0271820.ref040) 2018; 15
M Pons-Salort (pone.0271820.ref036) 2018; 361
T Fu (pone.0271820.ref020) 2019; 9
Y Wang (pone.0271820.ref021) 2019; 9
W Xing (pone.0271820.ref016) 2014; 14
FA Gers (pone.0271820.ref034) 2000; 12
A Sumi (pone.0271820.ref028) 2017; 145
YC Bo (pone.0271820.ref019) 2014; 14
S Verma (pone.0271820.ref025) 2021; 2021
D Ventarola (pone.0271820.ref005) 2015; 33
J Zhang (pone.0271820.ref037) 2017; 11
Y LeCun (pone.0271820.ref029) 2015; 521
X Zhu (pone.0271820.ref038) 2019; 20
References_xml – volume: 146
  start-page: 809
  year: 2018
  ident: pone.0271820.ref039
  article-title: Multi-step prediction for influenza outbreak by an adjusted long short-term memory
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268818000705
– volume: 15
  start-page: 113
  year: 2015
  ident: pone.0271820.ref027
  article-title: Latitude-based approach for detecting aberrations of hand, foot, and mouth disease epidemics
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-015-0236-5
– volume: 12
  start-page: 2451
  year: 2000
  ident: pone.0271820.ref034
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: Neural Comput
  doi: 10.1162/089976600300015015
– volume: 521
  start-page: 436
  year: 2015
  ident: pone.0271820.ref029
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: pone.0271820.ref003
– volume: 21
  year: 2008
  ident: pone.0271820.ref032
  article-title: The recurrent temporal restricted boltzmann machine
  publication-title: Adv Neural Inf Process Syst
– volume: 10
  start-page: 12201
  year: 2020
  ident: pone.0271820.ref024
  article-title: Using deep learning to predict the hand-foot-and-mouth disease of enterovirus A71 subtype in Beijing from 2011 to 2018
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-68840-3
– volume: 14
  start-page: 308
  year: 2014
  ident: pone.0271820.ref016
  article-title: Epidemiological characteristics of hand-foot-and-mouth disease in China, 2008–2012
  publication-title: Lancet Infect Dis
– volume: 11
  start-page: 157
  year: 2014
  ident: pone.0271820.ref012
  article-title: Circulation of Coxsackievirus A6 in hand-foot-mouth disease in Guangzhou, 2010–2012
  publication-title: Virol J
  doi: 10.1186/1743-422X-11-157
– volume: 25
  year: 2012
  ident: pone.0271820.ref030
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– volume: 35
  start-page: e285
  year: 2016
  ident: pone.0271820.ref015
  article-title: The epidemiology of hand, foot and mouth disease in Asia: a systematic review and analysis
  publication-title: Pediatr Infect Dis J
  doi: 10.1097/INF.0000000000001242
– volume: 33
  start-page: 340
  year: 2015
  ident: pone.0271820.ref005
  article-title: Update on hand-foot-and-mouth disease
  publication-title: Clin Dermatol
  doi: 10.1016/j.clindermatol.2014.12.011
– volume: 102
  start-page: 353
  year: 2018
  ident: pone.0271820.ref014
  article-title: Hand-foot-and-mouth disease caused by Coxsackievirus A6 on the rise
  publication-title: Cutis
– volume: 57
  start-page: 400
  year: 2013
  ident: pone.0271820.ref011
  article-title: Molecular epidemiology of Coxsackievirus A16 strains isolated from children in Yamagata, Japan between 1988 and 2011
  publication-title: Microbiol Immunol
  doi: 10.1111/1348-0421.12041
– volume: 9
  start-page: 8046
  year: 2019
  ident: pone.0271820.ref021
  article-title: Development and evaluation of a deep learning approach for modeling seasonality and trends in hand-foot-mouth disease incidence in mainland China
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-44469-9
– volume: 28
  start-page: 479
  year: 2015
  ident: pone.0271820.ref002
  article-title: The epidemiology of non-polio enteroviruses: recent advances and outstanding questions
  publication-title: Curr Opin Infect Dis
  doi: 10.1097/QCO.0000000000000187
– volume: 9
  start-page: 1735
  year: 1997
  ident: pone.0271820.ref033
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 7
  start-page: 6400
  year: 2015
  ident: pone.0271820.ref018
  article-title: Epidemiological research on hand, foot, and mouth disease in mainland China
  publication-title: Viruses
  doi: 10.3390/v7122947
– volume: 38
  start-page: 191
  year: 2017
  ident: pone.0271820.ref035
  article-title: Hand, foot, and mouth disease and herpangina, 2007 to September 2017 (week 38), Japan
  publication-title: IASR
– volume: 9
  start-page: 15691
  year: 2019
  ident: pone.0271820.ref020
  article-title: Development and comparison of forecast models of hand-foot-mouth disease with meteorological factors
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-52044-5
– volume: 10
  start-page: 778
  year: 2010
  ident: pone.0271820.ref008
  article-title: Virology, epidemiology, pathogenesis, and control of enterovirus 71
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(10)70194-8
– volume: 2021
  start-page: 6697522
  year: 2021
  ident: pone.0271820.ref025
  article-title: Hand, foot, and mouth disease in Thailand: a comprehensive modelling of epidemic dynamics
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/6697522
– ident: pone.0271820.ref004
– volume: 72
  start-page: 334
  year: 2019
  ident: pone.0271820.ref013
  article-title: An epidemic of hand, foot, and mouth disease caused by Coxsackievirus A6 in Osaka City, Japan, in 2017
  publication-title: Jpn J Infect Dis
  doi: 10.7883/yoken.JJID.2018.532
– volume: 20
  start-page: 5201
  year: 2019
  ident: pone.0271820.ref017
  article-title: Enterovirus-associated hand-foot and mouth disease and neurological complications in Japan and the rest of the world
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20205201
– volume: 20
  start-page: 575
  year: 2019
  ident: pone.0271820.ref038
  article-title: Attention-based recurrent neural network for influenza epidemic prediction
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-019-3131-8
– volume: 11
  start-page: 533
  year: 2017
  ident: pone.0271820.ref037
  article-title: A comparative study on predicting influenza outbreaks
  publication-title: Biosci Trends
  doi: 10.5582/bst.2017.01257
– volume: 15
  start-page: 1596
  year: 2018
  ident: pone.0271820.ref040
  article-title: Predicting infectious disease using deep learning and big data
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph15081596
– volume: 9
  start-page: 17928
  year: 2019
  ident: pone.0271820.ref022
  article-title: A method for hand-foot-mouth disease prediction using GeoDetector and LSTM model in Guangxi, China
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-54495-2
– volume: 361
  start-page: 800
  year: 2018
  ident: pone.0271820.ref036
  article-title: Serotype-specific immunity explains the incidence of diseases caused by human enteroviruses
  publication-title: Science
  doi: 10.1126/science.aat6777
– volume: 16
  start-page: 368
  year: 2018
  ident: pone.0271820.ref001
  article-title: The life cycle of non-polio enteroviruses and how to target it
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0005-4
– volume: 145
  start-page: 2896
  year: 2017
  ident: pone.0271820.ref028
  article-title: Association between meteorological factors and reported cases of hand, foot, and mouth disease from 2000 to 2015 in Japan
  publication-title: Epidemiol Infect
  doi: 10.1017/S0950268817001820
– volume: 14
  start-page: 358
  year: 2014
  ident: pone.0271820.ref019
  article-title: Using an autologistic regression model to identify spatial risk factors and spatial risk patterns of hand, foot and mouth disease (HFMD) in mainland China
  publication-title: BMC Public Health
  doi: 10.1186/1471-2458-14-358
– volume: 15
  start-page: 20180507
  year: 2018
  ident: pone.0271820.ref007
  article-title: Epidemic dynamics, interactions and predictability of enteroviruses associated with hand, foot and mouth disease in Japan
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2018.0507
– volume: 60
  start-page: e70
  year: 2018
  ident: pone.0271820.ref009
  article-title: Hand, foot and mouth disease and herpangina caused by enterovirus A71 infections: a review of enterovirus A71 molecular epidemiology, pathogenesis, and current vaccine development
  publication-title: Rev Inst Med Trop Sao Paulo
  doi: 10.1590/s1678-9946201860070
– volume: 81
  start-page: 16
  year: 2018
  ident: pone.0271820.ref026
  article-title: The utility of LASSO-based models for real time forecasts of endemic infectious diseases: a cross country comparison
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.02.014
– volume: 10
  start-page: e82861
  year: 2013
  ident: pone.0271820.ref010
  article-title: Molecular epidemiology of coxsackievirus A16: intratype and prevalent intertype recombination identified
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0082861
– volume: 18
  start-page: 6174
  year: 2021
  ident: pone.0271820.ref023
  article-title: Comparison of ARIMA and LSTM in forecasting the incidence of HFMD combined and uncombined with exogenous meteorological variables in Ningbo, China
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph18116174
– volume: 39
  start-page: 43
  year: 1997
  ident: pone.0271820.ref031
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/S0169-7439(97)00061-0
– volume: 81
  start-page: 537
  year: 2014
  ident: pone.0271820.ref006
  article-title: Hand, foot, and mouth disease: Identifying and managing an acute viral syndrome
  publication-title: Cleve Clin J Med
  doi: 10.3949/ccjm.81a.13132
SSID ssj0053866
Score 2.4476116
Snippet Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and...
Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0271820
SubjectTerms Analysis
Biology and Life Sciences
Care and treatment
China - epidemiology
Communicable Diseases - epidemiology
Computer and Information Sciences
Coxsackievirus infections
Deep learning
Diagnosis
Disease Outbreaks
Encephalitis
Enteroviruses
Epidemics
Fever
Hand, Foot and Mouth Disease - epidemiology
Hand-foot-and-mouth disease
Humans
Infectious diseases
Japan - epidemiology
Long short-term memory
Maximum entropy method
Medicine and Health Sciences
Meningitis
Neural networks
Neural Networks, Computer
Pediatrics
People and Places
Physical Sciences
R&D
Recurrent neural networks
Research & development
Research and Analysis Methods
Risk factors
Signs and symptoms
Surveillance
Websites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnLggyquhARaEBEh16_WuvfaxIKpSiYeAot5W-2wrpXZUJwf-PTP22qpRpXIgl0TeiZPMcyc78w0hr8vScOlcnjCdp4koNAc_6EwSgpNeBA2bDGwU_vylODoRx6f56bVRX1gT1sMD94zb9waCJHPa5tqJlFtjqtwK6dIqddLJzvtCzBuSqd4HgxUXRWyU45LtR7nsrZra70Eihqjlk0DU4fWPXnm2WjbtTVvOvysnr4Wiw_vkXtxD0oP-u2-RO75-QLailbb0bYSSfveQhG9XeBCDzKdNoPgv-S4NTbPepfCSXuL8PBrPaKjvh8Xall7U9BiCaE2xKv6Marps4Kk9h616gq6cXmJ97m86AJI_IieHH39-OEriZIXEFmDSieGMGceKkAnIt4I1IrVwJctClTFrIYsJ2huQHFZ4GalDxXNE9dHBm5JB3HtMZjXwcptQzbzVVQoyEUbkQRqbBiucr4S1IHQ-J3xgs7IRdhynXyxVd5YmIf3ouaZQOCoKZ06S8V2rHnbjFvr3KMGRFkGzuwugSiqqkrpNlebkBcpf9R2oo-mrA4k4eTLHj3nVUSBwRo2VOWd607bq09df_0D04_uE6E0kCg2ww-rYDQG_CQG5JpSLCSWYv50sb6O2DlxpVVZUOWg_48D6xaDBNy-_HJfxplhtV_tm09EU2OAj5Jw86RV-5CzHMbNVUc6JnJjChPXTlfrivMMtrzg-xNP_IasdcjfDRpRUJlm5ILP11cY_g-3h2jzvPMEfJiFlVA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF_rGGAQEiAtWxw7cfKEBqKMSXwIGNpb5M9uUpeUpn3gv-cucQJBE9CXVvGlTe98H7bvfkfI0zzXXFqbRkylcSQyxcEOWh15b6UTXkGQgYXC7z9kRyfi-DQ9DRtuTUir7G1ia6htbXCP_CDJijQHZ8L5y-X3CLtG4elqaKFxlVxj4GkwpSufve0tMehyloVyOS7ZQZDO_rKu3D4sxxC7fOSOWtT-wTZPlou6uSzw_DN_8jeHNLtJboRIkh52ot8iV1x1i2wFXW3o8wAo_eI28Z9WeByDIqC1p7hXvkd9Xa_3KHykF9hFj4aTGuq6lrGmoecVPQZXWlHMjZ9TRRc1vDVnELBHaNDpBWbp_qA9LPkdcjJ78_X1URT6K0QmA8WONGdMW5b5RMCqyxstYgNXksQXCTMG1jJeOQ3ywzwvLZUveIrYPso7nTPwfnfJpAJebhOqmDOqiFMjhBapl9rE3gjrCmEMiJ5PCe_ZXJoAPo49MBZle6ImYRHSca1E4ZRBOFMSDXctO_CNf9C_QgkOtAid3V6oV_MyaGLpNERdzCqTKitibrQu4LGljYvYSiuTKXmE8i-7OtTBAJSHEtHyZIo_86SlQPiMCvNz5mrTNOW7j9_-g-jL5xHRs0Dka2CHUaEmAv4TwnKNKHdHlGAEzGh4G2drz5Wm_KUucGc_gy8ffjwM45dizl3l6k1Lk2GZj5BTcq-b8ANnOTabLbJ8SuRIFUasH49U52ctennB8SV2_v5Y98n1BAtNYhkl-S6ZrFcb9wDCv7V-2Or4T7bfXCY
  priority: 102
  providerName: ProQuest
Title Prediction of hand, foot, and mouth disease epidemics in Japan using a long short-term memory approach
URI https://www.ncbi.nlm.nih.gov/pubmed/35900968
https://www.proquest.com/docview/2695866133
https://www.proquest.com/docview/2696009747
https://pubmed.ncbi.nlm.nih.gov/PMC9333334
https://doaj.org/article/eb0651dac5ad403cbb95c47d090d7d72
http://dx.doi.org/10.1371/journal.pone.0271820
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2TkJ7mRhfK5RiEBIgLVWcOHHzgNA2dYxJG9OgqG-R7cTdpC4pTSuxF_527hInWlAn6INbxee0vfOdz_Hd7wh5OxwqXyRJ4DAZuA4PpQ92MFGOMYlIuZHgZGCi8Nl5eDLmp5NgskHqmq2WgcXarR3WkxovZoNfP28_gcJ_LKs2CFYPGszzLB3ANgsxyTfJFqxNAmsanPHmXAG0OwxtAt19I7fJAx9LaUaIvnpnrSoh_RvD3ZnP8mKdV_p3cOWd1er4IdmxbiY9qObFLtlIs0dk1ypyQd9btOkPj4m5WOBZDcqH5obig_R9avJ8uU_hI73BEnvUHuPQtKonqwt6ndFTWGczioHzUyrpLIe34goY6aC1pzcYwntLa8zyJ2R8PPp-dOLY4guODkHrHeUzphIWGo_DlsxoxV0NVzzPRB7TGjY6RqYKhItBYEpIE_kBAv9Ik6ohg6XxKelkwNY9QiVLtYzcQHOueGCE0q7RPEkjrjXMC79L_JrNsbbI5FggYxaXx20CdigV12KUU2zl1CVOM2peIXP8g_4QJdjQIq52eSFfTGOrpnGqwCVjidSBTLjra6Ui-NkicSM3EYnwuuQVyj-uklQb6xAfCITSEwF-zZuSArE1MgzemcpVUcRfvv74D6Jvly2id5bI5MAOLW3CBPwnxOxqUfZalGAhdKt7D2drzZUi9sIoAEVgPrC-V8_g9d2vm268KQbkZWm-KmlCzAHiokueVRO-4WytPl0iWqrQYn27J7u-KqHNIx9f_Pm993xBtj1MQHGF4w17pLNcrNKX4BYuVZ9siomAdnjEsD3-3Cdbh6Pzi8t--aClX1oCbH-P_gBK-Wgk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPhaYTCDQIC0bEnsxMkDQuOjtPsCjQ3tLdhO3E3qktK0Qvun-Bu5S5xA0AS8rC-t4stH78535_jud4Q8jSLFRJoGjicD1-GhZGAHU-UYk4qMGwlBBhYK7-2HwyO-fRwcL5EfTS0MplU2NrEy1Gmh8R35ph_GQQTOhLHX028Odo3C3dWmhUatFjvZ-XdYspWvRu9Avs98f_D-8O3QsV0FHB2COjuKeZ5KvdD4HNYaRivuajji-yb2Pa0hgjcyU_DUmN2khDQxCxDRRppMRR7YfLjuFXKVM_DkWJk--NBYfrAdYWjL85jwNq02bEyLPNuA5R9ipXfcX9UloPUFvemkKC8KdP_M1_zNAQ5ukhs2cqVbtaotk6Usv0WWrW0o6QsLYP3yNjGfZrj9gyKnhaH4bn6dmqKYr1P4Sc-wax-1O0M0q1vU6pKe5nQbXHdOMRd_TCWdFPBVnsACwUEHQs8wK_icNjDod8jRpXD-LunlwMsVQqWXaRm7geZc8cAIpV2jeZrFXGtQNdYnrGFzoi3YOfbcmCTVDp6ARU_NtQSFk1jh9InTnjWtwT7-Qf8GJdjSIlR3daCYjRM785NMQZTnpVIHMuUu00rF8NgidWM3Fanw-2QN5Z_Uda-twUm2BKLziQBv86SiQLiOHPOBxnJRlsno45f_IPp80CF6bolMAezQ0tZgwH9CGLAO5WqHEoyO7gyvoLY2XCmTX9MTzmw0-OLhx-0wXhRz_PKsWFQ0IZYVcdEn92qFbznLsLltHEZ9IjpTocP67kh-elKhpccMP_z-3x9rjVwbHu7tJruj_Z0H5LqPRS6ucPxolfTms0X2EELPuXpUzXdKvl62gfkJOcKZAg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wmAGgQBp2ZLYiZMHhMbGtG4wJmBob8F27G1Sl5SmFdq_xl_HXeIEgibgZX1pFV_S5O78u3N8H4Q8TRLFRJ5HXiAj3-OxZICDufKszYXhVoKTgYnC7_fjnUO-exQdLZAfbS4MhlW2mFgDdV5qfEe-HsZplIAxYWzdurCIg63t15NvHnaQwp3Wtp1GoyJ75vw7LN-qV6MtkPWzMNx--3lzx3MdBjwdg2p7igWByoPYhhzWHVYr7ms4EoY2DQOtwZu30ih4Aox0UkLalEVY3UZao5IA8B-ue4VcFUwkOMeSzS68BHAkjl2qHhPButOMtUlZmDVYCmLd9J4prDsGdHZhMBmX1UVO75-xm78Zw-2b5IbzYulGo3aLZMEUt8iiw4mKvnDFrF_eJvZgiltBKH5aWorv6VepLcvZKoWf9Aw7-FG3S0RN065WV_S0oLtgxguKcfnHVNJxCV_VCSwWPDQm9AwjhM9pWxL9Djm8FM7fJYMCeLlEqAyMlqkfac4Vj6xQ2rea5yblWoPasSFhLZsz7QqfY_-NcVbv5glYADVcy1A4mRPOkHjdWZOm8Mc_6N-gBDtaLNtdHyinx5lDgcwo8PiCXOpI5txnWqkUblvkfurnIhfhkKyg_LMmB7YDn2xDYKU-EeHfPKkpsHRHgZPgWM6rKht9-PIfRJ8-9oieOyJbAju0dPkY8ExYEqxHudyjBADSveEl1NaWK1X2a6rCma0GXzz8uBvGi2K8X2HKeU0TY4oRF0Nyr1H4jrMMG92mcTIkojcVeqzvjxSnJ3Xl9JThh9__-22tkGsALdm70f7eA3I9xHwXX3hhskwGs-ncPAQvdKYe1dOdkq-XjS8_AdWBnQM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+hand%2C+foot%2C+and+mouth+disease+epidemics+in+Japan+using+a+long+short-term+memory+approach&rft.jtitle=PloS+one&rft.au=Yoshida%2C+Kazuhiro&rft.au=Fujimoto%2C+Tsuguto&rft.au=Muramatsu%2C+Masamichi&rft.au=Shimizu%2C+Hiroyuki&rft.date=2022-07-28&rft.eissn=1932-6203&rft.volume=17&rft.issue=7&rft.spage=e0271820&rft_id=info:doi/10.1371%2Fjournal.pone.0271820&rft_id=info%3Apmid%2F35900968&rft.externalDocID=35900968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon