Prediction of hand, foot, and mouth disease epidemics in Japan using a long short-term memory approach
Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annua...
Saved in:
Published in | PloS one Vol. 17; no. 7; p. e0271820 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
28.07.2022
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the
Picornaviridae
family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan. |
---|---|
AbstractList | Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan. Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan. Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan.Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and a vesicular rash on the hand, foot, or oral mucosa. Acute meningitis and encephalitis are observed in rare cases. HFMD epidemics occur annually in Japan, usually in the summer season. Relatively large-scale outbreaks have occurred every two years since 2011. In this study, the epidemic patterns of HFMD in Japan are predicted four weeks in advance using a deep learning method. The time-series data were analyzed by a long short-term memory (LSTM) approach called a Recurrent Neural Network. The LSTM model was trained on the numbers of weekly HFMD cases in each prefecture. These data are reported in the Infectious Diseases Weekly Report, which compiles the national surveillance data from web sites at the National Institute of Infectious Diseases, Japan, under the Infectious Diseases Control Law. Consequently, our trained LSTM model distinguishes between relatively large-scale and small-scale epidemics. The trained model predicted the HFMD epidemics in 2018 and 2019, indicating that the LSTM approach can estimate the future epidemic patterns of HFMD in Japan. |
Audience | Academic |
Author | Yoshida, Kazuhiro Fujimoto, Tsuguto Shimizu, Hiroyuki Muramatsu, Masamichi |
AuthorAffiliation | Hanyang University, REPUBLIC OF KOREA 1 Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan 2 Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan |
AuthorAffiliation_xml | – name: 1 Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan – name: Hanyang University, REPUBLIC OF KOREA – name: 2 Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan |
Author_xml | – sequence: 1 givenname: Kazuhiro orcidid: 0000-0002-8052-3420 surname: Yoshida fullname: Yoshida, Kazuhiro – sequence: 2 givenname: Tsuguto surname: Fujimoto fullname: Fujimoto, Tsuguto – sequence: 3 givenname: Masamichi surname: Muramatsu fullname: Muramatsu, Masamichi – sequence: 4 givenname: Hiroyuki surname: Shimizu fullname: Shimizu, Hiroyuki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35900968$$D View this record in MEDLINE/PubMed |
BookMark | eNqNk22L1DAQx4uceHer30A0IIjC7Zo0ffSFcBw-rByc-PQ2TNNkm6VNapKK9-1Nd3vH9jjE9EXC5Df_6UxmTqMjbbSIoqcErwjNyZutGayGdtUH8wrHOSli_CA6ISWNl1mM6dHB-Tg6dW6LcUqLLHsUHdO0xLjMipNIfrGiVtwro5GRqAFdnyFpjD9D4Yg6M_gG1coJcAKJXtWiU9whpdFn6EGjwSm9QYBaEzbXGOuXXtgOdaIz9hpB31sDvHkcPZTQOvFk2hfRjw_vv198Wl5efVxfnF8ueZZTvKwoIVVNMhknRVlKXiWYB0scyzImnKdJIUFUSQap5EWVgyxpmtO4ACmqgiSELqLne92-NY5NJXIszso0ZE4oDcR6T9QGtqy3qgN7zQwotjMYu2FgveKtYKLCWUpq4CnUCaa8qsqUJ3mNS1zndR4HrXdTtKHqRM2F9hbamej8RquGbcxvVtJxJUHg1SRgza9BOM865bhoW9DCDLv_zsJD5Uke0Bd30Puzm6gNhASUlibE5aMoO88JKXCehnZYRKt7qPDtXjf0k1TBPnN4PXMIjBd__AYG59j629f_Z69-ztmXB2wjoPWNM-0wtqObg88OK31b4ptGDkCyB7g1zlkhbxGC2TgvN-Vi47ywaV6C29s7blx5GMOHiqj2385_AS7vGuE |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2023_169375 crossref_primary_10_1016_j_scitotenv_2025_178896 crossref_primary_10_1063_5_0174824 crossref_primary_10_1016_j_scitotenv_2023_165926 crossref_primary_10_1186_s12889_023_15543_9 crossref_primary_10_1016_j_jiac_2024_102601 crossref_primary_10_1371_journal_pntd_0011587 |
Cites_doi | 10.1017/S0950268818000705 10.1186/s12911-015-0236-5 10.1162/089976600300015015 10.1038/nature14539 10.1038/s41598-020-68840-3 10.1186/1743-422X-11-157 10.1097/INF.0000000000001242 10.1016/j.clindermatol.2014.12.011 10.1111/1348-0421.12041 10.1038/s41598-019-44469-9 10.1097/QCO.0000000000000187 10.1162/neco.1997.9.8.1735 10.3390/v7122947 10.1038/s41598-019-52044-5 10.1016/S1473-3099(10)70194-8 10.1155/2021/6697522 10.7883/yoken.JJID.2018.532 10.3390/ijms20205201 10.1186/s12859-019-3131-8 10.5582/bst.2017.01257 10.3390/ijerph15081596 10.1038/s41598-019-54495-2 10.1126/science.aat6777 10.1038/s41579-018-0005-4 10.1017/S0950268817001820 10.1186/1471-2458-14-358 10.1098/rsif.2018.0507 10.1590/s1678-9946201860070 10.1016/j.jbi.2018.02.014 10.1371/journal.pone.0082861 10.3390/ijerph18116174 10.1016/S0169-7439(97)00061-0 10.3949/ccjm.81a.13132 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 Public Library of Science 2022 Yoshida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 Yoshida et al 2022 Yoshida et al |
Copyright_xml | – notice: COPYRIGHT 2022 Public Library of Science – notice: 2022 Yoshida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 Yoshida et al 2022 Yoshida et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0271820 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Agricultural Science Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Prediction of hand, foot and mouth disease in Japan |
EISSN | 1932-6203 |
ExternalDocumentID | 2695866133 oai_doaj_org_article_eb0651dac5ad403cbb95c47d090d7d72 PMC9333334 A711807520 35900968 10_1371_journal_pone_0271820 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China Japan |
GeographicLocations_xml | – name: China – name: Japan |
GrantInformation_xml | – fundername: ; grantid: 22kf0108627 – fundername: ; grantid: 21fk0108084j0003 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM PJZUB PPXIY PQGLB RIG BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c6730-b311bd16f24899fcb40c11b22f921cc548faeb46a5fc8b7af9357328afeb81413 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Aug 06 00:16:12 EDT 2023 Wed Aug 27 01:11:52 EDT 2025 Thu Aug 21 18:18:19 EDT 2025 Fri Jul 11 02:40:13 EDT 2025 Fri Jul 25 10:28:39 EDT 2025 Tue Jun 17 20:56:44 EDT 2025 Tue Jun 10 20:33:19 EDT 2025 Fri Jun 27 04:07:09 EDT 2025 Fri Jun 27 03:36:52 EDT 2025 Thu May 22 21:16:50 EDT 2025 Mon Jul 21 05:46:02 EDT 2025 Tue Jul 01 02:20:06 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6730-b311bd16f24899fcb40c11b22f921cc548faeb46a5fc8b7af9357328afeb81413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-8052-3420 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0271820 |
PMID | 35900968 |
PQID | 2695866133 |
PQPubID | 1436336 |
PageCount | e0271820 |
ParticipantIDs | plos_journals_2695866133 doaj_primary_oai_doaj_org_article_eb0651dac5ad403cbb95c47d090d7d72 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9333334 proquest_miscellaneous_2696009747 proquest_journals_2695866133 gale_infotracmisc_A711807520 gale_infotracacademiconefile_A711807520 gale_incontextgauss_ISR_A711807520 gale_incontextgauss_IOV_A711807520 gale_healthsolutions_A711807520 pubmed_primary_35900968 crossref_primary_10_1371_journal_pone_0271820 crossref_citationtrail_10_1371_journal_pone_0271820 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220728 |
PublicationDateYYYYMMDD | 2022-07-28 |
PublicationDate_xml | – month: 7 year: 2022 text: 20220728 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationTitleAlternate | PLoS One |
PublicationYear | 2022 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | I Sutskever (pone.0271820.ref032) 2008; 21 J Baggen (pone.0271820.ref001) 2018; 16 K Mizuta (pone.0271820.ref011) 2013; 57 B Di (pone.0271820.ref012) 2014; 11 GL Repass (pone.0271820.ref006) 2014; 81 S Takahashi (pone.0271820.ref007) 2018; 15 M Pons-Salort (pone.0271820.ref002) 2015; 28 YK Chang (pone.0271820.ref009) 2018; 60 Y Chen (pone.0271820.ref026) 2018; 81 BD Kimmis (pone.0271820.ref014) 2018; 102 J Gu (pone.0271820.ref022) 2019; 9 J Zhang (pone.0271820.ref039) 2018; 146 ZC Zhuang (pone.0271820.ref018) 2015; 7 X Chen (pone.0271820.ref010) 2013; 10 G Gonzalez (pone.0271820.ref017) 2019; 20 D Svozil (pone.0271820.ref031) 1997; 39 S Hochreiter (pone.0271820.ref033) 1997; 9 Y Wang (pone.0271820.ref024) 2020; 10 JH Tang (pone.0271820.ref027) 2015; 15 D Kanbayashi (pone.0271820.ref013) 2019; 72 pone.0271820.ref003 pone.0271820.ref004 R Zhang (pone.0271820.ref023) 2021; 18 T Solomon (pone.0271820.ref008) 2010; 10 WM Koh (pone.0271820.ref015) 2016; 35 A Krizhevsky (pone.0271820.ref030) 2012; 25 (pone.0271820.ref035) 2017; 38 S Chae (pone.0271820.ref040) 2018; 15 M Pons-Salort (pone.0271820.ref036) 2018; 361 T Fu (pone.0271820.ref020) 2019; 9 Y Wang (pone.0271820.ref021) 2019; 9 W Xing (pone.0271820.ref016) 2014; 14 FA Gers (pone.0271820.ref034) 2000; 12 A Sumi (pone.0271820.ref028) 2017; 145 YC Bo (pone.0271820.ref019) 2014; 14 S Verma (pone.0271820.ref025) 2021; 2021 D Ventarola (pone.0271820.ref005) 2015; 33 J Zhang (pone.0271820.ref037) 2017; 11 Y LeCun (pone.0271820.ref029) 2015; 521 X Zhu (pone.0271820.ref038) 2019; 20 |
References_xml | – volume: 146 start-page: 809 year: 2018 ident: pone.0271820.ref039 article-title: Multi-step prediction for influenza outbreak by an adjusted long short-term memory publication-title: Epidemiol Infect doi: 10.1017/S0950268818000705 – volume: 15 start-page: 113 year: 2015 ident: pone.0271820.ref027 article-title: Latitude-based approach for detecting aberrations of hand, foot, and mouth disease epidemics publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-015-0236-5 – volume: 12 start-page: 2451 year: 2000 ident: pone.0271820.ref034 article-title: Learning to forget: continual prediction with LSTM publication-title: Neural Comput doi: 10.1162/089976600300015015 – volume: 521 start-page: 436 year: 2015 ident: pone.0271820.ref029 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: pone.0271820.ref003 – volume: 21 year: 2008 ident: pone.0271820.ref032 article-title: The recurrent temporal restricted boltzmann machine publication-title: Adv Neural Inf Process Syst – volume: 10 start-page: 12201 year: 2020 ident: pone.0271820.ref024 article-title: Using deep learning to predict the hand-foot-and-mouth disease of enterovirus A71 subtype in Beijing from 2011 to 2018 publication-title: Sci Rep doi: 10.1038/s41598-020-68840-3 – volume: 14 start-page: 308 year: 2014 ident: pone.0271820.ref016 article-title: Epidemiological characteristics of hand-foot-and-mouth disease in China, 2008–2012 publication-title: Lancet Infect Dis – volume: 11 start-page: 157 year: 2014 ident: pone.0271820.ref012 article-title: Circulation of Coxsackievirus A6 in hand-foot-mouth disease in Guangzhou, 2010–2012 publication-title: Virol J doi: 10.1186/1743-422X-11-157 – volume: 25 year: 2012 ident: pone.0271820.ref030 article-title: ImageNet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – volume: 35 start-page: e285 year: 2016 ident: pone.0271820.ref015 article-title: The epidemiology of hand, foot and mouth disease in Asia: a systematic review and analysis publication-title: Pediatr Infect Dis J doi: 10.1097/INF.0000000000001242 – volume: 33 start-page: 340 year: 2015 ident: pone.0271820.ref005 article-title: Update on hand-foot-and-mouth disease publication-title: Clin Dermatol doi: 10.1016/j.clindermatol.2014.12.011 – volume: 102 start-page: 353 year: 2018 ident: pone.0271820.ref014 article-title: Hand-foot-and-mouth disease caused by Coxsackievirus A6 on the rise publication-title: Cutis – volume: 57 start-page: 400 year: 2013 ident: pone.0271820.ref011 article-title: Molecular epidemiology of Coxsackievirus A16 strains isolated from children in Yamagata, Japan between 1988 and 2011 publication-title: Microbiol Immunol doi: 10.1111/1348-0421.12041 – volume: 9 start-page: 8046 year: 2019 ident: pone.0271820.ref021 article-title: Development and evaluation of a deep learning approach for modeling seasonality and trends in hand-foot-mouth disease incidence in mainland China publication-title: Sci Rep doi: 10.1038/s41598-019-44469-9 – volume: 28 start-page: 479 year: 2015 ident: pone.0271820.ref002 article-title: The epidemiology of non-polio enteroviruses: recent advances and outstanding questions publication-title: Curr Opin Infect Dis doi: 10.1097/QCO.0000000000000187 – volume: 9 start-page: 1735 year: 1997 ident: pone.0271820.ref033 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 7 start-page: 6400 year: 2015 ident: pone.0271820.ref018 article-title: Epidemiological research on hand, foot, and mouth disease in mainland China publication-title: Viruses doi: 10.3390/v7122947 – volume: 38 start-page: 191 year: 2017 ident: pone.0271820.ref035 article-title: Hand, foot, and mouth disease and herpangina, 2007 to September 2017 (week 38), Japan publication-title: IASR – volume: 9 start-page: 15691 year: 2019 ident: pone.0271820.ref020 article-title: Development and comparison of forecast models of hand-foot-mouth disease with meteorological factors publication-title: Sci Rep doi: 10.1038/s41598-019-52044-5 – volume: 10 start-page: 778 year: 2010 ident: pone.0271820.ref008 article-title: Virology, epidemiology, pathogenesis, and control of enterovirus 71 publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(10)70194-8 – volume: 2021 start-page: 6697522 year: 2021 ident: pone.0271820.ref025 article-title: Hand, foot, and mouth disease in Thailand: a comprehensive modelling of epidemic dynamics publication-title: Comput Math Methods Med doi: 10.1155/2021/6697522 – ident: pone.0271820.ref004 – volume: 72 start-page: 334 year: 2019 ident: pone.0271820.ref013 article-title: An epidemic of hand, foot, and mouth disease caused by Coxsackievirus A6 in Osaka City, Japan, in 2017 publication-title: Jpn J Infect Dis doi: 10.7883/yoken.JJID.2018.532 – volume: 20 start-page: 5201 year: 2019 ident: pone.0271820.ref017 article-title: Enterovirus-associated hand-foot and mouth disease and neurological complications in Japan and the rest of the world publication-title: Int J Mol Sci doi: 10.3390/ijms20205201 – volume: 20 start-page: 575 year: 2019 ident: pone.0271820.ref038 article-title: Attention-based recurrent neural network for influenza epidemic prediction publication-title: BMC Bioinformatics doi: 10.1186/s12859-019-3131-8 – volume: 11 start-page: 533 year: 2017 ident: pone.0271820.ref037 article-title: A comparative study on predicting influenza outbreaks publication-title: Biosci Trends doi: 10.5582/bst.2017.01257 – volume: 15 start-page: 1596 year: 2018 ident: pone.0271820.ref040 article-title: Predicting infectious disease using deep learning and big data publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph15081596 – volume: 9 start-page: 17928 year: 2019 ident: pone.0271820.ref022 article-title: A method for hand-foot-mouth disease prediction using GeoDetector and LSTM model in Guangxi, China publication-title: Sci Rep doi: 10.1038/s41598-019-54495-2 – volume: 361 start-page: 800 year: 2018 ident: pone.0271820.ref036 article-title: Serotype-specific immunity explains the incidence of diseases caused by human enteroviruses publication-title: Science doi: 10.1126/science.aat6777 – volume: 16 start-page: 368 year: 2018 ident: pone.0271820.ref001 article-title: The life cycle of non-polio enteroviruses and how to target it publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0005-4 – volume: 145 start-page: 2896 year: 2017 ident: pone.0271820.ref028 article-title: Association between meteorological factors and reported cases of hand, foot, and mouth disease from 2000 to 2015 in Japan publication-title: Epidemiol Infect doi: 10.1017/S0950268817001820 – volume: 14 start-page: 358 year: 2014 ident: pone.0271820.ref019 article-title: Using an autologistic regression model to identify spatial risk factors and spatial risk patterns of hand, foot and mouth disease (HFMD) in mainland China publication-title: BMC Public Health doi: 10.1186/1471-2458-14-358 – volume: 15 start-page: 20180507 year: 2018 ident: pone.0271820.ref007 article-title: Epidemic dynamics, interactions and predictability of enteroviruses associated with hand, foot and mouth disease in Japan publication-title: J R Soc Interface doi: 10.1098/rsif.2018.0507 – volume: 60 start-page: e70 year: 2018 ident: pone.0271820.ref009 article-title: Hand, foot and mouth disease and herpangina caused by enterovirus A71 infections: a review of enterovirus A71 molecular epidemiology, pathogenesis, and current vaccine development publication-title: Rev Inst Med Trop Sao Paulo doi: 10.1590/s1678-9946201860070 – volume: 81 start-page: 16 year: 2018 ident: pone.0271820.ref026 article-title: The utility of LASSO-based models for real time forecasts of endemic infectious diseases: a cross country comparison publication-title: J Biomed Inform doi: 10.1016/j.jbi.2018.02.014 – volume: 10 start-page: e82861 year: 2013 ident: pone.0271820.ref010 article-title: Molecular epidemiology of coxsackievirus A16: intratype and prevalent intertype recombination identified publication-title: PLoS ONE doi: 10.1371/journal.pone.0082861 – volume: 18 start-page: 6174 year: 2021 ident: pone.0271820.ref023 article-title: Comparison of ARIMA and LSTM in forecasting the incidence of HFMD combined and uncombined with exogenous meteorological variables in Ningbo, China publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph18116174 – volume: 39 start-page: 43 year: 1997 ident: pone.0271820.ref031 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemometr Intell Lab Syst doi: 10.1016/S0169-7439(97)00061-0 – volume: 81 start-page: 537 year: 2014 ident: pone.0271820.ref006 article-title: Hand, foot, and mouth disease: Identifying and managing an acute viral syndrome publication-title: Cleve Clin J Med doi: 10.3949/ccjm.81a.13132 |
SSID | ssj0053866 |
Score | 2.4476116 |
Snippet | Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the
Picornaviridae
family. The major symptoms of HFMD are fever and... Hand, foot, and mouth disease (HFMD) is a common febrile illness caused by enteroviruses in the Picornaviridae family. The major symptoms of HFMD are fever and... |
SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0271820 |
SubjectTerms | Analysis Biology and Life Sciences Care and treatment China - epidemiology Communicable Diseases - epidemiology Computer and Information Sciences Coxsackievirus infections Deep learning Diagnosis Disease Outbreaks Encephalitis Enteroviruses Epidemics Fever Hand, Foot and Mouth Disease - epidemiology Hand-foot-and-mouth disease Humans Infectious diseases Japan - epidemiology Long short-term memory Maximum entropy method Medicine and Health Sciences Meningitis Neural networks Neural Networks, Computer Pediatrics People and Places Physical Sciences R&D Recurrent neural networks Research & development Research and Analysis Methods Risk factors Signs and symptoms Surveillance Websites |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hnLggyquhARaEBEh16_WuvfaxIKpSiYeAot5W-2wrpXZUJwf-PTP22qpRpXIgl0TeiZPMcyc78w0hr8vScOlcnjCdp4koNAc_6EwSgpNeBA2bDGwU_vylODoRx6f56bVRX1gT1sMD94zb9waCJHPa5tqJlFtjqtwK6dIqddLJzvtCzBuSqd4HgxUXRWyU45LtR7nsrZra70Eihqjlk0DU4fWPXnm2WjbtTVvOvysnr4Wiw_vkXtxD0oP-u2-RO75-QLailbb0bYSSfveQhG9XeBCDzKdNoPgv-S4NTbPepfCSXuL8PBrPaKjvh8Xall7U9BiCaE2xKv6Marps4Kk9h616gq6cXmJ97m86AJI_IieHH39-OEriZIXEFmDSieGMGceKkAnIt4I1IrVwJctClTFrIYsJ2huQHFZ4GalDxXNE9dHBm5JB3HtMZjXwcptQzbzVVQoyEUbkQRqbBiucr4S1IHQ-J3xgs7IRdhynXyxVd5YmIf3ouaZQOCoKZ06S8V2rHnbjFvr3KMGRFkGzuwugSiqqkrpNlebkBcpf9R2oo-mrA4k4eTLHj3nVUSBwRo2VOWd607bq09df_0D04_uE6E0kCg2ww-rYDQG_CQG5JpSLCSWYv50sb6O2DlxpVVZUOWg_48D6xaDBNy-_HJfxplhtV_tm09EU2OAj5Jw86RV-5CzHMbNVUc6JnJjChPXTlfrivMMtrzg-xNP_IasdcjfDRpRUJlm5ILP11cY_g-3h2jzvPMEfJiFlVA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELegvPCCGF_rGGAQEiAtWxw7cfKEBqKMSXwIGNpb5M9uUpeUpn3gv-cucQJBE9CXVvGlTe98H7bvfkfI0zzXXFqbRkylcSQyxcEOWh15b6UTXkGQgYXC7z9kRyfi-DQ9DRtuTUir7G1ia6htbXCP_CDJijQHZ8L5y-X3CLtG4elqaKFxlVxj4GkwpSufve0tMehyloVyOS7ZQZDO_rKu3D4sxxC7fOSOWtT-wTZPlou6uSzw_DN_8jeHNLtJboRIkh52ot8iV1x1i2wFXW3o8wAo_eI28Z9WeByDIqC1p7hXvkd9Xa_3KHykF9hFj4aTGuq6lrGmoecVPQZXWlHMjZ9TRRc1vDVnELBHaNDpBWbp_qA9LPkdcjJ78_X1URT6K0QmA8WONGdMW5b5RMCqyxstYgNXksQXCTMG1jJeOQ3ywzwvLZUveIrYPso7nTPwfnfJpAJebhOqmDOqiFMjhBapl9rE3gjrCmEMiJ5PCe_ZXJoAPo49MBZle6ImYRHSca1E4ZRBOFMSDXctO_CNf9C_QgkOtAid3V6oV_MyaGLpNERdzCqTKitibrQu4LGljYvYSiuTKXmE8i-7OtTBAJSHEtHyZIo_86SlQPiMCvNz5mrTNOW7j9_-g-jL5xHRs0Dka2CHUaEmAv4TwnKNKHdHlGAEzGh4G2drz5Wm_KUucGc_gy8ffjwM45dizl3l6k1Lk2GZj5BTcq-b8ANnOTabLbJ8SuRIFUasH49U52ctennB8SV2_v5Y98n1BAtNYhkl-S6ZrFcb9wDCv7V-2Or4T7bfXCY priority: 102 providerName: ProQuest |
Title | Prediction of hand, foot, and mouth disease epidemics in Japan using a long short-term memory approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35900968 https://www.proquest.com/docview/2695866133 https://www.proquest.com/docview/2696009747 https://pubmed.ncbi.nlm.nih.gov/PMC9333334 https://doaj.org/article/eb0651dac5ad403cbb95c47d090d7d72 http://dx.doi.org/10.1371/journal.pone.0271820 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELe2TkJ7mRhfK5RiEBIgLVWcOHHzgNA2dYxJG9OgqG-R7cTdpC4pTSuxF_527hInWlAn6INbxee0vfOdz_Hd7wh5OxwqXyRJ4DAZuA4PpQ92MFGOMYlIuZHgZGCi8Nl5eDLmp5NgskHqmq2WgcXarR3WkxovZoNfP28_gcJ_LKs2CFYPGszzLB3ANgsxyTfJFqxNAmsanPHmXAG0OwxtAt19I7fJAx9LaUaIvnpnrSoh_RvD3ZnP8mKdV_p3cOWd1er4IdmxbiY9qObFLtlIs0dk1ypyQd9btOkPj4m5WOBZDcqH5obig_R9avJ8uU_hI73BEnvUHuPQtKonqwt6ndFTWGczioHzUyrpLIe34goY6aC1pzcYwntLa8zyJ2R8PPp-dOLY4guODkHrHeUzphIWGo_DlsxoxV0NVzzPRB7TGjY6RqYKhItBYEpIE_kBAv9Ik6ohg6XxKelkwNY9QiVLtYzcQHOueGCE0q7RPEkjrjXMC79L_JrNsbbI5FggYxaXx20CdigV12KUU2zl1CVOM2peIXP8g_4QJdjQIq52eSFfTGOrpnGqwCVjidSBTLjra6Ui-NkicSM3EYnwuuQVyj-uklQb6xAfCITSEwF-zZuSArE1MgzemcpVUcRfvv74D6Jvly2id5bI5MAOLW3CBPwnxOxqUfZalGAhdKt7D2drzZUi9sIoAEVgPrC-V8_g9d2vm268KQbkZWm-KmlCzAHiokueVRO-4WytPl0iWqrQYn27J7u-KqHNIx9f_Pm993xBtj1MQHGF4w17pLNcrNKX4BYuVZ9siomAdnjEsD3-3Cdbh6Pzi8t--aClX1oCbH-P_gBK-Wgk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGeYAXxPhaYTCDQIC0bEnsxMkDQuOjtPsCjQ3tLdhO3E3qktK0Qvun-Bu5S5xA0AS8rC-t4stH78535_jud4Q8jSLFRJoGjicD1-GhZGAHU-UYk4qMGwlBBhYK7-2HwyO-fRwcL5EfTS0MplU2NrEy1Gmh8R35ph_GQQTOhLHX028Odo3C3dWmhUatFjvZ-XdYspWvRu9Avs98f_D-8O3QsV0FHB2COjuKeZ5KvdD4HNYaRivuajji-yb2Pa0hgjcyU_DUmN2khDQxCxDRRppMRR7YfLjuFXKVM_DkWJk--NBYfrAdYWjL85jwNq02bEyLPNuA5R9ipXfcX9UloPUFvemkKC8KdP_M1_zNAQ5ukhs2cqVbtaotk6Usv0WWrW0o6QsLYP3yNjGfZrj9gyKnhaH4bn6dmqKYr1P4Sc-wax-1O0M0q1vU6pKe5nQbXHdOMRd_TCWdFPBVnsACwUEHQs8wK_icNjDod8jRpXD-LunlwMsVQqWXaRm7geZc8cAIpV2jeZrFXGtQNdYnrGFzoi3YOfbcmCTVDp6ARU_NtQSFk1jh9InTnjWtwT7-Qf8GJdjSIlR3daCYjRM785NMQZTnpVIHMuUu00rF8NgidWM3Fanw-2QN5Z_Uda-twUm2BKLziQBv86SiQLiOHPOBxnJRlsno45f_IPp80CF6bolMAezQ0tZgwH9CGLAO5WqHEoyO7gyvoLY2XCmTX9MTzmw0-OLhx-0wXhRz_PKsWFQ0IZYVcdEn92qFbznLsLltHEZ9IjpTocP67kh-elKhpccMP_z-3x9rjVwbHu7tJruj_Z0H5LqPRS6ucPxolfTms0X2EELPuXpUzXdKvl62gfkJOcKZAg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGkRAviPG1wmAGgQBp2ZLYiZMHhMbGtG4wJmBob8F27G1Sl5SmFdq_xl_HXeIEgibgZX1pFV_S5O78u3N8H4Q8TRLFRJ5HXiAj3-OxZICDufKszYXhVoKTgYnC7_fjnUO-exQdLZAfbS4MhlW2mFgDdV5qfEe-HsZplIAxYWzdurCIg63t15NvHnaQwp3Wtp1GoyJ75vw7LN-qV6MtkPWzMNx--3lzx3MdBjwdg2p7igWByoPYhhzWHVYr7ms4EoY2DQOtwZu30ih4Aox0UkLalEVY3UZao5IA8B-ue4VcFUwkOMeSzS68BHAkjl2qHhPButOMtUlZmDVYCmLd9J4prDsGdHZhMBmX1UVO75-xm78Zw-2b5IbzYulGo3aLZMEUt8iiw4mKvnDFrF_eJvZgiltBKH5aWorv6VepLcvZKoWf9Aw7-FG3S0RN065WV_S0oLtgxguKcfnHVNJxCV_VCSwWPDQm9AwjhM9pWxL9Djm8FM7fJYMCeLlEqAyMlqkfac4Vj6xQ2rea5yblWoPasSFhLZsz7QqfY_-NcVbv5glYADVcy1A4mRPOkHjdWZOm8Mc_6N-gBDtaLNtdHyinx5lDgcwo8PiCXOpI5txnWqkUblvkfurnIhfhkKyg_LMmB7YDn2xDYKU-EeHfPKkpsHRHgZPgWM6rKht9-PIfRJ8-9oieOyJbAju0dPkY8ExYEqxHudyjBADSveEl1NaWK1X2a6rCma0GXzz8uBvGi2K8X2HKeU0TY4oRF0Nyr1H4jrMMG92mcTIkojcVeqzvjxSnJ3Xl9JThh9__-22tkGsALdm70f7eA3I9xHwXX3hhskwGs-ncPAQvdKYe1dOdkq-XjS8_AdWBnQM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+hand%2C+foot%2C+and+mouth+disease+epidemics+in+Japan+using+a+long+short-term+memory+approach&rft.jtitle=PloS+one&rft.au=Yoshida%2C+Kazuhiro&rft.au=Fujimoto%2C+Tsuguto&rft.au=Muramatsu%2C+Masamichi&rft.au=Shimizu%2C+Hiroyuki&rft.date=2022-07-28&rft.eissn=1932-6203&rft.volume=17&rft.issue=7&rft.spage=e0271820&rft_id=info:doi/10.1371%2Fjournal.pone.0271820&rft_id=info%3Apmid%2F35900968&rft.externalDocID=35900968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |