Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila
Nerve progenitors hungry for action The availability of nutrients prompts quiescent neural stem cells (neuroblasts) in Drosophila larvae to begin to divide. A study of the mechanism linking diet to stem-cell behaviour has identified a relay mechanism regulating this nutritional checkpoint. Specific...
Saved in:
Published in | Nature (London) Vol. 471; no. 7339; pp. 508 - 512 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
24.03.2011
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nerve progenitors hungry for action
The availability of nutrients prompts quiescent neural stem cells (neuroblasts) in
Drosophila
larvae to begin to divide. A study of the mechanism linking diet to stem-cell behaviour has identified a relay mechanism regulating this nutritional checkpoint. Specific insulin-like peptides produced within the brain by glia — non-neuronal cells with various physical and biochemical support roles — form a bridge from the amino-acid/TOR-dependent signal derived from the fat body to PI3K/TOR signalling in neuroblasts to induce exit from quiescence.
Little is known about how nutritional cues are detected by quiescent neural stem cells (neuroblasts in
Drosophila melanogaster
) and how these signals are relayed to reactivate their cell cycle to exit quiescence. This study uses an integrative physiology approach to identify the relay mechanism regulating this nutritional checkpoint in neural progenitors. It is found that specific insulin-like peptides produced within the brain by glia bridge the amino-acid/TOR-dependent signal derived from the fat body with PI3K/TOR signalling in neuroblasts to induce exit from quiescent.
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated
1
,
2
,
3
,
4
,
5
. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing
Drosophila
central nervous system, multipotent self-renewing progenitors called neuroblasts
6
,
7
,
8
,
9
undergo quiescence in a stereotypical spatiotemporal pattern
10
. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer
11
,
12
,
13
. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids
14
. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body
14
. Here we provide
in vivo
evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling
15
activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size
16
,
17
,
18
but do not reactivate neuroblasts.
Drosophila
thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body–glia–neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour. |
---|---|
AbstractList | Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated (1-5). The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts (6-9) undergo quiescence in a stereotypical spatiotemporal pattern (10). Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer (11-13). Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids (14). Organ co-cultures also implicate an unidentified signal from an adipose/ hepatic-like tissue called the fat body (14).Here weprovide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling (15) activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size (16-18) but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour. Nerve progenitors hungry for action The availability of nutrients prompts quiescent neural stem cells (neuroblasts) in Drosophila larvae to begin to divide. A study of the mechanism linking diet to stem-cell behaviour has identified a relay mechanism regulating this nutritional checkpoint. Specific insulin-like peptides produced within the brain by glia — non-neuronal cells with various physical and biochemical support roles — form a bridge from the amino-acid/TOR-dependent signal derived from the fat body to PI3K/TOR signalling in neuroblasts to induce exit from quiescence. Little is known about how nutritional cues are detected by quiescent neural stem cells (neuroblasts in Drosophila melanogaster ) and how these signals are relayed to reactivate their cell cycle to exit quiescence. This study uses an integrative physiology approach to identify the relay mechanism regulating this nutritional checkpoint in neural progenitors. It is found that specific insulin-like peptides produced within the brain by glia bridge the amino-acid/TOR-dependent signal derived from the fat body with PI3K/TOR signalling in neuroblasts to induce exit from quiescent. Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated 1 , 2 , 3 , 4 , 5 . The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts 6 , 7 , 8 , 9 undergo quiescence in a stereotypical spatiotemporal pattern 10 . Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer 11 , 12 , 13 . Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids 14 . Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body 14 . Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling 15 activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size 16 , 17 , 18 but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body–glia–neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour. Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour. Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour. Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour. [PUBLICATION ABSTRACT] Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated 1 - 5 . The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system (CNS), multipotent self-renewing progenitors called neuroblasts 6 - 9 undergo quiescence in a stereotypical spatiotemporal pattern 10 . Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer 11 - 13 . Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids 14 . Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called fat body 14 . Here, we provide in vivo evidence that Slimfast amino-acid sensing and Target-of-Rapamycin (TOR) signalling 15 activate a fat-body derived signal (FDS) required for neuroblast reactivation. Downstream of the FDS, Insulin-like receptor (InR) signalling and the Phosphatidylinositol 3-Kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like Peptides (Ilps) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, Ilps secreted into the hemolymph by median neurosecretory cells (mNSCs) systemically control organismal size 16 - 18 but do not reactivate neuroblasts. Drosophila thus contains two segregated Ilp pools, one regulating proliferation within the CNS and the other controlling tissue growth systemically. Together, our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat body→glia→neuroblasts relay. This mechanism highlights that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour. |
Audience | Academic |
Author | Gould, Alex P. Yee, Lih Ling Sousa-Nunes, Rita |
Author_xml | – sequence: 1 givenname: Rita surname: Sousa-Nunes fullname: Sousa-Nunes, Rita organization: Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill – sequence: 2 givenname: Lih Ling surname: Yee fullname: Yee, Lih Ling organization: Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill – sequence: 3 givenname: Alex P. surname: Gould fullname: Gould, Alex P. email: agould@nimr.mrc.ac.uk organization: Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23947205$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21346761$$D View this record in MEDLINE/PubMed |
BookMark | eNp9011v0zAUBuAIDbEPuOIeRUMIEGTYzoftG6SqMJg0MWkUIa6sU-ek8-Q6bZxU7N_jqN3aooByEcV-_OrExz6ODlztMIqeU3JGSSo-OGi7BokUBX8UHdGMF0lWCH4QHRHCREJEWhxGx97fEkJyyrMn0SGjaVbwgh5Fv86hjTVa6-MGQbdmBS3Gy86g1-ja2GHX1FMLvvXxykA8ubqOwZXxzBqwsXG-s8aFpRbufPiMPzW1rxc3xsLT6HEF1uOzzfsk-nH-eTL-mlxefbkYjy4TXXDWJiBkKjnPJCOMQCkqATStKiokTktOppSgZEyTiqGASlOUBSlLBjniVIIk6Un0cZ276KZzLPuqG7Bq0Zg5NHeqBqP2Z5y5UbN6pVKaFSTjIeD1JqCplx36Vs2N77cEHNadVyIXnBe5ZEG--a-khHKZZxnNAj39i97WXePCRoQ8ybI0Z3lAL9doBhaVcVUdCtR9phqF6ZTkRd7XlwyoGToMfxOOQmXC8J4_HfB6YZZqF50NoPCUODd6MPXt3oJgWvzdzqDzXl18v9637_5tR5Of42_7-sVuAx86d39IA3i1AeA12KoBp43fulRmnJF-O-na6XAIfYOV0qaF1tR9340N7VH9hVE7F2Zb6sOa-9hh_X6tfVBuhs22q0P8D6xuImU |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_neuron_2011_05_016 crossref_primary_10_1016_j_neuroscience_2018_12_014 crossref_primary_10_1016_j_ydbio_2021_01_016 crossref_primary_10_1016_j_brainres_2012_03_042 crossref_primary_10_1016_j_tem_2014_03_011 crossref_primary_10_3389_fnins_2019_00788 crossref_primary_10_1007_s12264_014_1448_2 crossref_primary_10_1016_j_ydbio_2015_03_005 crossref_primary_10_1016_j_neuron_2011_05_011 crossref_primary_10_1101_cshperspect_a041423 crossref_primary_10_1016_j_ibmb_2021_103569 crossref_primary_10_1007_s00018_020_03547_2 crossref_primary_10_1073_pnas_1414389111 crossref_primary_10_1242_dev_074179 crossref_primary_10_1242_dev_080515 crossref_primary_10_1016_j_mce_2021_111339 crossref_primary_10_1038_s42003_019_0671_4 crossref_primary_10_3389_fnins_2014_00414 crossref_primary_10_7554_eLife_41637 crossref_primary_10_1016_j_cois_2020_10_008 crossref_primary_10_1016_j_ydbio_2018_05_005 crossref_primary_10_1016_j_mod_2015_06_002 crossref_primary_10_1371_journal_pgen_1010435 crossref_primary_10_1038_nrn4021 crossref_primary_10_1146_annurev_genet_111523_102510 crossref_primary_10_1111_acel_12630 crossref_primary_10_7554_eLife_31159 crossref_primary_10_1091_mbc_E17_05_0294 crossref_primary_10_1242_dev_182873 crossref_primary_10_1002_glia_24623 crossref_primary_10_1016_j_cub_2019_01_039 crossref_primary_10_1016_j_cell_2011_06_040 crossref_primary_10_1242_jeb_089920 crossref_primary_10_15252_embj_2020104549 crossref_primary_10_1002_jnr_24713 crossref_primary_10_4161_fly_19797 crossref_primary_10_1128_MCB_00658_13 crossref_primary_10_1242_dev_200275 crossref_primary_10_3109_01677063_2014_898639 crossref_primary_10_3389_fcell_2020_590094 crossref_primary_10_1242_dev_103978 crossref_primary_10_1038_s41467_017_00172_9 crossref_primary_10_15252_embr_202050994 crossref_primary_10_1002_wdev_111 crossref_primary_10_1007_s13760_024_02706_7 crossref_primary_10_1016_j_celrep_2013_02_006 crossref_primary_10_1038_s41467_018_06276_0 crossref_primary_10_1016_j_cell_2013_12_008 crossref_primary_10_1016_j_devcel_2014_05_021 crossref_primary_10_7554_eLife_26343 crossref_primary_10_7554_eLife_03363 crossref_primary_10_1016_j_cub_2016_02_009 crossref_primary_10_1038_ncomms9732 crossref_primary_10_7554_eLife_08497 crossref_primary_10_1242_dev_070391 crossref_primary_10_1242_dev_079087 crossref_primary_10_15252_embr_202052130 crossref_primary_10_3389_fnins_2023_1244022 crossref_primary_10_1038_ncomms10510 crossref_primary_10_1111_acel_12854 crossref_primary_10_1371_journal_pgen_1006154 crossref_primary_10_3934_genet_2015_1_13 crossref_primary_10_1101_gad_204479_112 crossref_primary_10_1002_wdev_124 crossref_primary_10_1016_j_jinsphys_2023_104488 crossref_primary_10_1016_j_expneurol_2015_05_015 crossref_primary_10_7554_eLife_51529 crossref_primary_10_1038_s41467_022_34063_5 crossref_primary_10_1016_j_mod_2016_07_003 crossref_primary_10_1242_dev_178871 crossref_primary_10_1016_j_cell_2014_06_024 crossref_primary_10_1016_j_nbd_2017_01_010 crossref_primary_10_1016_j_devcel_2015_01_019 crossref_primary_10_1096_fj_13_240556 crossref_primary_10_1371_journal_pgen_1003273 crossref_primary_10_1016_j_tcb_2013_03_005 crossref_primary_10_1016_j_ydbio_2018_04_014 crossref_primary_10_4161_21624054_2014_979658 crossref_primary_10_1016_j_devcel_2018_01_026 crossref_primary_10_1242_dev_088435 crossref_primary_10_1016_j_cmet_2021_05_018 crossref_primary_10_1038_s41467_024_47465_4 crossref_primary_10_4199_C00170ED1V01Y201902NGL012 crossref_primary_10_1007_s00018_012_0957_x crossref_primary_10_1016_j_conb_2023_102689 crossref_primary_10_1016_j_isci_2023_108545 crossref_primary_10_15252_embj_201798239 crossref_primary_10_7554_eLife_93604_3 crossref_primary_10_1146_annurev_ento_011118_112007 crossref_primary_10_3389_fncel_2015_00327 crossref_primary_10_1007_s43538_022_00107_z crossref_primary_10_7554_eLife_13463 crossref_primary_10_1242_dmm_012989 crossref_primary_10_1016_j_celrep_2018_08_067 crossref_primary_10_1242_dev_201599 crossref_primary_10_1016_j_celrep_2019_05_023 crossref_primary_10_1016_j_nbd_2023_106071 crossref_primary_10_1093_oons_kvac001 crossref_primary_10_1242_dev_071779 crossref_primary_10_1093_oons_kvac004 crossref_primary_10_1371_journal_pgen_1005209 crossref_primary_10_3389_fcell_2022_838431 crossref_primary_10_1016_j_cois_2015_08_001 crossref_primary_10_1242_dev_074047 crossref_primary_10_3389_fcell_2017_00029 crossref_primary_10_1371_journal_pgen_1004225 crossref_primary_10_3389_fevo_2015_00005 crossref_primary_10_1371_journal_pgen_1003253 crossref_primary_10_1007_s00018_020_03535_6 crossref_primary_10_1007_s00018_015_2063_3 crossref_primary_10_1155_2015_657928 crossref_primary_10_1073_pnas_2020098118 crossref_primary_10_1016_j_cell_2015_09_020 crossref_primary_10_1146_annurev_cellbio_092910_154026 crossref_primary_10_1126_sciadv_adl4694 crossref_primary_10_1111_acel_12000 crossref_primary_10_1111_dgd_12245 crossref_primary_10_3389_fcell_2020_00382 crossref_primary_10_1073_pnas_1710238114 crossref_primary_10_1242_dev_080259 crossref_primary_10_7554_eLife_88565_3 crossref_primary_10_1371_journal_pone_0052825 crossref_primary_10_1016_j_celrep_2021_109620 crossref_primary_10_3389_fphys_2014_00117 crossref_primary_10_1017_S000711451200579X crossref_primary_10_1242_dev_058230 crossref_primary_10_1186_s40850_020_00063_5 crossref_primary_10_3389_fcell_2023_1275963 crossref_primary_10_1242_bio_20121966 crossref_primary_10_1016_j_cub_2022_02_021 crossref_primary_10_1242_dev_160887 crossref_primary_10_1210_en_2014_1427 crossref_primary_10_1073_pnas_1409241111 crossref_primary_10_1016_j_devcel_2011_06_034 crossref_primary_10_3389_fnins_2014_00365 crossref_primary_10_1186_s12915_020_00854_9 crossref_primary_10_1371_journal_pbio_3000721 crossref_primary_10_1038_mtm_2013_8 crossref_primary_10_1242_bio_20136437 crossref_primary_10_1371_journal_pgen_1004052 crossref_primary_10_1371_journal_pgen_1004172 crossref_primary_10_1371_journal_pbio_3002352 crossref_primary_10_1016_j_cub_2018_01_060 crossref_primary_10_1002_stem_1621 crossref_primary_10_1016_j_ydbio_2020_01_006 crossref_primary_10_1038_nrn3209 crossref_primary_10_1016_j_cub_2011_06_033 crossref_primary_10_1089_genbio_2023_0017 crossref_primary_10_4161_cc_19879 crossref_primary_10_1016_j_exger_2013_10_014 crossref_primary_10_1111_nyas_14678 crossref_primary_10_1016_j_semcdb_2019_11_009 crossref_primary_10_1016_j_ydbio_2012_03_010 crossref_primary_10_1109_ACCESS_2019_2896169 crossref_primary_10_1371_journal_pbio_3000276 crossref_primary_10_1016_j_cell_2023_08_002 crossref_primary_10_1016_j_lfs_2016_10_019 crossref_primary_10_3389_fcell_2021_595754 crossref_primary_10_1016_j_devcel_2015_10_026 crossref_primary_10_7554_eLife_88565 crossref_primary_10_1186_s12978_021_01203_x crossref_primary_10_1016_j_devcel_2013_09_018 crossref_primary_10_1242_dev_166207 crossref_primary_10_1016_j_tig_2017_08_005 crossref_primary_10_1016_j_ydbio_2019_08_004 crossref_primary_10_3390_ijms21207491 crossref_primary_10_3389_fcell_2020_611269 crossref_primary_10_1016_j_gene_2014_03_012 crossref_primary_10_1016_j_freeradbiomed_2021_01_042 crossref_primary_10_1016_j_dci_2016_01_017 crossref_primary_10_1016_j_devcel_2011_06_012 crossref_primary_10_1016_j_pneurobio_2019_02_003 crossref_primary_10_1016_j_celrep_2017_01_053 crossref_primary_10_1016_j_cois_2022_100947 crossref_primary_10_1073_pnas_1212879109 crossref_primary_10_7554_eLife_04869 crossref_primary_10_3390_jdb6040025 crossref_primary_10_1002_wdev_27 crossref_primary_10_3390_jdb6040026 crossref_primary_10_1038_s41598_021_04474_3 crossref_primary_10_1016_j_devcel_2015_10_003 crossref_primary_10_1016_j_exger_2018_03_013 crossref_primary_10_3389_fcell_2021_662915 crossref_primary_10_3389_fcell_2021_786129 crossref_primary_10_1002_embj_201387412 crossref_primary_10_1371_journal_pone_0287865 crossref_primary_10_1002_1873_3468_12298 crossref_primary_10_1002_wdev_198 crossref_primary_10_1371_journal_pbio_1002392 crossref_primary_10_1186_1749_8104_8_6 crossref_primary_10_1002_dneu_22406 crossref_primary_10_1080_15384101_2016_1171653 crossref_primary_10_1186_s12861_015_0059_8 crossref_primary_10_1016_j_cell_2011_08_048 crossref_primary_10_1016_j_devcel_2012_12_010 crossref_primary_10_1242_dev_093773 crossref_primary_10_3389_fcell_2021_606639 crossref_primary_10_1371_journal_pone_0305696 crossref_primary_10_3389_fmolb_2022_863885 crossref_primary_10_1016_j_ydbio_2013_01_025 crossref_primary_10_3389_fncel_2024_1397627 crossref_primary_10_1126_science_1238525 crossref_primary_10_1186_s13064_020_00148_4 crossref_primary_10_1007_s00427_016_0565_0 crossref_primary_10_1126_science_aan8795 crossref_primary_10_1016_j_devcel_2014_07_025 crossref_primary_10_1016_j_ydbio_2016_06_013 crossref_primary_10_1371_journal_pbio_2002252 crossref_primary_10_1080_19336934_2022_2061834 crossref_primary_10_3390_biology12070993 crossref_primary_10_1242_dev_136713 crossref_primary_10_7554_eLife_52322 crossref_primary_10_1083_jcb_201306099 crossref_primary_10_3390_ijms22189987 crossref_primary_10_1016_j_cell_2011_10_006 crossref_primary_10_1111_dom_12337 crossref_primary_10_1038_embor_2011_230 crossref_primary_10_1016_j_ceb_2011_08_004 crossref_primary_10_1016_j_bbrc_2020_09_120 crossref_primary_10_1186_1749_8104_7_14 crossref_primary_10_1007_s00441_014_1914_9 crossref_primary_10_1177_26331055221120252 crossref_primary_10_15252_embr_202256624 crossref_primary_10_7554_eLife_30413 crossref_primary_10_1016_j_celrep_2016_07_022 crossref_primary_10_1016_j_tins_2020_02_002 crossref_primary_10_3389_fcell_2020_00533 crossref_primary_10_1111_dgd_12734 crossref_primary_10_7554_eLife_50375 crossref_primary_10_7554_eLife_66718 crossref_primary_10_1038_s41467_022_32685_3 crossref_primary_10_1038_s41467_018_05645_z crossref_primary_10_1096_fj_13_243659 crossref_primary_10_1016_j_cub_2011_05_037 crossref_primary_10_1242_bio_201410165 crossref_primary_10_3109_01677063_2013_868459 crossref_primary_10_1038_nature12932 crossref_primary_10_1038_ncb2453 crossref_primary_10_1242_dev_074203 crossref_primary_10_1016_j_stemcr_2018_08_014 crossref_primary_10_1073_pnas_2000963117 crossref_primary_10_1242_jeb_066969 crossref_primary_10_1016_j_pneurobio_2015_03_003 crossref_primary_10_1002_glia_23459 crossref_primary_10_1016_j_conb_2013_07_002 crossref_primary_10_1002_jnr_24234 crossref_primary_10_1002_glia_23691 crossref_primary_10_1371_journal_pone_0309221 crossref_primary_10_12965_jer_2244042_021 crossref_primary_10_1002_embr_201337966 crossref_primary_10_1093_lifemeta_loae004 crossref_primary_10_1534_genetics_113_160663 crossref_primary_10_1242_dev_091777 crossref_primary_10_1126_science_aan3174 crossref_primary_10_1002_wdev_394 crossref_primary_10_7554_eLife_58756 crossref_primary_10_7554_eLife_50354 crossref_primary_10_1186_s13064_022_00163_7 crossref_primary_10_3389_fnmol_2016_00097 crossref_primary_10_1007_s00427_024_00716_2 crossref_primary_10_1096_fj_201601127R crossref_primary_10_3389_fphys_2020_00991 crossref_primary_10_1016_j_jgg_2015_04_006 crossref_primary_10_1111_joim_12247 crossref_primary_10_1242_dev_164285 crossref_primary_10_7554_eLife_93604 crossref_primary_10_1371_journal_pgen_1008653 crossref_primary_10_1093_genetics_iyac184 crossref_primary_10_1016_j_tem_2016_06_007 crossref_primary_10_1038_s41467_024_52569_y crossref_primary_10_1242_dev_102178 crossref_primary_10_1111_plb_12935 |
Cites_doi | 10.1126/science.1070058 10.1016/j.cell.2009.12.027 10.1016/j.cub.2004.08.017 10.1101/gad.1098703 10.1126/science.274.5295.2104 10.1016/j.devcel.2009.10.009 10.1016/j.tcb.2005.10.007 10.1128/MCB.7.8.2718 10.1016/S0092-8674(03)00713-X 10.1073/pnas.1230526100 10.1371/journal.pbio.0060058 10.1098/rstb.2006.2011 10.1016/j.cmet.2009.08.002 10.1242/dev.014977 10.1016/j.cell.2010.12.007 10.1073/pnas.0905083106 10.1016/j.conb.2009.12.005 10.1523/JNEUROSCI.3246-04.2004 10.1016/S0092-8674(00)80589-9 10.1016/0012-1606(88)90067-X 10.1016/S0960-9822(01)00068-9 10.1523/JNEUROSCI.3583-07.2007 10.1038/nrm2223 10.1016/j.stem.2009.10.011 10.1101/gad.12.2.246 10.1073/pnas.011318098 10.1016/S0960-9822(00)00381-X 10.1083/jcb.200511140 10.1073/pnas.2133841100 10.1016/S0960-9822(02)01043-6 10.1002/bies.20679 10.1002/j.1460-2075.1996.tb01049.x 10.1371/journal.pgen.1000857 10.1016/j.tcb.2009.09.006 10.1016/S0092-8674(01)00465-2 10.1016/S0925-4773(97)00078-6 10.1007/BF02179499 10.1016/j.cell.2005.08.037 10.1242/dev.025189 10.1016/j.mod.2003.07.003 10.1016/j.cell.2008.03.034 10.1016/S0092-8674(01)00332-4 10.1046/j.1440-169X.1996.00012.x 10.1016/j.ceb.2009.01.024 10.1016/S0960-9822(99)80450-3 10.1101/gad.8.8.981 10.1042/BJ20091181 10.1101/gad.845700 10.1016/j.devcel.2009.10.008 10.1523/JNEUROSCI.4844-08.2008 10.1242/dev.02609 10.1242/dev.126.23.5365 10.1242/dev.125.11.2149 10.1242/dev.126.19.4375 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2011 2015 INIST-CNRS COPYRIGHT 2011 Nature Publishing Group Copyright Nature Publishing Group Mar 24, 2011 |
Copyright_xml | – notice: Springer Nature Limited 2011 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2011 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 24, 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/nature09867 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection ProQuest Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Biological Science Collection eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Research Library ProQuest Science Database (NC LIVE) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Biological Science Database (NC LIVE) Engineering Database Research Library (Corporate) Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 512 |
ExternalDocumentID | PMC3146047 2306293081 A253305657 21346761 23947205 10_1038_nature09867 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GrantInformation_xml | – fundername: Medical Research Council grantid: U.1175.01.004.00001(62105) – fundername: Medical Research Council grantid: U117584237 – fundername: Medical Research Council grantid: MC_U117584237 – fundername: Medical Research Council : grantid: U.1175.01.004.00001(62105) || MRC_ |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .HR .XZ 00M 07C 08P 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABNNU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACRPL ACUHS ACWUS ADBBV ADFRT ADNMO ADUKH ADYSU ADZCM AENEX AEUYN AFFDN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGCDD AGGDT AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCR BCU BDKGC BEC BENPR BES BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L-9 L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OHT OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PEA PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~G0 ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA AGQPQ ALPWD ATHPR CITATION PHGZM PHGZT .-4 .GJ 1CY 1VW 354 3EH 3O- 41~ 42X 4R4 663 79B 9M8 AAJYS AAVBQ ABDPE ABEFU ACBNA ACBTR ACTDY ADRHT AEZWR AFBBN AFHIU AFHKK AHWEU AIXLP AJUXI BKOMP DB5 FA8 FAC HG6 IQODW J5H LGEZI LOTEE MVM N4W NADUK NFIDA NXXTH ODYON PJZUB PPXIY PQGLB PV9 QS- R4F RHI SKT TUD UBY UHB USG VOH X7L XOL YJ6 YQI YQJ YV5 YXA YYP YYQ ZCG ZGI ZHY ZY4 CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c672t-a893977492020ad8f8a13ff189ebd70b10e922c0f2e8afc1e960dd2a5eeb9a903 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 13:34:57 EDT 2025 Mon Jul 21 09:41:16 EDT 2025 Fri Jul 11 16:32:19 EDT 2025 Fri Jul 25 08:57:50 EDT 2025 Tue Jun 17 20:59:36 EDT 2025 Thu Jun 12 23:34:53 EDT 2025 Tue Jun 10 15:33:14 EDT 2025 Tue Jun 10 20:47:52 EDT 2025 Fri Jun 27 04:26:47 EDT 2025 Fri Jun 27 04:42:08 EDT 2025 Mon Jul 21 05:56:35 EDT 2025 Mon Jul 21 09:13:22 EDT 2025 Tue Jul 01 02:00:29 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Fri Feb 21 02:37:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7339 |
Keywords | Human Pancreatic hormone Adipose tissue Stem cell Precursor cell Central nervous system Neuroblast Insulin Protein Phosphatidylinositol Aminoacid Development Fat Biological receptor |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c672t-a893977492020ad8f8a13ff189ebd70b10e922c0f2e8afc1e960dd2a5eeb9a903 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3146047 |
PMID | 21346761 |
PQID | 859243525 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146047 proquest_miscellaneous_858776592 proquest_miscellaneous_1017954414 proquest_journals_859243525 gale_infotracmisc_A253305657 gale_infotracgeneralonefile_A253305657 gale_infotraccpiq_253305657 gale_infotracacademiconefile_A253305657 gale_incontextgauss_ISR_A253305657 gale_incontextgauss_ATWCN_A253305657 pubmed_primary_21346761 pascalfrancis_primary_23947205 crossref_citationtrail_10_1038_nature09867 crossref_primary_10_1038_nature09867 springer_journals_10_1038_nature09867 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-24 |
PublicationDateYYYYMMDD | 2011-03-24 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-24 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Géminard, Rulifson, Leopold (CR21) 2009; 10 Puig, Marr, Ruhf, Tjian (CR47) 2003; 17 Hacker (CR41) 2003; 100 Chen, Finkel (CR4) 2009; 5 Slaidina, Delanoue, Gronke, Partridge, Leopold (CR19) 2009; 17 Grönke, Clarke, Broughton, Andrews, Partridge (CR25) 2010; 6 Neufeld (CR23) 2003; 120 Fernandez-Almonacid, Rosen (CR29) 1987; 7 Miguel-Aliaga, Thor, Gould (CR48) 2008; 6 Egger, Chell, Brand (CR7) 2008; 363 Rintelen, Stocker, Thomas, Hafen (CR46) 2001; 98 Awasaki, Lai, Ito, Lee (CR52) 2008; 28 Hennig, Colombani, Neufeld (CR37) 2006; 173 Ikeya, Galic, Belawat, Nairz, Hafen (CR17) 2002; 12 Huang (CR44) 1999; 126 Maurange, Cheng, Gould (CR51) 2008; 133 Gronke (CR34) 2010; 6 Britton, Edgar (CR14) 1998; 125 Sousa-Nunes, Cheng, Gould (CR9) 2010; 20 Kambadur (CR12) 1998; 12 Pospisilik (CR57) 2010; 140 Brogiolo (CR16) 2001; 11 Rulifson, Kim, Nusse (CR56) 2002; 296 Okamoto (CR20) 2009; 17 Dhawan, Rando (CR1) 2005; 15 Isshiki, Pearson, Holbrook, Doe (CR13) 2001; 106 Zhang (CR33) 2009; 106 Colombani (CR15) 2003; 114 Connolly (CR39) 1996; 274 Silies (CR60) 2007; 27 Colombani (CR35) 2003; 114 Ito, Urban, Technau (CR40) 1995; 204 Brogiolo (CR32) 2001; 11 de Navas, Garaulet, Sanchez-Herrero (CR58) 2006; 133 Rulifson, Kim, Nusse (CR18) 2002; 296 Xiong (CR38) 1994; 8 Yanagida (CR3) 2009; 19 Coller (CR2) 2007; 8 Leevers (CR43) 1996; 15 Shiga, Tanaka-Matakatsu, Hayashi (CR42) 1996; 38 Pfeiffer, Alexandre, Calleja, Vincent (CR59) 2000; 10 Doe (CR8) 2008; 135 Schwabe (CR53) 2005; 123 Truman, Bate (CR10) 1988; 125 Polak, Hall (CR22) 2009; 21 Chell, Brand (CR27) 2010; 143 Tsuji, Hasegawa, Isshiki (CR11) 2008; 135 Oldham (CR31) 2000; 14 Moline, Southern, Bejsovec (CR50) 1999; 126 Zhang (CR26) 2009; 106 Teleman (CR24) 2010; 425 Weinkove (CR45) 1999; 9 Mangan, Alon (CR28) 2003; 100 Hodge, D’Ercole, O’Kusky (CR30) 2004; 24 Betschinger, Knoblich (CR6) 2004; 14 Scholz, Sadlowski, Klaes, Klambt (CR54) 1997; 64 Sánchez-Garcia, Vicente-Duenas, Cobaleda (CR5) 2007; 29 Ikeya (CR49) 2002; 12 Kidd, Bland, Goodman (CR55) 1999; 96 Tapon (CR36) 2001; 105 JA Pospisilik (BFnature09867_CR57) 2010; 140 JW Truman (BFnature09867_CR10) 1988; 125 C Géminard (BFnature09867_CR21) 2009; 10 JM Chell (BFnature09867_CR27) 2010; 143 T Kidd (BFnature09867_CR55) 1999; 96 EJ Rulifson (BFnature09867_CR56) 2002; 296 W Brogiolo (BFnature09867_CR32) 2001; 11 F Rintelen (BFnature09867_CR46) 2001; 98 H Zhang (BFnature09867_CR26) 2009; 106 J Betschinger (BFnature09867_CR6) 2004; 14 T Tsuji (BFnature09867_CR11) 2008; 135 KM Hennig (BFnature09867_CR37) 2006; 173 I Sánchez-Garcia (BFnature09867_CR5) 2007; 29 S Grönke (BFnature09867_CR25) 2010; 6 MM Moline (BFnature09867_CR50) 1999; 126 K Ito (BFnature09867_CR40) 1995; 204 C Maurange (BFnature09867_CR51) 2008; 133 H Zhang (BFnature09867_CR33) 2009; 106 T Ikeya (BFnature09867_CR17) 2002; 12 EJ Rulifson (BFnature09867_CR18) 2002; 296 J Dhawan (BFnature09867_CR1) 2005; 15 LF de Navas (BFnature09867_CR58) 2006; 133 W Brogiolo (BFnature09867_CR16) 2001; 11 TP Neufeld (BFnature09867_CR23) 2003; 120 T Schwabe (BFnature09867_CR53) 2005; 123 Y Shiga (BFnature09867_CR42) 1996; 38 M Yanagida (BFnature09867_CR3) 2009; 19 D Weinkove (BFnature09867_CR45) 1999; 9 AA Teleman (BFnature09867_CR24) 2010; 425 HA Coller (BFnature09867_CR2) 2007; 8 B Egger (BFnature09867_CR7) 2008; 363 CQ Doe (BFnature09867_CR8) 2008; 135 RD Hodge (BFnature09867_CR30) 2004; 24 WC Xiong (BFnature09867_CR38) 1994; 8 N Okamoto (BFnature09867_CR20) 2009; 17 M Silies (BFnature09867_CR60) 2007; 27 T Isshiki (BFnature09867_CR13) 2001; 106 P Polak (BFnature09867_CR22) 2009; 21 N Tapon (BFnature09867_CR36) 2001; 105 T Ikeya (BFnature09867_CR49) 2002; 12 S Gronke (BFnature09867_CR34) 2010; 6 U Hacker (BFnature09867_CR41) 2003; 100 O Puig (BFnature09867_CR47) 2003; 17 JS Britton (BFnature09867_CR14) 1998; 125 J Colombani (BFnature09867_CR15) 2003; 114 J Colombani (BFnature09867_CR35) 2003; 114 E Chen (BFnature09867_CR4) 2009; 5 JB Connolly (BFnature09867_CR39) 1996; 274 S Mangan (BFnature09867_CR28) 2003; 100 T Awasaki (BFnature09867_CR52) 2008; 28 R Sousa-Nunes (BFnature09867_CR9) 2010; 20 R Fernandez-Almonacid (BFnature09867_CR29) 1987; 7 R Kambadur (BFnature09867_CR12) 1998; 12 S Oldham (BFnature09867_CR31) 2000; 14 H Scholz (BFnature09867_CR54) 1997; 64 SJ Leevers (BFnature09867_CR43) 1996; 15 S Pfeiffer (BFnature09867_CR59) 2000; 10 I Miguel-Aliaga (BFnature09867_CR48) 2008; 6 H Huang (BFnature09867_CR44) 1999; 126 M Slaidina (BFnature09867_CR19) 2009; 17 21474096 - Cell Stem Cell. 2011 Apr 8;8(4):352-4. doi: 10.1016/j.stem.2011.03.004. |
References_xml | – volume: 296 start-page: 1118 year: 2002 end-page: 1120 ident: CR18 article-title: Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes publication-title: Science doi: 10.1126/science.1070058 – volume: 140 start-page: 148 year: 2010 end-page: 160 ident: CR57 article-title: genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate publication-title: Cell doi: 10.1016/j.cell.2009.12.027 – volume: 125 start-page: 2149 year: 1998 end-page: 2158 ident: CR14 article-title: Environmental control of the cell cycle in : nutrition activates mitotic and endoreplicative cells by distinct mechanisms publication-title: Development – volume: 14 start-page: R674 year: 2004 end-page: R685 ident: CR6 article-title: Dare to be different: asymmetric cell division in , and vertebrates publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.08.017 – volume: 17 start-page: 2006 year: 2003 end-page: 2020 ident: CR47 article-title: Control of cell number by FOXO: downstream and feedback regulation of the insulin receptor pathway publication-title: Genes Dev. doi: 10.1101/gad.1098703 – volume: 274 start-page: 2104 year: 1996 end-page: 2107 ident: CR39 article-title: Associative learning disrupted by impaired G signaling in mushroom bodies publication-title: Science doi: 10.1126/science.274.5295.2104 – volume: 17 start-page: 874 year: 2009 end-page: 884 ident: CR19 article-title: A insulin-like peptide promotes growth during nonfeeding states publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.10.009 – volume: 15 start-page: 666 year: 2005 end-page: 673 ident: CR1 article-title: Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2005.10.007 – volume: 7 start-page: 2718 year: 1987 end-page: 2727 ident: CR29 article-title: Structure and ligand specificity of the insulin receptor publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.7.8.2718 – volume: 114 start-page: 739 year: 2003 end-page: 749 ident: CR35 article-title: A nutrient sensor mechanism controls growth publication-title: Cell doi: 10.1016/S0092-8674(03)00713-X – volume: 100 start-page: 7720 year: 2003 end-page: 7725 ident: CR41 article-title: -based insertional mutagenesis in the presence of stably integrated elements in publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1230526100 – volume: 6 start-page: e58 year: 2008 ident: CR48 article-title: Postmitotic specification of insulinergic neurons from pioneer neurons publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060058 – volume: 363 start-page: 39 year: 2008 end-page: 56 ident: CR7 article-title: Insights into neural stem cell biology from flies publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2006.2011 – volume: 10 start-page: 199 year: 2009 end-page: 207 ident: CR21 article-title: Remote control of insulin secretion by fat cells in publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.08.002 – volume: 135 start-page: 1575 year: 2008 end-page: 1587 ident: CR8 article-title: Neural stem cells: balancing self-renewal with differentiation publication-title: Development doi: 10.1242/dev.014977 – volume: 143 start-page: 1161 year: 2010 end-page: 1173 ident: CR27 article-title: Nutrition-responsive glia control exit of neural stem cells from quiescence publication-title: Cell doi: 10.1016/j.cell.2010.12.007 – volume: 106 start-page: 19617 year: 2009 end-page: 19622 ident: CR26 article-title: Deletion of insulin-like peptides causes growth defects and metabolic abnormalities publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0905083106 – volume: 20 start-page: 50 year: 2010 end-page: 57 ident: CR9 article-title: Regulating neural proliferation in the CNS publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2009.12.005 – volume: 24 start-page: 10201 year: 2004 end-page: 10210 ident: CR30 article-title: Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3246-04.2004 – volume: 114 start-page: 739 year: 2003 end-page: 749 ident: CR15 article-title: A nutrient sensor mechanism controls growth publication-title: Cell doi: 10.1016/S0092-8674(03)00713-X – volume: 96 start-page: 785 year: 1999 end-page: 794 ident: CR55 article-title: Slit is the midline repellent for the Robo receptor in publication-title: Cell doi: 10.1016/S0092-8674(00)80589-9 – volume: 125 start-page: 145 year: 1988 end-page: 157 ident: CR10 article-title: Spatial and temporal patterns of neurogenesis in the central nervous system of publication-title: Dev. Biol. doi: 10.1016/0012-1606(88)90067-X – volume: 126 start-page: 4375 year: 1999 end-page: 4384 ident: CR50 article-title: Directionality of wingless protein transport influences epidermal patterning in the embryo publication-title: Development – volume: 11 start-page: 213 year: 2001 end-page: 221 ident: CR32 article-title: An evolutionarily conserved function of the insulin receptor and insulin-like peptides in growth control publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00068-9 – volume: 27 start-page: 13130 year: 2007 end-page: 13139 ident: CR60 article-title: Glial cell migration in the eye disc publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3583-07.2007 – volume: 8 start-page: 667 year: 2007 end-page: 670 ident: CR2 article-title: What’s taking so long? S-phase entry from quiescence versus proliferation publication-title: Nature Rev. Mol. Cell Biol. doi: 10.1038/nrm2223 – volume: 5 start-page: 451 year: 2009 end-page: 452 ident: CR4 article-title: The tortoise, the hare, and the FoxO publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.10.011 – volume: 12 start-page: 246 year: 1998 end-page: 260 ident: CR12 article-title: Regulation of POU genes by castor and hunchback establishes layered compartments in the CNS publication-title: Genes Dev. doi: 10.1101/gad.12.2.246 – volume: 98 start-page: 15020 year: 2001 end-page: 15025 ident: CR46 article-title: PDK1 regulates growth through Akt and S6K in publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.011318098 – volume: 10 start-page: 321 year: 2000 end-page: 324 ident: CR59 article-title: The progeny of -expressing cells deliver the signal at a distance in embryos publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00381-X – volume: 173 start-page: 963 year: 2006 end-page: 974 ident: CR37 article-title: TOR coordinates bulk and targeted endocytosis in the fat body to regulate cell growth publication-title: J. Cell Biol. doi: 10.1083/jcb.200511140 – volume: 100 start-page: 11980 year: 2003 end-page: 11985 ident: CR28 article-title: Structure and function of the feed-forward loop network motif publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2133841100 – volume: 12 start-page: 1293 year: 2002 end-page: 1300 ident: CR49 article-title: Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01043-6 – volume: 29 start-page: 1269 year: 2007 end-page: 1280 ident: CR5 article-title: The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? publication-title: Bioessays doi: 10.1002/bies.20679 – volume: 15 start-page: 6584 year: 1996 end-page: 6594 ident: CR43 article-title: The phosphoinositide 3-kinase Dp110 promotes cell growth publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb01049.x – volume: 6 start-page: e1000857 year: 2010 ident: CR25 article-title: Molecular evolution and functional characterization of insulin-like peptides publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000857 – volume: 19 start-page: 705 year: 2009 end-page: 715 ident: CR3 article-title: Cellular quiescence: are controlling genes conserved? publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2009.09.006 – volume: 106 start-page: 511 year: 2001 end-page: 521 ident: CR13 article-title: neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny publication-title: Cell doi: 10.1016/S0092-8674(01)00465-2 – volume: 106 start-page: 19617 year: 2009 end-page: 19622 ident: CR33 article-title: Deletion of insulin-like peptides causes growth defects and metabolic abnormalities publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0905083106 – volume: 64 start-page: 139 year: 1997 end-page: 151 ident: CR54 article-title: Control of midline glia development in the embryonic CNS publication-title: Mech. Dev. doi: 10.1016/S0925-4773(97)00078-6 – volume: 6 start-page: e1000857 year: 2010 ident: CR34 article-title: Molecular evolution and functional characterization of insulin-like peptides publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000857 – volume: 126 start-page: 5365 year: 1999 end-page: 5372 ident: CR44 article-title: PTEN affects cell size, cell proliferation and apoptosis during eye development publication-title: Development – volume: 204 start-page: 284 year: 1995 end-page: 307 ident: CR40 article-title: Distribution, classification, and development of glial cells in the late embryonic and early larval ventral nerve cord publication-title: Rouxs Arch. Dev. Biol. doi: 10.1007/BF02179499 – volume: 123 start-page: 133 year: 2005 end-page: 144 ident: CR53 article-title: GPCR Signaling is required for blood-brain barrier formation in publication-title: Cell doi: 10.1016/j.cell.2005.08.037 – volume: 135 start-page: 3859 year: 2008 end-page: 3869 ident: CR11 article-title: Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors publication-title: Development doi: 10.1242/dev.025189 – volume: 120 start-page: 1283 year: 2003 end-page: 1296 ident: CR23 article-title: Body building: regulation of shape and size by PI3K/TOR signaling during development publication-title: Mech. Dev. doi: 10.1016/j.mod.2003.07.003 – volume: 133 start-page: 891 year: 2008 end-page: 902 ident: CR51 article-title: Temporal transcription factors and their targets schedule the end of neural proliferation in publication-title: Cell doi: 10.1016/j.cell.2008.03.034 – volume: 12 start-page: 1293 year: 2002 end-page: 1300 ident: CR17 article-title: Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01043-6 – volume: 105 start-page: 345 year: 2001 end-page: 355 ident: CR36 article-title: The tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation publication-title: Cell doi: 10.1016/S0092-8674(01)00332-4 – volume: 38 start-page: 99 year: 1996 end-page: 106 ident: CR42 article-title: A nuclear GFP/ β-galactosidase fusion protein as a marker for morphogenesis in living publication-title: Dev. Growth Differ. doi: 10.1046/j.1440-169X.1996.00012.x – volume: 296 start-page: 1118 year: 2002 end-page: 1120 ident: CR56 article-title: Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes publication-title: Science doi: 10.1126/science.1070058 – volume: 11 start-page: 213 year: 2001 end-page: 221 ident: CR16 article-title: An evolutionarily conserved function of the insulin receptor and insulin-like peptides in growth control publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00068-9 – volume: 21 start-page: 209 year: 2009 end-page: 218 ident: CR22 article-title: mTOR and the control of whole body metabolism publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.01.024 – volume: 9 start-page: 1019 year: 1999 end-page: 1029 ident: CR45 article-title: Regulation of imaginal disc cell size, cell number and organ size by class I phosphoinositide 3-kinase and its adaptor publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80450-3 – volume: 8 start-page: 981 year: 1994 end-page: 994 ident: CR38 article-title: repo encodes a glial-specific homeo domain protein required in the nervous system publication-title: Genes Dev. doi: 10.1101/gad.8.8.981 – volume: 425 start-page: 13 year: 2010 end-page: 26 ident: CR24 article-title: Molecular mechanisms of metabolic regulation by insulin in publication-title: Biochem. J. doi: 10.1042/BJ20091181 – volume: 14 start-page: 2689 year: 2000 end-page: 2694 ident: CR31 article-title: Genetic and biochemical characterization of dTOR, the homolog of the target of rapamycin publication-title: Genes Dev. doi: 10.1101/gad.845700 – volume: 17 start-page: 885 year: 2009 end-page: 891 ident: CR20 article-title: A fat body-derived IGF-like peptide regulates postfeeding growth in publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.10.008 – volume: 28 start-page: 13742 year: 2008 end-page: 13753 ident: CR52 article-title: Organization and postembryonic development of glial cells in the adult central brain of publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4844-08.2008 – volume: 133 start-page: 4495 year: 2006 end-page: 4506 ident: CR58 article-title: The Hox gene of controls haltere size by regulating the Dpp pathway publication-title: Development doi: 10.1242/dev.02609 – volume: 28 start-page: 13742 year: 2008 ident: BFnature09867_CR52 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4844-08.2008 – volume: 106 start-page: 511 year: 2001 ident: BFnature09867_CR13 publication-title: Cell doi: 10.1016/S0092-8674(01)00465-2 – volume: 19 start-page: 705 year: 2009 ident: BFnature09867_CR3 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2009.09.006 – volume: 296 start-page: 1118 year: 2002 ident: BFnature09867_CR18 publication-title: Science doi: 10.1126/science.1070058 – volume: 100 start-page: 11980 year: 2003 ident: BFnature09867_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2133841100 – volume: 29 start-page: 1269 year: 2007 ident: BFnature09867_CR5 publication-title: Bioessays doi: 10.1002/bies.20679 – volume: 204 start-page: 284 year: 1995 ident: BFnature09867_CR40 publication-title: Rouxs Arch. Dev. Biol. doi: 10.1007/BF02179499 – volume: 98 start-page: 15020 year: 2001 ident: BFnature09867_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.011318098 – volume: 100 start-page: 7720 year: 2003 ident: BFnature09867_CR41 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1230526100 – volume: 7 start-page: 2718 year: 1987 ident: BFnature09867_CR29 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.7.8.2718 – volume: 24 start-page: 10201 year: 2004 ident: BFnature09867_CR30 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3246-04.2004 – volume: 21 start-page: 209 year: 2009 ident: BFnature09867_CR22 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2009.01.024 – volume: 11 start-page: 213 year: 2001 ident: BFnature09867_CR16 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00068-9 – volume: 20 start-page: 50 year: 2010 ident: BFnature09867_CR9 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2009.12.005 – volume: 5 start-page: 451 year: 2009 ident: BFnature09867_CR4 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2009.10.011 – volume: 133 start-page: 891 year: 2008 ident: BFnature09867_CR51 publication-title: Cell doi: 10.1016/j.cell.2008.03.034 – volume: 274 start-page: 2104 year: 1996 ident: BFnature09867_CR39 publication-title: Science doi: 10.1126/science.274.5295.2104 – volume: 17 start-page: 885 year: 2009 ident: BFnature09867_CR20 publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.10.008 – volume: 140 start-page: 148 year: 2010 ident: BFnature09867_CR57 publication-title: Cell doi: 10.1016/j.cell.2009.12.027 – volume: 12 start-page: 246 year: 1998 ident: BFnature09867_CR12 publication-title: Genes Dev. doi: 10.1101/gad.12.2.246 – volume: 106 start-page: 19617 year: 2009 ident: BFnature09867_CR33 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0905083106 – volume: 120 start-page: 1283 year: 2003 ident: BFnature09867_CR23 publication-title: Mech. Dev. doi: 10.1016/j.mod.2003.07.003 – volume: 126 start-page: 5365 year: 1999 ident: BFnature09867_CR44 publication-title: Development doi: 10.1242/dev.126.23.5365 – volume: 9 start-page: 1019 year: 1999 ident: BFnature09867_CR45 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(99)80450-3 – volume: 123 start-page: 133 year: 2005 ident: BFnature09867_CR53 publication-title: Cell doi: 10.1016/j.cell.2005.08.037 – volume: 133 start-page: 4495 year: 2006 ident: BFnature09867_CR58 publication-title: Development doi: 10.1242/dev.02609 – volume: 363 start-page: 39 year: 2008 ident: BFnature09867_CR7 publication-title: Phil. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2006.2011 – volume: 425 start-page: 13 year: 2010 ident: BFnature09867_CR24 publication-title: Biochem. J. doi: 10.1042/BJ20091181 – volume: 6 start-page: e58 year: 2008 ident: BFnature09867_CR48 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060058 – volume: 143 start-page: 1161 year: 2010 ident: BFnature09867_CR27 publication-title: Cell doi: 10.1016/j.cell.2010.12.007 – volume: 8 start-page: 981 year: 1994 ident: BFnature09867_CR38 publication-title: Genes Dev. doi: 10.1101/gad.8.8.981 – volume: 12 start-page: 1293 year: 2002 ident: BFnature09867_CR17 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01043-6 – volume: 114 start-page: 739 year: 2003 ident: BFnature09867_CR35 publication-title: Cell doi: 10.1016/S0092-8674(03)00713-X – volume: 64 start-page: 139 year: 1997 ident: BFnature09867_CR54 publication-title: Mech. Dev. doi: 10.1016/S0925-4773(97)00078-6 – volume: 11 start-page: 213 year: 2001 ident: BFnature09867_CR32 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(01)00068-9 – volume: 10 start-page: 321 year: 2000 ident: BFnature09867_CR59 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00381-X – volume: 125 start-page: 145 year: 1988 ident: BFnature09867_CR10 publication-title: Dev. Biol. doi: 10.1016/0012-1606(88)90067-X – volume: 173 start-page: 963 year: 2006 ident: BFnature09867_CR37 publication-title: J. Cell Biol. doi: 10.1083/jcb.200511140 – volume: 15 start-page: 666 year: 2005 ident: BFnature09867_CR1 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2005.10.007 – volume: 135 start-page: 3859 year: 2008 ident: BFnature09867_CR11 publication-title: Development doi: 10.1242/dev.025189 – volume: 106 start-page: 19617 year: 2009 ident: BFnature09867_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0905083106 – volume: 6 start-page: e1000857 year: 2010 ident: BFnature09867_CR34 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000857 – volume: 96 start-page: 785 year: 1999 ident: BFnature09867_CR55 publication-title: Cell doi: 10.1016/S0092-8674(00)80589-9 – volume: 105 start-page: 345 year: 2001 ident: BFnature09867_CR36 publication-title: Cell doi: 10.1016/S0092-8674(01)00332-4 – volume: 6 start-page: e1000857 year: 2010 ident: BFnature09867_CR25 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000857 – volume: 17 start-page: 874 year: 2009 ident: BFnature09867_CR19 publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.10.009 – volume: 8 start-page: 667 year: 2007 ident: BFnature09867_CR2 publication-title: Nature Rev. Mol. Cell Biol. doi: 10.1038/nrm2223 – volume: 14 start-page: 2689 year: 2000 ident: BFnature09867_CR31 publication-title: Genes Dev. doi: 10.1101/gad.845700 – volume: 27 start-page: 13130 year: 2007 ident: BFnature09867_CR60 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3583-07.2007 – volume: 125 start-page: 2149 year: 1998 ident: BFnature09867_CR14 publication-title: Development doi: 10.1242/dev.125.11.2149 – volume: 15 start-page: 6584 year: 1996 ident: BFnature09867_CR43 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb01049.x – volume: 126 start-page: 4375 year: 1999 ident: BFnature09867_CR50 publication-title: Development doi: 10.1242/dev.126.19.4375 – volume: 38 start-page: 99 year: 1996 ident: BFnature09867_CR42 publication-title: Dev. Growth Differ. doi: 10.1046/j.1440-169X.1996.00012.x – volume: 12 start-page: 1293 year: 2002 ident: BFnature09867_CR49 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01043-6 – volume: 114 start-page: 739 year: 2003 ident: BFnature09867_CR15 publication-title: Cell doi: 10.1016/S0092-8674(03)00713-X – volume: 10 start-page: 199 year: 2009 ident: BFnature09867_CR21 publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.08.002 – volume: 17 start-page: 2006 year: 2003 ident: BFnature09867_CR47 publication-title: Genes Dev. doi: 10.1101/gad.1098703 – volume: 14 start-page: R674 year: 2004 ident: BFnature09867_CR6 publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.08.017 – volume: 135 start-page: 1575 year: 2008 ident: BFnature09867_CR8 publication-title: Development doi: 10.1242/dev.014977 – volume: 296 start-page: 1118 year: 2002 ident: BFnature09867_CR56 publication-title: Science doi: 10.1126/science.1070058 – reference: 21474096 - Cell Stem Cell. 2011 Apr 8;8(4):352-4. doi: 10.1016/j.stem.2011.03.004. |
SSID | ssj0005174 |
Score | 2.5056145 |
Snippet | Nerve progenitors hungry for action
The availability of nutrients prompts quiescent neural stem cells (neuroblasts) in
Drosophila
larvae to begin to divide. A... Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit... Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated (1-5). The signals triggering entry into and... Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated 1 - 5 . The signals triggering entry into and... |
SourceID | pubmedcentral proquest gale pubmed pascalfrancis crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 508 |
SubjectTerms | 631/136/532/2182 631/378/2571 631/80/86 Adipocytes - drug effects Adipocytes - metabolism Amino acids Amino Acids - pharmacology Animals Biological and medical sciences Cells Cellular signal transduction Central nervous system Central Nervous System - cytology Central Nervous System - drug effects Central Nervous System - metabolism Diet Drosophila Drosophila melanogaster - cytology Drosophila melanogaster - drug effects Drosophila melanogaster - growth & development Drosophila melanogaster - metabolism Drosophila Proteins - metabolism Fat Body - cytology Fat Body - drug effects Fat Body - metabolism Fundamental and applied biological sciences. Psychology Gene expression Genetic aspects Humanities and Social Sciences Insects Insulin - metabolism Kinases Larva - cytology Larva - drug effects Larva - metabolism Larval development letter multidisciplinary Neural Stem Cells - cytology Neural Stem Cells - drug effects Neural Stem Cells - metabolism Neuroglia - drug effects Neuroglia - metabolism Peptides Phosphatidylinositol 3-Kinases - metabolism Physiological aspects Sample variance Science Science (multidisciplinary) Signal Transduction - drug effects TOR Serine-Threonine Kinases - metabolism Vertebrates: nervous system and sense organs |
Title | Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila |
URI | https://link.springer.com/article/10.1038/nature09867 https://www.ncbi.nlm.nih.gov/pubmed/21346761 https://www.proquest.com/docview/859243525 https://www.proquest.com/docview/1017954414 https://www.proquest.com/docview/858776592 https://pubmed.ncbi.nlm.nih.gov/PMC3146047 |
Volume | 471 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLbYJiQkhNi4hY3KoHGVoiVOUjtPqJSVgURBpdPKU-TYTolUpe3cIvHvOXbcdhkdL5EiHyW-Hh_bn78PoWMKQQCDdbIfJ1z6MRHKZwweScDbIk1jLq16w9d---w8_jJKRg6box2scuUTraOWU2H2yE9YAisFw935fjb3jWiUOVx1Cho7aC-EicYguljv0wbhcY2E2V3PCyJ2UrNmBimz-vKbCcm55bszrqGKilrbYlvw-S-G8tpBqp2fevfRPRdY4k7dE_bRLVUdoNsW4Cn0Adp3g1jjN45p-u0D9LPHF9hs3WsMsaOwSmcKz5dlzfGELdllDvH1QuPfJcfDbwPMK4nHE-i12MHYsbkO80fDK_54aVURygl_iM57p8Pume-0FnzRpmThc4hbTCiYEogfuWQF42FUFCFLVS5pkIeBSgkRQUEU44UIFax8pCQ8USpPeRpEj9BuNa3UEwOWCojkQrUFz-MkjRiVEpaRUchFRGMpPPRuVeGZcETkRg9jktkD8YhlV1rHQ8dr41nNv3GDmWm5zDBaVAYyM-ZLrbPO8KLbzzrEQGjN-a6HXmwz-_xj0DB67YyKKeRLcHdRAUpnuLIalocNSzEr59mV1FeN1HHduts-c9QwhAEuGsmtRndc14NRtackSCAbq_6ZOQ-ks_V48dDzdar5sgHVVWq61Jn1xkaDLvYQvsGGJYxSc_Tuocd1h9_8Poxglm2HHqKNobA2MMzlzZSq_GUZzCOYn4MYSvZyNWg2Gd_Suk__W8BDdKfe6I98Eh-h3cXlUj2DSHGRt9AOHVF4sm7Ysr6hhfY-nPa_D_4CEjNrug |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIJITa-wsYwaONLipbYSeM8IFRtlJZtRRqdGE_BsZ1SqUrbuQXtj-J_5Owk7TI63vYSqfLJsXPn813v7ncIbUdgBDDwk90g5NINiFAuY_AIPd4QcRxwabs3HHUb7ZPg82l4uoL-VLUwJq2y0olWUcuRMP-R77IQPAWD3flhPHFN0ygTXK06aBRScaDOf4PHpt939oG9O4S0Pvb22m7ZVMAVjYhMXQ4XtLF5YvD6PS5ZxrhPs8xnsUpl5KW-p2JChJcRxXgmfAUmvpSEh0qlMY89CvPeQDcDCrOYwvTWp0VGySXQ57Ic0KNst0Dp9GJm-9kvLsDyGrg75hpYkhW9NJYZu__mbF4K3Nr7sHUf3SsNWdwsJG8Nrah8Hd2yCaVCr6O1Umlo_KZEtn77AH1v8Sk2oQKNwVYVtrOawpPZoMCUwhZcMwV7fqrxrwHHvS_HmOcS94dwSnCZNo9N-c25hp94_8x2YRgM-UN0ci1seIRW81GunpjkLI9ILlRD8DQIY8oiKcFtpT4XNAqkcNC76oMnogQ-N_03hokNwFOWXOCOg7bnxOMC7-MKMsO5xCBo5CZFp89nWifN3re9btIkJmXXxJMd9HIZWefrcY3odUmUjWBdgpeFEbA7g81Vo9yoUYrxYJJcGH1VG-0X3F02zWaNEBSKqA1v1cRx_h0IjYOIeCEso5LPpNR4OpmfTwe9mI-amU0SX65GM51Y7W963gUOwlfQsJBFkQn1O-hxIfCL1_sUbvWG76CodhTmBAYpvT6SD35axHQK9oAXwM52qkOzWPgS7j797wafo9vt3tFhctjpHmygO0WQgbok2ESr07OZegZW6jTdsroBox_XrYz-AhuMpeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEAgJITZuYWMYtHGToiZ20jgPCFUt1cqgoNGJ8RQc2ymVqrRdWtB-Gv-OY8e9ZHS87SVS5SPHzrm65_g7CO1HEAQwOCe7QcilGxChXMbgEXq8LuI44NJ0b_jUrR-eBB9Ow9MN9Gd-F0aXVc5tojHUciT0f-Q1FsJJQWN31jJbFfGl1X43nri6gZROtM67aZQScqTOf8PprXjbaQGrDwhpv-81D13bYMAV9YhMXQ7OWsc_MYGgiUuWMe7TLPNZrFIZeanvqZgQ4WVEMZ4JX0G4LyXhoVJpzGOPwrzX0PWIRkyrGGuuVJdcAIC2VwM9ymolYqcXM9PbfukMrUu4PeYFsCcr-2qsC3z_rd-8kMQ1vrF9F92xQS1ulFK4hTZUvo1umOJSUWyjLWtACvzKoly_voe-t_kU67RBgSFuFabLmsKT2aDEl8IGaDOF2H5a4F8DjnufjzHPJe4PQWOwLaHH-irOeQE_cevMdGQYDPl9dHIlbHiANvNRrh7pQi2PSC5UXfA0CGPKIinhCEt9LmgUSOGgN_MPnggLgq57cQwTk4ynLFnhjoP2F8TjEvvjEjLNuUSjaeRaMPt8VhRJo_et2U0aRJfv6tyyg56vI-t8Pa4QvbRE2QjWJbi9JAG70zhdFcqdCqUYDybJyuiLymi_5O66aXYrhGBcRGV4ryKOi-9AaBxExAthGXP5TKz1K5KFrjro2WJUz6wL-nI1mhWJ8QS6_13gIHwJDQtZFOm0v4MelgK_fL1PwcPXfQdFFVVYEGjU9OpIPvhp0NMpxAZeADs7mCvNcuFruPv4vxt8im6CGUo-drpHO-hWmW-gLgl20eb0bKaeQMA6TfeMacDox1Xbor9jcKnl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fat+cells+reactivate+quiescent+neuroblasts+via+TOR+and+glial+insulin+relays+in+Drosophila&rft.jtitle=Nature+%28London%29&rft.au=Sousa-Nunes%2C+Rita&rft.au=Yee%2C+Lih+Ling&rft.au=Gould%2C+Alex+P&rft.date=2011-03-24&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=471&rft.issue=7339&rft.spage=508&rft_id=info:doi/10.1038%2Fnature09867&rft.externalDocID=A253305657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |