Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila

Nerve progenitors hungry for action The availability of nutrients prompts quiescent neural stem cells (neuroblasts) in Drosophila larvae to begin to divide. A study of the mechanism linking diet to stem-cell behaviour has identified a relay mechanism regulating this nutritional checkpoint. Specific...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 471; no. 7339; pp. 508 - 512
Main Authors Sousa-Nunes, Rita, Yee, Lih Ling, Gould, Alex P.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.03.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nerve progenitors hungry for action The availability of nutrients prompts quiescent neural stem cells (neuroblasts) in Drosophila larvae to begin to divide. A study of the mechanism linking diet to stem-cell behaviour has identified a relay mechanism regulating this nutritional checkpoint. Specific insulin-like peptides produced within the brain by glia — non-neuronal cells with various physical and biochemical support roles — form a bridge from the amino-acid/TOR-dependent signal derived from the fat body to PI3K/TOR signalling in neuroblasts to induce exit from quiescence. Little is known about how nutritional cues are detected by quiescent neural stem cells (neuroblasts in Drosophila melanogaster ) and how these signals are relayed to reactivate their cell cycle to exit quiescence. This study uses an integrative physiology approach to identify the relay mechanism regulating this nutritional checkpoint in neural progenitors. It is found that specific insulin-like peptides produced within the brain by glia bridge the amino-acid/TOR-dependent signal derived from the fat body with PI3K/TOR signalling in neuroblasts to induce exit from quiescent. Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated 1 , 2 , 3 , 4 , 5 . The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts 6 , 7 , 8 , 9 undergo quiescence in a stereotypical spatiotemporal pattern 10 . Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer 11 , 12 , 13 . Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids 14 . Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body 14 . Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling 15 activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size 16 , 17 , 18 but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body–glia–neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.
AbstractList Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated (1-5). The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts (6-9) undergo quiescence in a stereotypical spatiotemporal pattern (10). Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer (11-13). Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids (14). Organ co-cultures also implicate an unidentified signal from an adipose/ hepatic-like tissue called the fat body (14).Here weprovide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling (15) activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size (16-18) but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.
Nerve progenitors hungry for action The availability of nutrients prompts quiescent neural stem cells (neuroblasts) in Drosophila larvae to begin to divide. A study of the mechanism linking diet to stem-cell behaviour has identified a relay mechanism regulating this nutritional checkpoint. Specific insulin-like peptides produced within the brain by glia — non-neuronal cells with various physical and biochemical support roles — form a bridge from the amino-acid/TOR-dependent signal derived from the fat body to PI3K/TOR signalling in neuroblasts to induce exit from quiescence. Little is known about how nutritional cues are detected by quiescent neural stem cells (neuroblasts in Drosophila melanogaster ) and how these signals are relayed to reactivate their cell cycle to exit quiescence. This study uses an integrative physiology approach to identify the relay mechanism regulating this nutritional checkpoint in neural progenitors. It is found that specific insulin-like peptides produced within the brain by glia bridge the amino-acid/TOR-dependent signal derived from the fat body with PI3K/TOR signalling in neuroblasts to induce exit from quiescent. Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated 1 , 2 , 3 , 4 , 5 . The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts 6 , 7 , 8 , 9 undergo quiescence in a stereotypical spatiotemporal pattern 10 . Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer 11 , 12 , 13 . Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids 14 . Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body 14 . Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling 15 activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size 16 , 17 , 18 but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body–glia–neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts undergo quiescence in a stereotypical spatiotemporal pattern. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body-glia-neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour. [PUBLICATION ABSTRACT]
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated 1 - 5 . The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system (CNS), multipotent self-renewing progenitors called neuroblasts 6 - 9 undergo quiescence in a stereotypical spatiotemporal pattern 10 . Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer 11 - 13 . Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids 14 . Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called fat body 14 . Here, we provide in vivo evidence that Slimfast amino-acid sensing and Target-of-Rapamycin (TOR) signalling 15 activate a fat-body derived signal (FDS) required for neuroblast reactivation. Downstream of the FDS, Insulin-like receptor (InR) signalling and the Phosphatidylinositol 3-Kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like Peptides (Ilps) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, Ilps secreted into the hemolymph by median neurosecretory cells (mNSCs) systemically control organismal size 16 - 18 but do not reactivate neuroblasts. Drosophila thus contains two segregated Ilp pools, one regulating proliferation within the CNS and the other controlling tissue growth systemically. Together, our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat body→glia→neuroblasts relay. This mechanism highlights that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.
Audience Academic
Author Gould, Alex P.
Yee, Lih Ling
Sousa-Nunes, Rita
Author_xml – sequence: 1
  givenname: Rita
  surname: Sousa-Nunes
  fullname: Sousa-Nunes, Rita
  organization: Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill
– sequence: 2
  givenname: Lih Ling
  surname: Yee
  fullname: Yee, Lih Ling
  organization: Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill
– sequence: 3
  givenname: Alex P.
  surname: Gould
  fullname: Gould, Alex P.
  email: agould@nimr.mrc.ac.uk
  organization: Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23947205$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21346761$$D View this record in MEDLINE/PubMed
BookMark eNp9011v0zAUBuAIDbEPuOIeRUMIEGTYzoftG6SqMJg0MWkUIa6sU-ek8-Q6bZxU7N_jqN3aooByEcV-_OrExz6ODlztMIqeU3JGSSo-OGi7BokUBX8UHdGMF0lWCH4QHRHCREJEWhxGx97fEkJyyrMn0SGjaVbwgh5Fv86hjTVa6-MGQbdmBS3Gy86g1-ja2GHX1FMLvvXxykA8ubqOwZXxzBqwsXG-s8aFpRbufPiMPzW1rxc3xsLT6HEF1uOzzfsk-nH-eTL-mlxefbkYjy4TXXDWJiBkKjnPJCOMQCkqATStKiokTktOppSgZEyTiqGASlOUBSlLBjniVIIk6Un0cZ276KZzLPuqG7Bq0Zg5NHeqBqP2Z5y5UbN6pVKaFSTjIeD1JqCplx36Vs2N77cEHNadVyIXnBe5ZEG--a-khHKZZxnNAj39i97WXePCRoQ8ybI0Z3lAL9doBhaVcVUdCtR9phqF6ZTkRd7XlwyoGToMfxOOQmXC8J4_HfB6YZZqF50NoPCUODd6MPXt3oJgWvzdzqDzXl18v9637_5tR5Of42_7-sVuAx86d39IA3i1AeA12KoBp43fulRmnJF-O-na6XAIfYOV0qaF1tR9340N7VH9hVE7F2Zb6sOa-9hh_X6tfVBuhs22q0P8D6xuImU
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_neuron_2011_05_016
crossref_primary_10_1016_j_neuroscience_2018_12_014
crossref_primary_10_1016_j_ydbio_2021_01_016
crossref_primary_10_1016_j_brainres_2012_03_042
crossref_primary_10_1016_j_tem_2014_03_011
crossref_primary_10_3389_fnins_2019_00788
crossref_primary_10_1007_s12264_014_1448_2
crossref_primary_10_1016_j_ydbio_2015_03_005
crossref_primary_10_1016_j_neuron_2011_05_011
crossref_primary_10_1101_cshperspect_a041423
crossref_primary_10_1016_j_ibmb_2021_103569
crossref_primary_10_1007_s00018_020_03547_2
crossref_primary_10_1073_pnas_1414389111
crossref_primary_10_1242_dev_074179
crossref_primary_10_1242_dev_080515
crossref_primary_10_1016_j_mce_2021_111339
crossref_primary_10_1038_s42003_019_0671_4
crossref_primary_10_3389_fnins_2014_00414
crossref_primary_10_7554_eLife_41637
crossref_primary_10_1016_j_cois_2020_10_008
crossref_primary_10_1016_j_ydbio_2018_05_005
crossref_primary_10_1016_j_mod_2015_06_002
crossref_primary_10_1371_journal_pgen_1010435
crossref_primary_10_1038_nrn4021
crossref_primary_10_1146_annurev_genet_111523_102510
crossref_primary_10_1111_acel_12630
crossref_primary_10_7554_eLife_31159
crossref_primary_10_1091_mbc_E17_05_0294
crossref_primary_10_1242_dev_182873
crossref_primary_10_1002_glia_24623
crossref_primary_10_1016_j_cub_2019_01_039
crossref_primary_10_1016_j_cell_2011_06_040
crossref_primary_10_1242_jeb_089920
crossref_primary_10_15252_embj_2020104549
crossref_primary_10_1002_jnr_24713
crossref_primary_10_4161_fly_19797
crossref_primary_10_1128_MCB_00658_13
crossref_primary_10_1242_dev_200275
crossref_primary_10_3109_01677063_2014_898639
crossref_primary_10_3389_fcell_2020_590094
crossref_primary_10_1242_dev_103978
crossref_primary_10_1038_s41467_017_00172_9
crossref_primary_10_15252_embr_202050994
crossref_primary_10_1002_wdev_111
crossref_primary_10_1007_s13760_024_02706_7
crossref_primary_10_1016_j_celrep_2013_02_006
crossref_primary_10_1038_s41467_018_06276_0
crossref_primary_10_1016_j_cell_2013_12_008
crossref_primary_10_1016_j_devcel_2014_05_021
crossref_primary_10_7554_eLife_26343
crossref_primary_10_7554_eLife_03363
crossref_primary_10_1016_j_cub_2016_02_009
crossref_primary_10_1038_ncomms9732
crossref_primary_10_7554_eLife_08497
crossref_primary_10_1242_dev_070391
crossref_primary_10_1242_dev_079087
crossref_primary_10_15252_embr_202052130
crossref_primary_10_3389_fnins_2023_1244022
crossref_primary_10_1038_ncomms10510
crossref_primary_10_1111_acel_12854
crossref_primary_10_1371_journal_pgen_1006154
crossref_primary_10_3934_genet_2015_1_13
crossref_primary_10_1101_gad_204479_112
crossref_primary_10_1002_wdev_124
crossref_primary_10_1016_j_jinsphys_2023_104488
crossref_primary_10_1016_j_expneurol_2015_05_015
crossref_primary_10_7554_eLife_51529
crossref_primary_10_1038_s41467_022_34063_5
crossref_primary_10_1016_j_mod_2016_07_003
crossref_primary_10_1242_dev_178871
crossref_primary_10_1016_j_cell_2014_06_024
crossref_primary_10_1016_j_nbd_2017_01_010
crossref_primary_10_1016_j_devcel_2015_01_019
crossref_primary_10_1096_fj_13_240556
crossref_primary_10_1371_journal_pgen_1003273
crossref_primary_10_1016_j_tcb_2013_03_005
crossref_primary_10_1016_j_ydbio_2018_04_014
crossref_primary_10_4161_21624054_2014_979658
crossref_primary_10_1016_j_devcel_2018_01_026
crossref_primary_10_1242_dev_088435
crossref_primary_10_1016_j_cmet_2021_05_018
crossref_primary_10_1038_s41467_024_47465_4
crossref_primary_10_4199_C00170ED1V01Y201902NGL012
crossref_primary_10_1007_s00018_012_0957_x
crossref_primary_10_1016_j_conb_2023_102689
crossref_primary_10_1016_j_isci_2023_108545
crossref_primary_10_15252_embj_201798239
crossref_primary_10_7554_eLife_93604_3
crossref_primary_10_1146_annurev_ento_011118_112007
crossref_primary_10_3389_fncel_2015_00327
crossref_primary_10_1007_s43538_022_00107_z
crossref_primary_10_7554_eLife_13463
crossref_primary_10_1242_dmm_012989
crossref_primary_10_1016_j_celrep_2018_08_067
crossref_primary_10_1242_dev_201599
crossref_primary_10_1016_j_celrep_2019_05_023
crossref_primary_10_1016_j_nbd_2023_106071
crossref_primary_10_1093_oons_kvac001
crossref_primary_10_1242_dev_071779
crossref_primary_10_1093_oons_kvac004
crossref_primary_10_1371_journal_pgen_1005209
crossref_primary_10_3389_fcell_2022_838431
crossref_primary_10_1016_j_cois_2015_08_001
crossref_primary_10_1242_dev_074047
crossref_primary_10_3389_fcell_2017_00029
crossref_primary_10_1371_journal_pgen_1004225
crossref_primary_10_3389_fevo_2015_00005
crossref_primary_10_1371_journal_pgen_1003253
crossref_primary_10_1007_s00018_020_03535_6
crossref_primary_10_1007_s00018_015_2063_3
crossref_primary_10_1155_2015_657928
crossref_primary_10_1073_pnas_2020098118
crossref_primary_10_1016_j_cell_2015_09_020
crossref_primary_10_1146_annurev_cellbio_092910_154026
crossref_primary_10_1126_sciadv_adl4694
crossref_primary_10_1111_acel_12000
crossref_primary_10_1111_dgd_12245
crossref_primary_10_3389_fcell_2020_00382
crossref_primary_10_1073_pnas_1710238114
crossref_primary_10_1242_dev_080259
crossref_primary_10_7554_eLife_88565_3
crossref_primary_10_1371_journal_pone_0052825
crossref_primary_10_1016_j_celrep_2021_109620
crossref_primary_10_3389_fphys_2014_00117
crossref_primary_10_1017_S000711451200579X
crossref_primary_10_1242_dev_058230
crossref_primary_10_1186_s40850_020_00063_5
crossref_primary_10_3389_fcell_2023_1275963
crossref_primary_10_1242_bio_20121966
crossref_primary_10_1016_j_cub_2022_02_021
crossref_primary_10_1242_dev_160887
crossref_primary_10_1210_en_2014_1427
crossref_primary_10_1073_pnas_1409241111
crossref_primary_10_1016_j_devcel_2011_06_034
crossref_primary_10_3389_fnins_2014_00365
crossref_primary_10_1186_s12915_020_00854_9
crossref_primary_10_1371_journal_pbio_3000721
crossref_primary_10_1038_mtm_2013_8
crossref_primary_10_1242_bio_20136437
crossref_primary_10_1371_journal_pgen_1004052
crossref_primary_10_1371_journal_pgen_1004172
crossref_primary_10_1371_journal_pbio_3002352
crossref_primary_10_1016_j_cub_2018_01_060
crossref_primary_10_1002_stem_1621
crossref_primary_10_1016_j_ydbio_2020_01_006
crossref_primary_10_1038_nrn3209
crossref_primary_10_1016_j_cub_2011_06_033
crossref_primary_10_1089_genbio_2023_0017
crossref_primary_10_4161_cc_19879
crossref_primary_10_1016_j_exger_2013_10_014
crossref_primary_10_1111_nyas_14678
crossref_primary_10_1016_j_semcdb_2019_11_009
crossref_primary_10_1016_j_ydbio_2012_03_010
crossref_primary_10_1109_ACCESS_2019_2896169
crossref_primary_10_1371_journal_pbio_3000276
crossref_primary_10_1016_j_cell_2023_08_002
crossref_primary_10_1016_j_lfs_2016_10_019
crossref_primary_10_3389_fcell_2021_595754
crossref_primary_10_1016_j_devcel_2015_10_026
crossref_primary_10_7554_eLife_88565
crossref_primary_10_1186_s12978_021_01203_x
crossref_primary_10_1016_j_devcel_2013_09_018
crossref_primary_10_1242_dev_166207
crossref_primary_10_1016_j_tig_2017_08_005
crossref_primary_10_1016_j_ydbio_2019_08_004
crossref_primary_10_3390_ijms21207491
crossref_primary_10_3389_fcell_2020_611269
crossref_primary_10_1016_j_gene_2014_03_012
crossref_primary_10_1016_j_freeradbiomed_2021_01_042
crossref_primary_10_1016_j_dci_2016_01_017
crossref_primary_10_1016_j_devcel_2011_06_012
crossref_primary_10_1016_j_pneurobio_2019_02_003
crossref_primary_10_1016_j_celrep_2017_01_053
crossref_primary_10_1016_j_cois_2022_100947
crossref_primary_10_1073_pnas_1212879109
crossref_primary_10_7554_eLife_04869
crossref_primary_10_3390_jdb6040025
crossref_primary_10_1002_wdev_27
crossref_primary_10_3390_jdb6040026
crossref_primary_10_1038_s41598_021_04474_3
crossref_primary_10_1016_j_devcel_2015_10_003
crossref_primary_10_1016_j_exger_2018_03_013
crossref_primary_10_3389_fcell_2021_662915
crossref_primary_10_3389_fcell_2021_786129
crossref_primary_10_1002_embj_201387412
crossref_primary_10_1371_journal_pone_0287865
crossref_primary_10_1002_1873_3468_12298
crossref_primary_10_1002_wdev_198
crossref_primary_10_1371_journal_pbio_1002392
crossref_primary_10_1186_1749_8104_8_6
crossref_primary_10_1002_dneu_22406
crossref_primary_10_1080_15384101_2016_1171653
crossref_primary_10_1186_s12861_015_0059_8
crossref_primary_10_1016_j_cell_2011_08_048
crossref_primary_10_1016_j_devcel_2012_12_010
crossref_primary_10_1242_dev_093773
crossref_primary_10_3389_fcell_2021_606639
crossref_primary_10_1371_journal_pone_0305696
crossref_primary_10_3389_fmolb_2022_863885
crossref_primary_10_1016_j_ydbio_2013_01_025
crossref_primary_10_3389_fncel_2024_1397627
crossref_primary_10_1126_science_1238525
crossref_primary_10_1186_s13064_020_00148_4
crossref_primary_10_1007_s00427_016_0565_0
crossref_primary_10_1126_science_aan8795
crossref_primary_10_1016_j_devcel_2014_07_025
crossref_primary_10_1016_j_ydbio_2016_06_013
crossref_primary_10_1371_journal_pbio_2002252
crossref_primary_10_1080_19336934_2022_2061834
crossref_primary_10_3390_biology12070993
crossref_primary_10_1242_dev_136713
crossref_primary_10_7554_eLife_52322
crossref_primary_10_1083_jcb_201306099
crossref_primary_10_3390_ijms22189987
crossref_primary_10_1016_j_cell_2011_10_006
crossref_primary_10_1111_dom_12337
crossref_primary_10_1038_embor_2011_230
crossref_primary_10_1016_j_ceb_2011_08_004
crossref_primary_10_1016_j_bbrc_2020_09_120
crossref_primary_10_1186_1749_8104_7_14
crossref_primary_10_1007_s00441_014_1914_9
crossref_primary_10_1177_26331055221120252
crossref_primary_10_15252_embr_202256624
crossref_primary_10_7554_eLife_30413
crossref_primary_10_1016_j_celrep_2016_07_022
crossref_primary_10_1016_j_tins_2020_02_002
crossref_primary_10_3389_fcell_2020_00533
crossref_primary_10_1111_dgd_12734
crossref_primary_10_7554_eLife_50375
crossref_primary_10_7554_eLife_66718
crossref_primary_10_1038_s41467_022_32685_3
crossref_primary_10_1038_s41467_018_05645_z
crossref_primary_10_1096_fj_13_243659
crossref_primary_10_1016_j_cub_2011_05_037
crossref_primary_10_1242_bio_201410165
crossref_primary_10_3109_01677063_2013_868459
crossref_primary_10_1038_nature12932
crossref_primary_10_1038_ncb2453
crossref_primary_10_1242_dev_074203
crossref_primary_10_1016_j_stemcr_2018_08_014
crossref_primary_10_1073_pnas_2000963117
crossref_primary_10_1242_jeb_066969
crossref_primary_10_1016_j_pneurobio_2015_03_003
crossref_primary_10_1002_glia_23459
crossref_primary_10_1016_j_conb_2013_07_002
crossref_primary_10_1002_jnr_24234
crossref_primary_10_1002_glia_23691
crossref_primary_10_1371_journal_pone_0309221
crossref_primary_10_12965_jer_2244042_021
crossref_primary_10_1002_embr_201337966
crossref_primary_10_1093_lifemeta_loae004
crossref_primary_10_1534_genetics_113_160663
crossref_primary_10_1242_dev_091777
crossref_primary_10_1126_science_aan3174
crossref_primary_10_1002_wdev_394
crossref_primary_10_7554_eLife_58756
crossref_primary_10_7554_eLife_50354
crossref_primary_10_1186_s13064_022_00163_7
crossref_primary_10_3389_fnmol_2016_00097
crossref_primary_10_1007_s00427_024_00716_2
crossref_primary_10_1096_fj_201601127R
crossref_primary_10_3389_fphys_2020_00991
crossref_primary_10_1016_j_jgg_2015_04_006
crossref_primary_10_1111_joim_12247
crossref_primary_10_1242_dev_164285
crossref_primary_10_7554_eLife_93604
crossref_primary_10_1371_journal_pgen_1008653
crossref_primary_10_1093_genetics_iyac184
crossref_primary_10_1016_j_tem_2016_06_007
crossref_primary_10_1038_s41467_024_52569_y
crossref_primary_10_1242_dev_102178
crossref_primary_10_1111_plb_12935
Cites_doi 10.1126/science.1070058
10.1016/j.cell.2009.12.027
10.1016/j.cub.2004.08.017
10.1101/gad.1098703
10.1126/science.274.5295.2104
10.1016/j.devcel.2009.10.009
10.1016/j.tcb.2005.10.007
10.1128/MCB.7.8.2718
10.1016/S0092-8674(03)00713-X
10.1073/pnas.1230526100
10.1371/journal.pbio.0060058
10.1098/rstb.2006.2011
10.1016/j.cmet.2009.08.002
10.1242/dev.014977
10.1016/j.cell.2010.12.007
10.1073/pnas.0905083106
10.1016/j.conb.2009.12.005
10.1523/JNEUROSCI.3246-04.2004
10.1016/S0092-8674(00)80589-9
10.1016/0012-1606(88)90067-X
10.1016/S0960-9822(01)00068-9
10.1523/JNEUROSCI.3583-07.2007
10.1038/nrm2223
10.1016/j.stem.2009.10.011
10.1101/gad.12.2.246
10.1073/pnas.011318098
10.1016/S0960-9822(00)00381-X
10.1083/jcb.200511140
10.1073/pnas.2133841100
10.1016/S0960-9822(02)01043-6
10.1002/bies.20679
10.1002/j.1460-2075.1996.tb01049.x
10.1371/journal.pgen.1000857
10.1016/j.tcb.2009.09.006
10.1016/S0092-8674(01)00465-2
10.1016/S0925-4773(97)00078-6
10.1007/BF02179499
10.1016/j.cell.2005.08.037
10.1242/dev.025189
10.1016/j.mod.2003.07.003
10.1016/j.cell.2008.03.034
10.1016/S0092-8674(01)00332-4
10.1046/j.1440-169X.1996.00012.x
10.1016/j.ceb.2009.01.024
10.1016/S0960-9822(99)80450-3
10.1101/gad.8.8.981
10.1042/BJ20091181
10.1101/gad.845700
10.1016/j.devcel.2009.10.008
10.1523/JNEUROSCI.4844-08.2008
10.1242/dev.02609
10.1242/dev.126.23.5365
10.1242/dev.125.11.2149
10.1242/dev.126.19.4375
ContentType Journal Article
Copyright Springer Nature Limited 2011
2015 INIST-CNRS
COPYRIGHT 2011 Nature Publishing Group
Copyright Nature Publishing Group Mar 24, 2011
Copyright_xml – notice: Springer Nature Limited 2011
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 24, 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/nature09867
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
ProQuest Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Biological Science Collection
eLibrary Curriculum
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Research Library
ProQuest Science Database (NC LIVE)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Biological Science Database (NC LIVE)
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
Agricultural Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 512
ExternalDocumentID PMC3146047
2306293081
A253305657
21346761
23947205
10_1038_nature09867
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: Medical Research Council
  grantid: U.1175.01.004.00001(62105)
– fundername: Medical Research Council
  grantid: U117584237
– fundername: Medical Research Council
  grantid: MC_U117584237
– fundername: Medical Research Council :
  grantid: U.1175.01.004.00001(62105) || MRC_
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.HR
.XZ
00M
07C
08P
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABNNU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACRPL
ACUHS
ACWUS
ADBBV
ADFRT
ADNMO
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFDN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGCDD
AGGDT
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BENPR
BES
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L-9
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OHT
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PEA
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~G0
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
AGQPQ
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
.-4
.GJ
1CY
1VW
354
3EH
3O-
41~
42X
4R4
663
79B
9M8
AAJYS
AAVBQ
ABDPE
ABEFU
ACBNA
ACBTR
ACTDY
ADRHT
AEZWR
AFBBN
AFHIU
AFHKK
AHWEU
AIXLP
AJUXI
BKOMP
DB5
FA8
FAC
HG6
IQODW
J5H
LGEZI
LOTEE
MVM
N4W
NADUK
NFIDA
NXXTH
ODYON
PJZUB
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
TUD
UBY
UHB
USG
VOH
X7L
XOL
YJ6
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZGI
ZHY
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c672t-a893977492020ad8f8a13ff189ebd70b10e922c0f2e8afc1e960dd2a5eeb9a903
IEDL.DBID 8FG
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 13:34:57 EDT 2025
Mon Jul 21 09:41:16 EDT 2025
Fri Jul 11 16:32:19 EDT 2025
Fri Jul 25 08:57:50 EDT 2025
Tue Jun 17 20:59:36 EDT 2025
Thu Jun 12 23:34:53 EDT 2025
Tue Jun 10 15:33:14 EDT 2025
Tue Jun 10 20:47:52 EDT 2025
Fri Jun 27 04:26:47 EDT 2025
Fri Jun 27 04:42:08 EDT 2025
Mon Jul 21 05:56:35 EDT 2025
Mon Jul 21 09:13:22 EDT 2025
Tue Jul 01 02:00:29 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Fri Feb 21 02:37:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7339
Keywords Human
Pancreatic hormone
Adipose tissue
Stem cell
Precursor cell
Central nervous system
Neuroblast
Insulin
Protein
Phosphatidylinositol
Aminoacid
Development
Fat
Biological receptor
Language English
License http://www.springer.com/tdm
CC BY 4.0
Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c672t-a893977492020ad8f8a13ff189ebd70b10e922c0f2e8afc1e960dd2a5eeb9a903
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3146047
PMID 21346761
PQID 859243525
PQPubID 40569
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146047
proquest_miscellaneous_858776592
proquest_miscellaneous_1017954414
proquest_journals_859243525
gale_infotracmisc_A253305657
gale_infotracgeneralonefile_A253305657
gale_infotraccpiq_253305657
gale_infotracacademiconefile_A253305657
gale_incontextgauss_ISR_A253305657
gale_incontextgauss_ATWCN_A253305657
pubmed_primary_21346761
pascalfrancis_primary_23947205
crossref_citationtrail_10_1038_nature09867
crossref_primary_10_1038_nature09867
springer_journals_10_1038_nature09867
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-24
PublicationDateYYYYMMDD 2011-03-24
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2011
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Géminard, Rulifson, Leopold (CR21) 2009; 10
Puig, Marr, Ruhf, Tjian (CR47) 2003; 17
Hacker (CR41) 2003; 100
Chen, Finkel (CR4) 2009; 5
Slaidina, Delanoue, Gronke, Partridge, Leopold (CR19) 2009; 17
Grönke, Clarke, Broughton, Andrews, Partridge (CR25) 2010; 6
Neufeld (CR23) 2003; 120
Fernandez-Almonacid, Rosen (CR29) 1987; 7
Miguel-Aliaga, Thor, Gould (CR48) 2008; 6
Egger, Chell, Brand (CR7) 2008; 363
Rintelen, Stocker, Thomas, Hafen (CR46) 2001; 98
Awasaki, Lai, Ito, Lee (CR52) 2008; 28
Hennig, Colombani, Neufeld (CR37) 2006; 173
Ikeya, Galic, Belawat, Nairz, Hafen (CR17) 2002; 12
Huang (CR44) 1999; 126
Maurange, Cheng, Gould (CR51) 2008; 133
Gronke (CR34) 2010; 6
Britton, Edgar (CR14) 1998; 125
Sousa-Nunes, Cheng, Gould (CR9) 2010; 20
Kambadur (CR12) 1998; 12
Pospisilik (CR57) 2010; 140
Brogiolo (CR16) 2001; 11
Rulifson, Kim, Nusse (CR56) 2002; 296
Okamoto (CR20) 2009; 17
Dhawan, Rando (CR1) 2005; 15
Isshiki, Pearson, Holbrook, Doe (CR13) 2001; 106
Zhang (CR33) 2009; 106
Colombani (CR15) 2003; 114
Connolly (CR39) 1996; 274
Silies (CR60) 2007; 27
Colombani (CR35) 2003; 114
Ito, Urban, Technau (CR40) 1995; 204
Brogiolo (CR32) 2001; 11
de Navas, Garaulet, Sanchez-Herrero (CR58) 2006; 133
Rulifson, Kim, Nusse (CR18) 2002; 296
Xiong (CR38) 1994; 8
Yanagida (CR3) 2009; 19
Coller (CR2) 2007; 8
Leevers (CR43) 1996; 15
Shiga, Tanaka-Matakatsu, Hayashi (CR42) 1996; 38
Pfeiffer, Alexandre, Calleja, Vincent (CR59) 2000; 10
Doe (CR8) 2008; 135
Schwabe (CR53) 2005; 123
Truman, Bate (CR10) 1988; 125
Polak, Hall (CR22) 2009; 21
Chell, Brand (CR27) 2010; 143
Tsuji, Hasegawa, Isshiki (CR11) 2008; 135
Oldham (CR31) 2000; 14
Moline, Southern, Bejsovec (CR50) 1999; 126
Zhang (CR26) 2009; 106
Teleman (CR24) 2010; 425
Weinkove (CR45) 1999; 9
Mangan, Alon (CR28) 2003; 100
Hodge, D’Ercole, O’Kusky (CR30) 2004; 24
Betschinger, Knoblich (CR6) 2004; 14
Scholz, Sadlowski, Klaes, Klambt (CR54) 1997; 64
Sánchez-Garcia, Vicente-Duenas, Cobaleda (CR5) 2007; 29
Ikeya (CR49) 2002; 12
Kidd, Bland, Goodman (CR55) 1999; 96
Tapon (CR36) 2001; 105
JA Pospisilik (BFnature09867_CR57) 2010; 140
JW Truman (BFnature09867_CR10) 1988; 125
C Géminard (BFnature09867_CR21) 2009; 10
JM Chell (BFnature09867_CR27) 2010; 143
T Kidd (BFnature09867_CR55) 1999; 96
EJ Rulifson (BFnature09867_CR56) 2002; 296
W Brogiolo (BFnature09867_CR32) 2001; 11
F Rintelen (BFnature09867_CR46) 2001; 98
H Zhang (BFnature09867_CR26) 2009; 106
J Betschinger (BFnature09867_CR6) 2004; 14
T Tsuji (BFnature09867_CR11) 2008; 135
KM Hennig (BFnature09867_CR37) 2006; 173
I Sánchez-Garcia (BFnature09867_CR5) 2007; 29
S Grönke (BFnature09867_CR25) 2010; 6
MM Moline (BFnature09867_CR50) 1999; 126
K Ito (BFnature09867_CR40) 1995; 204
C Maurange (BFnature09867_CR51) 2008; 133
H Zhang (BFnature09867_CR33) 2009; 106
T Ikeya (BFnature09867_CR17) 2002; 12
EJ Rulifson (BFnature09867_CR18) 2002; 296
J Dhawan (BFnature09867_CR1) 2005; 15
LF de Navas (BFnature09867_CR58) 2006; 133
W Brogiolo (BFnature09867_CR16) 2001; 11
TP Neufeld (BFnature09867_CR23) 2003; 120
T Schwabe (BFnature09867_CR53) 2005; 123
Y Shiga (BFnature09867_CR42) 1996; 38
M Yanagida (BFnature09867_CR3) 2009; 19
D Weinkove (BFnature09867_CR45) 1999; 9
AA Teleman (BFnature09867_CR24) 2010; 425
HA Coller (BFnature09867_CR2) 2007; 8
B Egger (BFnature09867_CR7) 2008; 363
CQ Doe (BFnature09867_CR8) 2008; 135
RD Hodge (BFnature09867_CR30) 2004; 24
WC Xiong (BFnature09867_CR38) 1994; 8
N Okamoto (BFnature09867_CR20) 2009; 17
M Silies (BFnature09867_CR60) 2007; 27
T Isshiki (BFnature09867_CR13) 2001; 106
P Polak (BFnature09867_CR22) 2009; 21
N Tapon (BFnature09867_CR36) 2001; 105
T Ikeya (BFnature09867_CR49) 2002; 12
S Gronke (BFnature09867_CR34) 2010; 6
U Hacker (BFnature09867_CR41) 2003; 100
O Puig (BFnature09867_CR47) 2003; 17
JS Britton (BFnature09867_CR14) 1998; 125
J Colombani (BFnature09867_CR15) 2003; 114
J Colombani (BFnature09867_CR35) 2003; 114
E Chen (BFnature09867_CR4) 2009; 5
JB Connolly (BFnature09867_CR39) 1996; 274
S Mangan (BFnature09867_CR28) 2003; 100
T Awasaki (BFnature09867_CR52) 2008; 28
R Sousa-Nunes (BFnature09867_CR9) 2010; 20
R Fernandez-Almonacid (BFnature09867_CR29) 1987; 7
R Kambadur (BFnature09867_CR12) 1998; 12
S Oldham (BFnature09867_CR31) 2000; 14
H Scholz (BFnature09867_CR54) 1997; 64
SJ Leevers (BFnature09867_CR43) 1996; 15
S Pfeiffer (BFnature09867_CR59) 2000; 10
I Miguel-Aliaga (BFnature09867_CR48) 2008; 6
H Huang (BFnature09867_CR44) 1999; 126
M Slaidina (BFnature09867_CR19) 2009; 17
21474096 - Cell Stem Cell. 2011 Apr 8;8(4):352-4. doi: 10.1016/j.stem.2011.03.004.
References_xml – volume: 296
  start-page: 1118
  year: 2002
  end-page: 1120
  ident: CR18
  article-title: Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes
  publication-title: Science
  doi: 10.1126/science.1070058
– volume: 140
  start-page: 148
  year: 2010
  end-page: 160
  ident: CR57
  article-title: genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.027
– volume: 125
  start-page: 2149
  year: 1998
  end-page: 2158
  ident: CR14
  article-title: Environmental control of the cell cycle in : nutrition activates mitotic and endoreplicative cells by distinct mechanisms
  publication-title: Development
– volume: 14
  start-page: R674
  year: 2004
  end-page: R685
  ident: CR6
  article-title: Dare to be different: asymmetric cell division in , and vertebrates
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.08.017
– volume: 17
  start-page: 2006
  year: 2003
  end-page: 2020
  ident: CR47
  article-title: Control of cell number by FOXO: downstream and feedback regulation of the insulin receptor pathway
  publication-title: Genes Dev.
  doi: 10.1101/gad.1098703
– volume: 274
  start-page: 2104
  year: 1996
  end-page: 2107
  ident: CR39
  article-title: Associative learning disrupted by impaired G signaling in mushroom bodies
  publication-title: Science
  doi: 10.1126/science.274.5295.2104
– volume: 17
  start-page: 874
  year: 2009
  end-page: 884
  ident: CR19
  article-title: A insulin-like peptide promotes growth during nonfeeding states
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.10.009
– volume: 15
  start-page: 666
  year: 2005
  end-page: 673
  ident: CR1
  article-title: Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2005.10.007
– volume: 7
  start-page: 2718
  year: 1987
  end-page: 2727
  ident: CR29
  article-title: Structure and ligand specificity of the insulin receptor
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.7.8.2718
– volume: 114
  start-page: 739
  year: 2003
  end-page: 749
  ident: CR35
  article-title: A nutrient sensor mechanism controls growth
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00713-X
– volume: 100
  start-page: 7720
  year: 2003
  end-page: 7725
  ident: CR41
  article-title: -based insertional mutagenesis in the presence of stably integrated elements in
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1230526100
– volume: 6
  start-page: e58
  year: 2008
  ident: CR48
  article-title: Postmitotic specification of insulinergic neurons from pioneer neurons
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060058
– volume: 363
  start-page: 39
  year: 2008
  end-page: 56
  ident: CR7
  article-title: Insights into neural stem cell biology from flies
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2006.2011
– volume: 10
  start-page: 199
  year: 2009
  end-page: 207
  ident: CR21
  article-title: Remote control of insulin secretion by fat cells in
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.08.002
– volume: 135
  start-page: 1575
  year: 2008
  end-page: 1587
  ident: CR8
  article-title: Neural stem cells: balancing self-renewal with differentiation
  publication-title: Development
  doi: 10.1242/dev.014977
– volume: 143
  start-page: 1161
  year: 2010
  end-page: 1173
  ident: CR27
  article-title: Nutrition-responsive glia control exit of neural stem cells from quiescence
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.007
– volume: 106
  start-page: 19617
  year: 2009
  end-page: 19622
  ident: CR26
  article-title: Deletion of insulin-like peptides causes growth defects and metabolic abnormalities
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0905083106
– volume: 20
  start-page: 50
  year: 2010
  end-page: 57
  ident: CR9
  article-title: Regulating neural proliferation in the CNS
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2009.12.005
– volume: 24
  start-page: 10201
  year: 2004
  end-page: 10210
  ident: CR30
  article-title: Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3246-04.2004
– volume: 114
  start-page: 739
  year: 2003
  end-page: 749
  ident: CR15
  article-title: A nutrient sensor mechanism controls growth
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00713-X
– volume: 96
  start-page: 785
  year: 1999
  end-page: 794
  ident: CR55
  article-title: Slit is the midline repellent for the Robo receptor in
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80589-9
– volume: 125
  start-page: 145
  year: 1988
  end-page: 157
  ident: CR10
  article-title: Spatial and temporal patterns of neurogenesis in the central nervous system of
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(88)90067-X
– volume: 126
  start-page: 4375
  year: 1999
  end-page: 4384
  ident: CR50
  article-title: Directionality of wingless protein transport influences epidermal patterning in the embryo
  publication-title: Development
– volume: 11
  start-page: 213
  year: 2001
  end-page: 221
  ident: CR32
  article-title: An evolutionarily conserved function of the insulin receptor and insulin-like peptides in growth control
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00068-9
– volume: 27
  start-page: 13130
  year: 2007
  end-page: 13139
  ident: CR60
  article-title: Glial cell migration in the eye disc
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3583-07.2007
– volume: 8
  start-page: 667
  year: 2007
  end-page: 670
  ident: CR2
  article-title: What’s taking so long? S-phase entry from quiescence versus proliferation
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2223
– volume: 5
  start-page: 451
  year: 2009
  end-page: 452
  ident: CR4
  article-title: The tortoise, the hare, and the FoxO
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.10.011
– volume: 12
  start-page: 246
  year: 1998
  end-page: 260
  ident: CR12
  article-title: Regulation of POU genes by castor and hunchback establishes layered compartments in the CNS
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.2.246
– volume: 98
  start-page: 15020
  year: 2001
  end-page: 15025
  ident: CR46
  article-title: PDK1 regulates growth through Akt and S6K in
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.011318098
– volume: 10
  start-page: 321
  year: 2000
  end-page: 324
  ident: CR59
  article-title: The progeny of -expressing cells deliver the signal at a distance in embryos
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00381-X
– volume: 173
  start-page: 963
  year: 2006
  end-page: 974
  ident: CR37
  article-title: TOR coordinates bulk and targeted endocytosis in the fat body to regulate cell growth
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200511140
– volume: 100
  start-page: 11980
  year: 2003
  end-page: 11985
  ident: CR28
  article-title: Structure and function of the feed-forward loop network motif
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2133841100
– volume: 12
  start-page: 1293
  year: 2002
  end-page: 1300
  ident: CR49
  article-title: Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01043-6
– volume: 29
  start-page: 1269
  year: 2007
  end-page: 1280
  ident: CR5
  article-title: The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice?
  publication-title: Bioessays
  doi: 10.1002/bies.20679
– volume: 15
  start-page: 6584
  year: 1996
  end-page: 6594
  ident: CR43
  article-title: The phosphoinositide 3-kinase Dp110 promotes cell growth
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01049.x
– volume: 6
  start-page: e1000857
  year: 2010
  ident: CR25
  article-title: Molecular evolution and functional characterization of insulin-like peptides
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000857
– volume: 19
  start-page: 705
  year: 2009
  end-page: 715
  ident: CR3
  article-title: Cellular quiescence: are controlling genes conserved?
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2009.09.006
– volume: 106
  start-page: 511
  year: 2001
  end-page: 521
  ident: CR13
  article-title: neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00465-2
– volume: 106
  start-page: 19617
  year: 2009
  end-page: 19622
  ident: CR33
  article-title: Deletion of insulin-like peptides causes growth defects and metabolic abnormalities
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0905083106
– volume: 64
  start-page: 139
  year: 1997
  end-page: 151
  ident: CR54
  article-title: Control of midline glia development in the embryonic CNS
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(97)00078-6
– volume: 6
  start-page: e1000857
  year: 2010
  ident: CR34
  article-title: Molecular evolution and functional characterization of insulin-like peptides
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000857
– volume: 126
  start-page: 5365
  year: 1999
  end-page: 5372
  ident: CR44
  article-title: PTEN affects cell size, cell proliferation and apoptosis during eye development
  publication-title: Development
– volume: 204
  start-page: 284
  year: 1995
  end-page: 307
  ident: CR40
  article-title: Distribution, classification, and development of glial cells in the late embryonic and early larval ventral nerve cord
  publication-title: Rouxs Arch. Dev. Biol.
  doi: 10.1007/BF02179499
– volume: 123
  start-page: 133
  year: 2005
  end-page: 144
  ident: CR53
  article-title: GPCR Signaling is required for blood-brain barrier formation in
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.037
– volume: 135
  start-page: 3859
  year: 2008
  end-page: 3869
  ident: CR11
  article-title: Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors
  publication-title: Development
  doi: 10.1242/dev.025189
– volume: 120
  start-page: 1283
  year: 2003
  end-page: 1296
  ident: CR23
  article-title: Body building: regulation of shape and size by PI3K/TOR signaling during development
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2003.07.003
– volume: 133
  start-page: 891
  year: 2008
  end-page: 902
  ident: CR51
  article-title: Temporal transcription factors and their targets schedule the end of neural proliferation in
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.034
– volume: 12
  start-page: 1293
  year: 2002
  end-page: 1300
  ident: CR17
  article-title: Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01043-6
– volume: 105
  start-page: 345
  year: 2001
  end-page: 355
  ident: CR36
  article-title: The tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00332-4
– volume: 38
  start-page: 99
  year: 1996
  end-page: 106
  ident: CR42
  article-title: A nuclear GFP/ β-galactosidase fusion protein as a marker for morphogenesis in living
  publication-title: Dev. Growth Differ.
  doi: 10.1046/j.1440-169X.1996.00012.x
– volume: 296
  start-page: 1118
  year: 2002
  end-page: 1120
  ident: CR56
  article-title: Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes
  publication-title: Science
  doi: 10.1126/science.1070058
– volume: 11
  start-page: 213
  year: 2001
  end-page: 221
  ident: CR16
  article-title: An evolutionarily conserved function of the insulin receptor and insulin-like peptides in growth control
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00068-9
– volume: 21
  start-page: 209
  year: 2009
  end-page: 218
  ident: CR22
  article-title: mTOR and the control of whole body metabolism
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.01.024
– volume: 9
  start-page: 1019
  year: 1999
  end-page: 1029
  ident: CR45
  article-title: Regulation of imaginal disc cell size, cell number and organ size by class I phosphoinositide 3-kinase and its adaptor
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(99)80450-3
– volume: 8
  start-page: 981
  year: 1994
  end-page: 994
  ident: CR38
  article-title: repo encodes a glial-specific homeo domain protein required in the nervous system
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.8.981
– volume: 425
  start-page: 13
  year: 2010
  end-page: 26
  ident: CR24
  article-title: Molecular mechanisms of metabolic regulation by insulin in
  publication-title: Biochem. J.
  doi: 10.1042/BJ20091181
– volume: 14
  start-page: 2689
  year: 2000
  end-page: 2694
  ident: CR31
  article-title: Genetic and biochemical characterization of dTOR, the homolog of the target of rapamycin
  publication-title: Genes Dev.
  doi: 10.1101/gad.845700
– volume: 17
  start-page: 885
  year: 2009
  end-page: 891
  ident: CR20
  article-title: A fat body-derived IGF-like peptide regulates postfeeding growth in
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.10.008
– volume: 28
  start-page: 13742
  year: 2008
  end-page: 13753
  ident: CR52
  article-title: Organization and postembryonic development of glial cells in the adult central brain of
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4844-08.2008
– volume: 133
  start-page: 4495
  year: 2006
  end-page: 4506
  ident: CR58
  article-title: The Hox gene of controls haltere size by regulating the Dpp pathway
  publication-title: Development
  doi: 10.1242/dev.02609
– volume: 28
  start-page: 13742
  year: 2008
  ident: BFnature09867_CR52
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4844-08.2008
– volume: 106
  start-page: 511
  year: 2001
  ident: BFnature09867_CR13
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00465-2
– volume: 19
  start-page: 705
  year: 2009
  ident: BFnature09867_CR3
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2009.09.006
– volume: 296
  start-page: 1118
  year: 2002
  ident: BFnature09867_CR18
  publication-title: Science
  doi: 10.1126/science.1070058
– volume: 100
  start-page: 11980
  year: 2003
  ident: BFnature09867_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2133841100
– volume: 29
  start-page: 1269
  year: 2007
  ident: BFnature09867_CR5
  publication-title: Bioessays
  doi: 10.1002/bies.20679
– volume: 204
  start-page: 284
  year: 1995
  ident: BFnature09867_CR40
  publication-title: Rouxs Arch. Dev. Biol.
  doi: 10.1007/BF02179499
– volume: 98
  start-page: 15020
  year: 2001
  ident: BFnature09867_CR46
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.011318098
– volume: 100
  start-page: 7720
  year: 2003
  ident: BFnature09867_CR41
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1230526100
– volume: 7
  start-page: 2718
  year: 1987
  ident: BFnature09867_CR29
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.7.8.2718
– volume: 24
  start-page: 10201
  year: 2004
  ident: BFnature09867_CR30
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3246-04.2004
– volume: 21
  start-page: 209
  year: 2009
  ident: BFnature09867_CR22
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2009.01.024
– volume: 11
  start-page: 213
  year: 2001
  ident: BFnature09867_CR16
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00068-9
– volume: 20
  start-page: 50
  year: 2010
  ident: BFnature09867_CR9
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2009.12.005
– volume: 5
  start-page: 451
  year: 2009
  ident: BFnature09867_CR4
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2009.10.011
– volume: 133
  start-page: 891
  year: 2008
  ident: BFnature09867_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2008.03.034
– volume: 274
  start-page: 2104
  year: 1996
  ident: BFnature09867_CR39
  publication-title: Science
  doi: 10.1126/science.274.5295.2104
– volume: 17
  start-page: 885
  year: 2009
  ident: BFnature09867_CR20
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.10.008
– volume: 140
  start-page: 148
  year: 2010
  ident: BFnature09867_CR57
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.027
– volume: 12
  start-page: 246
  year: 1998
  ident: BFnature09867_CR12
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.2.246
– volume: 106
  start-page: 19617
  year: 2009
  ident: BFnature09867_CR33
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0905083106
– volume: 120
  start-page: 1283
  year: 2003
  ident: BFnature09867_CR23
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2003.07.003
– volume: 126
  start-page: 5365
  year: 1999
  ident: BFnature09867_CR44
  publication-title: Development
  doi: 10.1242/dev.126.23.5365
– volume: 9
  start-page: 1019
  year: 1999
  ident: BFnature09867_CR45
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(99)80450-3
– volume: 123
  start-page: 133
  year: 2005
  ident: BFnature09867_CR53
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.037
– volume: 133
  start-page: 4495
  year: 2006
  ident: BFnature09867_CR58
  publication-title: Development
  doi: 10.1242/dev.02609
– volume: 363
  start-page: 39
  year: 2008
  ident: BFnature09867_CR7
  publication-title: Phil. Trans. R. Soc. Lond. B
  doi: 10.1098/rstb.2006.2011
– volume: 425
  start-page: 13
  year: 2010
  ident: BFnature09867_CR24
  publication-title: Biochem. J.
  doi: 10.1042/BJ20091181
– volume: 6
  start-page: e58
  year: 2008
  ident: BFnature09867_CR48
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060058
– volume: 143
  start-page: 1161
  year: 2010
  ident: BFnature09867_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2010.12.007
– volume: 8
  start-page: 981
  year: 1994
  ident: BFnature09867_CR38
  publication-title: Genes Dev.
  doi: 10.1101/gad.8.8.981
– volume: 12
  start-page: 1293
  year: 2002
  ident: BFnature09867_CR17
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01043-6
– volume: 114
  start-page: 739
  year: 2003
  ident: BFnature09867_CR35
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00713-X
– volume: 64
  start-page: 139
  year: 1997
  ident: BFnature09867_CR54
  publication-title: Mech. Dev.
  doi: 10.1016/S0925-4773(97)00078-6
– volume: 11
  start-page: 213
  year: 2001
  ident: BFnature09867_CR32
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(01)00068-9
– volume: 10
  start-page: 321
  year: 2000
  ident: BFnature09867_CR59
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(00)00381-X
– volume: 125
  start-page: 145
  year: 1988
  ident: BFnature09867_CR10
  publication-title: Dev. Biol.
  doi: 10.1016/0012-1606(88)90067-X
– volume: 173
  start-page: 963
  year: 2006
  ident: BFnature09867_CR37
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200511140
– volume: 15
  start-page: 666
  year: 2005
  ident: BFnature09867_CR1
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2005.10.007
– volume: 135
  start-page: 3859
  year: 2008
  ident: BFnature09867_CR11
  publication-title: Development
  doi: 10.1242/dev.025189
– volume: 106
  start-page: 19617
  year: 2009
  ident: BFnature09867_CR26
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0905083106
– volume: 6
  start-page: e1000857
  year: 2010
  ident: BFnature09867_CR34
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000857
– volume: 96
  start-page: 785
  year: 1999
  ident: BFnature09867_CR55
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80589-9
– volume: 105
  start-page: 345
  year: 2001
  ident: BFnature09867_CR36
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00332-4
– volume: 6
  start-page: e1000857
  year: 2010
  ident: BFnature09867_CR25
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000857
– volume: 17
  start-page: 874
  year: 2009
  ident: BFnature09867_CR19
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2009.10.009
– volume: 8
  start-page: 667
  year: 2007
  ident: BFnature09867_CR2
  publication-title: Nature Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2223
– volume: 14
  start-page: 2689
  year: 2000
  ident: BFnature09867_CR31
  publication-title: Genes Dev.
  doi: 10.1101/gad.845700
– volume: 27
  start-page: 13130
  year: 2007
  ident: BFnature09867_CR60
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3583-07.2007
– volume: 125
  start-page: 2149
  year: 1998
  ident: BFnature09867_CR14
  publication-title: Development
  doi: 10.1242/dev.125.11.2149
– volume: 15
  start-page: 6584
  year: 1996
  ident: BFnature09867_CR43
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01049.x
– volume: 126
  start-page: 4375
  year: 1999
  ident: BFnature09867_CR50
  publication-title: Development
  doi: 10.1242/dev.126.19.4375
– volume: 38
  start-page: 99
  year: 1996
  ident: BFnature09867_CR42
  publication-title: Dev. Growth Differ.
  doi: 10.1046/j.1440-169X.1996.00012.x
– volume: 12
  start-page: 1293
  year: 2002
  ident: BFnature09867_CR49
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01043-6
– volume: 114
  start-page: 739
  year: 2003
  ident: BFnature09867_CR15
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00713-X
– volume: 10
  start-page: 199
  year: 2009
  ident: BFnature09867_CR21
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.08.002
– volume: 17
  start-page: 2006
  year: 2003
  ident: BFnature09867_CR47
  publication-title: Genes Dev.
  doi: 10.1101/gad.1098703
– volume: 14
  start-page: R674
  year: 2004
  ident: BFnature09867_CR6
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2004.08.017
– volume: 135
  start-page: 1575
  year: 2008
  ident: BFnature09867_CR8
  publication-title: Development
  doi: 10.1242/dev.014977
– volume: 296
  start-page: 1118
  year: 2002
  ident: BFnature09867_CR56
  publication-title: Science
  doi: 10.1126/science.1070058
– reference: 21474096 - Cell Stem Cell. 2011 Apr 8;8(4):352-4. doi: 10.1016/j.stem.2011.03.004.
SSID ssj0005174
Score 2.5056145
Snippet Nerve progenitors hungry for action The availability of nutrients prompts quiescent neural stem cells (neuroblasts) in Drosophila larvae to begin to divide. A...
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated. The signals triggering entry into and exit...
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated (1-5). The signals triggering entry into and...
Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated 1 - 5 . The signals triggering entry into and...
SourceID pubmedcentral
proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 508
SubjectTerms 631/136/532/2182
631/378/2571
631/80/86
Adipocytes - drug effects
Adipocytes - metabolism
Amino acids
Amino Acids - pharmacology
Animals
Biological and medical sciences
Cells
Cellular signal transduction
Central nervous system
Central Nervous System - cytology
Central Nervous System - drug effects
Central Nervous System - metabolism
Diet
Drosophila
Drosophila melanogaster - cytology
Drosophila melanogaster - drug effects
Drosophila melanogaster - growth & development
Drosophila melanogaster - metabolism
Drosophila Proteins - metabolism
Fat Body - cytology
Fat Body - drug effects
Fat Body - metabolism
Fundamental and applied biological sciences. Psychology
Gene expression
Genetic aspects
Humanities and Social Sciences
Insects
Insulin - metabolism
Kinases
Larva - cytology
Larva - drug effects
Larva - metabolism
Larval development
letter
multidisciplinary
Neural Stem Cells - cytology
Neural Stem Cells - drug effects
Neural Stem Cells - metabolism
Neuroglia - drug effects
Neuroglia - metabolism
Peptides
Phosphatidylinositol 3-Kinases - metabolism
Physiological aspects
Sample variance
Science
Science (multidisciplinary)
Signal Transduction - drug effects
TOR Serine-Threonine Kinases - metabolism
Vertebrates: nervous system and sense organs
Title Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila
URI https://link.springer.com/article/10.1038/nature09867
https://www.ncbi.nlm.nih.gov/pubmed/21346761
https://www.proquest.com/docview/859243525
https://www.proquest.com/docview/1017954414
https://www.proquest.com/docview/858776592
https://pubmed.ncbi.nlm.nih.gov/PMC3146047
Volume 471
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLbYJiQkhNi4hY3KoHGVoiVOUjtPqJSVgURBpdPKU-TYTolUpe3cIvHvOXbcdhkdL5EiHyW-Hh_bn78PoWMKQQCDdbIfJ1z6MRHKZwweScDbIk1jLq16w9d---w8_jJKRg6box2scuUTraOWU2H2yE9YAisFw935fjb3jWiUOVx1Cho7aC-EicYguljv0wbhcY2E2V3PCyJ2UrNmBimz-vKbCcm55bszrqGKilrbYlvw-S-G8tpBqp2fevfRPRdY4k7dE_bRLVUdoNsW4Cn0Adp3g1jjN45p-u0D9LPHF9hs3WsMsaOwSmcKz5dlzfGELdllDvH1QuPfJcfDbwPMK4nHE-i12MHYsbkO80fDK_54aVURygl_iM57p8Pume-0FnzRpmThc4hbTCiYEogfuWQF42FUFCFLVS5pkIeBSgkRQUEU44UIFax8pCQ8USpPeRpEj9BuNa3UEwOWCojkQrUFz-MkjRiVEpaRUchFRGMpPPRuVeGZcETkRg9jktkD8YhlV1rHQ8dr41nNv3GDmWm5zDBaVAYyM-ZLrbPO8KLbzzrEQGjN-a6HXmwz-_xj0DB67YyKKeRLcHdRAUpnuLIalocNSzEr59mV1FeN1HHduts-c9QwhAEuGsmtRndc14NRtackSCAbq_6ZOQ-ks_V48dDzdar5sgHVVWq61Jn1xkaDLvYQvsGGJYxSc_Tuocd1h9_8Poxglm2HHqKNobA2MMzlzZSq_GUZzCOYn4MYSvZyNWg2Gd_Suk__W8BDdKfe6I98Eh-h3cXlUj2DSHGRt9AOHVF4sm7Ysr6hhfY-nPa_D_4CEjNrug
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEAIJITa-wsYwaONLipbYSeM8IFRtlJZtRRqdGE_BsZ1SqUrbuQXtj-J_5Owk7TI63vYSqfLJsXPn813v7ncIbUdgBDDwk90g5NINiFAuY_AIPd4QcRxwabs3HHUb7ZPg82l4uoL-VLUwJq2y0olWUcuRMP-R77IQPAWD3flhPHFN0ygTXK06aBRScaDOf4PHpt939oG9O4S0Pvb22m7ZVMAVjYhMXQ4XtLF5YvD6PS5ZxrhPs8xnsUpl5KW-p2JChJcRxXgmfAUmvpSEh0qlMY89CvPeQDcDCrOYwvTWp0VGySXQ57Ic0KNst0Dp9GJm-9kvLsDyGrg75hpYkhW9NJYZu__mbF4K3Nr7sHUf3SsNWdwsJG8Nrah8Hd2yCaVCr6O1Umlo_KZEtn77AH1v8Sk2oQKNwVYVtrOawpPZoMCUwhZcMwV7fqrxrwHHvS_HmOcS94dwSnCZNo9N-c25hp94_8x2YRgM-UN0ci1seIRW81GunpjkLI9ILlRD8DQIY8oiKcFtpT4XNAqkcNC76oMnogQ-N_03hokNwFOWXOCOg7bnxOMC7-MKMsO5xCBo5CZFp89nWifN3re9btIkJmXXxJMd9HIZWefrcY3odUmUjWBdgpeFEbA7g81Vo9yoUYrxYJJcGH1VG-0X3F02zWaNEBSKqA1v1cRx_h0IjYOIeCEso5LPpNR4OpmfTwe9mI-amU0SX65GM51Y7W963gUOwlfQsJBFkQn1O-hxIfCL1_sUbvWG76CodhTmBAYpvT6SD35axHQK9oAXwM52qkOzWPgS7j797wafo9vt3tFhctjpHmygO0WQgbok2ESr07OZegZW6jTdsroBox_XrYz-AhuMpeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEAgJITZuYWMYtHGToiZ20jgPCFUt1cqgoNGJ8RQc2ymVqrRdWtB-Gv-OY8e9ZHS87SVS5SPHzrm65_g7CO1HEAQwOCe7QcilGxChXMbgEXq8LuI44NJ0b_jUrR-eBB9Ow9MN9Gd-F0aXVc5tojHUciT0f-Q1FsJJQWN31jJbFfGl1X43nri6gZROtM67aZQScqTOf8PprXjbaQGrDwhpv-81D13bYMAV9YhMXQ7OWsc_MYGgiUuWMe7TLPNZrFIZeanvqZgQ4WVEMZ4JX0G4LyXhoVJpzGOPwrzX0PWIRkyrGGuuVJdcAIC2VwM9ymolYqcXM9PbfukMrUu4PeYFsCcr-2qsC3z_rd-8kMQ1vrF9F92xQS1ulFK4hTZUvo1umOJSUWyjLWtACvzKoly_voe-t_kU67RBgSFuFabLmsKT2aDEl8IGaDOF2H5a4F8DjnufjzHPJe4PQWOwLaHH-irOeQE_cevMdGQYDPl9dHIlbHiANvNRrh7pQi2PSC5UXfA0CGPKIinhCEt9LmgUSOGgN_MPnggLgq57cQwTk4ynLFnhjoP2F8TjEvvjEjLNuUSjaeRaMPt8VhRJo_et2U0aRJfv6tyyg56vI-t8Pa4QvbRE2QjWJbi9JAG70zhdFcqdCqUYDybJyuiLymi_5O66aXYrhGBcRGV4ryKOi-9AaBxExAthGXP5TKz1K5KFrjro2WJUz6wL-nI1mhWJ8QS6_13gIHwJDQtZFOm0v4MelgK_fL1PwcPXfQdFFVVYEGjU9OpIPvhp0NMpxAZeADs7mCvNcuFruPv4vxt8im6CGUo-drpHO-hWmW-gLgl20eb0bKaeQMA6TfeMacDox1Xbor9jcKnl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fat+cells+reactivate+quiescent+neuroblasts+via+TOR+and+glial+insulin+relays+in+Drosophila&rft.jtitle=Nature+%28London%29&rft.au=Sousa-Nunes%2C+Rita&rft.au=Yee%2C+Lih+Ling&rft.au=Gould%2C+Alex+P&rft.date=2011-03-24&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.volume=471&rft.issue=7339&rft.spage=508&rft_id=info:doi/10.1038%2Fnature09867&rft.externalDocID=A253305657
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon