Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling

We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstru...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 76; pp. 11 - 23
Main Authors Tong, Tong, Wolz, Robin, Coupé, Pierrick, Hajnal, Joseph V., Rueckert, Daniel
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.08.2013
Elsevier
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. •Sparse representation technique is applied to segmentations of brain MR images.•Discriminative dictionary learning is used to achieve a fast implementation.•Validation is carried out on hippocampus of 80 ICBM subjects and 202 ADNI images.•Segmentation results demonstrate the accuracy of the proposed method.•The proposed method may provide a potential direction for human brain labeling.
AbstractList We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods.
We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. •Sparse representation technique is applied to segmentations of brain MR images.•Discriminative dictionary learning is used to achieve a fast implementation.•Validation is carried out on hippocampus of 80 ICBM subjects and 202 ADNI images.•Segmentation results demonstrate the accuracy of the proposed method.•The proposed method may provide a potential direction for human brain labeling.
We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods.We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods.
Author Wolz, Robin
Tong, Tong
Coupé, Pierrick
Hajnal, Joseph V.
Rueckert, Daniel
Author_xml – sequence: 1
  givenname: Tong
  surname: Tong
  fullname: Tong, Tong
  email: t.tong11@imperial.ac.uk
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK
– sequence: 2
  givenname: Robin
  surname: Wolz
  fullname: Wolz, Robin
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK
– sequence: 3
  givenname: Pierrick
  surname: Coupé
  fullname: Coupé, Pierrick
  organization: LaBRI, CNRS UMR 5800, 351 cours de la Libération, F-33405 Talence, France
– sequence: 4
  givenname: Joseph V.
  surname: Hajnal
  fullname: Hajnal, Joseph V.
  organization: Center for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas Hospital, London, SE1 7EH, UK
– sequence: 5
  givenname: Daniel
  surname: Rueckert
  fullname: Rueckert, Daniel
  organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27395653$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23523774$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00806384$$DView record in HAL
BookMark eNqNktuO0zAQhiO0iD3AKyBLCAkuWnyInYQLRFkBi1SExOHamjrTrktiBzvpat9-HdJlpd7QK9vjb_6Z0fzn2YnzDrOMMDpnlKk327nDIXjbwgbnnDIxp3xOVfUoO2O0krNKFvxkvEsxKxmrTrPzGLeU0orl5ZPslAvJRVHkZ9nND9y06HrorXfEr8nX7-SvbCQ7C6S20QTbWpf-d5ieZuQg3JIGITjrNgRcTWIHISIxvk6Rt2TRdY01k2TvybXtOm-g7YZIGlhhk6Cn2eM1NBGf7c-L7Nenjz8vr2bLb5-_XC6WM6MK3s9yLAyoXIgiF1JSVZQS0dS4KqsKK1AgVkAlN4WQoBjHtWBFjbWUIDkIoOIiez3pXkOjuzRK6l17sPpqsdRjjNKSKlHmO5bYVxPbBf9nwNjrNo2PTQMO_RA1k5QWirHUy39RkVe0yhUb0RcH6NYPwaWhNVMqbYdzOdZ-vqeGVYv1v1bvN5WAl3sAooFmHcAZGx-4QlRSSZG4dxNngo8x4FobO223D2AbzageLaS3-sFCerSQplwnCyWB8kDgvsYRqR-mVEwb3VkMOhqLzmBtA5pe194eI_L-QMQkwyQ7Nb_x9jiJO_12_Fg
CitedBy_id crossref_primary_10_1186_s12938_020_00778_z
crossref_primary_10_1109_TBME_2017_2783305
crossref_primary_10_1016_j_nicl_2020_102267
crossref_primary_10_3233_JAD_170338
crossref_primary_10_1109_TMI_2015_2393954
crossref_primary_10_1371_journal_pone_0270339
crossref_primary_10_1007_s12021_018_9364_2
crossref_primary_10_1016_j_neuroimage_2016_06_049
crossref_primary_10_1007_s12021_014_9243_4
crossref_primary_10_1109_TMI_2014_2377694
crossref_primary_10_3389_fnins_2023_1267639
crossref_primary_10_1166_jmihi_2021_3361
crossref_primary_10_1016_j_media_2016_11_005
crossref_primary_10_1007_s12021_019_09417_y
crossref_primary_10_1016_j_neucom_2019_01_108
crossref_primary_10_1186_s12938_019_0623_8
crossref_primary_10_1109_ACCESS_2022_3159618
crossref_primary_10_1109_TBME_2016_2564440
crossref_primary_10_1016_j_media_2015_01_003
crossref_primary_10_1007_s11517_023_02836_9
crossref_primary_10_1109_ACCESS_2020_2984661
crossref_primary_10_1002_hbm_24243
crossref_primary_10_1016_j_neuroimage_2019_05_017
crossref_primary_10_1016_j_cmpb_2021_106197
crossref_primary_10_1016_j_jalz_2014_11_001
crossref_primary_10_1109_TIP_2017_2691799
crossref_primary_10_3389_fnins_2018_00629
crossref_primary_10_1118_1_4938267
crossref_primary_10_1007_s12021_017_9323_3
crossref_primary_10_1118_1_4963812
crossref_primary_10_1007_s11042_017_5484_1
crossref_primary_10_1016_j_media_2018_10_012
crossref_primary_10_1038_srep45501
crossref_primary_10_1155_2017_5256346
crossref_primary_10_1016_j_jneumeth_2016_06_013
crossref_primary_10_1109_TMI_2018_2890510
crossref_primary_10_1016_j_media_2015_03_003
crossref_primary_10_1016_j_neucom_2017_01_093
crossref_primary_10_1109_TBME_2015_2491612
crossref_primary_10_1631_FITEE_1620342
crossref_primary_10_1038_srep23470
crossref_primary_10_1111_cns_12415
crossref_primary_10_1016_j_artmed_2016_09_001
crossref_primary_10_1109_TCI_2018_2858139
crossref_primary_10_1016_j_neuroimage_2017_04_018
crossref_primary_10_1016_j_neuroimage_2016_09_011
crossref_primary_10_1016_j_neuroimage_2015_07_076
crossref_primary_10_1111_cgf_12436
crossref_primary_10_1016_j_arr_2016_01_002
crossref_primary_10_1016_j_compmedimag_2018_11_004
crossref_primary_10_1016_j_neuroimage_2017_06_083
crossref_primary_10_1016_j_nicl_2015_07_019
crossref_primary_10_1146_annurev_bioeng_060418_052147
crossref_primary_10_1016_j_artmed_2019_03_004
crossref_primary_10_1016_j_neuroimage_2013_11_040
crossref_primary_10_4028_www_scientific_net_JBBBE_49_63
crossref_primary_10_1049_iet_ipr_2017_1108
crossref_primary_10_1016_j_nicl_2016_02_019
crossref_primary_10_1109_TBME_2016_2549363
crossref_primary_10_1016_j_media_2016_06_009
crossref_primary_10_1109_TIP_2019_2952079
crossref_primary_10_15701_kcgs_2016_22_3_21
crossref_primary_10_1038_s41598_018_29295_9
crossref_primary_10_1109_TMM_2016_2602062
crossref_primary_10_1186_s12880_015_0087_7
crossref_primary_10_1109_TGRS_2020_2968541
crossref_primary_10_1118_1_4940399
crossref_primary_10_1049_iet_ipr_2018_5949
crossref_primary_10_1007_s11517_019_01985_0
crossref_primary_10_1016_j_neuroimage_2020_117026
crossref_primary_10_1016_j_bspc_2018_06_001
crossref_primary_10_1080_21681163_2019_1706054
crossref_primary_10_1016_j_media_2014_12_003
crossref_primary_10_1016_j_asoc_2021_107119
crossref_primary_10_1109_TMI_2017_2726112
crossref_primary_10_1109_ACCESS_2019_2945586
crossref_primary_10_1109_ACCESS_2020_2993504
crossref_primary_10_1016_j_neucom_2019_12_021
crossref_primary_10_1049_ipr2_12022
crossref_primary_10_1016_j_compmedimag_2015_05_003
crossref_primary_10_1016_j_patcog_2016_09_028
crossref_primary_10_1002_ima_22207
crossref_primary_10_1016_j_media_2016_10_001
crossref_primary_10_1103_PhysRevFluids_4_103907
crossref_primary_10_1088_0957_0233_26_10_105402
crossref_primary_10_1038_s41598_019_53387_9
crossref_primary_10_1007_s11548_016_1433_0
crossref_primary_10_3390_brainsci10120974
crossref_primary_10_1016_j_media_2017_11_013
crossref_primary_10_1016_j_neuroimage_2014_12_042
crossref_primary_10_1109_TMI_2019_2962792
crossref_primary_10_3389_fnins_2016_00325
crossref_primary_10_1371_journal_pone_0185249
crossref_primary_10_1016_j_cmpb_2022_107208
crossref_primary_10_1016_j_neuroimage_2019_03_041
crossref_primary_10_1016_j_bspc_2019_101602
crossref_primary_10_1049_iet_ipr_2016_0988
crossref_primary_10_1109_TIP_2017_2768621
crossref_primary_10_1038_s41598_019_54527_x
crossref_primary_10_1016_j_media_2015_04_015
crossref_primary_10_1049_cje_2021_06_002
crossref_primary_10_1016_j_dadm_2018_07_003
crossref_primary_10_1109_TMI_2013_2285931
crossref_primary_10_1016_j_neuroimage_2018_04_001
crossref_primary_10_1007_s00530_017_0577_2
crossref_primary_10_1515_bmt_2015_0071
crossref_primary_10_1117_1_JMI_6_1_014003
crossref_primary_10_1109_ACCESS_2019_2902463
crossref_primary_10_1016_j_media_2017_11_001
crossref_primary_10_1016_j_cmpb_2016_09_007
crossref_primary_10_1016_j_artmed_2015_04_005
crossref_primary_10_1007_s13204_021_01906_4
crossref_primary_10_1109_JBHI_2015_2439242
crossref_primary_10_1117_1_JEI_28_1_013046
crossref_primary_10_1016_j_artmed_2016_08_004
crossref_primary_10_1016_j_neucom_2016_06_036
crossref_primary_10_1016_j_neuroimage_2014_11_025
crossref_primary_10_1016_j_dadm_2018_09_001
crossref_primary_10_1016_j_media_2014_09_005
crossref_primary_10_1016_j_neucom_2016_03_012
crossref_primary_10_1016_j_patcog_2019_06_002
crossref_primary_10_1002_hbm_24027
crossref_primary_10_1016_j_jneumeth_2020_108828
crossref_primary_10_1371_journal_pone_0131968
crossref_primary_10_1002_hbm_23856
Cites_doi 10.1016/j.neuroimage.2011.10.080
10.1093/cercor/10.4.433
10.1016/j.neuroimage.2011.09.012
10.1016/j.neuroimage.2011.01.078
10.1109/TMI.2004.830803
10.1016/j.neuroimage.2011.01.006
10.1016/j.neuroimage.2006.05.061
10.1109/TMI.2009.2014372
10.1016/j.neuroimage.2009.02.018
10.1002/jmri.21049
10.1016/j.neuroimage.2009.05.029
10.1002/jmri.10163
10.1109/TMI.2010.2050897
10.1002/hbm.460030304
10.1111/j.1467-9868.2005.00503.x
10.1109/TPAMI.2011.156
10.1016/j.neuroimage.2010.04.193
10.1016/j.neuroimage.2009.09.069
10.1016/j.nic.2005.09.008
10.1016/j.media.2012.07.007
10.1109/TPAMI.2008.79
10.1016/j.neuroimage.2010.09.018
10.1109/TMI.2004.828354
10.1006/nimg.1995.1012
10.1016/j.neuroimage.2008.07.058
10.1016/j.neuroimage.2006.10.035
10.1016/j.neuroimage.2009.10.026
10.1109/TMI.2011.2156806
10.1016/j.neuroimage.2008.01.012
10.1007/BF01238023
10.1016/j.neuroimage.2011.06.054
ContentType Journal Article
Contributor Jack, Jr, Clifford R
Khachaturian, Zaven
Vemuri, Prashanthi
Figurski, Michal
Schuff, Norbert
Snyder, Peter
Schwartz, Adam
Frank, Richard
Chen, Kewei
Jagust, William
Jiminez, Gus
Green, Robert C
Mesulam, M Marcel
Weiner, Michael
Borowski, Bret
Hefti, Franz
Montine, Tom
Dolen, Sara
Gunter, Jeff
Thompson, Paul
DeCArli, Charles
Trojanowki, John Q
Fox, Nick
Thal, Lean
Faber, Kelley
Lind, Betty
Korecka, Magdalena
Walter, Sarah
Quinn, Joseph
Fillit, Howard
Neu, Scott
Sather, Tamie
Jones, David
Landau, Susan
Paul, Steven
Kantarci, Kejal
Aisen, Paul
Morris, John
Holtzman, Davie
Reiman, Eric M
Buckholtz, Neil
Morris, John C
Foster, Norm
Householder, Erin
Mathis, Chet
Foroud, Tatiana M
Kaye, Jeffrey
Saykin, Andrew J
Harvey, Danielle
Koeppe, Robert A
Weiner, Michael W
Nho, Kwangsik
Potkin, Steven
Potter, William
Gessert, Devon
Petersen, Ronald
Shaw, Leslie M
Donohue, Michael
Schneider, Lon S
Sorensen, Greg
Thomas, Ronald G
Raichle, Marc
Davies, Peter
Ward, Chad
Hsiao, John
Shen, Li
Senjem, Matt
Consulting, Richard Frank
Albert, Marylyn
Kim, Sungeun
Carter, Raina
Carr
Contributor_xml – sequence: 1
  givenname: Michael W
  surname: Weiner
  fullname: Weiner, Michael W
– sequence: 2
  givenname: Paul
  surname: Aisen
  fullname: Aisen, Paul
– sequence: 3
  givenname: Michael
  surname: Weiner
  fullname: Weiner, Michael
– sequence: 4
  givenname: Ronald
  surname: Petersen
  fullname: Petersen, Ronald
– sequence: 5
  givenname: Clifford R
  surname: Jack, Jr
  fullname: Jack, Jr, Clifford R
– sequence: 6
  givenname: William
  surname: Jagust
  fullname: Jagust, William
– sequence: 7
  givenname: John Q
  surname: Trojanowki
  fullname: Trojanowki, John Q
– sequence: 8
  givenname: Arthur W
  surname: Toga
  fullname: Toga, Arthur W
– sequence: 9
  givenname: Laurel
  surname: Beckett
  fullname: Beckett, Laurel
– sequence: 10
  givenname: Robert C
  surname: Green
  fullname: Green, Robert C
– sequence: 11
  givenname: Andrew J
  surname: Saykin
  fullname: Saykin, Andrew J
– sequence: 12
  givenname: John
  surname: Morris
  fullname: Morris, John
– sequence: 13
  givenname: Leslie M
  surname: Shaw
  fullname: Shaw, Leslie M
– sequence: 14
  givenname: Zaven
  surname: Khachaturian
  fullname: Khachaturian, Zaven
– sequence: 15
  givenname: Greg
  surname: Sorensen
  fullname: Sorensen, Greg
– sequence: 16
  givenname: Maria
  surname: Carrillo
  fullname: Carrillo, Maria
– sequence: 17
  givenname: Lew
  surname: Kuller
  fullname: Kuller, Lew
– sequence: 18
  givenname: Marc
  surname: Raichle
  fullname: Raichle, Marc
– sequence: 19
  givenname: Steven
  surname: Paul
  fullname: Paul, Steven
– sequence: 20
  givenname: Peter
  surname: Davies
  fullname: Davies, Peter
– sequence: 21
  givenname: Howard
  surname: Fillit
  fullname: Fillit, Howard
– sequence: 22
  givenname: Franz
  surname: Hefti
  fullname: Hefti, Franz
– sequence: 23
  givenname: Davie
  surname: Holtzman
  fullname: Holtzman, Davie
– sequence: 24
  givenname: M Marcel
  surname: Mesulam
  fullname: Mesulam, M Marcel
– sequence: 25
  givenname: William
  surname: Potter
  fullname: Potter, William
– sequence: 26
  givenname: Peter
  surname: Snyder
  fullname: Snyder, Peter
– sequence: 27
  givenname: Adam
  surname: Schwartz
  fullname: Schwartz, Adam
– sequence: 28
  givenname: Tom
  surname: Montine
  fullname: Montine, Tom
– sequence: 29
  givenname: Ronald G
  surname: Thomas
  fullname: Thomas, Ronald G
– sequence: 30
  givenname: Michael
  surname: Donohue
  fullname: Donohue, Michael
– sequence: 31
  givenname: Sarah
  surname: Walter
  fullname: Walter, Sarah
– sequence: 32
  givenname: Devon
  surname: Gessert
  fullname: Gessert, Devon
– sequence: 33
  givenname: Tamie
  surname: Sather
  fullname: Sather, Tamie
– sequence: 34
  givenname: Gus
  surname: Jiminez
  fullname: Jiminez, Gus
– sequence: 35
  givenname: Danielle
  surname: Harvey
  fullname: Harvey, Danielle
– sequence: 36
  givenname: Matthew
  surname: Bernstein
  fullname: Bernstein, Matthew
– sequence: 37
  givenname: Nick
  surname: Fox
  fullname: Fox, Nick
– sequence: 38
  givenname: Paul
  surname: Thompson
  fullname: Thompson, Paul
– sequence: 39
  givenname: Norbert
  surname: Schuff
  fullname: Schuff, Norbert
– sequence: 40
  givenname: Charles
  surname: DeCArli
  fullname: DeCArli, Charles
– sequence: 41
  givenname: Bret
  surname: Borowski
  fullname: Borowski, Bret
– sequence: 42
  givenname: Jeff
  surname: Gunter
  fullname: Gunter, Jeff
– sequence: 43
  givenname: Matt
  surname: Senjem
  fullname: Senjem, Matt
– sequence: 44
  givenname: Prashanthi
  surname: Vemuri
  fullname: Vemuri, Prashanthi
– sequence: 45
  givenname: David
  surname: Jones
  fullname: Jones, David
– sequence: 46
  givenname: Kejal
  surname: Kantarci
  fullname: Kantarci, Kejal
– sequence: 47
  givenname: Chad
  surname: Ward
  fullname: Ward, Chad
– sequence: 48
  givenname: Robert A
  surname: Koeppe
  fullname: Koeppe, Robert A
– sequence: 49
  givenname: Norm
  surname: Foster
  fullname: Foster, Norm
– sequence: 50
  givenname: Eric M
  surname: Reiman
  fullname: Reiman, Eric M
– sequence: 51
  givenname: Kewei
  surname: Chen
  fullname: Chen, Kewei
– sequence: 52
  givenname: Chet
  surname: Mathis
  fullname: Mathis, Chet
– sequence: 53
  givenname: Susan
  surname: Landau
  fullname: Landau, Susan
– sequence: 54
  givenname: John C
  surname: Morris
  fullname: Morris, John C
– sequence: 55
  givenname: Nigel J
  surname: Cairns
  fullname: Cairns, Nigel J
– sequence: 56
  givenname: Erin
  surname: Householder
  fullname: Householder, Erin
– sequence: 57
  givenname: Lisa
  surname: Taylor-Reinwald
  fullname: Taylor-Reinwald, Lisa
– sequence: 58
  givenname: Virginia
  surname: Lee
  fullname: Lee, Virginia
– sequence: 59
  givenname: Magdalena
  surname: Korecka
  fullname: Korecka, Magdalena
– sequence: 60
  givenname: Michal
  surname: Figurski
  fullname: Figurski, Michal
– sequence: 61
  givenname: Karen
  surname: Crawford
  fullname: Crawford, Karen
– sequence: 62
  givenname: Scott
  surname: Neu
  fullname: Neu, Scott
– sequence: 63
  givenname: Tatiana M
  surname: Foroud
  fullname: Foroud, Tatiana M
– sequence: 64
  givenname: Steven
  surname: Potkin
  fullname: Potkin, Steven
– sequence: 65
  givenname: Li
  surname: Shen
  fullname: Shen, Li
– sequence: 66
  givenname: Kelley
  surname: Faber
  fullname: Faber, Kelley
– sequence: 67
  givenname: Sungeun
  surname: Kim
  fullname: Kim, Sungeun
– sequence: 68
  givenname: Kwangsik
  surname: Nho
  fullname: Nho, Kwangsik
– sequence: 69
  givenname: Lean
  surname: Thal
  fullname: Thal, Lean
– sequence: 70
  givenname: Leon
  surname: Thal
  fullname: Thal, Leon
– sequence: 71
  givenname: Neil
  surname: Buckholtz
  fullname: Buckholtz, Neil
– sequence: 72
  givenname: Peter J
  surname: Snyder
  fullname: Snyder, Peter J
– sequence: 73
  givenname: Marylyn
  surname: Albert
  fullname: Albert, Marylyn
– sequence: 74
  givenname: Richard
  surname: Frank
  fullname: Frank, Richard
– sequence: 75
  givenname: Richard Frank
  surname: Consulting
  fullname: Consulting, Richard Frank
– sequence: 76
  givenname: John
  surname: Hsiao
  fullname: Hsiao, John
– sequence: 77
  givenname: Jeffrey
  surname: Kaye
  fullname: Kaye, Jeffrey
– sequence: 78
  givenname: Joseph
  surname: Quinn
  fullname: Quinn, Joseph
– sequence: 79
  givenname: Betty
  surname: Lind
  fullname: Lind, Betty
– sequence: 80
  givenname: Raina
  surname: Carter
  fullname: Carter, Raina
– sequence: 81
  givenname: Sara
  surname: Dolen
  fullname: Dolen, Sara
– sequence: 82
  givenname: Lon S
  surname: Schneider
  fullname: Schneider, Lon S
Copyright 2013 Elsevier Inc.
2014 INIST-CNRS
Copyright © 2013 Elsevier Inc. All rights reserved.
Copyright Elsevier Limited Aug 1, 2013
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited Aug 1, 2013
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor The Alzheimer's Disease Neuroimaging Initiative
Alzheimer's Disease Neuroimaging Initiative
CorporateAuthor_xml – name: The Alzheimer's Disease Neuroimaging Initiative
– name: Alzheimer's Disease Neuroimaging Initiative
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
1XC
VOOES
DOI 10.1016/j.neuroimage.2013.02.069
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList ProQuest One Psychology

Engineering Research Database


MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 1095-9572
EndPage 23
ExternalDocumentID oai_HAL_hal_00806384v1
3642142201
23523774
27395653
10_1016_j_neuroimage_2013_02_069
S1053811913002243
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: U01 AG032438
– fundername: NIBIB NIH HHS
  grantid: 9P01EB0011955-11
– fundername: NIA NIH HHS
  grantid: U01 AG024904
– fundername: Medical Research Council
  grantid: MR/K006355/1
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
1XC
PMFND
VOOES
ID FETCH-LOGICAL-c672t-4e7ca64337435506785eecdeb899e9a6a3ba052c735a612ef317ded55a52a3a03
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Tue May 27 06:22:29 EDT 2025
Fri Jul 11 02:35:40 EDT 2025
Tue Aug 05 11:08:12 EDT 2025
Wed Aug 13 10:00:39 EDT 2025
Mon Jul 21 05:30:30 EDT 2025
Mon Jul 21 09:13:59 EDT 2025
Tue Jul 01 02:14:50 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Fri Feb 23 02:36:06 EST 2024
Tue Aug 26 16:31:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Structural MR images
Patch-based segmentation
Sparse representation
Discriminative dictionary learning
Learning
Acquisition process
Segmentation
Central nervous system
Hippocampus
Encephalon
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2013 Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c672t-4e7ca64337435506785eecdeb899e9a6a3ba052c735a612ef317ded55a52a3a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2709-3350
OpenAccessLink https://hal.science/hal-00806384
PMID 23523774
PQID 1668112251
PQPubID 2031077
PageCount 13
ParticipantIDs hal_primary_oai_HAL_hal_00806384v1
proquest_miscellaneous_1500761174
proquest_miscellaneous_1349094614
proquest_journals_1668112251
pubmed_primary_23523774
pascalfrancis_primary_27395653
crossref_citationtrail_10_1016_j_neuroimage_2013_02_069
crossref_primary_10_1016_j_neuroimage_2013_02_069
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_02_069
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_02_069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: Elsevier Limited
References Artaechevarria, Muñoz-Barrutia, Ortiz-de Solorzano (bb0010) 2009; 28
Mairal, Bach, Ponce, Sapiro, Zisserman (bb0110) 2008
Wright, Yang, Ganesh, Sastry, Ma (bb0210) 2009; 31
Zhang, Zhan, Metaxas (bb0235) 2012
Mairal, Bach, Ponce (bb0100) 2012; 34
Mairal, Bach, Ponce, Sapiro (bb0105) 2009
Rousseau, Habas, Studholme (bb0145) 2011; 30
Sabuncu, Yeo, Van Leemput, Fischl, Golland (bb0150) 2010; 29
Eskildsen, Coupé, Fonov, Manjón, Leung, Guizard, Wassef, Østergaard, Collins (bb0050) 2011; 59
Mairal, Bach, Ponce, Sapiro, Zisserman (bb0115) 2009; 21
Warfield, Zou, Wells (bb0195) 2004; 23
Pruessner, Li, Serles, Pruessner, Collins, Kabani, Lupien, Evans (bb0135) 2000; 10
Wolz, Aljabar, Rueckert, Heckemann, Hammers (bb0205) 2009
Wang, Suh, Pluta, Altinay, Yushkevich (bb0185) 2011
Khan, Cherbuin, Wen, Anstey, Sachdev, Beg (bb0085) 2011; 56
Hu, Coupé, Pruessner, Collins (bb0070) 2011; 58
Wang, Das, Suh, Altinay, Pluta, Craige, Avants, Yushkevich (bb0175) 2011; 55
Yang, Zhang, Yang, Zhang (bb0225) 2011
Tong, Wolz, Hajnal, Rueckert (bb0165) 2012
Rohlfing, Russakoff, Maurer (bb0140) 2004; 23
Zhang, Li (bb0230) 2010
Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0005) 2009; 46
Kittler (bb0090) 1998; 1
Fonov, Coupé, Styner, Collins (bb0055) 2012
Tibshirani (bb0160) 1996; 267–288
Nyul, Udupa (bb0130) 2000; 21
Van der Lijn, den Heijer, Breteler, Niessen (bb0170) 2008; 43
Barnes, Foster, Boyes, Pepple, Moore, Schott, Frost, Scahill, Fox (bb0020) 2008; 40
Coupé, Manjķn, Fonov, Pruessner, Robles, Collins (bb0045) 2011; 54
Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bb0125) 2005; 15
Lotjonen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (bb0095) 2010; 49
Babalola, Patenaude, Aljabar, Schnabel, Kennedy, Crum, Smith, Cootes, Jenkinson, Rueckert (bb0015) 2009; 47
Collins, Holmes, Peters, Evans (bb0030) 1995; 3
Coupé, Eskildsen, Manjón, Fonov, Collins (bb0040) 2012; 59
Jiang, Lin, Davis (bb0080) 2011
Collins, Pruessner (bb0035) 2010; 52
Hsu, Schuff, Du, Mark, Zhu, Hardin, Weiner (bb0065) 2002; 16
Jack, Bernstein (bb0075) 2008; 27
Yang, Sastry, Ganesh, Ma (bb0215) 2010
Wolz, Aljabar, Hajnal, Hammers, Rueckert (bb0200) 2010; 49
Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bb0060) 2006; 33
Wang, Yushkevich (bb0190) 2012
Yang, Zhang, Feng, Zhang (bb0220) 2011
Zou, Hastie (bb0240) 2005; 67
Chupin, Mukuna-Bantumbakulu, Hasboun, Bardinet, Baillet, Kinkingnéhun, Lemieux, Dubois, Garnero (bb0025) 2007; 34
Mazziotta, Toga, Evans, Fox, Lancaster (bb0120) 1995; 2
Wang, Suh, Das, Pluta, Altinay, Yushkevich (bb0180) 2011
Shu, Gao, Shen (bb0155) 2012; 2012
Mueller (10.1016/j.neuroimage.2013.02.069_bb0125) 2005; 15
Rousseau (10.1016/j.neuroimage.2013.02.069_bb0145) 2011; 30
Van der Lijn (10.1016/j.neuroimage.2013.02.069_bb0170) 2008; 43
Jiang (10.1016/j.neuroimage.2013.02.069_bb0080) 2011
Wang (10.1016/j.neuroimage.2013.02.069_bb0175) 2011; 55
Zou (10.1016/j.neuroimage.2013.02.069_bb0240) 2005; 67
Wolz (10.1016/j.neuroimage.2013.02.069_bb0200) 2010; 49
Chupin (10.1016/j.neuroimage.2013.02.069_bb0025) 2007; 34
Artaechevarria (10.1016/j.neuroimage.2013.02.069_bb0010) 2009; 28
Collins (10.1016/j.neuroimage.2013.02.069_bb0030) 1995; 3
Khan (10.1016/j.neuroimage.2013.02.069_bb0085) 2011; 56
Tibshirani (10.1016/j.neuroimage.2013.02.069_bb0160) 1996; 267–288
Fonov (10.1016/j.neuroimage.2013.02.069_bb0055) 2012
Wang (10.1016/j.neuroimage.2013.02.069_bb0190) 2012
Barnes (10.1016/j.neuroimage.2013.02.069_bb0020) 2008; 40
Wang (10.1016/j.neuroimage.2013.02.069_bb0180) 2011
Rohlfing (10.1016/j.neuroimage.2013.02.069_bb0140) 2004; 23
Wang (10.1016/j.neuroimage.2013.02.069_bb0185) 2011
Collins (10.1016/j.neuroimage.2013.02.069_bb0035) 2010; 52
Kittler (10.1016/j.neuroimage.2013.02.069_bb0090) 1998; 1
Pruessner (10.1016/j.neuroimage.2013.02.069_bb0135) 2000; 10
Mazziotta (10.1016/j.neuroimage.2013.02.069_bb0120) 1995; 2
Heckemann (10.1016/j.neuroimage.2013.02.069_bb0060) 2006; 33
Hsu (10.1016/j.neuroimage.2013.02.069_bb0065) 2002; 16
Coupé (10.1016/j.neuroimage.2013.02.069_bb0045) 2011; 54
Hu (10.1016/j.neuroimage.2013.02.069_bb0070) 2011; 58
Babalola (10.1016/j.neuroimage.2013.02.069_bb0015) 2009; 47
Yang (10.1016/j.neuroimage.2013.02.069_bb0225) 2011
Nyul (10.1016/j.neuroimage.2013.02.069_bb0130) 2000; 21
Wolz (10.1016/j.neuroimage.2013.02.069_bb0205) 2009
Yang (10.1016/j.neuroimage.2013.02.069_bb0215) 2010
Eskildsen (10.1016/j.neuroimage.2013.02.069_bb0050) 2011; 59
Coupé (10.1016/j.neuroimage.2013.02.069_bb0040) 2012; 59
Aljabar (10.1016/j.neuroimage.2013.02.069_bb0005) 2009; 46
Mairal (10.1016/j.neuroimage.2013.02.069_bb0105) 2009
Jack (10.1016/j.neuroimage.2013.02.069_bb0075) 2008; 27
Shu (10.1016/j.neuroimage.2013.02.069_bb0155) 2012; 2012
Sabuncu (10.1016/j.neuroimage.2013.02.069_bb0150) 2010; 29
Mairal (10.1016/j.neuroimage.2013.02.069_bb0110) 2008
Zhang (10.1016/j.neuroimage.2013.02.069_bb0235) 2012
Tong (10.1016/j.neuroimage.2013.02.069_bb0165) 2012
Warfield (10.1016/j.neuroimage.2013.02.069_bb0195) 2004; 23
Mairal (10.1016/j.neuroimage.2013.02.069_bb0115) 2009; 21
Yang (10.1016/j.neuroimage.2013.02.069_bb0220) 2011
Lotjonen (10.1016/j.neuroimage.2013.02.069_bb0095) 2010; 49
Mairal (10.1016/j.neuroimage.2013.02.069_bb0100) 2012; 34
Wright (10.1016/j.neuroimage.2013.02.069_bb0210) 2009; 31
Zhang (10.1016/j.neuroimage.2013.02.069_bb0230) 2010
References_xml – start-page: 73
  year: 2011
  end-page: 84
  ident: bb0185
  article-title: Optimal weights for multi-atlas label fusion
  publication-title: Information Processing in Medical Imaging
– start-page: 1697
  year: 2011
  end-page: 1704
  ident: bb0080
  article-title: Learning a discriminative dictionary for sparse coding via label consistent K-SVD
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 58
  start-page: 549
  year: 2011
  end-page: 559
  ident: bb0070
  article-title: Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging
  publication-title: Neuroimage
– volume: 59
  start-page: 2362
  year: 2011
  end-page: 2373
  ident: bb0050
  article-title: BEaST: brain extraction based on nonlocal segmentation technique
  publication-title: Neuroimage
– start-page: 2691
  year: 2010
  end-page: 2698
  ident: bb0230
  article-title: Discriminative K-SVD for dictionary learning in face recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 2012
  start-page: 385
  year: 2012
  end-page: 392
  ident: bb0155
  article-title: Sparse patch based prostate segmentation in CT images
  publication-title: Med. Image Comput. Comput.-Assist. Interv.
– start-page: 625
  year: 2011
  end-page: 632
  ident: bb0225
  article-title: Robust sparse coding for face recognition
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– volume: 33
  start-page: 115
  year: 2006
  end-page: 126
  ident: bb0060
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: Neuroimage
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bb0240
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 49
  start-page: 1316
  year: 2010
  end-page: 1325
  ident: bb0200
  article-title: LEAP: learning embeddings for atlas propagation
  publication-title: Neuroimage
– volume: 34
  start-page: 996
  year: 2007
  end-page: 1019
  ident: bb0025
  article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease
  publication-title: Neuroimage
– volume: 1
  start-page: 18
  year: 1998
  end-page: 27
  ident: bb0090
  article-title: Combining classifiers: a theoretical framework
  publication-title: Pattern Anal. Appl.
– volume: 21
  start-page: 496
  year: 2000
  end-page: 504
  ident: bb0130
  article-title: Standardizing the MR image intensity scales: making MR intensities have tissue-specific meaning
  publication-title: Medical Imageing: Image Display and Visualization in Proceedings of SPIE 1
– volume: 3
  start-page: 190
  year: 1995
  end-page: 208
  ident: bb0030
  article-title: Automatic 3-D model-based neuroanatomical segmentation
  publication-title: Hum. Brain Mapp.
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bb0075
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: 52
  start-page: 1355
  year: 2010
  end-page: 1366
  ident: bb0035
  article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion
  publication-title: Neuroimage
– volume: 43
  start-page: 708
  year: 2008
  end-page: 720
  ident: bb0170
  article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
  publication-title: Neuroimage
– year: 2012
  ident: bb0055
  article-title: Automatic lateral ventricle segmentation in infant population with high risk of autism
  publication-title: 18th Annual Meeting of the Organization for Human Brain Mapping (OHBM)
– volume: 10
  start-page: 433
  year: 2000
  end-page: 442
  ident: bb0135
  article-title: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories
  publication-title: Cereb. Cortex
– volume: 23
  start-page: 983
  year: 2004
  end-page: 994
  ident: bb0140
  article-title: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation
  publication-title: IEEE Trans. Med. Imaging
– volume: 23
  start-page: 903
  year: 2004
  end-page: 921
  ident: bb0195
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 28
  start-page: 1266
  year: 2009
  end-page: 1277
  ident: bb0010
  article-title: Combination strategies in multi-atlas image segmentation: Application to brain MR data
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1849
  year: 2010
  end-page: 1852
  ident: bb0215
  article-title: Fast l1-minimization algorithms and an application in robust face recognition: a review
  publication-title: International Conference on Image Processing (ICIP)
– start-page: 1113
  year: 2011
  end-page: 1120
  ident: bb0180
  article-title: Regression-based label fusion for multi-atlas segmentation
  publication-title: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 892
  year: 2012
  end-page: 895
  ident: bb0190
  article-title: Dependency prior for multi-atlas label fusion
  publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI)
– start-page: 543
  year: 2011
  end-page: 550
  ident: bb0220
  article-title: Fisher discrimination dictionary learning for sparse representation
  publication-title: IEEE International Conference on Computer Vision (ICCV)
– volume: 54
  start-page: 940
  year: 2011
  end-page: 954
  ident: bb0045
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: Neuroimage
– start-page: 689
  year: 2009
  end-page: 696
  ident: bb0105
  article-title: Online dictionary learning for sparse coding
  publication-title: Proceedings of the 26th Annual International Conference on Machine Learning. ACM
– volume: 30
  start-page: 1852
  year: 2011
  end-page: 1862
  ident: bb0145
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imaging
– volume: 29
  start-page: 1714
  year: 2010
  end-page: 1729
  ident: bb0150
  article-title: A generative model for image segmentation based on label fusion
  publication-title: IEEE Trans. Med. Imaging
– volume: 267–288
  year: 1996
  ident: bb0160
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 46
  start-page: 726
  year: 2009
  end-page: 738
  ident: bb0005
  article-title: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy
  publication-title: Neuroimage
– volume: 47
  start-page: 1435
  year: 2009
  end-page: 1447
  ident: bb0015
  article-title: An evaluation of four automatic methods of segmenting the subcortical structures in the brain
  publication-title: Neuroimage
– year: 2012
  ident: bb0165
  article-title: Segmentation of brain MR images via sparse patch representation
  publication-title: MICCAI Workshop on Sparsity Techniques in Medical Imaging (STMI)
– volume: 40
  start-page: 1655
  year: 2008
  end-page: 1671
  ident: bb0020
  article-title: A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus
  publication-title: Neuroimage
– volume: 49
  start-page: 2352
  year: 2010
  end-page: 2365
  ident: bb0095
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: Neuroimage
– volume: 59
  start-page: 3736
  year: 2012
  end-page: 3747
  ident: bb0040
  article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease
  publication-title: Neuroimage
– start-page: 1
  year: 2008
  end-page: 8
  ident: bb0110
  article-title: Discriminative learned dictionaries for local image analysis
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 31
  start-page: 210
  year: 2009
  end-page: 227
  ident: bb0210
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 470
  year: 2009
  end-page: 473
  ident: bb0205
  article-title: Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information
  publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI)
– volume: 34
  start-page: 791
  year: 2012
  end-page: 804
  ident: bb0100
  article-title: Task-driven dictionary learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 15
  start-page: 869
  year: 2005
  end-page: 877
  ident: bb0125
  article-title: The Alzheimer's Disease Neuroimaging Initiative
  publication-title: Neuroimaging Clin. N. Am.
– volume: 16
  start-page: 305
  year: 2002
  end-page: 310
  ident: bb0065
  article-title: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia
  publication-title: J. Magn. Reson. Imaging
– volume: 55
  start-page: 968
  year: 2011
  end-page: 985
  ident: bb0175
  article-title: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation
  publication-title: Neuroimage
– start-page: 1385
  year: 2012
  end-page: 1396
  ident: bb0235
  article-title: Deformable segmentation via sparse representation and dictionary learning
  publication-title: Med. Image Anal.
– volume: 2
  start-page: 89
  year: 1995
  end-page: 101
  ident: bb0120
  article-title: A probabilistic atlas of the human brain: theory and rationale for its development: the international consortium for brain mapping (ICBM)
  publication-title: Neuroimage
– volume: 56
  start-page: 126
  year: 2011
  end-page: 139
  ident: bb0085
  article-title: Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation
  publication-title: Neuroimage
– volume: 21
  start-page: 1033
  year: 2009
  end-page: 1040
  ident: bb0115
  article-title: Supervised dictionary learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 59
  start-page: 3736
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2013.02.069_bb0040
  article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.080
– start-page: 892
  year: 2012
  ident: 10.1016/j.neuroimage.2013.02.069_bb0190
  article-title: Dependency prior for multi-atlas label fusion
– volume: 10
  start-page: 433
  issue: 4
  year: 2000
  ident: 10.1016/j.neuroimage.2013.02.069_bb0135
  article-title: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/10.4.433
– start-page: 2691
  year: 2010
  ident: 10.1016/j.neuroimage.2013.02.069_bb0230
  article-title: Discriminative K-SVD for dictionary learning in face recognition
– volume: 59
  start-page: 2362
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0050
  article-title: BEaST: brain extraction based on nonlocal segmentation technique
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.012
– volume: 56
  start-page: 126
  issue: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0085
  article-title: Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.078
– start-page: 689
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.069_bb0105
  article-title: Online dictionary learning for sparse coding
– volume: 23
  start-page: 983
  issue: 8
  year: 2004
  ident: 10.1016/j.neuroimage.2013.02.069_bb0140
  article-title: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.830803
– volume: 55
  start-page: 968
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0175
  article-title: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.006
– volume: 33
  start-page: 115
  issue: 1
  year: 2006
  ident: 10.1016/j.neuroimage.2013.02.069_bb0060
  article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.05.061
– start-page: 470
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.069_bb0205
  article-title: Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information
– volume: 28
  start-page: 1266
  issue: 8
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.069_bb0010
  article-title: Combination strategies in multi-atlas image segmentation: Application to brain MR data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2014372
– volume: 46
  start-page: 726
  issue: 3
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.069_bb0005
  article-title: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.02.018
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2013.02.069_bb0075
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 21
  start-page: 1033
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.069_bb0115
  article-title: Supervised dictionary learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 47
  start-page: 1435
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.069_bb0015
  article-title: An evaluation of four automatic methods of segmenting the subcortical structures in the brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.05.029
– volume: 16
  start-page: 305
  issue: 3
  year: 2002
  ident: 10.1016/j.neuroimage.2013.02.069_bb0065
  article-title: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.10163
– start-page: 1113
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0180
  article-title: Regression-based label fusion for multi-atlas segmentation
– volume: 29
  start-page: 1714
  issue: 10
  year: 2010
  ident: 10.1016/j.neuroimage.2013.02.069_bb0150
  article-title: A generative model for image segmentation based on label fusion
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2050897
– volume: 3
  start-page: 190
  issue: 3
  year: 1995
  ident: 10.1016/j.neuroimage.2013.02.069_bb0030
  article-title: Automatic 3-D model-based neuroanatomical segmentation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.460030304
– start-page: 73
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0185
  article-title: Optimal weights for multi-atlas label fusion
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2013.02.069_bb0240
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 34
  start-page: 791
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2013.02.069_bb0100
  article-title: Task-driven dictionary learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.156
– start-page: 543
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0220
  article-title: Fisher discrimination dictionary learning for sparse representation
– volume: 2012
  start-page: 385
  year: 2012
  ident: 10.1016/j.neuroimage.2013.02.069_bb0155
  article-title: Sparse patch based prostate segmentation in CT images
  publication-title: Med. Image Comput. Comput.-Assist. Interv.
– volume: 52
  start-page: 1355
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2013.02.069_bb0035
  article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.193
– volume: 49
  start-page: 1316
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2013.02.069_bb0200
  article-title: LEAP: learning embeddings for atlas propagation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.069
– volume: 267–288
  year: 1996
  ident: 10.1016/j.neuroimage.2013.02.069_bb0160
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 15
  start-page: 869
  issue: 4
  year: 2005
  ident: 10.1016/j.neuroimage.2013.02.069_bb0125
  article-title: The Alzheimer's Disease Neuroimaging Initiative
  publication-title: Neuroimaging Clin. N. Am.
  doi: 10.1016/j.nic.2005.09.008
– start-page: 1385
  year: 2012
  ident: 10.1016/j.neuroimage.2013.02.069_bb0235
  article-title: Deformable segmentation via sparse representation and dictionary learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.07.007
– volume: 31
  start-page: 210
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2013.02.069_bb0210
  article-title: Robust face recognition via sparse representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.79
– volume: 54
  start-page: 940
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0045
  article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.018
– volume: 23
  start-page: 903
  issue: 7
  year: 2004
  ident: 10.1016/j.neuroimage.2013.02.069_bb0195
  article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.828354
– start-page: 1697
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0080
  article-title: Learning a discriminative dictionary for sparse coding via label consistent K-SVD
– volume: 2
  start-page: 89
  issue: 2
  year: 1995
  ident: 10.1016/j.neuroimage.2013.02.069_bb0120
  article-title: A probabilistic atlas of the human brain: theory and rationale for its development: the international consortium for brain mapping (ICBM)
  publication-title: Neuroimage
  doi: 10.1006/nimg.1995.1012
– volume: 43
  start-page: 708
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2013.02.069_bb0170
  article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.07.058
– volume: 34
  start-page: 996
  issue: 3
  year: 2007
  ident: 10.1016/j.neuroimage.2013.02.069_bb0025
  article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.10.035
– year: 2012
  ident: 10.1016/j.neuroimage.2013.02.069_bb0165
  article-title: Segmentation of brain MR images via sparse patch representation
– volume: 21
  start-page: 496
  year: 2000
  ident: 10.1016/j.neuroimage.2013.02.069_bb0130
  article-title: Standardizing the MR image intensity scales: making MR intensities have tissue-specific meaning
– start-page: 1849
  year: 2010
  ident: 10.1016/j.neuroimage.2013.02.069_bb0215
  article-title: Fast l1-minimization algorithms and an application in robust face recognition: a review
– volume: 49
  start-page: 2352
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2013.02.069_bb0095
  article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.026
– volume: 30
  start-page: 1852
  issue: 10
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0145
  article-title: A supervised patch-based approach for human brain labeling
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2156806
– volume: 40
  start-page: 1655
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2013.02.069_bb0020
  article-title: A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.01.012
– start-page: 625
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0225
  article-title: Robust sparse coding for face recognition
– start-page: 1
  year: 2008
  ident: 10.1016/j.neuroimage.2013.02.069_bb0110
  article-title: Discriminative learned dictionaries for local image analysis
– year: 2012
  ident: 10.1016/j.neuroimage.2013.02.069_bb0055
  article-title: Automatic lateral ventricle segmentation in infant population with high risk of autism
– volume: 1
  start-page: 18
  issue: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2013.02.069_bb0090
  article-title: Combining classifiers: a theoretical framework
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/BF01238023
– volume: 58
  start-page: 549
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2013.02.069_bb0070
  article-title: Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.054
SSID ssj0009148
Score 2.518231
Snippet We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the...
SourceID hal
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11
SubjectTerms Adult
Aged
Automation
Bioengineering
Biological and medical sciences
Brain Mapping - methods
Computer Science
Dictionaries
Discrimination Learning - physiology
Discriminative dictionary learning
Distance learning
Engineering Sciences
Female
Fundamental and applied biological sciences. Psychology
Hippocampus - physiology
Humans
Image Interpretation, Computer-Assisted - methods
Image Processing
Labeling
Libraries
Life Sciences
Magnetic Resonance Imaging - methods
Male
Medical Imaging
Methods
NMR
Nuclear magnetic resonance
Patch-based segmentation
Registration
Signal and Image processing
Sparse representation
Structural MR images
Vertebrates: nervous system and sense organs
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_eCSIc4vdVzyOKr8W2SZpWH2QRj0VcH9SDfQtpkt7t4bZ1u3vif-9Mm7YIeuxj2wyEzmTmN5kvQl5LWxrDijwsIhuFvLtosjIKC53wDBBpllu8Glh8Sefn_NNSLP2FW-vTKged2ClqWxu8I38Tp2kG2ADM8fvmZ4hTozC66kdoHJDb2LoMpVou5dR0N-Z9KZxgIRDnPpOnz-_q-kWu1nBqMcGLdZ07Me353-bp4BLzJI8a3cKvK_uZF_8HpZ1xOrtP7nlUSWe9GDwgt1z1kNxZ-Lj5I_Lrm7tY-yqjitYlXXyl3aZaer3SFEtz-_FeqPzgsSt20Jvf1A-VuKC6shSUz6Z11NRo797S2RT7ptuaXq6aBgzjutm1FESrq3N_TM7PPn7_MA_9yIXQpDLZhtxJowGkMAAW4LuAJRPOGesKcMtcrlPNCh2JxEgmNGAjVwL8sM4KoUWimY7YE3JY1ZU7JlQYsHs2zmQhS15q0BMCVnArCltwm2cBkcOfVsb3I8exGD_UkHh2pSYeKeSRihIFPApIPFI2fU-OPWjygZlqqDkFLanAcOxB-26k9bikxxt7Ur8C2Rk3iu2857PPCt8hXAf9x6_jgJz-JVrj8gQDqalgATkZZE15LdOq6UwE5OX4GfQDBn105eodrGE8BxceUNgNawQGZGNwTgPytJfjaQOA0Bn4CM9u3sBzcjfpBoVgauQJOdxudu4FwLVtcdqdyT_iQj-3
  priority: 102
  providerName: ProQuest
Title Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913002243
https://dx.doi.org/10.1016/j.neuroimage.2013.02.069
https://www.ncbi.nlm.nih.gov/pubmed/23523774
https://www.proquest.com/docview/1668112251
https://www.proquest.com/docview/1349094614
https://www.proquest.com/docview/1500761174
https://hal.science/hal-00806384
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBddB2Mwxr6Xrgva2KsX25KseHvKSkv2kTDaFfImZEtuMxrHxEnHXva3706WHQrbCOzFwY4OhHT-3e-s-yDkjTRFnrMsDbLQhAF3H5qMDINMx3wIjHSYGvw0MJkm43P-aSZme-SozYXBsEqP_Q2mO7T2TwZ-NQfVfD44A2YA5gb8DeYMEVb85Fyilr_9tQ3zSCPepMMJFuBoH83TxHi5mpHzBby5GOTFXPVODH3-s4m6dYmxkvcqXcPyFU3fi78TU2egTh6Q-55Z0lEz-Ydkz5aPyJ2JPzt_TH6c2YuFzzQq6bKgk1PqJlXT67mmmJ7btPhCAIRbl_CgVz-pbyxxQXVpKADQqrY0X6LNe0dH2_Nvul7Sy3lVgXFcVJuagnq5XPcn5Pzk-NvROPBtF4I8kfE64FbmGogKA3IB_gtYM2FtbmwGrplNdaJZpkMR55IJDfzIFkBBjDVCaBFrpkP2lOyXy9I-J1TkYPtMNJSZLHihASsEjOBGZCbjJh32iGxXWuW-Jjm2xrhSbfDZd7XdI4V7pMJYwR71SNRJVk1djh1k0nYzVZt3CkipwHjsIPu-k72hnztKvwbd6SaKJb3Hoy8KnyFlBwzk11GP9G-oVjc8xsPURLAeOWx1TXmkqVWUJKDWgMog_6r7GzACD350aZcbGMN4Cm48MLF_jBF4KBuBg9ojzxo93k4AWDoDP-HgvxbhBbkbu14iGD15SPbXq419CYxunfXdKwtXOZN9cnv08fN4Cr8fjqdfT38DpyVPLQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61RQIkhHjXUMqC4Ghhe3ftGIRQBFQpTXqAVsptWXvXbVBjmzhp1T_Fb2TGj0RIUOXSY5LdaOUZf9_MzgvgdWSyNOVJ7Cae8VxRXzSZyHMTHYgeWqS92NDVwOgwHByLr2M53oDfXS0MpVV2mFgDtSlSuiN_64dhD20DpOOP5S-XpkZRdLUbodGoxYG9vECXrfqw_xnl-yYI9r4cfRq47VQBNw2jYO4KG6UaeZgjd6J5jmAtrU2NTdDzsLEONU-0J4M04lIj_dsMGdZYI6WWgeba4_i_m3ADidcjZy8aR6smv75oSu8kd_GwcZs51OST1f0pJ1NECUoo43WnUEqz_jcdbp5SXuadUlcoqqyZsfF_I7gmw717cLe1Ylm_Ubv7sGHzB3Bz1MbpH8LFd3sybauaclZkbPSN1Yeq2PlEMyoFbsaJEdjix7q4Qs8uWTvE4oTp3DAEu1llWVoQv75j_VWsnc0LdjopSyTiabmoGKpyXVf_CI6vRRiPYSsvcrsNTKbIs8bvRUmUiUwjLklcIYxMTCJM3HMg6p60Stv-5zSG40x1iW4_1UpGimSkvEChjBzwlzvLpgfIGnviTpiqq3FFVFZIVGvsfb_c29pBjX2z5u5XqDvLg1L78EF_qOg7cg8Qb8W578DuX6q1XB5Q4DaU3IGdTtdUi2qVWr2DDrxc_ox4REEmndtigWu4iL1YoNV3xRpJAWAfnWEHnjR6vDoAegQcfZKnVx_gBdwaHI2Garh_ePAMbgf1kBJKy9yBrflsYZ-jqThPduv3k8GP6waEPzL7fFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnTQhIcQ3gTEMgsdoSWwnDQihwlZ1bK2mwaS9eU7sbEU0CU27af8afx3nxGmFBFNf9tjWV51yl9_d-b4A3kYqS1OaxG7iKc9l9UWTijw3kQHrokfajZW5GhiOwsEJ-3rKT9fgd9sLY8oqW0ysgVoVqbkj3_HDsIu-AZrjncyWRRzt9j-Vv1yzQcpkWtt1Go2KHOjrKwzfqo_7uyjrd0HQ3_v-ZeDaDQNuGkbBzGU6SiXaZIp2FF11BG6udap0glGIjmUoaSI9HqQR5RJdAZ2htVVacS55IKn0KP7vOmxEJirqwMbnvdHR8XLkr8-aRjxOXWQ9tnVETXVZPa1yPEHMMOVltJ4baoqu_20c1y9MlebdUlYouKzZuPF_l7g2jf37cM_6tKTXKOEDWNP5Q9gc2qz9I7j6ps8ntscpJ0VGhsekZqoil2NJTGNws1zMQC9-rFst5PSa2JUW50TmiiD0TStN0sJY2_ekt8y8k1lBLsZliWZ5Us4rgopdd9k_hpNbEccT6ORFrp8B4SlaXeV3oyTKWCYRpTieYIonKmEq7joQtU9apHYaulnK8VO0ZW8_xFJGwshIeIFAGTngLyjLZiLICjRxK0zRdrwiRgs0WyvQfljQWq-o8XZWpH6DurNg1AwTH_QOhfnOBAuIvuzSd2D7L9VaHA9MGjfk1IGtVteExbhKLN9IB14vfkZ0Miknmetijmcoi72YoQ94wxlu0sE-hsYOPG30eMkAxgcUI5TnNzPwCjYRDMTh_ujgBdwJ6o0lpkZzCzqz6Vy_RL9xlmzbF5TA2W1jwh9sAYHv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+MR+images+via+discriminative+dictionary+learning+and+sparse+coding%3A+Application+to+hippocampus+labeling&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tong%2C+Tong&rft.au=Wolz%2C+Robin&rft.au=Coup%C3%A9%2C+Pierrick&rft.au=Hajnal%2C+Joseph+V.&rft.date=2013-08-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=76&rft.spage=11&rft.epage=23&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.02.069&rft.externalDocID=S1053811913002243
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon