Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling
We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstru...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 76; pp. 11 - 23 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.08.2013
Elsevier Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods.
•Sparse representation technique is applied to segmentations of brain MR images.•Discriminative dictionary learning is used to achieve a fast implementation.•Validation is carried out on hippocampus of 80 ICBM subjects and 202 ADNI images.•Segmentation results demonstrate the accuracy of the proposed method.•The proposed method may provide a potential direction for human brain labeling. |
---|---|
AbstractList | We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. •Sparse representation technique is applied to segmentations of brain MR images.•Discriminative dictionary learning is used to achieve a fast implementation.•Validation is carried out on hippocampus of 80 ICBM subjects and 202 ADNI images.•Segmentation results demonstrate the accuracy of the proposed method.•The proposed method may provide a potential direction for human brain labeling. We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods.We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the proposed method, dictionaries and classifiers are learned simultaneously from a set of brain atlases, which can then be used for the reconstruction and segmentation of an unseen target image. The proposed segmentation strategy is based on image reconstruction, which is in contrast to most existing atlas-based labeling approaches that rely on comparing image similarities between atlases and target images. In addition, we propose a Fixed Discriminative Dictionary Learning for Segmentation (F-DDLS) strategy, which can learn dictionaries offline and perform segmentations online, enabling a significant speed-up in the segmentation stage. The proposed method has been evaluated for the hippocampus segmentation of 80 healthy ICBM subjects and 202 ADNI images. The robustness of the proposed method, especially of our F-DDLS strategy, was validated by training and testing on different subject groups in the ADNI database. The influence of different parameters was studied and the performance of the proposed method was also compared with that of the nonlocal patch-based approach. The proposed method achieved a median Dice coefficient of 0.879 on 202 ADNI images and 0.890 on 80 ICBM subjects, which is competitive compared with state-of-the-art methods. |
Author | Wolz, Robin Tong, Tong Coupé, Pierrick Hajnal, Joseph V. Rueckert, Daniel |
Author_xml | – sequence: 1 givenname: Tong surname: Tong fullname: Tong, Tong email: t.tong11@imperial.ac.uk organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK – sequence: 2 givenname: Robin surname: Wolz fullname: Wolz, Robin organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK – sequence: 3 givenname: Pierrick surname: Coupé fullname: Coupé, Pierrick organization: LaBRI, CNRS UMR 5800, 351 cours de la Libération, F-33405 Talence, France – sequence: 4 givenname: Joseph V. surname: Hajnal fullname: Hajnal, Joseph V. organization: Center for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, St. Thomas Hospital, London, SE1 7EH, UK – sequence: 5 givenname: Daniel surname: Rueckert fullname: Rueckert, Daniel organization: Biomedical Image Analysis Group, Department of Computing, Imperial College London, 180 Queen's Gate, London, SW7 2AZ, UK |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27395653$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23523774$$D View this record in MEDLINE/PubMed https://hal.science/hal-00806384$$DView record in HAL |
BookMark | eNqNktuO0zAQhiO0iD3AKyBLCAkuWnyInYQLRFkBi1SExOHamjrTrktiBzvpat9-HdJlpd7QK9vjb_6Z0fzn2YnzDrOMMDpnlKk327nDIXjbwgbnnDIxp3xOVfUoO2O0krNKFvxkvEsxKxmrTrPzGLeU0orl5ZPslAvJRVHkZ9nND9y06HrorXfEr8nX7-SvbCQ7C6S20QTbWpf-d5ieZuQg3JIGITjrNgRcTWIHISIxvk6Rt2TRdY01k2TvybXtOm-g7YZIGlhhk6Cn2eM1NBGf7c-L7Nenjz8vr2bLb5-_XC6WM6MK3s9yLAyoXIgiF1JSVZQS0dS4KqsKK1AgVkAlN4WQoBjHtWBFjbWUIDkIoOIiez3pXkOjuzRK6l17sPpqsdRjjNKSKlHmO5bYVxPbBf9nwNjrNo2PTQMO_RA1k5QWirHUy39RkVe0yhUb0RcH6NYPwaWhNVMqbYdzOdZ-vqeGVYv1v1bvN5WAl3sAooFmHcAZGx-4QlRSSZG4dxNngo8x4FobO223D2AbzageLaS3-sFCerSQplwnCyWB8kDgvsYRqR-mVEwb3VkMOhqLzmBtA5pe194eI_L-QMQkwyQ7Nb_x9jiJO_12_Fg |
CitedBy_id | crossref_primary_10_1186_s12938_020_00778_z crossref_primary_10_1109_TBME_2017_2783305 crossref_primary_10_1016_j_nicl_2020_102267 crossref_primary_10_3233_JAD_170338 crossref_primary_10_1109_TMI_2015_2393954 crossref_primary_10_1371_journal_pone_0270339 crossref_primary_10_1007_s12021_018_9364_2 crossref_primary_10_1016_j_neuroimage_2016_06_049 crossref_primary_10_1007_s12021_014_9243_4 crossref_primary_10_1109_TMI_2014_2377694 crossref_primary_10_3389_fnins_2023_1267639 crossref_primary_10_1166_jmihi_2021_3361 crossref_primary_10_1016_j_media_2016_11_005 crossref_primary_10_1007_s12021_019_09417_y crossref_primary_10_1016_j_neucom_2019_01_108 crossref_primary_10_1186_s12938_019_0623_8 crossref_primary_10_1109_ACCESS_2022_3159618 crossref_primary_10_1109_TBME_2016_2564440 crossref_primary_10_1016_j_media_2015_01_003 crossref_primary_10_1007_s11517_023_02836_9 crossref_primary_10_1109_ACCESS_2020_2984661 crossref_primary_10_1002_hbm_24243 crossref_primary_10_1016_j_neuroimage_2019_05_017 crossref_primary_10_1016_j_cmpb_2021_106197 crossref_primary_10_1016_j_jalz_2014_11_001 crossref_primary_10_1109_TIP_2017_2691799 crossref_primary_10_3389_fnins_2018_00629 crossref_primary_10_1118_1_4938267 crossref_primary_10_1007_s12021_017_9323_3 crossref_primary_10_1118_1_4963812 crossref_primary_10_1007_s11042_017_5484_1 crossref_primary_10_1016_j_media_2018_10_012 crossref_primary_10_1038_srep45501 crossref_primary_10_1155_2017_5256346 crossref_primary_10_1016_j_jneumeth_2016_06_013 crossref_primary_10_1109_TMI_2018_2890510 crossref_primary_10_1016_j_media_2015_03_003 crossref_primary_10_1016_j_neucom_2017_01_093 crossref_primary_10_1109_TBME_2015_2491612 crossref_primary_10_1631_FITEE_1620342 crossref_primary_10_1038_srep23470 crossref_primary_10_1111_cns_12415 crossref_primary_10_1016_j_artmed_2016_09_001 crossref_primary_10_1109_TCI_2018_2858139 crossref_primary_10_1016_j_neuroimage_2017_04_018 crossref_primary_10_1016_j_neuroimage_2016_09_011 crossref_primary_10_1016_j_neuroimage_2015_07_076 crossref_primary_10_1111_cgf_12436 crossref_primary_10_1016_j_arr_2016_01_002 crossref_primary_10_1016_j_compmedimag_2018_11_004 crossref_primary_10_1016_j_neuroimage_2017_06_083 crossref_primary_10_1016_j_nicl_2015_07_019 crossref_primary_10_1146_annurev_bioeng_060418_052147 crossref_primary_10_1016_j_artmed_2019_03_004 crossref_primary_10_1016_j_neuroimage_2013_11_040 crossref_primary_10_4028_www_scientific_net_JBBBE_49_63 crossref_primary_10_1049_iet_ipr_2017_1108 crossref_primary_10_1016_j_nicl_2016_02_019 crossref_primary_10_1109_TBME_2016_2549363 crossref_primary_10_1016_j_media_2016_06_009 crossref_primary_10_1109_TIP_2019_2952079 crossref_primary_10_15701_kcgs_2016_22_3_21 crossref_primary_10_1038_s41598_018_29295_9 crossref_primary_10_1109_TMM_2016_2602062 crossref_primary_10_1186_s12880_015_0087_7 crossref_primary_10_1109_TGRS_2020_2968541 crossref_primary_10_1118_1_4940399 crossref_primary_10_1049_iet_ipr_2018_5949 crossref_primary_10_1007_s11517_019_01985_0 crossref_primary_10_1016_j_neuroimage_2020_117026 crossref_primary_10_1016_j_bspc_2018_06_001 crossref_primary_10_1080_21681163_2019_1706054 crossref_primary_10_1016_j_media_2014_12_003 crossref_primary_10_1016_j_asoc_2021_107119 crossref_primary_10_1109_TMI_2017_2726112 crossref_primary_10_1109_ACCESS_2019_2945586 crossref_primary_10_1109_ACCESS_2020_2993504 crossref_primary_10_1016_j_neucom_2019_12_021 crossref_primary_10_1049_ipr2_12022 crossref_primary_10_1016_j_compmedimag_2015_05_003 crossref_primary_10_1016_j_patcog_2016_09_028 crossref_primary_10_1002_ima_22207 crossref_primary_10_1016_j_media_2016_10_001 crossref_primary_10_1103_PhysRevFluids_4_103907 crossref_primary_10_1088_0957_0233_26_10_105402 crossref_primary_10_1038_s41598_019_53387_9 crossref_primary_10_1007_s11548_016_1433_0 crossref_primary_10_3390_brainsci10120974 crossref_primary_10_1016_j_media_2017_11_013 crossref_primary_10_1016_j_neuroimage_2014_12_042 crossref_primary_10_1109_TMI_2019_2962792 crossref_primary_10_3389_fnins_2016_00325 crossref_primary_10_1371_journal_pone_0185249 crossref_primary_10_1016_j_cmpb_2022_107208 crossref_primary_10_1016_j_neuroimage_2019_03_041 crossref_primary_10_1016_j_bspc_2019_101602 crossref_primary_10_1049_iet_ipr_2016_0988 crossref_primary_10_1109_TIP_2017_2768621 crossref_primary_10_1038_s41598_019_54527_x crossref_primary_10_1016_j_media_2015_04_015 crossref_primary_10_1049_cje_2021_06_002 crossref_primary_10_1016_j_dadm_2018_07_003 crossref_primary_10_1109_TMI_2013_2285931 crossref_primary_10_1016_j_neuroimage_2018_04_001 crossref_primary_10_1007_s00530_017_0577_2 crossref_primary_10_1515_bmt_2015_0071 crossref_primary_10_1117_1_JMI_6_1_014003 crossref_primary_10_1109_ACCESS_2019_2902463 crossref_primary_10_1016_j_media_2017_11_001 crossref_primary_10_1016_j_cmpb_2016_09_007 crossref_primary_10_1016_j_artmed_2015_04_005 crossref_primary_10_1007_s13204_021_01906_4 crossref_primary_10_1109_JBHI_2015_2439242 crossref_primary_10_1117_1_JEI_28_1_013046 crossref_primary_10_1016_j_artmed_2016_08_004 crossref_primary_10_1016_j_neucom_2016_06_036 crossref_primary_10_1016_j_neuroimage_2014_11_025 crossref_primary_10_1016_j_dadm_2018_09_001 crossref_primary_10_1016_j_media_2014_09_005 crossref_primary_10_1016_j_neucom_2016_03_012 crossref_primary_10_1016_j_patcog_2019_06_002 crossref_primary_10_1002_hbm_24027 crossref_primary_10_1016_j_jneumeth_2020_108828 crossref_primary_10_1371_journal_pone_0131968 crossref_primary_10_1002_hbm_23856 |
Cites_doi | 10.1016/j.neuroimage.2011.10.080 10.1093/cercor/10.4.433 10.1016/j.neuroimage.2011.09.012 10.1016/j.neuroimage.2011.01.078 10.1109/TMI.2004.830803 10.1016/j.neuroimage.2011.01.006 10.1016/j.neuroimage.2006.05.061 10.1109/TMI.2009.2014372 10.1016/j.neuroimage.2009.02.018 10.1002/jmri.21049 10.1016/j.neuroimage.2009.05.029 10.1002/jmri.10163 10.1109/TMI.2010.2050897 10.1002/hbm.460030304 10.1111/j.1467-9868.2005.00503.x 10.1109/TPAMI.2011.156 10.1016/j.neuroimage.2010.04.193 10.1016/j.neuroimage.2009.09.069 10.1016/j.nic.2005.09.008 10.1016/j.media.2012.07.007 10.1109/TPAMI.2008.79 10.1016/j.neuroimage.2010.09.018 10.1109/TMI.2004.828354 10.1006/nimg.1995.1012 10.1016/j.neuroimage.2008.07.058 10.1016/j.neuroimage.2006.10.035 10.1016/j.neuroimage.2009.10.026 10.1109/TMI.2011.2156806 10.1016/j.neuroimage.2008.01.012 10.1007/BF01238023 10.1016/j.neuroimage.2011.06.054 |
ContentType | Journal Article |
Contributor | Jack, Jr, Clifford R Khachaturian, Zaven Vemuri, Prashanthi Figurski, Michal Schuff, Norbert Snyder, Peter Schwartz, Adam Frank, Richard Chen, Kewei Jagust, William Jiminez, Gus Green, Robert C Mesulam, M Marcel Weiner, Michael Borowski, Bret Hefti, Franz Montine, Tom Dolen, Sara Gunter, Jeff Thompson, Paul DeCArli, Charles Trojanowki, John Q Fox, Nick Thal, Lean Faber, Kelley Lind, Betty Korecka, Magdalena Walter, Sarah Quinn, Joseph Fillit, Howard Neu, Scott Sather, Tamie Jones, David Landau, Susan Paul, Steven Kantarci, Kejal Aisen, Paul Morris, John Holtzman, Davie Reiman, Eric M Buckholtz, Neil Morris, John C Foster, Norm Householder, Erin Mathis, Chet Foroud, Tatiana M Kaye, Jeffrey Saykin, Andrew J Harvey, Danielle Koeppe, Robert A Weiner, Michael W Nho, Kwangsik Potkin, Steven Potter, William Gessert, Devon Petersen, Ronald Shaw, Leslie M Donohue, Michael Schneider, Lon S Sorensen, Greg Thomas, Ronald G Raichle, Marc Davies, Peter Ward, Chad Hsiao, John Shen, Li Senjem, Matt Consulting, Richard Frank Albert, Marylyn Kim, Sungeun Carter, Raina Carr |
Contributor_xml | – sequence: 1 givenname: Michael W surname: Weiner fullname: Weiner, Michael W – sequence: 2 givenname: Paul surname: Aisen fullname: Aisen, Paul – sequence: 3 givenname: Michael surname: Weiner fullname: Weiner, Michael – sequence: 4 givenname: Ronald surname: Petersen fullname: Petersen, Ronald – sequence: 5 givenname: Clifford R surname: Jack, Jr fullname: Jack, Jr, Clifford R – sequence: 6 givenname: William surname: Jagust fullname: Jagust, William – sequence: 7 givenname: John Q surname: Trojanowki fullname: Trojanowki, John Q – sequence: 8 givenname: Arthur W surname: Toga fullname: Toga, Arthur W – sequence: 9 givenname: Laurel surname: Beckett fullname: Beckett, Laurel – sequence: 10 givenname: Robert C surname: Green fullname: Green, Robert C – sequence: 11 givenname: Andrew J surname: Saykin fullname: Saykin, Andrew J – sequence: 12 givenname: John surname: Morris fullname: Morris, John – sequence: 13 givenname: Leslie M surname: Shaw fullname: Shaw, Leslie M – sequence: 14 givenname: Zaven surname: Khachaturian fullname: Khachaturian, Zaven – sequence: 15 givenname: Greg surname: Sorensen fullname: Sorensen, Greg – sequence: 16 givenname: Maria surname: Carrillo fullname: Carrillo, Maria – sequence: 17 givenname: Lew surname: Kuller fullname: Kuller, Lew – sequence: 18 givenname: Marc surname: Raichle fullname: Raichle, Marc – sequence: 19 givenname: Steven surname: Paul fullname: Paul, Steven – sequence: 20 givenname: Peter surname: Davies fullname: Davies, Peter – sequence: 21 givenname: Howard surname: Fillit fullname: Fillit, Howard – sequence: 22 givenname: Franz surname: Hefti fullname: Hefti, Franz – sequence: 23 givenname: Davie surname: Holtzman fullname: Holtzman, Davie – sequence: 24 givenname: M Marcel surname: Mesulam fullname: Mesulam, M Marcel – sequence: 25 givenname: William surname: Potter fullname: Potter, William – sequence: 26 givenname: Peter surname: Snyder fullname: Snyder, Peter – sequence: 27 givenname: Adam surname: Schwartz fullname: Schwartz, Adam – sequence: 28 givenname: Tom surname: Montine fullname: Montine, Tom – sequence: 29 givenname: Ronald G surname: Thomas fullname: Thomas, Ronald G – sequence: 30 givenname: Michael surname: Donohue fullname: Donohue, Michael – sequence: 31 givenname: Sarah surname: Walter fullname: Walter, Sarah – sequence: 32 givenname: Devon surname: Gessert fullname: Gessert, Devon – sequence: 33 givenname: Tamie surname: Sather fullname: Sather, Tamie – sequence: 34 givenname: Gus surname: Jiminez fullname: Jiminez, Gus – sequence: 35 givenname: Danielle surname: Harvey fullname: Harvey, Danielle – sequence: 36 givenname: Matthew surname: Bernstein fullname: Bernstein, Matthew – sequence: 37 givenname: Nick surname: Fox fullname: Fox, Nick – sequence: 38 givenname: Paul surname: Thompson fullname: Thompson, Paul – sequence: 39 givenname: Norbert surname: Schuff fullname: Schuff, Norbert – sequence: 40 givenname: Charles surname: DeCArli fullname: DeCArli, Charles – sequence: 41 givenname: Bret surname: Borowski fullname: Borowski, Bret – sequence: 42 givenname: Jeff surname: Gunter fullname: Gunter, Jeff – sequence: 43 givenname: Matt surname: Senjem fullname: Senjem, Matt – sequence: 44 givenname: Prashanthi surname: Vemuri fullname: Vemuri, Prashanthi – sequence: 45 givenname: David surname: Jones fullname: Jones, David – sequence: 46 givenname: Kejal surname: Kantarci fullname: Kantarci, Kejal – sequence: 47 givenname: Chad surname: Ward fullname: Ward, Chad – sequence: 48 givenname: Robert A surname: Koeppe fullname: Koeppe, Robert A – sequence: 49 givenname: Norm surname: Foster fullname: Foster, Norm – sequence: 50 givenname: Eric M surname: Reiman fullname: Reiman, Eric M – sequence: 51 givenname: Kewei surname: Chen fullname: Chen, Kewei – sequence: 52 givenname: Chet surname: Mathis fullname: Mathis, Chet – sequence: 53 givenname: Susan surname: Landau fullname: Landau, Susan – sequence: 54 givenname: John C surname: Morris fullname: Morris, John C – sequence: 55 givenname: Nigel J surname: Cairns fullname: Cairns, Nigel J – sequence: 56 givenname: Erin surname: Householder fullname: Householder, Erin – sequence: 57 givenname: Lisa surname: Taylor-Reinwald fullname: Taylor-Reinwald, Lisa – sequence: 58 givenname: Virginia surname: Lee fullname: Lee, Virginia – sequence: 59 givenname: Magdalena surname: Korecka fullname: Korecka, Magdalena – sequence: 60 givenname: Michal surname: Figurski fullname: Figurski, Michal – sequence: 61 givenname: Karen surname: Crawford fullname: Crawford, Karen – sequence: 62 givenname: Scott surname: Neu fullname: Neu, Scott – sequence: 63 givenname: Tatiana M surname: Foroud fullname: Foroud, Tatiana M – sequence: 64 givenname: Steven surname: Potkin fullname: Potkin, Steven – sequence: 65 givenname: Li surname: Shen fullname: Shen, Li – sequence: 66 givenname: Kelley surname: Faber fullname: Faber, Kelley – sequence: 67 givenname: Sungeun surname: Kim fullname: Kim, Sungeun – sequence: 68 givenname: Kwangsik surname: Nho fullname: Nho, Kwangsik – sequence: 69 givenname: Lean surname: Thal fullname: Thal, Lean – sequence: 70 givenname: Leon surname: Thal fullname: Thal, Leon – sequence: 71 givenname: Neil surname: Buckholtz fullname: Buckholtz, Neil – sequence: 72 givenname: Peter J surname: Snyder fullname: Snyder, Peter J – sequence: 73 givenname: Marylyn surname: Albert fullname: Albert, Marylyn – sequence: 74 givenname: Richard surname: Frank fullname: Frank, Richard – sequence: 75 givenname: Richard Frank surname: Consulting fullname: Consulting, Richard Frank – sequence: 76 givenname: John surname: Hsiao fullname: Hsiao, John – sequence: 77 givenname: Jeffrey surname: Kaye fullname: Kaye, Jeffrey – sequence: 78 givenname: Joseph surname: Quinn fullname: Quinn, Joseph – sequence: 79 givenname: Betty surname: Lind fullname: Lind, Betty – sequence: 80 givenname: Raina surname: Carter fullname: Carter, Raina – sequence: 81 givenname: Sara surname: Dolen fullname: Dolen, Sara – sequence: 82 givenname: Lon S surname: Schneider fullname: Schneider, Lon S |
Copyright | 2013 Elsevier Inc. 2014 INIST-CNRS Copyright © 2013 Elsevier Inc. All rights reserved. Copyright Elsevier Limited Aug 1, 2013 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: 2014 INIST-CNRS – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited Aug 1, 2013 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | The Alzheimer's Disease Neuroimaging Initiative Alzheimer's Disease Neuroimaging Initiative |
CorporateAuthor_xml | – name: The Alzheimer's Disease Neuroimaging Initiative – name: Alzheimer's Disease Neuroimaging Initiative |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO 1XC VOOES |
DOI | 10.1016/j.neuroimage.2013.02.069 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology Engineering Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Computer Science |
EISSN | 1095-9572 |
EndPage | 23 |
ExternalDocumentID | oai_HAL_hal_00806384v1 3642142201 23523774 27395653 10_1016_j_neuroimage_2013_02_069 S1053811913002243 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: U01 AG032438 – fundername: NIBIB NIH HHS grantid: 9P01EB0011955-11 – fundername: NIA NIH HHS grantid: U01 AG024904 – fundername: Medical Research Council grantid: MR/K006355/1 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT IQODW CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO 1XC PMFND VOOES |
ID | FETCH-LOGICAL-c672t-4e7ca64337435506785eecdeb899e9a6a3ba052c735a612ef317ded55a52a3a03 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Tue May 27 06:22:29 EDT 2025 Fri Jul 11 02:35:40 EDT 2025 Tue Aug 05 11:08:12 EDT 2025 Wed Aug 13 10:00:39 EDT 2025 Mon Jul 21 05:30:30 EDT 2025 Mon Jul 21 09:13:59 EDT 2025 Tue Jul 01 02:14:50 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 23 02:36:06 EST 2024 Tue Aug 26 16:31:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Structural MR images Patch-based segmentation Sparse representation Discriminative dictionary learning Learning Acquisition process Segmentation Central nervous system Hippocampus Encephalon |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2013 Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c672t-4e7ca64337435506785eecdeb899e9a6a3ba052c735a612ef317ded55a52a3a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2709-3350 |
OpenAccessLink | https://hal.science/hal-00806384 |
PMID | 23523774 |
PQID | 1668112251 |
PQPubID | 2031077 |
PageCount | 13 |
ParticipantIDs | hal_primary_oai_HAL_hal_00806384v1 proquest_miscellaneous_1500761174 proquest_miscellaneous_1349094614 proquest_journals_1668112251 pubmed_primary_23523774 pascalfrancis_primary_27395653 crossref_citationtrail_10_1016_j_neuroimage_2013_02_069 crossref_primary_10_1016_j_neuroimage_2013_02_069 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2013_02_069 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2013_02_069 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier – name: Elsevier Limited |
References | Artaechevarria, Muñoz-Barrutia, Ortiz-de Solorzano (bb0010) 2009; 28 Mairal, Bach, Ponce, Sapiro, Zisserman (bb0110) 2008 Wright, Yang, Ganesh, Sastry, Ma (bb0210) 2009; 31 Zhang, Zhan, Metaxas (bb0235) 2012 Mairal, Bach, Ponce (bb0100) 2012; 34 Mairal, Bach, Ponce, Sapiro (bb0105) 2009 Rousseau, Habas, Studholme (bb0145) 2011; 30 Sabuncu, Yeo, Van Leemput, Fischl, Golland (bb0150) 2010; 29 Eskildsen, Coupé, Fonov, Manjón, Leung, Guizard, Wassef, Østergaard, Collins (bb0050) 2011; 59 Mairal, Bach, Ponce, Sapiro, Zisserman (bb0115) 2009; 21 Warfield, Zou, Wells (bb0195) 2004; 23 Pruessner, Li, Serles, Pruessner, Collins, Kabani, Lupien, Evans (bb0135) 2000; 10 Wolz, Aljabar, Rueckert, Heckemann, Hammers (bb0205) 2009 Wang, Suh, Pluta, Altinay, Yushkevich (bb0185) 2011 Khan, Cherbuin, Wen, Anstey, Sachdev, Beg (bb0085) 2011; 56 Hu, Coupé, Pruessner, Collins (bb0070) 2011; 58 Wang, Das, Suh, Altinay, Pluta, Craige, Avants, Yushkevich (bb0175) 2011; 55 Yang, Zhang, Yang, Zhang (bb0225) 2011 Tong, Wolz, Hajnal, Rueckert (bb0165) 2012 Rohlfing, Russakoff, Maurer (bb0140) 2004; 23 Zhang, Li (bb0230) 2010 Aljabar, Heckemann, Hammers, Hajnal, Rueckert (bb0005) 2009; 46 Kittler (bb0090) 1998; 1 Fonov, Coupé, Styner, Collins (bb0055) 2012 Tibshirani (bb0160) 1996; 267–288 Nyul, Udupa (bb0130) 2000; 21 Van der Lijn, den Heijer, Breteler, Niessen (bb0170) 2008; 43 Barnes, Foster, Boyes, Pepple, Moore, Schott, Frost, Scahill, Fox (bb0020) 2008; 40 Coupé, Manjķn, Fonov, Pruessner, Robles, Collins (bb0045) 2011; 54 Mueller, Weiner, Thal, Petersen, Jack, Jagust, Trojanowski, Toga, Beckett (bb0125) 2005; 15 Lotjonen, Wolz, Koikkalainen, Thurfjell, Waldemar, Soininen, Rueckert (bb0095) 2010; 49 Babalola, Patenaude, Aljabar, Schnabel, Kennedy, Crum, Smith, Cootes, Jenkinson, Rueckert (bb0015) 2009; 47 Collins, Holmes, Peters, Evans (bb0030) 1995; 3 Coupé, Eskildsen, Manjón, Fonov, Collins (bb0040) 2012; 59 Jiang, Lin, Davis (bb0080) 2011 Collins, Pruessner (bb0035) 2010; 52 Hsu, Schuff, Du, Mark, Zhu, Hardin, Weiner (bb0065) 2002; 16 Jack, Bernstein (bb0075) 2008; 27 Yang, Sastry, Ganesh, Ma (bb0215) 2010 Wolz, Aljabar, Hajnal, Hammers, Rueckert (bb0200) 2010; 49 Heckemann, Hajnal, Aljabar, Rueckert, Hammers (bb0060) 2006; 33 Wang, Yushkevich (bb0190) 2012 Yang, Zhang, Feng, Zhang (bb0220) 2011 Zou, Hastie (bb0240) 2005; 67 Chupin, Mukuna-Bantumbakulu, Hasboun, Bardinet, Baillet, Kinkingnéhun, Lemieux, Dubois, Garnero (bb0025) 2007; 34 Mazziotta, Toga, Evans, Fox, Lancaster (bb0120) 1995; 2 Wang, Suh, Das, Pluta, Altinay, Yushkevich (bb0180) 2011 Shu, Gao, Shen (bb0155) 2012; 2012 Mueller (10.1016/j.neuroimage.2013.02.069_bb0125) 2005; 15 Rousseau (10.1016/j.neuroimage.2013.02.069_bb0145) 2011; 30 Van der Lijn (10.1016/j.neuroimage.2013.02.069_bb0170) 2008; 43 Jiang (10.1016/j.neuroimage.2013.02.069_bb0080) 2011 Wang (10.1016/j.neuroimage.2013.02.069_bb0175) 2011; 55 Zou (10.1016/j.neuroimage.2013.02.069_bb0240) 2005; 67 Wolz (10.1016/j.neuroimage.2013.02.069_bb0200) 2010; 49 Chupin (10.1016/j.neuroimage.2013.02.069_bb0025) 2007; 34 Artaechevarria (10.1016/j.neuroimage.2013.02.069_bb0010) 2009; 28 Collins (10.1016/j.neuroimage.2013.02.069_bb0030) 1995; 3 Khan (10.1016/j.neuroimage.2013.02.069_bb0085) 2011; 56 Tibshirani (10.1016/j.neuroimage.2013.02.069_bb0160) 1996; 267–288 Fonov (10.1016/j.neuroimage.2013.02.069_bb0055) 2012 Wang (10.1016/j.neuroimage.2013.02.069_bb0190) 2012 Barnes (10.1016/j.neuroimage.2013.02.069_bb0020) 2008; 40 Wang (10.1016/j.neuroimage.2013.02.069_bb0180) 2011 Rohlfing (10.1016/j.neuroimage.2013.02.069_bb0140) 2004; 23 Wang (10.1016/j.neuroimage.2013.02.069_bb0185) 2011 Collins (10.1016/j.neuroimage.2013.02.069_bb0035) 2010; 52 Kittler (10.1016/j.neuroimage.2013.02.069_bb0090) 1998; 1 Pruessner (10.1016/j.neuroimage.2013.02.069_bb0135) 2000; 10 Mazziotta (10.1016/j.neuroimage.2013.02.069_bb0120) 1995; 2 Heckemann (10.1016/j.neuroimage.2013.02.069_bb0060) 2006; 33 Hsu (10.1016/j.neuroimage.2013.02.069_bb0065) 2002; 16 Coupé (10.1016/j.neuroimage.2013.02.069_bb0045) 2011; 54 Hu (10.1016/j.neuroimage.2013.02.069_bb0070) 2011; 58 Babalola (10.1016/j.neuroimage.2013.02.069_bb0015) 2009; 47 Yang (10.1016/j.neuroimage.2013.02.069_bb0225) 2011 Nyul (10.1016/j.neuroimage.2013.02.069_bb0130) 2000; 21 Wolz (10.1016/j.neuroimage.2013.02.069_bb0205) 2009 Yang (10.1016/j.neuroimage.2013.02.069_bb0215) 2010 Eskildsen (10.1016/j.neuroimage.2013.02.069_bb0050) 2011; 59 Coupé (10.1016/j.neuroimage.2013.02.069_bb0040) 2012; 59 Aljabar (10.1016/j.neuroimage.2013.02.069_bb0005) 2009; 46 Mairal (10.1016/j.neuroimage.2013.02.069_bb0105) 2009 Jack (10.1016/j.neuroimage.2013.02.069_bb0075) 2008; 27 Shu (10.1016/j.neuroimage.2013.02.069_bb0155) 2012; 2012 Sabuncu (10.1016/j.neuroimage.2013.02.069_bb0150) 2010; 29 Mairal (10.1016/j.neuroimage.2013.02.069_bb0110) 2008 Zhang (10.1016/j.neuroimage.2013.02.069_bb0235) 2012 Tong (10.1016/j.neuroimage.2013.02.069_bb0165) 2012 Warfield (10.1016/j.neuroimage.2013.02.069_bb0195) 2004; 23 Mairal (10.1016/j.neuroimage.2013.02.069_bb0115) 2009; 21 Yang (10.1016/j.neuroimage.2013.02.069_bb0220) 2011 Lotjonen (10.1016/j.neuroimage.2013.02.069_bb0095) 2010; 49 Mairal (10.1016/j.neuroimage.2013.02.069_bb0100) 2012; 34 Wright (10.1016/j.neuroimage.2013.02.069_bb0210) 2009; 31 Zhang (10.1016/j.neuroimage.2013.02.069_bb0230) 2010 |
References_xml | – start-page: 73 year: 2011 end-page: 84 ident: bb0185 article-title: Optimal weights for multi-atlas label fusion publication-title: Information Processing in Medical Imaging – start-page: 1697 year: 2011 end-page: 1704 ident: bb0080 article-title: Learning a discriminative dictionary for sparse coding via label consistent K-SVD publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 58 start-page: 549 year: 2011 end-page: 559 ident: bb0070 article-title: Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging publication-title: Neuroimage – volume: 59 start-page: 2362 year: 2011 end-page: 2373 ident: bb0050 article-title: BEaST: brain extraction based on nonlocal segmentation technique publication-title: Neuroimage – start-page: 2691 year: 2010 end-page: 2698 ident: bb0230 article-title: Discriminative K-SVD for dictionary learning in face recognition publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 2012 start-page: 385 year: 2012 end-page: 392 ident: bb0155 article-title: Sparse patch based prostate segmentation in CT images publication-title: Med. Image Comput. Comput.-Assist. Interv. – start-page: 625 year: 2011 end-page: 632 ident: bb0225 article-title: Robust sparse coding for face recognition publication-title: IEEE International Conference on Computer Vision (ICCV) – volume: 33 start-page: 115 year: 2006 end-page: 126 ident: bb0060 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: Neuroimage – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bb0240 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 49 start-page: 1316 year: 2010 end-page: 1325 ident: bb0200 article-title: LEAP: learning embeddings for atlas propagation publication-title: Neuroimage – volume: 34 start-page: 996 year: 2007 end-page: 1019 ident: bb0025 article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease publication-title: Neuroimage – volume: 1 start-page: 18 year: 1998 end-page: 27 ident: bb0090 article-title: Combining classifiers: a theoretical framework publication-title: Pattern Anal. Appl. – volume: 21 start-page: 496 year: 2000 end-page: 504 ident: bb0130 article-title: Standardizing the MR image intensity scales: making MR intensities have tissue-specific meaning publication-title: Medical Imageing: Image Display and Visualization in Proceedings of SPIE 1 – volume: 3 start-page: 190 year: 1995 end-page: 208 ident: bb0030 article-title: Automatic 3-D model-based neuroanatomical segmentation publication-title: Hum. Brain Mapp. – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bb0075 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: 52 start-page: 1355 year: 2010 end-page: 1366 ident: bb0035 article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion publication-title: Neuroimage – volume: 43 start-page: 708 year: 2008 end-page: 720 ident: bb0170 article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts publication-title: Neuroimage – year: 2012 ident: bb0055 article-title: Automatic lateral ventricle segmentation in infant population with high risk of autism publication-title: 18th Annual Meeting of the Organization for Human Brain Mapping (OHBM) – volume: 10 start-page: 433 year: 2000 end-page: 442 ident: bb0135 article-title: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories publication-title: Cereb. Cortex – volume: 23 start-page: 983 year: 2004 end-page: 994 ident: bb0140 article-title: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation publication-title: IEEE Trans. Med. Imaging – volume: 23 start-page: 903 year: 2004 end-page: 921 ident: bb0195 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 28 start-page: 1266 year: 2009 end-page: 1277 ident: bb0010 article-title: Combination strategies in multi-atlas image segmentation: Application to brain MR data publication-title: IEEE Trans. Med. Imaging – start-page: 1849 year: 2010 end-page: 1852 ident: bb0215 article-title: Fast l1-minimization algorithms and an application in robust face recognition: a review publication-title: International Conference on Image Processing (ICIP) – start-page: 1113 year: 2011 end-page: 1120 ident: bb0180 article-title: Regression-based label fusion for multi-atlas segmentation publication-title: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 892 year: 2012 end-page: 895 ident: bb0190 article-title: Dependency prior for multi-atlas label fusion publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI) – start-page: 543 year: 2011 end-page: 550 ident: bb0220 article-title: Fisher discrimination dictionary learning for sparse representation publication-title: IEEE International Conference on Computer Vision (ICCV) – volume: 54 start-page: 940 year: 2011 end-page: 954 ident: bb0045 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: Neuroimage – start-page: 689 year: 2009 end-page: 696 ident: bb0105 article-title: Online dictionary learning for sparse coding publication-title: Proceedings of the 26th Annual International Conference on Machine Learning. ACM – volume: 30 start-page: 1852 year: 2011 end-page: 1862 ident: bb0145 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imaging – volume: 29 start-page: 1714 year: 2010 end-page: 1729 ident: bb0150 article-title: A generative model for image segmentation based on label fusion publication-title: IEEE Trans. Med. Imaging – volume: 267–288 year: 1996 ident: bb0160 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 46 start-page: 726 year: 2009 end-page: 738 ident: bb0005 article-title: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy publication-title: Neuroimage – volume: 47 start-page: 1435 year: 2009 end-page: 1447 ident: bb0015 article-title: An evaluation of four automatic methods of segmenting the subcortical structures in the brain publication-title: Neuroimage – year: 2012 ident: bb0165 article-title: Segmentation of brain MR images via sparse patch representation publication-title: MICCAI Workshop on Sparsity Techniques in Medical Imaging (STMI) – volume: 40 start-page: 1655 year: 2008 end-page: 1671 ident: bb0020 article-title: A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus publication-title: Neuroimage – volume: 49 start-page: 2352 year: 2010 end-page: 2365 ident: bb0095 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: Neuroimage – volume: 59 start-page: 3736 year: 2012 end-page: 3747 ident: bb0040 article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease publication-title: Neuroimage – start-page: 1 year: 2008 end-page: 8 ident: bb0110 article-title: Discriminative learned dictionaries for local image analysis publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 31 start-page: 210 year: 2009 end-page: 227 ident: bb0210 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 470 year: 2009 end-page: 473 ident: bb0205 article-title: Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI) – volume: 34 start-page: 791 year: 2012 end-page: 804 ident: bb0100 article-title: Task-driven dictionary learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 15 start-page: 869 year: 2005 end-page: 877 ident: bb0125 article-title: The Alzheimer's Disease Neuroimaging Initiative publication-title: Neuroimaging Clin. N. Am. – volume: 16 start-page: 305 year: 2002 end-page: 310 ident: bb0065 article-title: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia publication-title: J. Magn. Reson. Imaging – volume: 55 start-page: 968 year: 2011 end-page: 985 ident: bb0175 article-title: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation publication-title: Neuroimage – start-page: 1385 year: 2012 end-page: 1396 ident: bb0235 article-title: Deformable segmentation via sparse representation and dictionary learning publication-title: Med. Image Anal. – volume: 2 start-page: 89 year: 1995 end-page: 101 ident: bb0120 article-title: A probabilistic atlas of the human brain: theory and rationale for its development: the international consortium for brain mapping (ICBM) publication-title: Neuroimage – volume: 56 start-page: 126 year: 2011 end-page: 139 ident: bb0085 article-title: Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation publication-title: Neuroimage – volume: 21 start-page: 1033 year: 2009 end-page: 1040 ident: bb0115 article-title: Supervised dictionary learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 59 start-page: 3736 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2013.02.069_bb0040 article-title: Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.080 – start-page: 892 year: 2012 ident: 10.1016/j.neuroimage.2013.02.069_bb0190 article-title: Dependency prior for multi-atlas label fusion – volume: 10 start-page: 433 issue: 4 year: 2000 ident: 10.1016/j.neuroimage.2013.02.069_bb0135 article-title: Volumetry of hippocampus and amygdala with high-resolution MRI and three-dimensional analysis software: minimizing the discrepancies between laboratories publication-title: Cereb. Cortex doi: 10.1093/cercor/10.4.433 – start-page: 2691 year: 2010 ident: 10.1016/j.neuroimage.2013.02.069_bb0230 article-title: Discriminative K-SVD for dictionary learning in face recognition – volume: 59 start-page: 2362 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0050 article-title: BEaST: brain extraction based on nonlocal segmentation technique publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.012 – volume: 56 start-page: 126 issue: 1 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0085 article-title: Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.078 – start-page: 689 year: 2009 ident: 10.1016/j.neuroimage.2013.02.069_bb0105 article-title: Online dictionary learning for sparse coding – volume: 23 start-page: 983 issue: 8 year: 2004 ident: 10.1016/j.neuroimage.2013.02.069_bb0140 article-title: Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.830803 – volume: 55 start-page: 968 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0175 article-title: A learning-based wrapper method to correct systematic errors in automatic image segmentation: consistently improved performance in hippocampus, cortex and brain segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.006 – volume: 33 start-page: 115 issue: 1 year: 2006 ident: 10.1016/j.neuroimage.2013.02.069_bb0060 article-title: Automatic anatomical brain MRI segmentation combining label propagation and decision fusion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.05.061 – start-page: 470 year: 2009 ident: 10.1016/j.neuroimage.2013.02.069_bb0205 article-title: Segmentation of subcortical structures and the hippocampus in brain MRI using graph-cuts and subject-specific a-priori information – volume: 28 start-page: 1266 issue: 8 year: 2009 ident: 10.1016/j.neuroimage.2013.02.069_bb0010 article-title: Combination strategies in multi-atlas image segmentation: Application to brain MR data publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2014372 – volume: 46 start-page: 726 issue: 3 year: 2009 ident: 10.1016/j.neuroimage.2013.02.069_bb0005 article-title: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.02.018 – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2013.02.069_bb0075 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 21 start-page: 1033 year: 2009 ident: 10.1016/j.neuroimage.2013.02.069_bb0115 article-title: Supervised dictionary learning publication-title: Adv. Neural Inf. Process. Syst. – volume: 47 start-page: 1435 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2013.02.069_bb0015 article-title: An evaluation of four automatic methods of segmenting the subcortical structures in the brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.05.029 – volume: 16 start-page: 305 issue: 3 year: 2002 ident: 10.1016/j.neuroimage.2013.02.069_bb0065 article-title: Comparison of automated and manual MRI volumetry of hippocampus in normal aging and dementia publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.10163 – start-page: 1113 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0180 article-title: Regression-based label fusion for multi-atlas segmentation – volume: 29 start-page: 1714 issue: 10 year: 2010 ident: 10.1016/j.neuroimage.2013.02.069_bb0150 article-title: A generative model for image segmentation based on label fusion publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2050897 – volume: 3 start-page: 190 issue: 3 year: 1995 ident: 10.1016/j.neuroimage.2013.02.069_bb0030 article-title: Automatic 3-D model-based neuroanatomical segmentation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.460030304 – start-page: 73 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0185 article-title: Optimal weights for multi-atlas label fusion – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2013.02.069_bb0240 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 34 start-page: 791 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2013.02.069_bb0100 article-title: Task-driven dictionary learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.156 – start-page: 543 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0220 article-title: Fisher discrimination dictionary learning for sparse representation – volume: 2012 start-page: 385 year: 2012 ident: 10.1016/j.neuroimage.2013.02.069_bb0155 article-title: Sparse patch based prostate segmentation in CT images publication-title: Med. Image Comput. Comput.-Assist. Interv. – volume: 52 start-page: 1355 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2013.02.069_bb0035 article-title: Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.193 – volume: 49 start-page: 1316 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2013.02.069_bb0200 article-title: LEAP: learning embeddings for atlas propagation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.069 – volume: 267–288 year: 1996 ident: 10.1016/j.neuroimage.2013.02.069_bb0160 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B Methodol. – volume: 15 start-page: 869 issue: 4 year: 2005 ident: 10.1016/j.neuroimage.2013.02.069_bb0125 article-title: The Alzheimer's Disease Neuroimaging Initiative publication-title: Neuroimaging Clin. N. Am. doi: 10.1016/j.nic.2005.09.008 – start-page: 1385 year: 2012 ident: 10.1016/j.neuroimage.2013.02.069_bb0235 article-title: Deformable segmentation via sparse representation and dictionary learning publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.07.007 – volume: 31 start-page: 210 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2013.02.069_bb0210 article-title: Robust face recognition via sparse representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.79 – volume: 54 start-page: 940 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0045 article-title: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.018 – volume: 23 start-page: 903 issue: 7 year: 2004 ident: 10.1016/j.neuroimage.2013.02.069_bb0195 article-title: Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.828354 – start-page: 1697 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0080 article-title: Learning a discriminative dictionary for sparse coding via label consistent K-SVD – volume: 2 start-page: 89 issue: 2 year: 1995 ident: 10.1016/j.neuroimage.2013.02.069_bb0120 article-title: A probabilistic atlas of the human brain: theory and rationale for its development: the international consortium for brain mapping (ICBM) publication-title: Neuroimage doi: 10.1006/nimg.1995.1012 – volume: 43 start-page: 708 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2013.02.069_bb0170 article-title: Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.07.058 – volume: 34 start-page: 996 issue: 3 year: 2007 ident: 10.1016/j.neuroimage.2013.02.069_bb0025 article-title: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.10.035 – year: 2012 ident: 10.1016/j.neuroimage.2013.02.069_bb0165 article-title: Segmentation of brain MR images via sparse patch representation – volume: 21 start-page: 496 year: 2000 ident: 10.1016/j.neuroimage.2013.02.069_bb0130 article-title: Standardizing the MR image intensity scales: making MR intensities have tissue-specific meaning – start-page: 1849 year: 2010 ident: 10.1016/j.neuroimage.2013.02.069_bb0215 article-title: Fast l1-minimization algorithms and an application in robust face recognition: a review – volume: 49 start-page: 2352 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2013.02.069_bb0095 article-title: Fast and robust multi-atlas segmentation of brain magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.026 – volume: 30 start-page: 1852 issue: 10 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0145 article-title: A supervised patch-based approach for human brain labeling publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2011.2156806 – volume: 40 start-page: 1655 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2013.02.069_bb0020 article-title: A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.01.012 – start-page: 625 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0225 article-title: Robust sparse coding for face recognition – start-page: 1 year: 2008 ident: 10.1016/j.neuroimage.2013.02.069_bb0110 article-title: Discriminative learned dictionaries for local image analysis – year: 2012 ident: 10.1016/j.neuroimage.2013.02.069_bb0055 article-title: Automatic lateral ventricle segmentation in infant population with high risk of autism – volume: 1 start-page: 18 issue: 1 year: 1998 ident: 10.1016/j.neuroimage.2013.02.069_bb0090 article-title: Combining classifiers: a theoretical framework publication-title: Pattern Anal. Appl. doi: 10.1007/BF01238023 – volume: 58 start-page: 549 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2013.02.069_bb0070 article-title: Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.054 |
SSID | ssj0009148 |
Score | 2.518231 |
Snippet | We propose a novel method for the automatic segmentation of brain MRI images by using discriminative dictionary learning and sparse coding techniques. In the... |
SourceID | hal proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11 |
SubjectTerms | Adult Aged Automation Bioengineering Biological and medical sciences Brain Mapping - methods Computer Science Dictionaries Discrimination Learning - physiology Discriminative dictionary learning Distance learning Engineering Sciences Female Fundamental and applied biological sciences. Psychology Hippocampus - physiology Humans Image Interpretation, Computer-Assisted - methods Image Processing Labeling Libraries Life Sciences Magnetic Resonance Imaging - methods Male Medical Imaging Methods NMR Nuclear magnetic resonance Patch-based segmentation Registration Signal and Image processing Sparse representation Structural MR images Vertebrates: nervous system and sense organs |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_eCSIc4vdVzyOKr8W2SZpWH2QRj0VcH9SDfQtpkt7t4bZ1u3vif-9Mm7YIeuxj2wyEzmTmN5kvQl5LWxrDijwsIhuFvLtosjIKC53wDBBpllu8Glh8Sefn_NNSLP2FW-vTKged2ClqWxu8I38Tp2kG2ADM8fvmZ4hTozC66kdoHJDb2LoMpVou5dR0N-Z9KZxgIRDnPpOnz-_q-kWu1nBqMcGLdZ07Me353-bp4BLzJI8a3cKvK_uZF_8HpZ1xOrtP7nlUSWe9GDwgt1z1kNxZ-Lj5I_Lrm7tY-yqjitYlXXyl3aZaer3SFEtz-_FeqPzgsSt20Jvf1A-VuKC6shSUz6Z11NRo797S2RT7ptuaXq6aBgzjutm1FESrq3N_TM7PPn7_MA_9yIXQpDLZhtxJowGkMAAW4LuAJRPOGesKcMtcrlPNCh2JxEgmNGAjVwL8sM4KoUWimY7YE3JY1ZU7JlQYsHs2zmQhS15q0BMCVnArCltwm2cBkcOfVsb3I8exGD_UkHh2pSYeKeSRihIFPApIPFI2fU-OPWjygZlqqDkFLanAcOxB-26k9bikxxt7Ur8C2Rk3iu2857PPCt8hXAf9x6_jgJz-JVrj8gQDqalgATkZZE15LdOq6UwE5OX4GfQDBn105eodrGE8BxceUNgNawQGZGNwTgPytJfjaQOA0Bn4CM9u3sBzcjfpBoVgauQJOdxudu4FwLVtcdqdyT_iQj-3 priority: 102 providerName: ProQuest |
Title | Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811913002243 https://dx.doi.org/10.1016/j.neuroimage.2013.02.069 https://www.ncbi.nlm.nih.gov/pubmed/23523774 https://www.proquest.com/docview/1668112251 https://www.proquest.com/docview/1349094614 https://www.proquest.com/docview/1500761174 https://hal.science/hal-00806384 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBddB2Mwxr6Xrgva2KsX25KseHvKSkv2kTDaFfImZEtuMxrHxEnHXva3706WHQrbCOzFwY4OhHT-3e-s-yDkjTRFnrMsDbLQhAF3H5qMDINMx3wIjHSYGvw0MJkm43P-aSZme-SozYXBsEqP_Q2mO7T2TwZ-NQfVfD44A2YA5gb8DeYMEVb85Fyilr_9tQ3zSCPepMMJFuBoH83TxHi5mpHzBby5GOTFXPVODH3-s4m6dYmxkvcqXcPyFU3fi78TU2egTh6Q-55Z0lEz-Ydkz5aPyJ2JPzt_TH6c2YuFzzQq6bKgk1PqJlXT67mmmJ7btPhCAIRbl_CgVz-pbyxxQXVpKADQqrY0X6LNe0dH2_Nvul7Sy3lVgXFcVJuagnq5XPcn5Pzk-NvROPBtF4I8kfE64FbmGogKA3IB_gtYM2FtbmwGrplNdaJZpkMR55IJDfzIFkBBjDVCaBFrpkP2lOyXy9I-J1TkYPtMNJSZLHihASsEjOBGZCbjJh32iGxXWuW-Jjm2xrhSbfDZd7XdI4V7pMJYwR71SNRJVk1djh1k0nYzVZt3CkipwHjsIPu-k72hnztKvwbd6SaKJb3Hoy8KnyFlBwzk11GP9G-oVjc8xsPURLAeOWx1TXmkqVWUJKDWgMog_6r7GzACD350aZcbGMN4Cm48MLF_jBF4KBuBg9ojzxo93k4AWDoDP-HgvxbhBbkbu14iGD15SPbXq419CYxunfXdKwtXOZN9cnv08fN4Cr8fjqdfT38DpyVPLQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB61RQIkhHjXUMqC4Ghhe3ftGIRQBFQpTXqAVsptWXvXbVBjmzhp1T_Fb2TGj0RIUOXSY5LdaOUZf9_MzgvgdWSyNOVJ7Cae8VxRXzSZyHMTHYgeWqS92NDVwOgwHByLr2M53oDfXS0MpVV2mFgDtSlSuiN_64dhD20DpOOP5S-XpkZRdLUbodGoxYG9vECXrfqw_xnl-yYI9r4cfRq47VQBNw2jYO4KG6UaeZgjd6J5jmAtrU2NTdDzsLEONU-0J4M04lIj_dsMGdZYI6WWgeba4_i_m3ADidcjZy8aR6smv75oSu8kd_GwcZs51OST1f0pJ1NECUoo43WnUEqz_jcdbp5SXuadUlcoqqyZsfF_I7gmw717cLe1Ylm_Ubv7sGHzB3Bz1MbpH8LFd3sybauaclZkbPSN1Yeq2PlEMyoFbsaJEdjix7q4Qs8uWTvE4oTp3DAEu1llWVoQv75j_VWsnc0LdjopSyTiabmoGKpyXVf_CI6vRRiPYSsvcrsNTKbIs8bvRUmUiUwjLklcIYxMTCJM3HMg6p60Stv-5zSG40x1iW4_1UpGimSkvEChjBzwlzvLpgfIGnviTpiqq3FFVFZIVGvsfb_c29pBjX2z5u5XqDvLg1L78EF_qOg7cg8Qb8W578DuX6q1XB5Q4DaU3IGdTtdUi2qVWr2DDrxc_ox4REEmndtigWu4iL1YoNV3xRpJAWAfnWEHnjR6vDoAegQcfZKnVx_gBdwaHI2Garh_ePAMbgf1kBJKy9yBrflsYZ-jqThPduv3k8GP6waEPzL7fFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnTQhIcQ3gTEMgsdoSWwnDQihwlZ1bK2mwaS9eU7sbEU0CU27af8afx3nxGmFBFNf9tjWV51yl9_d-b4A3kYqS1OaxG7iKc9l9UWTijw3kQHrokfajZW5GhiOwsEJ-3rKT9fgd9sLY8oqW0ysgVoVqbkj3_HDsIu-AZrjncyWRRzt9j-Vv1yzQcpkWtt1Go2KHOjrKwzfqo_7uyjrd0HQ3_v-ZeDaDQNuGkbBzGU6SiXaZIp2FF11BG6udap0glGIjmUoaSI9HqQR5RJdAZ2htVVacS55IKn0KP7vOmxEJirqwMbnvdHR8XLkr8-aRjxOXWQ9tnVETXVZPa1yPEHMMOVltJ4baoqu_20c1y9MlebdUlYouKzZuPF_l7g2jf37cM_6tKTXKOEDWNP5Q9gc2qz9I7j6ps8ntscpJ0VGhsekZqoil2NJTGNws1zMQC9-rFst5PSa2JUW50TmiiD0TStN0sJY2_ekt8y8k1lBLsZliWZ5Us4rgopdd9k_hpNbEccT6ORFrp8B4SlaXeV3oyTKWCYRpTieYIonKmEq7joQtU9apHYaulnK8VO0ZW8_xFJGwshIeIFAGTngLyjLZiLICjRxK0zRdrwiRgs0WyvQfljQWq-o8XZWpH6DurNg1AwTH_QOhfnOBAuIvuzSd2D7L9VaHA9MGjfk1IGtVteExbhKLN9IB14vfkZ0Miknmetijmcoi72YoQ94wxlu0sE-hsYOPG30eMkAxgcUI5TnNzPwCjYRDMTh_ujgBdwJ6o0lpkZzCzqz6Vy_RL9xlmzbF5TA2W1jwh9sAYHv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+MR+images+via+discriminative+dictionary+learning+and+sparse+coding%3A+Application+to+hippocampus+labeling&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Tong%2C+Tong&rft.au=Wolz%2C+Robin&rft.au=Coup%C3%A9%2C+Pierrick&rft.au=Hajnal%2C+Joseph+V.&rft.date=2013-08-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=76&rft.spage=11&rft.epage=23&rft_id=info:doi/10.1016%2Fj.neuroimage.2013.02.069&rft.externalDocID=S1053811913002243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |