A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans
Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membran...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 337; no. 6090; pp. 96 - 100 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
06.07.2012
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. |
---|---|
AbstractList | Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila , and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1 , changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. Letting Pyruvate InTransport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96, published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93, published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells. Letting Pyruvate In Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96, published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93, published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells. Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni ). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96, published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93, published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells. Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. [PUBLICATION ABSTRACT] Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni ). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96 , published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93 , published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells. The genes encoding two components of the pyruvate transporter in mitochondria have been identified. Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila , and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1 , changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. |
Author | Schell, John C. Bricker, Daniel K. Orsak, Thomas Boudina, Sihem Cox, James E. Thummel, Carl S. Gygi, Steven P. Chen, Yu-Chan Brivet, Michèle Rutter, Jared Taylor, Eric B. Van Vranken, Jonathan G. Redin, Claire Boutron, Audrey Cardon, Caleb M. Dephoure, Noah |
AuthorAffiliation | 4 Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA 6 Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Strasbourg, France 1 Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA 3 Laboratoire de Biochimie, AP-HP Hôpital de Bicêtre, Le Kremlin Bicêtre, France 5 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA 7 Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA 2 Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA |
AuthorAffiliation_xml | – name: 1 Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA – name: 2 Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA – name: 6 Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Strasbourg, France – name: 7 Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA – name: 3 Laboratoire de Biochimie, AP-HP Hôpital de Bicêtre, Le Kremlin Bicêtre, France – name: 5 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA – name: 4 Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA |
Author_xml | – sequence: 1 givenname: Daniel K. surname: Bricker fullname: Bricker, Daniel K. – sequence: 2 givenname: Eric B. surname: Taylor fullname: Taylor, Eric B. – sequence: 3 givenname: John C. surname: Schell fullname: Schell, John C. – sequence: 4 givenname: Thomas surname: Orsak fullname: Orsak, Thomas – sequence: 5 givenname: Audrey surname: Boutron fullname: Boutron, Audrey – sequence: 6 givenname: Yu-Chan surname: Chen fullname: Chen, Yu-Chan – sequence: 7 givenname: James E. surname: Cox fullname: Cox, James E. – sequence: 8 givenname: Caleb M. surname: Cardon fullname: Cardon, Caleb M. – sequence: 9 givenname: Jonathan G. surname: Van Vranken fullname: Van Vranken, Jonathan G. – sequence: 10 givenname: Noah surname: Dephoure fullname: Dephoure, Noah – sequence: 11 givenname: Claire surname: Redin fullname: Redin, Claire – sequence: 12 givenname: Sihem surname: Boudina fullname: Boudina, Sihem – sequence: 13 givenname: Steven P. surname: Gygi fullname: Gygi, Steven P. – sequence: 14 givenname: Michèle surname: Brivet fullname: Brivet, Michèle – sequence: 15 givenname: Carl S. surname: Thummel fullname: Thummel, Carl S. – sequence: 16 givenname: Jared surname: Rutter fullname: Rutter, Jared |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26103649$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22628558$$D View this record in MEDLINE/PubMed https://hal.science/hal-04299019$$DView record in HAL |
BookMark | eNqFkt2LEzEUxYOsuB_67JMyIILCdjcfk8zkRSj1o0JFEffBF0MmuWNTp0k3mSnsf29qu7takD4Fcn_nJJx7TtGRDx4QekrwBSFUXCbjwBu4IJTUWMoH6IRgyUeSYnaETjBmYlTjih-j05QWGOeZZI_QMaWC1pzXJ-jHuPjk-mDmwdvodFd8uYnDWvdQTHSMDmLxFa4HF8EWbYj306tVr39B4XzxHXTqz4u3MaSwmrtOnxfa22I6LLVPj9HDVncJnuzOM3T1_t23yXQ0-_zh42Q8GxlR0X5Em0ZQW9mqgqqyjW1b0tIGpKkNAYxrTStGIP_Y2qYEMNqWJdEYi7Yx0BDDztCbre9qaJZgDfg-6k6tolvqeKOCdurfiXdz9TOsFRMS16TOBq-3BvM92XQ8U5s7XFIpMZFrktlXu8diuB4g9WrpkoGu0x7CkBTNQZeEc8wOonlreT81pvQwyjkRJWOlOIxiWmJZ0T-uL_bQRRiiz7vYUKziInchU8__ju8ugNueZODlDtDJ6K6N2huX7jlBctVKmTm-5UyuQ4rQKuN63buwSd11-U216a3a9Vbtept1l3u6W-v_K55tFYvUh3iH59xrTgljvwGBFPmM |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1038_s42255_022_00645_2 crossref_primary_10_1073_pnas_1602751113 crossref_primary_10_1186_s12915_019_0733_6 crossref_primary_10_4018_IJKDB_2017070103 crossref_primary_10_3390_ijms241914709 crossref_primary_10_1016_j_fuel_2021_121634 crossref_primary_10_1007_s00018_013_1539_2 crossref_primary_10_1016_j_ejphar_2021_174627 crossref_primary_10_1016_j_molmet_2016_06_016 crossref_primary_10_1161_ATVBAHA_117_309510 crossref_primary_10_3390_ijms26010264 crossref_primary_10_1080_15592324_2019_1629269 crossref_primary_10_1002_pro_4259 crossref_primary_10_3389_fnins_2014_00408 crossref_primary_10_1016_j_devcel_2022_03_002 crossref_primary_10_1007_s00253_016_7636_z crossref_primary_10_1371_journal_pone_0062012 crossref_primary_10_1002_anie_201914391 crossref_primary_10_3390_nu14173605 crossref_primary_10_1038_s41598_018_21740_z crossref_primary_10_1111_febs_16015 crossref_primary_10_1007_s12035_024_04435_7 crossref_primary_10_1021_acs_jcim_1c00879 crossref_primary_10_1016_j_gde_2016_05_003 crossref_primary_10_1038_ncb3575 crossref_primary_10_1089_ars_2023_0489 crossref_primary_10_15252_embj_201490197 crossref_primary_10_1186_s12967_021_02889_0 crossref_primary_10_1038_srep08138 crossref_primary_10_1126_sciadv_abi8602 crossref_primary_10_1371_journal_pone_0280491 crossref_primary_10_1177_0300060520919236 crossref_primary_10_1016_j_molcel_2013_01_018 crossref_primary_10_1534_genetics_117_300201 crossref_primary_10_1111_imr_12732 crossref_primary_10_1534_g3_116_034389 crossref_primary_10_3390_cells9010146 crossref_primary_10_1016_j_bbadis_2020_165721 crossref_primary_10_3390_membranes12100916 crossref_primary_10_1152_ajpendo_00306_2024 crossref_primary_10_1371_journal_pone_0231085 crossref_primary_10_1016_j_ydbio_2021_01_019 crossref_primary_10_18632_oncotarget_13210 crossref_primary_10_3390_biom12020221 crossref_primary_10_1089_ars_2012_5104 crossref_primary_10_1016_j_ymben_2020_06_010 crossref_primary_10_1016_j_isci_2023_108196 crossref_primary_10_1186_s40170_019_0201_3 crossref_primary_10_3390_genes12020300 crossref_primary_10_1101_gad_349066_121 crossref_primary_10_1210_er_2017_00064 crossref_primary_10_1158_2159_8290_CD_19_0959 crossref_primary_10_3390_ijms22168504 crossref_primary_10_1016_j_jbiotec_2016_10_013 crossref_primary_10_1093_hmg_ddad154 crossref_primary_10_1038_s41577_019_0203_y crossref_primary_10_1016_j_bmc_2018_10_033 crossref_primary_10_1007_s42764_022_00078_x crossref_primary_10_7554_eLife_94187 crossref_primary_10_1007_s00294_019_01035_0 crossref_primary_10_1016_j_molcel_2014_10_018 crossref_primary_10_1073_pnas_1508259112 crossref_primary_10_15252_embr_202050085 crossref_primary_10_1038_ncb3593 crossref_primary_10_1016_j_jcmgh_2018_09_017 crossref_primary_10_1038_s41586_025_08667_y crossref_primary_10_1016_j_meteno_2014_09_001 crossref_primary_10_1038_s41556_023_01117_9 crossref_primary_10_1016_j_kint_2019_08_023 crossref_primary_10_15252_embr_202050071 crossref_primary_10_1016_j_bbamcr_2012_11_014 crossref_primary_10_1186_s12976_015_0005_2 crossref_primary_10_1084_jem_20221373 crossref_primary_10_1152_ajpendo_00057_2020 crossref_primary_10_1016_j_bbrc_2016_04_117 crossref_primary_10_1016_j_cmet_2022_10_008 crossref_primary_10_7554_eLife_88866 crossref_primary_10_1016_j_immuni_2016_06_011 crossref_primary_10_1096_fj_202301646R crossref_primary_10_1172_jci_insight_124522 crossref_primary_10_1016_j_jbc_2022_101775 crossref_primary_10_1016_j_bbabio_2012_06_101 crossref_primary_10_1096_fj_202200848R crossref_primary_10_1038_nrc3365 crossref_primary_10_1152_ajpendo_00444_2020 crossref_primary_10_7554_eLife_64821 crossref_primary_10_1039_C7AN01566F crossref_primary_10_1016_j_molmet_2018_01_002 crossref_primary_10_1152_ajpendo_00258_2023 crossref_primary_10_1210_en_2017_00695 crossref_primary_10_1016_j_molmet_2023_101694 crossref_primary_10_1093_femsyr_foac033 crossref_primary_10_1089_omi_2012_0090 crossref_primary_10_1095_biolreprod_113_113217 crossref_primary_10_1152_ajpcell_00235_2020 crossref_primary_10_1126_sciadv_add5220 crossref_primary_10_1016_j_tibs_2015_02_002 crossref_primary_10_1128_MCB_00166_16 crossref_primary_10_1016_j_celrep_2020_02_042 crossref_primary_10_3389_fncel_2018_00274 crossref_primary_10_1080_1040841X_2018_1425671 crossref_primary_10_1016_j_molcel_2014_09_026 crossref_primary_10_1016_j_molcel_2014_09_025 crossref_primary_10_1038_s41388_019_1051_8 crossref_primary_10_1038_s41575_021_00431_7 crossref_primary_10_1007_s11910_015_0590_9 crossref_primary_10_1016_j_molcel_2014_09_024 crossref_primary_10_1016_j_bbrc_2015_11_036 crossref_primary_10_1152_ajpendo_00074_2022 crossref_primary_10_1016_j_jbc_2023_105375 crossref_primary_10_14814_phy2_14054 crossref_primary_10_3390_biom10081107 crossref_primary_10_3390_ijms22020604 crossref_primary_10_1016_j_molmet_2022_101469 crossref_primary_10_1186_s13068_016_0670_3 crossref_primary_10_30970_sbi_1701_703 crossref_primary_10_1016_j_yebeh_2023_109618 crossref_primary_10_1002_ange_201914391 crossref_primary_10_1016_j_molmet_2022_101466 crossref_primary_10_3390_biom13050719 crossref_primary_10_1038_nrd4391 crossref_primary_10_1016_j_celrep_2019_07_098 crossref_primary_10_3390_cancers13081809 crossref_primary_10_1016_j_yjmcc_2014_10_019 crossref_primary_10_1534_g3_119_400193 crossref_primary_10_1074_jbc_M116_753509 crossref_primary_10_1152_ajpendo_00508_2014 crossref_primary_10_1093_jxb_eru100 crossref_primary_10_1128_aem_02215_21 crossref_primary_10_1186_s10020_024_00899_4 crossref_primary_10_1016_j_jare_2020_12_007 crossref_primary_10_1016_j_redox_2016_02_001 crossref_primary_10_1002_bit_27439 crossref_primary_10_1038_s41598_022_13249_3 crossref_primary_10_3390_ijms21093403 crossref_primary_10_3389_fphar_2016_00521 crossref_primary_10_1111_apha_14016 crossref_primary_10_7554_eLife_53917 crossref_primary_10_1016_j_jbc_2022_102838 crossref_primary_10_2139_ssrn_3155509 crossref_primary_10_3389_fmicb_2022_1029828 crossref_primary_10_1016_j_bbi_2020_11_031 crossref_primary_10_11569_wcjd_v32_i4_243 crossref_primary_10_1101_gad_229724_113 crossref_primary_10_1002_bit_26477 crossref_primary_10_1016_j_celrep_2014_05_017 crossref_primary_10_1016_j_cbi_2024_111141 crossref_primary_10_1073_pnas_2019046118 crossref_primary_10_1007_s10545_014_9708_5 crossref_primary_10_1016_j_jbc_2021_101554 crossref_primary_10_1016_j_molmet_2022_101481 crossref_primary_10_1016_j_jgr_2022_02_002 crossref_primary_10_6013_jbrewsocjapan_109_335 crossref_primary_10_1371_journal_pgen_1005309 crossref_primary_10_1016_j_cmet_2022_03_013 crossref_primary_10_7554_eLife_51601 crossref_primary_10_1016_j_chemosphere_2022_134088 crossref_primary_10_1126_sciadv_adf9522 crossref_primary_10_15252_embr_201439757 crossref_primary_10_1016_j_ijcard_2014_05_009 crossref_primary_10_1146_annurev_bioeng_071516_044546 crossref_primary_10_1002_glia_24484 crossref_primary_10_1038_s41380_020_00980_4 crossref_primary_10_1097_PPO_0000000000000106 crossref_primary_10_1186_2049_3002_1_6 crossref_primary_10_1016_j_cmet_2020_12_003 crossref_primary_10_1016_j_scitotenv_2023_167743 crossref_primary_10_1002_jimd_12071 crossref_primary_10_1128_EC_00189_14 crossref_primary_10_1016_j_tcb_2018_02_007 crossref_primary_10_1016_j_molmet_2023_101808 crossref_primary_10_1113_JP279963 crossref_primary_10_1038_ni_3796 crossref_primary_10_1073_pnas_1812941116 crossref_primary_10_1016_j_biotechadv_2019_03_017 crossref_primary_10_1073_pnas_2216810120 crossref_primary_10_1186_s12934_019_1226_6 crossref_primary_10_1111_dom_12308 crossref_primary_10_1113_JP280955 crossref_primary_10_1136_jitc_2021_004337 crossref_primary_10_1111_mmi_13325 crossref_primary_10_1016_j_celrep_2019_05_066 crossref_primary_10_1016_j_pbiomolbio_2023_03_003 crossref_primary_10_1007_s12291_017_0668_z crossref_primary_10_1016_j_ejmech_2024_116666 crossref_primary_10_1042_BCJ20160068 crossref_primary_10_1016_j_celrep_2022_111069 crossref_primary_10_1146_annurev_pathmechdis_031521_041113 crossref_primary_10_7554_eLife_88866_3 crossref_primary_10_1016_j_ymben_2014_11_008 crossref_primary_10_1186_s12263_018_0609_3 crossref_primary_10_1016_j_mito_2014_09_007 crossref_primary_10_1016_j_bbagen_2023_130492 crossref_primary_10_1016_j_celrep_2020_108423 crossref_primary_10_1086_679608 crossref_primary_10_1016_j_envint_2023_107942 crossref_primary_10_1097_FJC_0000000000000054 crossref_primary_10_1210_me_2013_1427 crossref_primary_10_1172_jci_insight_142464 crossref_primary_10_3389_fimmu_2021_630380 crossref_primary_10_1074_jbc_M113_521666 crossref_primary_10_1016_j_molcel_2015_06_035 crossref_primary_10_1038_s41598_023_37000_8 crossref_primary_10_1172_JCI167371 crossref_primary_10_1016_j_expneurol_2019_03_018 crossref_primary_10_1016_j_stem_2021_02_011 crossref_primary_10_3390_biom10081162 crossref_primary_10_1016_j_tem_2014_12_002 crossref_primary_10_1074_jbc_M115_712166 crossref_primary_10_1016_j_molmet_2017_09_002 crossref_primary_10_1073_pnas_1221740110 crossref_primary_10_1111_febs_16195 crossref_primary_10_1016_j_ymben_2014_02_001 crossref_primary_10_1161_JAHA_113_000301 crossref_primary_10_1186_s12944_024_02092_2 crossref_primary_10_1016_j_bbabio_2017_03_006 crossref_primary_10_1158_1078_0432_CCR_19_1543 crossref_primary_10_1371_journal_pone_0079405 crossref_primary_10_1016_j_mito_2013_08_011 crossref_primary_10_1016_j_molmed_2019_11_004 crossref_primary_10_1016_j_protis_2015_08_002 crossref_primary_10_3389_fgene_2021_649764 crossref_primary_10_1242_dmm_050404 crossref_primary_10_1074_mcp_M115_051862 crossref_primary_10_1016_j_bmcl_2024_129923 crossref_primary_10_1016_j_tins_2021_01_001 crossref_primary_10_3389_fcell_2021_606639 crossref_primary_10_1073_pnas_1602754113 crossref_primary_10_1038_s41388_023_02593_x crossref_primary_10_1038_s42255_022_00588_8 crossref_primary_10_3390_cancers15153898 crossref_primary_10_1016_j_heliyon_2023_e13739 crossref_primary_10_1016_j_ymeth_2014_02_034 crossref_primary_10_1080_21655979_2021_1978189 crossref_primary_10_1186_s12934_022_01924_z crossref_primary_10_1523_JNEUROSCI_1284_20_2020 crossref_primary_10_1016_j_cub_2014_04_033 crossref_primary_10_1016_j_tcb_2020_04_004 crossref_primary_10_1016_j_brainresbull_2022_05_007 crossref_primary_10_1016_j_pbi_2016_03_019 crossref_primary_10_1111_mmi_13669 crossref_primary_10_1016_j_pbi_2016_04_007 crossref_primary_10_1016_j_tins_2013_04_002 crossref_primary_10_3390_cancers14010245 crossref_primary_10_3390_ijms26072947 crossref_primary_10_1073_pnas_1311244110 crossref_primary_10_1016_j_mito_2017_05_011 crossref_primary_10_1002_2211_5463_13806 crossref_primary_10_1097_MD_0000000000037505 crossref_primary_10_1093_femsle_fnab088 crossref_primary_10_1016_j_bbamcr_2019_06_004 crossref_primary_10_1002_jbmr_2364 crossref_primary_10_1186_s12935_021_01996_8 crossref_primary_10_1016_j_bbamcr_2016_01_017 crossref_primary_10_1042_BJ20141171 crossref_primary_10_1146_annurev_pathol_012615_044329 crossref_primary_10_1371_journal_ppat_1004263 crossref_primary_10_3390_cancers12071731 crossref_primary_10_1007_s10545_014_9787_3 crossref_primary_10_1021_acs_jmedchem_0c01570 crossref_primary_10_1126_science_1225601 crossref_primary_10_1038_nrd_2016_151 crossref_primary_10_1093_g3journal_jkad228 crossref_primary_10_1016_j_molmet_2024_101900 crossref_primary_10_1016_j_biopha_2024_116136 crossref_primary_10_1016_j_molmet_2023_101849 crossref_primary_10_1002_hep4_1036 crossref_primary_10_1016_j_jbc_2022_102648 crossref_primary_10_1002_mc_23705 crossref_primary_10_1002_rcm_8159 crossref_primary_10_2337_dbi18_0024 crossref_primary_10_1007_s10562_018_2616_9 crossref_primary_10_5487_TR_2015_31_4_323 crossref_primary_10_1038_s41598_019_40631_5 crossref_primary_10_1080_15592324_2020_1719312 crossref_primary_10_1111_pbi_13922 crossref_primary_10_1002_1873_3468_13509 crossref_primary_10_3390_biomedicines10020365 crossref_primary_10_1186_s13024_018_0260_x crossref_primary_10_1016_j_bbabio_2016_03_034 crossref_primary_10_1126_sciadv_adp7423 crossref_primary_10_1111_febs_13603 crossref_primary_10_1016_j_nbd_2024_106623 crossref_primary_10_1016_j_molcel_2015_10_018 crossref_primary_10_1530_ERC_13_0132 crossref_primary_10_1038_s41419_025_07449_8 crossref_primary_10_1126_scisignal_aaz6206 crossref_primary_10_1128_MCB_00770_15 crossref_primary_10_1038_s42255_020_00296_1 crossref_primary_10_3389_fimmu_2022_1090429 crossref_primary_10_1371_journal_pcbi_1009373 crossref_primary_10_1016_j_cub_2016_08_025 crossref_primary_10_1016_j_cmet_2018_03_008 crossref_primary_10_1016_j_omtn_2023_01_010 crossref_primary_10_3389_fcvm_2021_789267 crossref_primary_10_1007_s11926_016_0615_7 crossref_primary_10_1016_j_ygeno_2021_12_004 crossref_primary_10_1126_scitranslmed_aag2210 crossref_primary_10_1161_CIRCGENETICS_113_000404 crossref_primary_10_3390_biom10071068 crossref_primary_10_1038_s41580_022_00572_w crossref_primary_10_1128_mBio_00976_17 crossref_primary_10_1113_EP086380 crossref_primary_10_1016_j_marenvres_2023_106330 crossref_primary_10_18632_oncotarget_26188 crossref_primary_10_1242_dev_150573 crossref_primary_10_1155_2021_6618837 crossref_primary_10_1038_s41467_024_51117_y crossref_primary_10_1016_j_cmet_2019_11_002 crossref_primary_10_18632_oncotarget_7174 crossref_primary_10_1016_j_expneurol_2020_113282 crossref_primary_10_1016_j_jshs_2020_02_006 crossref_primary_10_1093_molbev_msz239 crossref_primary_10_15252_embj_2021108648 crossref_primary_10_1007_s40200_020_00566_5 crossref_primary_10_1084_jem_20181965 crossref_primary_10_1016_j_tplants_2016_04_003 crossref_primary_10_3389_fbioe_2021_774175 crossref_primary_10_1002_jcp_25932 crossref_primary_10_1111_1462_2920_13794 crossref_primary_10_1177_1535370220975206 crossref_primary_10_1126_science_aat9528 crossref_primary_10_1039_C9RA07418J crossref_primary_10_1371_journal_pone_0115791 crossref_primary_10_31083_j_fbs1601005 crossref_primary_10_3389_fgene_2023_1192799 crossref_primary_10_15252_embj_201591228 crossref_primary_10_1016_j_stem_2024_09_015 crossref_primary_10_1534_genetics_114_168609 crossref_primary_10_1016_j_celrep_2022_110802 crossref_primary_10_1161_CIRCRESAHA_114_301863 crossref_primary_10_1016_j_scitotenv_2020_144185 crossref_primary_10_1016_j_bbamcr_2016_07_004 crossref_primary_10_1016_j_jbc_2023_104877 crossref_primary_10_15252_embj_201797572 crossref_primary_10_1172_jci_insight_126132 crossref_primary_10_1016_j_cmet_2024_10_013 crossref_primary_10_1083_jcb_201612067 crossref_primary_10_1165_rcmb_2022_0360OC crossref_primary_10_1073_pnas_2314314121 crossref_primary_10_1074_jbc_M115_644534 crossref_primary_10_1681_ASN_2013070791 crossref_primary_10_1002_jbmr_1976 crossref_primary_10_1016_j_celrep_2015_03_024 crossref_primary_10_1038_s42255_022_00619_4 crossref_primary_10_1242_dev_175315 crossref_primary_10_4049_jimmunol_1901484 crossref_primary_10_1016_j_jbiosc_2013_09_011 crossref_primary_10_26508_lsa_202201514 crossref_primary_10_1016_j_celrep_2019_03_029 crossref_primary_10_1371_journal_pgen_1006056 crossref_primary_10_1002_mrc_5341 crossref_primary_10_1016_j_jchromb_2022_123214 crossref_primary_10_1152_physiolgenomics_00064_2019 crossref_primary_10_1002_jimd_12462 crossref_primary_10_1074_jbc_M113_507285 crossref_primary_10_1016_j_omton_2024_200897 crossref_primary_10_1002_advs_202307224 crossref_primary_10_2139_ssrn_3979182 crossref_primary_10_1093_pcp_pct155 crossref_primary_10_1016_j_cmet_2015_07_027 crossref_primary_10_18632_oncotarget_7405 crossref_primary_10_1016_j_cmet_2015_07_028 crossref_primary_10_3390_cells11050771 crossref_primary_10_1155_2022_2280973 crossref_primary_10_1016_j_cmet_2014_05_012 crossref_primary_10_1007_s11154_013_9284_2 crossref_primary_10_1021_acssuschemeng_2c03063 crossref_primary_10_1016_j_ceb_2014_10_008 crossref_primary_10_1016_j_freeradbiomed_2024_01_043 crossref_primary_10_1038_srep16665 crossref_primary_10_1007_s00253_022_12357_4 crossref_primary_10_1038_s41418_020_00729_0 crossref_primary_10_1016_j_ajpath_2024_02_004 crossref_primary_10_1016_j_molcel_2018_06_039 crossref_primary_10_1042_BJ20151120 crossref_primary_10_1074_jbc_M117_790923 crossref_primary_10_1111_1462_2920_12327 crossref_primary_10_1038_s12276_022_00802_3 crossref_primary_10_1016_j_celrep_2018_09_034 crossref_primary_10_1155_2022_2014625 crossref_primary_10_3389_fphys_2017_01044 crossref_primary_10_1093_cvr_cvac061 crossref_primary_10_1113_JP278930 crossref_primary_10_1002_jnr_23196 crossref_primary_10_1080_15592294_2025_2468113 crossref_primary_10_2139_ssrn_3938441 crossref_primary_10_1055_s_0044_1788072 crossref_primary_10_4049_jimmunol_1501537 crossref_primary_10_1182_bloodadvances_2022008345 crossref_primary_10_1584_jpestics_W12_29 crossref_primary_10_1111_febs_13992 crossref_primary_10_1073_pnas_1303360110 crossref_primary_10_1021_acs_jcim_2c00630 crossref_primary_10_3389_fcvm_2021_716213 crossref_primary_10_1007_s11010_017_2942_z crossref_primary_10_3390_biom10121611 crossref_primary_10_1016_j_cmet_2020_03_011 crossref_primary_10_3390_molecules23020156 crossref_primary_10_1093_brain_awac444 crossref_primary_10_1016_j_it_2021_06_005 crossref_primary_10_3389_fphar_2017_00958 crossref_primary_10_1042_BST20190933 crossref_primary_10_3389_fmolb_2022_929328 crossref_primary_10_1016_j_it_2023_01_002 crossref_primary_10_1016_j_scr_2023_103206 crossref_primary_10_1038_s41419_019_1324_8 crossref_primary_10_3390_biom10071013 crossref_primary_10_3390_cells11071177 crossref_primary_10_1007_s11060_019_03226_8 crossref_primary_10_1182_bloodadvances_2021004259 crossref_primary_10_7554_eLife_45873 crossref_primary_10_1093_jxb_erae398 crossref_primary_10_1016_j_ymben_2015_07_004 crossref_primary_10_1146_annurev_biochem_072820_020508 crossref_primary_10_1016_j_plantsci_2024_112325 crossref_primary_10_1002_mrc_5419 crossref_primary_10_1007_s11120_018_0569_x crossref_primary_10_1371_journal_pntd_0003975 crossref_primary_10_3390_jcm10040721 crossref_primary_10_1038_s42255_020_00276_5 crossref_primary_10_3390_biom10071008 crossref_primary_10_3389_fonc_2023_1175532 crossref_primary_10_1038_s41556_018_0124_1 crossref_primary_10_1038_s44321_024_00155_6 crossref_primary_10_1093_jas_skac035 crossref_primary_10_1016_j_tcb_2013_07_010 crossref_primary_10_1128_mbio_01356_23 crossref_primary_10_1038_s41418_018_0191_7 crossref_primary_10_1534_g3_119_400633 crossref_primary_10_3389_fmars_2022_1041705 crossref_primary_10_1242_jeb_245828 crossref_primary_10_1016_j_heliyon_2019_e01679 crossref_primary_10_1016_j_ejmech_2024_117150 crossref_primary_10_3171_2017_9_JNS172036 crossref_primary_10_3389_fnins_2018_00404 crossref_primary_10_1016_j_copbio_2012_09_010 crossref_primary_10_3390_cancers17030498 crossref_primary_10_1111_cas_13980 crossref_primary_10_1021_acssynbio_1c00002 crossref_primary_10_1038_s42255_020_00288_1 crossref_primary_10_1172_JCI178540 crossref_primary_10_2527_jas_2017_1457 crossref_primary_10_1074_jbc_REV118_000828 crossref_primary_10_3389_fonc_2016_00135 crossref_primary_10_1007_s00018_019_03342_8 crossref_primary_10_3945_an_113_004762 crossref_primary_10_1042_BCJ20170967 crossref_primary_10_1016_j_isci_2020_101116 crossref_primary_10_1093_cvr_cvab068 crossref_primary_10_18632_oncotarget_5386 crossref_primary_10_1021_acs_jafc_3c08724 crossref_primary_10_18632_oncotarget_13717 crossref_primary_10_1128_JB_00296_21 crossref_primary_10_1016_j_molmet_2024_102005 crossref_primary_10_1002_oby_22678 crossref_primary_10_1038_s41586_020_2741_7 crossref_primary_10_3390_cancers13071488 crossref_primary_10_1128_spectrum_05043_22 crossref_primary_10_1093_femsyr_fow017 crossref_primary_10_1007_s00414_021_02532_z crossref_primary_10_1016_j_celrep_2024_113772 crossref_primary_10_1016_j_ecoenv_2023_115197 crossref_primary_10_1038_srep33732 crossref_primary_10_1016_j_semcdb_2022_03_040 crossref_primary_10_1534_genetics_117_200014 crossref_primary_10_1158_1078_0432_CCR_12_2587 crossref_primary_10_1371_journal_pone_0315719 crossref_primary_10_1016_j_cbd_2024_101191 crossref_primary_10_1016_j_synbio_2020_06_005 crossref_primary_10_1007_s11064_013_1199_5 crossref_primary_10_1186_s40104_020_00437_2 crossref_primary_10_18632_oncotarget_10202 crossref_primary_10_1016_j_molmet_2024_102018 crossref_primary_10_3390_md17110611 crossref_primary_10_1038_s41598_017_14868_x crossref_primary_10_3390_microorganisms11020483 crossref_primary_10_1126_sciadv_abq0117 crossref_primary_10_1016_j_celrep_2023_112153 crossref_primary_10_3390_brainsci9090238 crossref_primary_10_18632_oncotarget_18199 crossref_primary_10_1186_s12870_017_1175_3 crossref_primary_10_1093_mp_ssu061 crossref_primary_10_1039_D3CC01861J crossref_primary_10_1016_j_cmet_2021_02_005 crossref_primary_10_3390_cancers13061260 crossref_primary_10_1038_nature13670 crossref_primary_10_1371_journal_pone_0085780 crossref_primary_10_1371_journal_pcbi_1004261 crossref_primary_10_1016_j_cmet_2017_08_002 crossref_primary_10_1371_journal_pone_0098966 crossref_primary_10_1097_FBP_0000000000000505 crossref_primary_10_3390_biom13020261 crossref_primary_10_1016_j_biosystems_2017_02_003 crossref_primary_10_1016_j_metabol_2024_155787 crossref_primary_10_1111_nyas_14678 crossref_primary_10_1146_annurev_biochem_061516_044757 crossref_primary_10_2174_1568026623666230726145514 crossref_primary_10_1371_journal_pone_0061551 crossref_primary_10_1073_pnas_1720908115 crossref_primary_10_1007_s13205_022_03158_7 crossref_primary_10_1016_j_cell_2019_07_029 crossref_primary_10_1158_2326_6066_CIR_19_0371 crossref_primary_10_1021_acs_jafc_0c03967 crossref_primary_10_4161_15592324_2014_973810 crossref_primary_10_3389_fnut_2022_800901 crossref_primary_10_1016_j_ebiom_2018_07_039 crossref_primary_10_1093_jn_nxab342 crossref_primary_10_1007_s12072_019_10001_4 crossref_primary_10_3390_ijms19113550 crossref_primary_10_3390_biology9110407 crossref_primary_10_1152_physrev_00009_2016 crossref_primary_10_3390_biom15020223 crossref_primary_10_4236_cellbio_2014_34011 crossref_primary_10_1016_j_devcel_2022_02_019 crossref_primary_10_1038_s41598_018_36060_5 crossref_primary_10_1152_japplphysiol_00628_2014 crossref_primary_10_7554_eLife_66865 crossref_primary_10_1016_j_mec_2024_e00247 crossref_primary_10_1021_jacs_0c10836 crossref_primary_10_1146_annurev_nutr_111120_111518 crossref_primary_10_1111_bph_14758 crossref_primary_10_3390_biom13050808 crossref_primary_10_1038_srep10722 crossref_primary_10_1016_j_celrep_2019_09_053 crossref_primary_10_3390_microorganisms9102044 crossref_primary_10_1038_s41374_018_0138_0 crossref_primary_10_1016_j_ebiom_2017_04_009 crossref_primary_10_1016_j_tcb_2017_04_004 crossref_primary_10_3390_nu14183842 crossref_primary_10_1038_s42255_023_00800_3 crossref_primary_10_3389_fonc_2021_636565 crossref_primary_10_1016_j_cell_2025_01_015 crossref_primary_10_1016_j_ceca_2020_102288 crossref_primary_10_1016_j_celrep_2018_08_091 crossref_primary_10_1126_science_1218530 crossref_primary_10_1016_j_mito_2014_05_007 crossref_primary_10_1016_j_celrep_2020_01_060 crossref_primary_10_15252_embj_2018100785 crossref_primary_10_3389_fendo_2021_651763 crossref_primary_10_1186_s12911_022_02020_3 crossref_primary_10_1016_j_bbamem_2016_09_017 crossref_primary_10_1152_physiol_00009_2020 crossref_primary_10_1534_g3_114_010652 crossref_primary_10_1002_1873_3468_14485 crossref_primary_10_7554_eLife_22706 crossref_primary_10_1007_s00395_013_0358_9 crossref_primary_10_1113_JP270254 crossref_primary_10_3390_cancers15051417 crossref_primary_10_3389_fcell_2021_725114 crossref_primary_10_1111_jam_14494 crossref_primary_10_1021_acs_jafc_4c09840 crossref_primary_10_1073_pnas_1211198109 crossref_primary_10_1002_jcp_26484 crossref_primary_10_1038_s42255_023_00910_y crossref_primary_10_1038_s41574_021_00507_z crossref_primary_10_1016_j_bbamcr_2016_06_001 crossref_primary_10_1038_s41580_023_00650_7 crossref_primary_10_15252_embr_201949634 crossref_primary_10_1021_acs_jmedchem_9b01701 crossref_primary_10_3390_cancers15020411 crossref_primary_10_1002_cam4_6022 crossref_primary_10_1038_s41585_020_0288_x crossref_primary_10_1093_jas_sky237 crossref_primary_10_1074_jbc_M116_733840 crossref_primary_10_1155_2020_2608318 crossref_primary_10_1016_j_postharvbio_2018_11_017 crossref_primary_10_1007_s00424_016_1816_7 crossref_primary_10_1016_j_jpsychires_2019_04_007 crossref_primary_10_1038_s41556_023_01274_x crossref_primary_10_1016_j_cmet_2014_02_010 crossref_primary_10_1016_j_neulet_2013_07_051 crossref_primary_10_1038_s42255_018_0002_y crossref_primary_10_1111_1751_7915_14410 crossref_primary_10_1186_s13071_023_05695_3 crossref_primary_10_1021_acs_jafc_7b05800 crossref_primary_10_1016_j_cell_2018_08_040 crossref_primary_10_1016_j_freeradbiomed_2020_11_035 crossref_primary_10_1523_ENEURO_0353_22_2023 crossref_primary_10_1007_s00018_021_03996_3 crossref_primary_10_1016_j_chemphyslip_2013_12_009 crossref_primary_10_3390_plants9010117 crossref_primary_10_3390_cells10092348 crossref_primary_10_1186_s40170_015_0134_4 crossref_primary_10_1111_1567_1364_12120 crossref_primary_10_15252_embj_201487943 crossref_primary_10_7554_eLife_52558 crossref_primary_10_1186_s13068_020_01760_6 crossref_primary_10_1016_j_mod_2018_02_004 crossref_primary_10_7554_eLife_72595 crossref_primary_10_1093_plcell_koab148 crossref_primary_10_1128_mBio_00540_21 crossref_primary_10_1074_jbc_M115_701862 crossref_primary_10_1186_s12882_020_01931_5 crossref_primary_10_1186_s12885_016_2941_6 crossref_primary_10_13070_mm_en_3_193 crossref_primary_10_3389_fcell_2024_1411162 crossref_primary_10_3892_mmr_2018_9079 crossref_primary_10_1242_jcs_260370 crossref_primary_10_3390_membranes10090236 crossref_primary_10_1038_s42255_020_00310_6 crossref_primary_10_1016_j_actbio_2024_05_016 crossref_primary_10_1016_j_ymben_2016_02_009 crossref_primary_10_3389_fimmu_2022_891475 crossref_primary_10_3389_fcvm_2024_1349417 crossref_primary_10_1016_j_cell_2018_07_013 crossref_primary_10_1167_iovs_64_13_36 crossref_primary_10_18585_inabj_v4i3_172 crossref_primary_10_1002_ijc_31812 crossref_primary_10_1371_journal_pone_0191419 crossref_primary_10_1016_j_cmet_2012_07_013 crossref_primary_10_1016_j_bbrc_2017_11_134 crossref_primary_10_1038_clpt_2013_10 crossref_primary_10_1016_j_cub_2020_01_024 crossref_primary_10_1080_13543784_2023_2263369 crossref_primary_10_1016_j_gendis_2020_01_016 crossref_primary_10_1016_j_bbamcr_2012_08_014 crossref_primary_10_1038_s41422_023_00864_6 crossref_primary_10_1093_lifemeta_load038 crossref_primary_10_1007_s10863_016_9670_z crossref_primary_10_1016_j_tibs_2016_01_002 crossref_primary_10_1186_s13578_023_01098_0 crossref_primary_10_1038_s41598_019_56446_3 crossref_primary_10_1146_annurev_cancerbio_062822_120857 crossref_primary_10_1016_j_tim_2014_07_007 crossref_primary_10_7554_eLife_94187_3 crossref_primary_10_3390_antiox10050661 crossref_primary_10_1074_jbc_M115_711663 crossref_primary_10_1016_j_bbamcr_2018_09_007 crossref_primary_10_1016_j_yjmcc_2024_08_002 |
Cites_doi | 10.1042/bj1720377 10.1126/science.1218530 10.1038/nature05482 10.1042/bj1380313 10.1016/S0065-2571(01)00061-9 10.1111/j.1432-1033.1990.tb19186.x 10.1016/j.cell.2008.06.016 10.1042/bj1960471 10.1016/j.cell.2011.02.013 10.1007/s11033-007-9169-0 10.1128/JB.180.11.2875-2882.1998 10.1074/jbc.M510425200 10.1073/pnas.2135385100 10.1021/bi00531a023 10.1042/bj1480085 10.1111/j.1432-1033.1974.tb03831.x 10.1016/0020-711X(83)90073-3 10.1016/S1096-7192(03)00016-7 10.1042/BJ20030995 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Association for the Advancement of Science 2015 INIST-CNRS Copyright © 2012, American Association for the Advancement of Science Distributed under a Creative Commons Attribution 4.0 International License Copyright 2012 by the American Association for the Advancement of Science; all rights reserved. 2012 |
Copyright_xml | – notice: Copyright © 2012 American Association for the Advancement of Science – notice: 2015 INIST-CNRS – notice: Copyright © 2012, American Association for the Advancement of Science – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright 2012 by the American Association for the Advancement of Science; all rights reserved. 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 1XC 5PM |
DOI | 10.1126/science.1218099 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Algology Mycology and Protozoology Abstracts (Microbiology C) Technology Research Database AGRICOLA MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 100 |
ExternalDocumentID | PMC3690818 oai_HAL_hal_04299019v1 2704224981 22628558 26103649 10_1126_science_1218099 41585213 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK071962 – fundername: NIGMS NIH HHS grantid: R01GM083746 – fundername: NIGMS NIH HHS grantid: R01 GM087346 – fundername: NIDDK NIH HHS grantid: RC1DK086426 – fundername: NIDDK NIH HHS grantid: RC1 DK086426 – fundername: NIDDK NIH HHS grantid: R24DK092784 – fundername: NIGMS NIH HHS grantid: R01 GM094232 – fundername: NIDDK NIH HHS grantid: R24 DK092784 – fundername: NIGMS NIH HHS grantid: T32 GM007464 – fundername: NIDDK NIH HHS grantid: P30 DK072437 – fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK grantid: R24 DK092784 || DK – fundername: National Heart, Lung, and Blood Institute : NHLBI grantid: P30 HL101310 || HL |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQAM ACQOY ACTDY ACUHS ADDRP ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI AQVQM ASPBG AVWKF BKF BLC C2- C45 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~H1 ~KM ~ZZ AAYXX ABCQX CITATION K-O .GJ .GO 0-V 186 3EH 41~ 42X 66. 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS AAYOK ABDPE ABJCF ABTAH ABUWG ADBBV ADMHC ADZCM AEUYN AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C51 CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH GX1 HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UIG UKHRP VOH WOQ WOW X7L XIH XKJ XOL YCJ YJ6 YXB ZCG ZGI ZKG ZVL ZVM ZXP ZY4 ~G0 0B8 68V 8P6 CGR CUY CVF DOOOF ECM EIF ESX IGG JSODD NPM PKN RHF VQA YIF YIN 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7S9 L.6 1XC PHGZM PJZUB PPXIY PQGLB 5PM |
ID | FETCH-LOGICAL-c672t-2bb62d7d77e77dbdff1f2be9c8c1e008a2731e855ddb4eecad441a006fbceb1c3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 14:36:09 EDT 2025 Sat Aug 23 06:30:26 EDT 2025 Fri Jul 11 05:36:09 EDT 2025 Thu Jul 10 16:47:15 EDT 2025 Fri Jul 11 15:01:53 EDT 2025 Wed Jul 30 10:19:31 EDT 2025 Fri Jul 25 11:00:38 EDT 2025 Wed Feb 19 02:41:28 EST 2025 Wed Apr 02 08:12:31 EDT 2025 Tue Jul 01 00:46:57 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Thu Jul 03 21:21:17 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6090 |
Keywords | Ascomycota Human Yeast Cell organelle Insecta Biological transport Pyruvate Drosophilidae Fungi Transport process Mitochondria Arthropoda Carboxylate Invertebrata Drosophila melanogaster Saccharomyces cerevisiae Diptera |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c672t-2bb62d7d77e77dbdff1f2be9c8c1e008a2731e855ddb4eecad441a006fbceb1c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-1636-5461 |
OpenAccessLink | https://www.science.org/cms/asset/862ff9f1-a6a7-44b8-b323-9424bc7ea181/pap.pdf |
PMID | 22628558 |
PQID | 1023756226 |
PQPubID | 1256 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3690818 hal_primary_oai_HAL_hal_04299019v1 proquest_miscellaneous_2000415503 proquest_miscellaneous_1808078022 proquest_miscellaneous_1551643346 proquest_miscellaneous_1024097222 proquest_journals_1023756226 pubmed_primary_22628558 pascalfrancis_primary_26103649 crossref_citationtrail_10_1126_science_1218099 crossref_primary_10_1126_science_1218099 jstor_primary_41585213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-07-06 |
PublicationDateYYYYMMDD | 2012-07-06 |
PublicationDate_xml | – month: 07 year: 2012 text: 2012-07-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2012 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_20_2 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_2_2 e_1_3_2_14_2 9603875 - J Bacteriol. 1998 Jun;180(11):2875-82 16291748 - J Biol Chem. 2006 Jan 20;281(3):1524-31 4459142 - Eur J Biochem. 1974 Nov 1;49(1):265-74 18026869 - Mol Biol Rep. 2009 Feb;36(2):215-20 12887330 - Biochem J. 2003 Sep 15;374(Pt 3):607-11 2202601 - Eur J Biochem. 1990 Aug 17;191(3):769-74 28726 - Biochem J. 1978 Jun 15;172(3):377-87 1156402 - Biochem J. 1975 Apr;148(1):85-96 7316989 - Biochem J. 1981 May 15;196(2):471-9 22767917 - Science. 2012 Jul 6;337(6090):41-3 4822737 - Biochem J. 1974 Feb;138(2):313-6 12123719 - Adv Enzyme Regul. 2002;42:249-59 14576278 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12 17167471 - Nature. 2006 Dec 14;444(7121):840-6 18614015 - Cell. 2008 Jul 11;134(1):112-23 12649063 - Mol Genet Metab. 2003 Mar;78(3):186-92 21376230 - Cell. 2011 Mar 4;144(5):646-74 6653863 - Int J Biochem. 1983;15(12):1417-21 22628554 - Science. 2012 Jul 6;337(6090):93-6 7074018 - Biochemistry. 1982 Jan 19;21(2):346-53 22883228 - Cell Metab. 2012 Aug 8;16(2):141-3 |
References_xml | – ident: e_1_3_2_5_2 doi: 10.1042/bj1720377 – ident: e_1_3_2_17_2 doi: 10.1126/science.1218530 – ident: e_1_3_2_3_2 doi: 10.1038/nature05482 – ident: e_1_3_2_4_2 doi: 10.1042/bj1380313 – ident: e_1_3_2_18_2 doi: 10.1016/S0065-2571(01)00061-9 – ident: e_1_3_2_12_2 doi: 10.1111/j.1432-1033.1990.tb19186.x – ident: e_1_3_2_10_2 doi: 10.1016/j.cell.2008.06.016 – ident: e_1_3_2_16_2 doi: 10.1042/bj1960471 – ident: e_1_3_2_2_2 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_3_2_9_2 doi: 10.1007/s11033-007-9169-0 – ident: e_1_3_2_13_2 doi: 10.1128/JB.180.11.2875-2882.1998 – ident: e_1_3_2_7_2 doi: 10.1074/jbc.M510425200 – ident: e_1_3_2_11_2 doi: 10.1073/pnas.2135385100 – ident: e_1_3_2_19_2 doi: 10.1021/bi00531a023 – ident: e_1_3_2_6_2 doi: 10.1042/bj1480085 – ident: e_1_3_2_14_2 doi: 10.1111/j.1432-1033.1974.tb03831.x – ident: e_1_3_2_20_2 doi: 10.1016/0020-711X(83)90073-3 – ident: e_1_3_2_15_2 doi: 10.1016/S1096-7192(03)00016-7 – ident: e_1_3_2_8_2 doi: 10.1042/BJ20030995 – reference: 2202601 - Eur J Biochem. 1990 Aug 17;191(3):769-74 – reference: 22883228 - Cell Metab. 2012 Aug 8;16(2):141-3 – reference: 16291748 - J Biol Chem. 2006 Jan 20;281(3):1524-31 – reference: 22628554 - Science. 2012 Jul 6;337(6090):93-6 – reference: 22767917 - Science. 2012 Jul 6;337(6090):41-3 – reference: 14576278 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12 – reference: 1156402 - Biochem J. 1975 Apr;148(1):85-96 – reference: 12123719 - Adv Enzyme Regul. 2002;42:249-59 – reference: 7074018 - Biochemistry. 1982 Jan 19;21(2):346-53 – reference: 28726 - Biochem J. 1978 Jun 15;172(3):377-87 – reference: 7316989 - Biochem J. 1981 May 15;196(2):471-9 – reference: 6653863 - Int J Biochem. 1983;15(12):1417-21 – reference: 17167471 - Nature. 2006 Dec 14;444(7121):840-6 – reference: 12887330 - Biochem J. 2003 Sep 15;374(Pt 3):607-11 – reference: 18026869 - Mol Biol Rep. 2009 Feb;36(2):215-20 – reference: 9603875 - J Bacteriol. 1998 Jun;180(11):2875-82 – reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74 – reference: 18614015 - Cell. 2008 Jul 11;134(1):112-23 – reference: 12649063 - Mol Genet Metab. 2003 Mar;78(3):186-92 – reference: 4822737 - Biochem J. 1974 Feb;138(2):313-6 – reference: 4459142 - Eur J Biochem. 1974 Nov 1;49(1):265-74 |
SSID | ssj0009593 |
Score | 2.5919077 |
Snippet | Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial... Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the... Letting Pyruvate InTransport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed... Letting Pyruvate In Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to... |
SourceID | pubmedcentral hal proquest pubmed pascalfrancis crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 96 |
SubjectTerms | Amino Acid Sequence Amino acids Amino Acids - metabolism Animals Anion Transport Proteins - chemistry Anion Transport Proteins - genetics Anion Transport Proteins - metabolism Bacteria Biochemistry, Molecular Biology Biological and medical sciences Biological Transport Carbohydrate Metabolism Carriers Cell physiology Citric Acid Cycle Diet Drosophila Drosophila melanogaster - chemistry Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - chemistry Drosophila Proteins - genetics Drosophila Proteins - metabolism Fundamental and applied biological sciences. Psychology glycolysis Human Humans Life Sciences Medical schools Membrane and intracellular transports Metabolism Metabolites Metabolomics mice Mitochondria Mitochondria - metabolism Mitochondrial Membrane Transport Proteins - chemistry Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Membranes - metabolism Mitochondrial Proteins - chemistry Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Molecular and cellular biology Molecular Sequence Data Mutation Oxidation Oxidation-Reduction Plasmids Point Mutation Proteins Pyruvates pyruvic acid Pyruvic Acid - metabolism Respiration Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Sugars Transport Transporter tricarboxylic acid cycle Yeast Yeasts |
Title | A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans |
URI | https://www.jstor.org/stable/41585213 https://www.ncbi.nlm.nih.gov/pubmed/22628558 https://www.proquest.com/docview/1023756226 https://www.proquest.com/docview/1024097222 https://www.proquest.com/docview/1551643346 https://www.proquest.com/docview/1808078022 https://www.proquest.com/docview/2000415503 https://hal.science/hal-04299019 https://pubmed.ncbi.nlm.nih.gov/PMC3690818 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6Tki8IDYYK4zJIB6GWKbGSZ3mMQWmCXF5YJP2RGQ7jlZty6peJpUfwu_lHNu5lXUCXqIqdt0m58vxd5zj7xDyRooBQ6l8T0iVebiX0ZM6D7xYCQ4zfhaHQ9yc_OUrPzkLP50PzjudX42spcVcHqmfd-4r-R-rwjmwK-6S_QfLVoPCCfgM9oUjWBiOf2Xj5N01PJDgwIrMFN-YLKeLWyCPqDdtKtFNNSb6AqfEZMKqdTGZi0sjFrLEyj3G7UxNPYPxlSjTOU3xvlmTu5ZuADhp9Z6nYd0qYTGxaQVlloH7WmPJYYRS_BYqdod7vdZaLyCgg65LQn83Catl7nC9tPttOhOXK4lObg3Dt_muTgHb-t0-loxk_aDpmAMrB-MQyPu2rqjztLYO7p8TQKNkpUbpjGHfFmBqwGFybfAAxJMNB1Y4fkVzu2zaIJsMwg_WJZvJ6MPouCXn7ISiGluwyt9DhWk3QovubFxgsq3Ne8UkXDGD5zC3BVTuinBWE3UbzOf0MXnkQhaaWPxtkY4utskDW8R0uU22nIFn9MBpmL99Qn4ktAVNWoKPOmjSEpoUYFO3WmjScUENNA9pDcxDCrCkFpZPydnxx9P3J54r5eEpHrG5x6TkLIuyKNJRlMksz_2cSR2rofI10FABLNrXcMOyTIZaK5EBTRcwI-RSAZtQwQ7pFjeF3iVUKfAvwNNlHgeh5kxARBKGuRjyiMuc-T1yVN7xVDmdeyy3cpWaeJfx1FkrddbqkYPqCxMr8bK-62swYdULpdlPks8pnrPEzo9v4Q_sGAtX3YAjD4ElBz2y3zJ51YFBDBPwEIbfKzGQOjczS1FbJYIohfEeeVU1wySAb_ZEoW8Wpg_q1gHXv6cPvhIPgyC8bxxUmY1w9_36Pri3D6OQPlzPMwvP-kIc6nskagG3dcfaLcX4wojaBzxGdc3na8d8QR7WrmOPdOfThX4JAcFc7run8zedxg-M |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mitochondrial+pyruvate+carrier+required+for+pyruvate+uptake+in+yeast%2C+Drosophila%2C+and+humans&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bricker%2C+Daniel+K&rft.au=Taylor%2C+Eric+B&rft.au=Schell%2C+John+C&rft.au=Orsak%2C+Thomas&rft.date=2012-07-06&rft.eissn=1095-9203&rft.volume=337&rft.issue=6090&rft.spage=96&rft_id=info:doi/10.1126%2Fscience.1218099&rft_id=info%3Apmid%2F22628558&rft.externalDocID=22628558 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |