A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans

Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membran...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 337; no. 6090; pp. 96 - 100
Main Authors Bricker, Daniel K., Taylor, Eric B., Schell, John C., Orsak, Thomas, Boutron, Audrey, Chen, Yu-Chan, Cox, James E., Cardon, Caleb M., Van Vranken, Jonathan G., Dephoure, Noah, Redin, Claire, Boudina, Sihem, Gygi, Steven P., Brivet, Michèle, Thummel, Carl S., Rutter, Jared
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 06.07.2012
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.
AbstractList Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.
Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila , and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1 , changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.
Letting Pyruvate InTransport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96, published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93, published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells.
Letting Pyruvate In Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96, published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93, published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells.
Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.
Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni ). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96, published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93, published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells. Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. [PUBLICATION ABSTRACT]
Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the tricarboxylic acid cycle (see the Perspective by Murphy and Divakaruni ). Two groups have now identified proteins that are components of the mitochondrial pyruvate transporter. Bricker et al. (p. 96 , published online 24 May) found that the proteins mitochondrial pyruvate carrier 1 and 2 (MPC1 and MPC2) are required for full pyruvate transport in yeast and Drosophila cells and that humans with mutations in MPC1 have metabolic defects consistent with loss of the transporter. Herzig et al. (p. 93 , published online 24 May) identified the same proteins as components of the carrier in yeast. Furthermore, expression of the mouse proteins in bacteria conferred increased transport of pyruvate into bacterial cells. The genes encoding two components of the pyruvate transporter in mitochondria have been identified. Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila , and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1 , changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier.
Author Schell, John C.
Bricker, Daniel K.
Orsak, Thomas
Boudina, Sihem
Cox, James E.
Thummel, Carl S.
Gygi, Steven P.
Chen, Yu-Chan
Brivet, Michèle
Rutter, Jared
Taylor, Eric B.
Van Vranken, Jonathan G.
Redin, Claire
Boutron, Audrey
Cardon, Caleb M.
Dephoure, Noah
AuthorAffiliation 4 Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
6 Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Strasbourg, France
1 Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
3 Laboratoire de Biochimie, AP-HP Hôpital de Bicêtre, Le Kremlin Bicêtre, France
5 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
7 Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
2 Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
AuthorAffiliation_xml – name: 1 Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
– name: 2 Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
– name: 6 Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), Strasbourg, France
– name: 7 Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
– name: 3 Laboratoire de Biochimie, AP-HP Hôpital de Bicêtre, Le Kremlin Bicêtre, France
– name: 5 Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
– name: 4 Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
Author_xml – sequence: 1
  givenname: Daniel K.
  surname: Bricker
  fullname: Bricker, Daniel K.
– sequence: 2
  givenname: Eric B.
  surname: Taylor
  fullname: Taylor, Eric B.
– sequence: 3
  givenname: John C.
  surname: Schell
  fullname: Schell, John C.
– sequence: 4
  givenname: Thomas
  surname: Orsak
  fullname: Orsak, Thomas
– sequence: 5
  givenname: Audrey
  surname: Boutron
  fullname: Boutron, Audrey
– sequence: 6
  givenname: Yu-Chan
  surname: Chen
  fullname: Chen, Yu-Chan
– sequence: 7
  givenname: James E.
  surname: Cox
  fullname: Cox, James E.
– sequence: 8
  givenname: Caleb M.
  surname: Cardon
  fullname: Cardon, Caleb M.
– sequence: 9
  givenname: Jonathan G.
  surname: Van Vranken
  fullname: Van Vranken, Jonathan G.
– sequence: 10
  givenname: Noah
  surname: Dephoure
  fullname: Dephoure, Noah
– sequence: 11
  givenname: Claire
  surname: Redin
  fullname: Redin, Claire
– sequence: 12
  givenname: Sihem
  surname: Boudina
  fullname: Boudina, Sihem
– sequence: 13
  givenname: Steven P.
  surname: Gygi
  fullname: Gygi, Steven P.
– sequence: 14
  givenname: Michèle
  surname: Brivet
  fullname: Brivet, Michèle
– sequence: 15
  givenname: Carl S.
  surname: Thummel
  fullname: Thummel, Carl S.
– sequence: 16
  givenname: Jared
  surname: Rutter
  fullname: Rutter, Jared
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26103649$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22628558$$D View this record in MEDLINE/PubMed
https://hal.science/hal-04299019$$DView record in HAL
BookMark eNqFkt2LEzEUxYOsuB_67JMyIILCdjcfk8zkRSj1o0JFEffBF0MmuWNTp0k3mSnsf29qu7takD4Fcn_nJJx7TtGRDx4QekrwBSFUXCbjwBu4IJTUWMoH6IRgyUeSYnaETjBmYlTjih-j05QWGOeZZI_QMaWC1pzXJ-jHuPjk-mDmwdvodFd8uYnDWvdQTHSMDmLxFa4HF8EWbYj306tVr39B4XzxHXTqz4u3MaSwmrtOnxfa22I6LLVPj9HDVncJnuzOM3T1_t23yXQ0-_zh42Q8GxlR0X5Em0ZQW9mqgqqyjW1b0tIGpKkNAYxrTStGIP_Y2qYEMNqWJdEYi7Yx0BDDztCbre9qaJZgDfg-6k6tolvqeKOCdurfiXdz9TOsFRMS16TOBq-3BvM92XQ8U5s7XFIpMZFrktlXu8diuB4g9WrpkoGu0x7CkBTNQZeEc8wOonlreT81pvQwyjkRJWOlOIxiWmJZ0T-uL_bQRRiiz7vYUKziInchU8__ju8ugNueZODlDtDJ6K6N2huX7jlBctVKmTm-5UyuQ4rQKuN63buwSd11-U216a3a9Vbtept1l3u6W-v_K55tFYvUh3iH59xrTgljvwGBFPmM
CODEN SCIEAS
CitedBy_id crossref_primary_10_1038_s42255_022_00645_2
crossref_primary_10_1073_pnas_1602751113
crossref_primary_10_1186_s12915_019_0733_6
crossref_primary_10_4018_IJKDB_2017070103
crossref_primary_10_3390_ijms241914709
crossref_primary_10_1016_j_fuel_2021_121634
crossref_primary_10_1007_s00018_013_1539_2
crossref_primary_10_1016_j_ejphar_2021_174627
crossref_primary_10_1016_j_molmet_2016_06_016
crossref_primary_10_1161_ATVBAHA_117_309510
crossref_primary_10_3390_ijms26010264
crossref_primary_10_1080_15592324_2019_1629269
crossref_primary_10_1002_pro_4259
crossref_primary_10_3389_fnins_2014_00408
crossref_primary_10_1016_j_devcel_2022_03_002
crossref_primary_10_1007_s00253_016_7636_z
crossref_primary_10_1371_journal_pone_0062012
crossref_primary_10_1002_anie_201914391
crossref_primary_10_3390_nu14173605
crossref_primary_10_1038_s41598_018_21740_z
crossref_primary_10_1111_febs_16015
crossref_primary_10_1007_s12035_024_04435_7
crossref_primary_10_1021_acs_jcim_1c00879
crossref_primary_10_1016_j_gde_2016_05_003
crossref_primary_10_1038_ncb3575
crossref_primary_10_1089_ars_2023_0489
crossref_primary_10_15252_embj_201490197
crossref_primary_10_1186_s12967_021_02889_0
crossref_primary_10_1038_srep08138
crossref_primary_10_1126_sciadv_abi8602
crossref_primary_10_1371_journal_pone_0280491
crossref_primary_10_1177_0300060520919236
crossref_primary_10_1016_j_molcel_2013_01_018
crossref_primary_10_1534_genetics_117_300201
crossref_primary_10_1111_imr_12732
crossref_primary_10_1534_g3_116_034389
crossref_primary_10_3390_cells9010146
crossref_primary_10_1016_j_bbadis_2020_165721
crossref_primary_10_3390_membranes12100916
crossref_primary_10_1152_ajpendo_00306_2024
crossref_primary_10_1371_journal_pone_0231085
crossref_primary_10_1016_j_ydbio_2021_01_019
crossref_primary_10_18632_oncotarget_13210
crossref_primary_10_3390_biom12020221
crossref_primary_10_1089_ars_2012_5104
crossref_primary_10_1016_j_ymben_2020_06_010
crossref_primary_10_1016_j_isci_2023_108196
crossref_primary_10_1186_s40170_019_0201_3
crossref_primary_10_3390_genes12020300
crossref_primary_10_1101_gad_349066_121
crossref_primary_10_1210_er_2017_00064
crossref_primary_10_1158_2159_8290_CD_19_0959
crossref_primary_10_3390_ijms22168504
crossref_primary_10_1016_j_jbiotec_2016_10_013
crossref_primary_10_1093_hmg_ddad154
crossref_primary_10_1038_s41577_019_0203_y
crossref_primary_10_1016_j_bmc_2018_10_033
crossref_primary_10_1007_s42764_022_00078_x
crossref_primary_10_7554_eLife_94187
crossref_primary_10_1007_s00294_019_01035_0
crossref_primary_10_1016_j_molcel_2014_10_018
crossref_primary_10_1073_pnas_1508259112
crossref_primary_10_15252_embr_202050085
crossref_primary_10_1038_ncb3593
crossref_primary_10_1016_j_jcmgh_2018_09_017
crossref_primary_10_1038_s41586_025_08667_y
crossref_primary_10_1016_j_meteno_2014_09_001
crossref_primary_10_1038_s41556_023_01117_9
crossref_primary_10_1016_j_kint_2019_08_023
crossref_primary_10_15252_embr_202050071
crossref_primary_10_1016_j_bbamcr_2012_11_014
crossref_primary_10_1186_s12976_015_0005_2
crossref_primary_10_1084_jem_20221373
crossref_primary_10_1152_ajpendo_00057_2020
crossref_primary_10_1016_j_bbrc_2016_04_117
crossref_primary_10_1016_j_cmet_2022_10_008
crossref_primary_10_7554_eLife_88866
crossref_primary_10_1016_j_immuni_2016_06_011
crossref_primary_10_1096_fj_202301646R
crossref_primary_10_1172_jci_insight_124522
crossref_primary_10_1016_j_jbc_2022_101775
crossref_primary_10_1016_j_bbabio_2012_06_101
crossref_primary_10_1096_fj_202200848R
crossref_primary_10_1038_nrc3365
crossref_primary_10_1152_ajpendo_00444_2020
crossref_primary_10_7554_eLife_64821
crossref_primary_10_1039_C7AN01566F
crossref_primary_10_1016_j_molmet_2018_01_002
crossref_primary_10_1152_ajpendo_00258_2023
crossref_primary_10_1210_en_2017_00695
crossref_primary_10_1016_j_molmet_2023_101694
crossref_primary_10_1093_femsyr_foac033
crossref_primary_10_1089_omi_2012_0090
crossref_primary_10_1095_biolreprod_113_113217
crossref_primary_10_1152_ajpcell_00235_2020
crossref_primary_10_1126_sciadv_add5220
crossref_primary_10_1016_j_tibs_2015_02_002
crossref_primary_10_1128_MCB_00166_16
crossref_primary_10_1016_j_celrep_2020_02_042
crossref_primary_10_3389_fncel_2018_00274
crossref_primary_10_1080_1040841X_2018_1425671
crossref_primary_10_1016_j_molcel_2014_09_026
crossref_primary_10_1016_j_molcel_2014_09_025
crossref_primary_10_1038_s41388_019_1051_8
crossref_primary_10_1038_s41575_021_00431_7
crossref_primary_10_1007_s11910_015_0590_9
crossref_primary_10_1016_j_molcel_2014_09_024
crossref_primary_10_1016_j_bbrc_2015_11_036
crossref_primary_10_1152_ajpendo_00074_2022
crossref_primary_10_1016_j_jbc_2023_105375
crossref_primary_10_14814_phy2_14054
crossref_primary_10_3390_biom10081107
crossref_primary_10_3390_ijms22020604
crossref_primary_10_1016_j_molmet_2022_101469
crossref_primary_10_1186_s13068_016_0670_3
crossref_primary_10_30970_sbi_1701_703
crossref_primary_10_1016_j_yebeh_2023_109618
crossref_primary_10_1002_ange_201914391
crossref_primary_10_1016_j_molmet_2022_101466
crossref_primary_10_3390_biom13050719
crossref_primary_10_1038_nrd4391
crossref_primary_10_1016_j_celrep_2019_07_098
crossref_primary_10_3390_cancers13081809
crossref_primary_10_1016_j_yjmcc_2014_10_019
crossref_primary_10_1534_g3_119_400193
crossref_primary_10_1074_jbc_M116_753509
crossref_primary_10_1152_ajpendo_00508_2014
crossref_primary_10_1093_jxb_eru100
crossref_primary_10_1128_aem_02215_21
crossref_primary_10_1186_s10020_024_00899_4
crossref_primary_10_1016_j_jare_2020_12_007
crossref_primary_10_1016_j_redox_2016_02_001
crossref_primary_10_1002_bit_27439
crossref_primary_10_1038_s41598_022_13249_3
crossref_primary_10_3390_ijms21093403
crossref_primary_10_3389_fphar_2016_00521
crossref_primary_10_1111_apha_14016
crossref_primary_10_7554_eLife_53917
crossref_primary_10_1016_j_jbc_2022_102838
crossref_primary_10_2139_ssrn_3155509
crossref_primary_10_3389_fmicb_2022_1029828
crossref_primary_10_1016_j_bbi_2020_11_031
crossref_primary_10_11569_wcjd_v32_i4_243
crossref_primary_10_1101_gad_229724_113
crossref_primary_10_1002_bit_26477
crossref_primary_10_1016_j_celrep_2014_05_017
crossref_primary_10_1016_j_cbi_2024_111141
crossref_primary_10_1073_pnas_2019046118
crossref_primary_10_1007_s10545_014_9708_5
crossref_primary_10_1016_j_jbc_2021_101554
crossref_primary_10_1016_j_molmet_2022_101481
crossref_primary_10_1016_j_jgr_2022_02_002
crossref_primary_10_6013_jbrewsocjapan_109_335
crossref_primary_10_1371_journal_pgen_1005309
crossref_primary_10_1016_j_cmet_2022_03_013
crossref_primary_10_7554_eLife_51601
crossref_primary_10_1016_j_chemosphere_2022_134088
crossref_primary_10_1126_sciadv_adf9522
crossref_primary_10_15252_embr_201439757
crossref_primary_10_1016_j_ijcard_2014_05_009
crossref_primary_10_1146_annurev_bioeng_071516_044546
crossref_primary_10_1002_glia_24484
crossref_primary_10_1038_s41380_020_00980_4
crossref_primary_10_1097_PPO_0000000000000106
crossref_primary_10_1186_2049_3002_1_6
crossref_primary_10_1016_j_cmet_2020_12_003
crossref_primary_10_1016_j_scitotenv_2023_167743
crossref_primary_10_1002_jimd_12071
crossref_primary_10_1128_EC_00189_14
crossref_primary_10_1016_j_tcb_2018_02_007
crossref_primary_10_1016_j_molmet_2023_101808
crossref_primary_10_1113_JP279963
crossref_primary_10_1038_ni_3796
crossref_primary_10_1073_pnas_1812941116
crossref_primary_10_1016_j_biotechadv_2019_03_017
crossref_primary_10_1073_pnas_2216810120
crossref_primary_10_1186_s12934_019_1226_6
crossref_primary_10_1111_dom_12308
crossref_primary_10_1113_JP280955
crossref_primary_10_1136_jitc_2021_004337
crossref_primary_10_1111_mmi_13325
crossref_primary_10_1016_j_celrep_2019_05_066
crossref_primary_10_1016_j_pbiomolbio_2023_03_003
crossref_primary_10_1007_s12291_017_0668_z
crossref_primary_10_1016_j_ejmech_2024_116666
crossref_primary_10_1042_BCJ20160068
crossref_primary_10_1016_j_celrep_2022_111069
crossref_primary_10_1146_annurev_pathmechdis_031521_041113
crossref_primary_10_7554_eLife_88866_3
crossref_primary_10_1016_j_ymben_2014_11_008
crossref_primary_10_1186_s12263_018_0609_3
crossref_primary_10_1016_j_mito_2014_09_007
crossref_primary_10_1016_j_bbagen_2023_130492
crossref_primary_10_1016_j_celrep_2020_108423
crossref_primary_10_1086_679608
crossref_primary_10_1016_j_envint_2023_107942
crossref_primary_10_1097_FJC_0000000000000054
crossref_primary_10_1210_me_2013_1427
crossref_primary_10_1172_jci_insight_142464
crossref_primary_10_3389_fimmu_2021_630380
crossref_primary_10_1074_jbc_M113_521666
crossref_primary_10_1016_j_molcel_2015_06_035
crossref_primary_10_1038_s41598_023_37000_8
crossref_primary_10_1172_JCI167371
crossref_primary_10_1016_j_expneurol_2019_03_018
crossref_primary_10_1016_j_stem_2021_02_011
crossref_primary_10_3390_biom10081162
crossref_primary_10_1016_j_tem_2014_12_002
crossref_primary_10_1074_jbc_M115_712166
crossref_primary_10_1016_j_molmet_2017_09_002
crossref_primary_10_1073_pnas_1221740110
crossref_primary_10_1111_febs_16195
crossref_primary_10_1016_j_ymben_2014_02_001
crossref_primary_10_1161_JAHA_113_000301
crossref_primary_10_1186_s12944_024_02092_2
crossref_primary_10_1016_j_bbabio_2017_03_006
crossref_primary_10_1158_1078_0432_CCR_19_1543
crossref_primary_10_1371_journal_pone_0079405
crossref_primary_10_1016_j_mito_2013_08_011
crossref_primary_10_1016_j_molmed_2019_11_004
crossref_primary_10_1016_j_protis_2015_08_002
crossref_primary_10_3389_fgene_2021_649764
crossref_primary_10_1242_dmm_050404
crossref_primary_10_1074_mcp_M115_051862
crossref_primary_10_1016_j_bmcl_2024_129923
crossref_primary_10_1016_j_tins_2021_01_001
crossref_primary_10_3389_fcell_2021_606639
crossref_primary_10_1073_pnas_1602754113
crossref_primary_10_1038_s41388_023_02593_x
crossref_primary_10_1038_s42255_022_00588_8
crossref_primary_10_3390_cancers15153898
crossref_primary_10_1016_j_heliyon_2023_e13739
crossref_primary_10_1016_j_ymeth_2014_02_034
crossref_primary_10_1080_21655979_2021_1978189
crossref_primary_10_1186_s12934_022_01924_z
crossref_primary_10_1523_JNEUROSCI_1284_20_2020
crossref_primary_10_1016_j_cub_2014_04_033
crossref_primary_10_1016_j_tcb_2020_04_004
crossref_primary_10_1016_j_brainresbull_2022_05_007
crossref_primary_10_1016_j_pbi_2016_03_019
crossref_primary_10_1111_mmi_13669
crossref_primary_10_1016_j_pbi_2016_04_007
crossref_primary_10_1016_j_tins_2013_04_002
crossref_primary_10_3390_cancers14010245
crossref_primary_10_3390_ijms26072947
crossref_primary_10_1073_pnas_1311244110
crossref_primary_10_1016_j_mito_2017_05_011
crossref_primary_10_1002_2211_5463_13806
crossref_primary_10_1097_MD_0000000000037505
crossref_primary_10_1093_femsle_fnab088
crossref_primary_10_1016_j_bbamcr_2019_06_004
crossref_primary_10_1002_jbmr_2364
crossref_primary_10_1186_s12935_021_01996_8
crossref_primary_10_1016_j_bbamcr_2016_01_017
crossref_primary_10_1042_BJ20141171
crossref_primary_10_1146_annurev_pathol_012615_044329
crossref_primary_10_1371_journal_ppat_1004263
crossref_primary_10_3390_cancers12071731
crossref_primary_10_1007_s10545_014_9787_3
crossref_primary_10_1021_acs_jmedchem_0c01570
crossref_primary_10_1126_science_1225601
crossref_primary_10_1038_nrd_2016_151
crossref_primary_10_1093_g3journal_jkad228
crossref_primary_10_1016_j_molmet_2024_101900
crossref_primary_10_1016_j_biopha_2024_116136
crossref_primary_10_1016_j_molmet_2023_101849
crossref_primary_10_1002_hep4_1036
crossref_primary_10_1016_j_jbc_2022_102648
crossref_primary_10_1002_mc_23705
crossref_primary_10_1002_rcm_8159
crossref_primary_10_2337_dbi18_0024
crossref_primary_10_1007_s10562_018_2616_9
crossref_primary_10_5487_TR_2015_31_4_323
crossref_primary_10_1038_s41598_019_40631_5
crossref_primary_10_1080_15592324_2020_1719312
crossref_primary_10_1111_pbi_13922
crossref_primary_10_1002_1873_3468_13509
crossref_primary_10_3390_biomedicines10020365
crossref_primary_10_1186_s13024_018_0260_x
crossref_primary_10_1016_j_bbabio_2016_03_034
crossref_primary_10_1126_sciadv_adp7423
crossref_primary_10_1111_febs_13603
crossref_primary_10_1016_j_nbd_2024_106623
crossref_primary_10_1016_j_molcel_2015_10_018
crossref_primary_10_1530_ERC_13_0132
crossref_primary_10_1038_s41419_025_07449_8
crossref_primary_10_1126_scisignal_aaz6206
crossref_primary_10_1128_MCB_00770_15
crossref_primary_10_1038_s42255_020_00296_1
crossref_primary_10_3389_fimmu_2022_1090429
crossref_primary_10_1371_journal_pcbi_1009373
crossref_primary_10_1016_j_cub_2016_08_025
crossref_primary_10_1016_j_cmet_2018_03_008
crossref_primary_10_1016_j_omtn_2023_01_010
crossref_primary_10_3389_fcvm_2021_789267
crossref_primary_10_1007_s11926_016_0615_7
crossref_primary_10_1016_j_ygeno_2021_12_004
crossref_primary_10_1126_scitranslmed_aag2210
crossref_primary_10_1161_CIRCGENETICS_113_000404
crossref_primary_10_3390_biom10071068
crossref_primary_10_1038_s41580_022_00572_w
crossref_primary_10_1128_mBio_00976_17
crossref_primary_10_1113_EP086380
crossref_primary_10_1016_j_marenvres_2023_106330
crossref_primary_10_18632_oncotarget_26188
crossref_primary_10_1242_dev_150573
crossref_primary_10_1155_2021_6618837
crossref_primary_10_1038_s41467_024_51117_y
crossref_primary_10_1016_j_cmet_2019_11_002
crossref_primary_10_18632_oncotarget_7174
crossref_primary_10_1016_j_expneurol_2020_113282
crossref_primary_10_1016_j_jshs_2020_02_006
crossref_primary_10_1093_molbev_msz239
crossref_primary_10_15252_embj_2021108648
crossref_primary_10_1007_s40200_020_00566_5
crossref_primary_10_1084_jem_20181965
crossref_primary_10_1016_j_tplants_2016_04_003
crossref_primary_10_3389_fbioe_2021_774175
crossref_primary_10_1002_jcp_25932
crossref_primary_10_1111_1462_2920_13794
crossref_primary_10_1177_1535370220975206
crossref_primary_10_1126_science_aat9528
crossref_primary_10_1039_C9RA07418J
crossref_primary_10_1371_journal_pone_0115791
crossref_primary_10_31083_j_fbs1601005
crossref_primary_10_3389_fgene_2023_1192799
crossref_primary_10_15252_embj_201591228
crossref_primary_10_1016_j_stem_2024_09_015
crossref_primary_10_1534_genetics_114_168609
crossref_primary_10_1016_j_celrep_2022_110802
crossref_primary_10_1161_CIRCRESAHA_114_301863
crossref_primary_10_1016_j_scitotenv_2020_144185
crossref_primary_10_1016_j_bbamcr_2016_07_004
crossref_primary_10_1016_j_jbc_2023_104877
crossref_primary_10_15252_embj_201797572
crossref_primary_10_1172_jci_insight_126132
crossref_primary_10_1016_j_cmet_2024_10_013
crossref_primary_10_1083_jcb_201612067
crossref_primary_10_1165_rcmb_2022_0360OC
crossref_primary_10_1073_pnas_2314314121
crossref_primary_10_1074_jbc_M115_644534
crossref_primary_10_1681_ASN_2013070791
crossref_primary_10_1002_jbmr_1976
crossref_primary_10_1016_j_celrep_2015_03_024
crossref_primary_10_1038_s42255_022_00619_4
crossref_primary_10_1242_dev_175315
crossref_primary_10_4049_jimmunol_1901484
crossref_primary_10_1016_j_jbiosc_2013_09_011
crossref_primary_10_26508_lsa_202201514
crossref_primary_10_1016_j_celrep_2019_03_029
crossref_primary_10_1371_journal_pgen_1006056
crossref_primary_10_1002_mrc_5341
crossref_primary_10_1016_j_jchromb_2022_123214
crossref_primary_10_1152_physiolgenomics_00064_2019
crossref_primary_10_1002_jimd_12462
crossref_primary_10_1074_jbc_M113_507285
crossref_primary_10_1016_j_omton_2024_200897
crossref_primary_10_1002_advs_202307224
crossref_primary_10_2139_ssrn_3979182
crossref_primary_10_1093_pcp_pct155
crossref_primary_10_1016_j_cmet_2015_07_027
crossref_primary_10_18632_oncotarget_7405
crossref_primary_10_1016_j_cmet_2015_07_028
crossref_primary_10_3390_cells11050771
crossref_primary_10_1155_2022_2280973
crossref_primary_10_1016_j_cmet_2014_05_012
crossref_primary_10_1007_s11154_013_9284_2
crossref_primary_10_1021_acssuschemeng_2c03063
crossref_primary_10_1016_j_ceb_2014_10_008
crossref_primary_10_1016_j_freeradbiomed_2024_01_043
crossref_primary_10_1038_srep16665
crossref_primary_10_1007_s00253_022_12357_4
crossref_primary_10_1038_s41418_020_00729_0
crossref_primary_10_1016_j_ajpath_2024_02_004
crossref_primary_10_1016_j_molcel_2018_06_039
crossref_primary_10_1042_BJ20151120
crossref_primary_10_1074_jbc_M117_790923
crossref_primary_10_1111_1462_2920_12327
crossref_primary_10_1038_s12276_022_00802_3
crossref_primary_10_1016_j_celrep_2018_09_034
crossref_primary_10_1155_2022_2014625
crossref_primary_10_3389_fphys_2017_01044
crossref_primary_10_1093_cvr_cvac061
crossref_primary_10_1113_JP278930
crossref_primary_10_1002_jnr_23196
crossref_primary_10_1080_15592294_2025_2468113
crossref_primary_10_2139_ssrn_3938441
crossref_primary_10_1055_s_0044_1788072
crossref_primary_10_4049_jimmunol_1501537
crossref_primary_10_1182_bloodadvances_2022008345
crossref_primary_10_1584_jpestics_W12_29
crossref_primary_10_1111_febs_13992
crossref_primary_10_1073_pnas_1303360110
crossref_primary_10_1021_acs_jcim_2c00630
crossref_primary_10_3389_fcvm_2021_716213
crossref_primary_10_1007_s11010_017_2942_z
crossref_primary_10_3390_biom10121611
crossref_primary_10_1016_j_cmet_2020_03_011
crossref_primary_10_3390_molecules23020156
crossref_primary_10_1093_brain_awac444
crossref_primary_10_1016_j_it_2021_06_005
crossref_primary_10_3389_fphar_2017_00958
crossref_primary_10_1042_BST20190933
crossref_primary_10_3389_fmolb_2022_929328
crossref_primary_10_1016_j_it_2023_01_002
crossref_primary_10_1016_j_scr_2023_103206
crossref_primary_10_1038_s41419_019_1324_8
crossref_primary_10_3390_biom10071013
crossref_primary_10_3390_cells11071177
crossref_primary_10_1007_s11060_019_03226_8
crossref_primary_10_1182_bloodadvances_2021004259
crossref_primary_10_7554_eLife_45873
crossref_primary_10_1093_jxb_erae398
crossref_primary_10_1016_j_ymben_2015_07_004
crossref_primary_10_1146_annurev_biochem_072820_020508
crossref_primary_10_1016_j_plantsci_2024_112325
crossref_primary_10_1002_mrc_5419
crossref_primary_10_1007_s11120_018_0569_x
crossref_primary_10_1371_journal_pntd_0003975
crossref_primary_10_3390_jcm10040721
crossref_primary_10_1038_s42255_020_00276_5
crossref_primary_10_3390_biom10071008
crossref_primary_10_3389_fonc_2023_1175532
crossref_primary_10_1038_s41556_018_0124_1
crossref_primary_10_1038_s44321_024_00155_6
crossref_primary_10_1093_jas_skac035
crossref_primary_10_1016_j_tcb_2013_07_010
crossref_primary_10_1128_mbio_01356_23
crossref_primary_10_1038_s41418_018_0191_7
crossref_primary_10_1534_g3_119_400633
crossref_primary_10_3389_fmars_2022_1041705
crossref_primary_10_1242_jeb_245828
crossref_primary_10_1016_j_heliyon_2019_e01679
crossref_primary_10_1016_j_ejmech_2024_117150
crossref_primary_10_3171_2017_9_JNS172036
crossref_primary_10_3389_fnins_2018_00404
crossref_primary_10_1016_j_copbio_2012_09_010
crossref_primary_10_3390_cancers17030498
crossref_primary_10_1111_cas_13980
crossref_primary_10_1021_acssynbio_1c00002
crossref_primary_10_1038_s42255_020_00288_1
crossref_primary_10_1172_JCI178540
crossref_primary_10_2527_jas_2017_1457
crossref_primary_10_1074_jbc_REV118_000828
crossref_primary_10_3389_fonc_2016_00135
crossref_primary_10_1007_s00018_019_03342_8
crossref_primary_10_3945_an_113_004762
crossref_primary_10_1042_BCJ20170967
crossref_primary_10_1016_j_isci_2020_101116
crossref_primary_10_1093_cvr_cvab068
crossref_primary_10_18632_oncotarget_5386
crossref_primary_10_1021_acs_jafc_3c08724
crossref_primary_10_18632_oncotarget_13717
crossref_primary_10_1128_JB_00296_21
crossref_primary_10_1016_j_molmet_2024_102005
crossref_primary_10_1002_oby_22678
crossref_primary_10_1038_s41586_020_2741_7
crossref_primary_10_3390_cancers13071488
crossref_primary_10_1128_spectrum_05043_22
crossref_primary_10_1093_femsyr_fow017
crossref_primary_10_1007_s00414_021_02532_z
crossref_primary_10_1016_j_celrep_2024_113772
crossref_primary_10_1016_j_ecoenv_2023_115197
crossref_primary_10_1038_srep33732
crossref_primary_10_1016_j_semcdb_2022_03_040
crossref_primary_10_1534_genetics_117_200014
crossref_primary_10_1158_1078_0432_CCR_12_2587
crossref_primary_10_1371_journal_pone_0315719
crossref_primary_10_1016_j_cbd_2024_101191
crossref_primary_10_1016_j_synbio_2020_06_005
crossref_primary_10_1007_s11064_013_1199_5
crossref_primary_10_1186_s40104_020_00437_2
crossref_primary_10_18632_oncotarget_10202
crossref_primary_10_1016_j_molmet_2024_102018
crossref_primary_10_3390_md17110611
crossref_primary_10_1038_s41598_017_14868_x
crossref_primary_10_3390_microorganisms11020483
crossref_primary_10_1126_sciadv_abq0117
crossref_primary_10_1016_j_celrep_2023_112153
crossref_primary_10_3390_brainsci9090238
crossref_primary_10_18632_oncotarget_18199
crossref_primary_10_1186_s12870_017_1175_3
crossref_primary_10_1093_mp_ssu061
crossref_primary_10_1039_D3CC01861J
crossref_primary_10_1016_j_cmet_2021_02_005
crossref_primary_10_3390_cancers13061260
crossref_primary_10_1038_nature13670
crossref_primary_10_1371_journal_pone_0085780
crossref_primary_10_1371_journal_pcbi_1004261
crossref_primary_10_1016_j_cmet_2017_08_002
crossref_primary_10_1371_journal_pone_0098966
crossref_primary_10_1097_FBP_0000000000000505
crossref_primary_10_3390_biom13020261
crossref_primary_10_1016_j_biosystems_2017_02_003
crossref_primary_10_1016_j_metabol_2024_155787
crossref_primary_10_1111_nyas_14678
crossref_primary_10_1146_annurev_biochem_061516_044757
crossref_primary_10_2174_1568026623666230726145514
crossref_primary_10_1371_journal_pone_0061551
crossref_primary_10_1073_pnas_1720908115
crossref_primary_10_1007_s13205_022_03158_7
crossref_primary_10_1016_j_cell_2019_07_029
crossref_primary_10_1158_2326_6066_CIR_19_0371
crossref_primary_10_1021_acs_jafc_0c03967
crossref_primary_10_4161_15592324_2014_973810
crossref_primary_10_3389_fnut_2022_800901
crossref_primary_10_1016_j_ebiom_2018_07_039
crossref_primary_10_1093_jn_nxab342
crossref_primary_10_1007_s12072_019_10001_4
crossref_primary_10_3390_ijms19113550
crossref_primary_10_3390_biology9110407
crossref_primary_10_1152_physrev_00009_2016
crossref_primary_10_3390_biom15020223
crossref_primary_10_4236_cellbio_2014_34011
crossref_primary_10_1016_j_devcel_2022_02_019
crossref_primary_10_1038_s41598_018_36060_5
crossref_primary_10_1152_japplphysiol_00628_2014
crossref_primary_10_7554_eLife_66865
crossref_primary_10_1016_j_mec_2024_e00247
crossref_primary_10_1021_jacs_0c10836
crossref_primary_10_1146_annurev_nutr_111120_111518
crossref_primary_10_1111_bph_14758
crossref_primary_10_3390_biom13050808
crossref_primary_10_1038_srep10722
crossref_primary_10_1016_j_celrep_2019_09_053
crossref_primary_10_3390_microorganisms9102044
crossref_primary_10_1038_s41374_018_0138_0
crossref_primary_10_1016_j_ebiom_2017_04_009
crossref_primary_10_1016_j_tcb_2017_04_004
crossref_primary_10_3390_nu14183842
crossref_primary_10_1038_s42255_023_00800_3
crossref_primary_10_3389_fonc_2021_636565
crossref_primary_10_1016_j_cell_2025_01_015
crossref_primary_10_1016_j_ceca_2020_102288
crossref_primary_10_1016_j_celrep_2018_08_091
crossref_primary_10_1126_science_1218530
crossref_primary_10_1016_j_mito_2014_05_007
crossref_primary_10_1016_j_celrep_2020_01_060
crossref_primary_10_15252_embj_2018100785
crossref_primary_10_3389_fendo_2021_651763
crossref_primary_10_1186_s12911_022_02020_3
crossref_primary_10_1016_j_bbamem_2016_09_017
crossref_primary_10_1152_physiol_00009_2020
crossref_primary_10_1534_g3_114_010652
crossref_primary_10_1002_1873_3468_14485
crossref_primary_10_7554_eLife_22706
crossref_primary_10_1007_s00395_013_0358_9
crossref_primary_10_1113_JP270254
crossref_primary_10_3390_cancers15051417
crossref_primary_10_3389_fcell_2021_725114
crossref_primary_10_1111_jam_14494
crossref_primary_10_1021_acs_jafc_4c09840
crossref_primary_10_1073_pnas_1211198109
crossref_primary_10_1002_jcp_26484
crossref_primary_10_1038_s42255_023_00910_y
crossref_primary_10_1038_s41574_021_00507_z
crossref_primary_10_1016_j_bbamcr_2016_06_001
crossref_primary_10_1038_s41580_023_00650_7
crossref_primary_10_15252_embr_201949634
crossref_primary_10_1021_acs_jmedchem_9b01701
crossref_primary_10_3390_cancers15020411
crossref_primary_10_1002_cam4_6022
crossref_primary_10_1038_s41585_020_0288_x
crossref_primary_10_1093_jas_sky237
crossref_primary_10_1074_jbc_M116_733840
crossref_primary_10_1155_2020_2608318
crossref_primary_10_1016_j_postharvbio_2018_11_017
crossref_primary_10_1007_s00424_016_1816_7
crossref_primary_10_1016_j_jpsychires_2019_04_007
crossref_primary_10_1038_s41556_023_01274_x
crossref_primary_10_1016_j_cmet_2014_02_010
crossref_primary_10_1016_j_neulet_2013_07_051
crossref_primary_10_1038_s42255_018_0002_y
crossref_primary_10_1111_1751_7915_14410
crossref_primary_10_1186_s13071_023_05695_3
crossref_primary_10_1021_acs_jafc_7b05800
crossref_primary_10_1016_j_cell_2018_08_040
crossref_primary_10_1016_j_freeradbiomed_2020_11_035
crossref_primary_10_1523_ENEURO_0353_22_2023
crossref_primary_10_1007_s00018_021_03996_3
crossref_primary_10_1016_j_chemphyslip_2013_12_009
crossref_primary_10_3390_plants9010117
crossref_primary_10_3390_cells10092348
crossref_primary_10_1186_s40170_015_0134_4
crossref_primary_10_1111_1567_1364_12120
crossref_primary_10_15252_embj_201487943
crossref_primary_10_7554_eLife_52558
crossref_primary_10_1186_s13068_020_01760_6
crossref_primary_10_1016_j_mod_2018_02_004
crossref_primary_10_7554_eLife_72595
crossref_primary_10_1093_plcell_koab148
crossref_primary_10_1128_mBio_00540_21
crossref_primary_10_1074_jbc_M115_701862
crossref_primary_10_1186_s12882_020_01931_5
crossref_primary_10_1186_s12885_016_2941_6
crossref_primary_10_13070_mm_en_3_193
crossref_primary_10_3389_fcell_2024_1411162
crossref_primary_10_3892_mmr_2018_9079
crossref_primary_10_1242_jcs_260370
crossref_primary_10_3390_membranes10090236
crossref_primary_10_1038_s42255_020_00310_6
crossref_primary_10_1016_j_actbio_2024_05_016
crossref_primary_10_1016_j_ymben_2016_02_009
crossref_primary_10_3389_fimmu_2022_891475
crossref_primary_10_3389_fcvm_2024_1349417
crossref_primary_10_1016_j_cell_2018_07_013
crossref_primary_10_1167_iovs_64_13_36
crossref_primary_10_18585_inabj_v4i3_172
crossref_primary_10_1002_ijc_31812
crossref_primary_10_1371_journal_pone_0191419
crossref_primary_10_1016_j_cmet_2012_07_013
crossref_primary_10_1016_j_bbrc_2017_11_134
crossref_primary_10_1038_clpt_2013_10
crossref_primary_10_1016_j_cub_2020_01_024
crossref_primary_10_1080_13543784_2023_2263369
crossref_primary_10_1016_j_gendis_2020_01_016
crossref_primary_10_1016_j_bbamcr_2012_08_014
crossref_primary_10_1038_s41422_023_00864_6
crossref_primary_10_1093_lifemeta_load038
crossref_primary_10_1007_s10863_016_9670_z
crossref_primary_10_1016_j_tibs_2016_01_002
crossref_primary_10_1186_s13578_023_01098_0
crossref_primary_10_1038_s41598_019_56446_3
crossref_primary_10_1146_annurev_cancerbio_062822_120857
crossref_primary_10_1016_j_tim_2014_07_007
crossref_primary_10_7554_eLife_94187_3
crossref_primary_10_3390_antiox10050661
crossref_primary_10_1074_jbc_M115_711663
crossref_primary_10_1016_j_bbamcr_2018_09_007
crossref_primary_10_1016_j_yjmcc_2024_08_002
Cites_doi 10.1042/bj1720377
10.1126/science.1218530
10.1038/nature05482
10.1042/bj1380313
10.1016/S0065-2571(01)00061-9
10.1111/j.1432-1033.1990.tb19186.x
10.1016/j.cell.2008.06.016
10.1042/bj1960471
10.1016/j.cell.2011.02.013
10.1007/s11033-007-9169-0
10.1128/JB.180.11.2875-2882.1998
10.1074/jbc.M510425200
10.1073/pnas.2135385100
10.1021/bi00531a023
10.1042/bj1480085
10.1111/j.1432-1033.1974.tb03831.x
10.1016/0020-711X(83)90073-3
10.1016/S1096-7192(03)00016-7
10.1042/BJ20030995
ContentType Journal Article
Copyright Copyright © 2012 American Association for the Advancement of Science
2015 INIST-CNRS
Copyright © 2012, American Association for the Advancement of Science
Distributed under a Creative Commons Attribution 4.0 International License
Copyright 2012 by the American Association for the Advancement of Science; all rights reserved. 2012
Copyright_xml – notice: Copyright © 2012 American Association for the Advancement of Science
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012, American Association for the Advancement of Science
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright 2012 by the American Association for the Advancement of Science; all rights reserved. 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
1XC
5PM
DOI 10.1126/science.1218099
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
Algology Mycology and Protozoology Abstracts (Microbiology C)
Technology Research Database
AGRICOLA
MEDLINE - Academic

Materials Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 100
ExternalDocumentID PMC3690818
oai_HAL_hal_04299019v1
2704224981
22628558
26103649
10_1126_science_1218099
41585213
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK071962
– fundername: NIGMS NIH HHS
  grantid: R01GM083746
– fundername: NIGMS NIH HHS
  grantid: R01 GM087346
– fundername: NIDDK NIH HHS
  grantid: RC1DK086426
– fundername: NIDDK NIH HHS
  grantid: RC1 DK086426
– fundername: NIDDK NIH HHS
  grantid: R24DK092784
– fundername: NIGMS NIH HHS
  grantid: R01 GM094232
– fundername: NIDDK NIH HHS
  grantid: R24 DK092784
– fundername: NIGMS NIH HHS
  grantid: T32 GM007464
– fundername: NIDDK NIH HHS
  grantid: P30 DK072437
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases : NIDDK
  grantid: R24 DK092784 || DK
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: P30 HL101310 || HL
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQAM
ACQOY
ACTDY
ACUHS
ADDRP
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
AQVQM
ASPBG
AVWKF
BKF
BLC
C2-
C45
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~H1
~KM
~ZZ
AAYXX
ABCQX
CITATION
K-O
.GJ
.GO
0-V
186
3EH
41~
42X
66.
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AAYOK
ABDPE
ABJCF
ABTAH
ABUWG
ADBBV
ADMHC
ADZCM
AEUYN
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C51
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
GX1
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZT
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UIG
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YCJ
YJ6
YXB
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~G0
0B8
68V
8P6
CGR
CUY
CVF
DOOOF
ECM
EIF
ESX
IGG
JSODD
NPM
PKN
RHF
VQA
YIF
YIN
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7S9
L.6
1XC
PHGZM
PJZUB
PPXIY
PQGLB
5PM
ID FETCH-LOGICAL-c672t-2bb62d7d77e77dbdff1f2be9c8c1e008a2731e855ddb4eecad441a006fbceb1c3
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 14:36:09 EDT 2025
Sat Aug 23 06:30:26 EDT 2025
Fri Jul 11 05:36:09 EDT 2025
Thu Jul 10 16:47:15 EDT 2025
Fri Jul 11 15:01:53 EDT 2025
Wed Jul 30 10:19:31 EDT 2025
Fri Jul 25 11:00:38 EDT 2025
Wed Feb 19 02:41:28 EST 2025
Wed Apr 02 08:12:31 EDT 2025
Tue Jul 01 00:46:57 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
Thu Jul 03 21:21:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6090
Keywords Ascomycota
Human
Yeast
Cell organelle
Insecta
Biological transport
Pyruvate
Drosophilidae
Fungi
Transport process
Mitochondria
Arthropoda
Carboxylate
Invertebrata
Drosophila melanogaster
Saccharomyces cerevisiae
Diptera
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c672t-2bb62d7d77e77dbdff1f2be9c8c1e008a2731e855ddb4eecad441a006fbceb1c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-1636-5461
OpenAccessLink https://www.science.org/cms/asset/862ff9f1-a6a7-44b8-b323-9424bc7ea181/pap.pdf
PMID 22628558
PQID 1023756226
PQPubID 1256
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3690818
hal_primary_oai_HAL_hal_04299019v1
proquest_miscellaneous_2000415503
proquest_miscellaneous_1808078022
proquest_miscellaneous_1551643346
proquest_miscellaneous_1024097222
proquest_journals_1023756226
pubmed_primary_22628558
pascalfrancis_primary_26103649
crossref_citationtrail_10_1126_science_1218099
crossref_primary_10_1126_science_1218099
jstor_primary_41585213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-07-06
PublicationDateYYYYMMDD 2012-07-06
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-06
  day: 06
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2012
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_20_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
9603875 - J Bacteriol. 1998 Jun;180(11):2875-82
16291748 - J Biol Chem. 2006 Jan 20;281(3):1524-31
4459142 - Eur J Biochem. 1974 Nov 1;49(1):265-74
18026869 - Mol Biol Rep. 2009 Feb;36(2):215-20
12887330 - Biochem J. 2003 Sep 15;374(Pt 3):607-11
2202601 - Eur J Biochem. 1990 Aug 17;191(3):769-74
28726 - Biochem J. 1978 Jun 15;172(3):377-87
1156402 - Biochem J. 1975 Apr;148(1):85-96
7316989 - Biochem J. 1981 May 15;196(2):471-9
22767917 - Science. 2012 Jul 6;337(6090):41-3
4822737 - Biochem J. 1974 Feb;138(2):313-6
12123719 - Adv Enzyme Regul. 2002;42:249-59
14576278 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12
17167471 - Nature. 2006 Dec 14;444(7121):840-6
18614015 - Cell. 2008 Jul 11;134(1):112-23
12649063 - Mol Genet Metab. 2003 Mar;78(3):186-92
21376230 - Cell. 2011 Mar 4;144(5):646-74
6653863 - Int J Biochem. 1983;15(12):1417-21
22628554 - Science. 2012 Jul 6;337(6090):93-6
7074018 - Biochemistry. 1982 Jan 19;21(2):346-53
22883228 - Cell Metab. 2012 Aug 8;16(2):141-3
References_xml – ident: e_1_3_2_5_2
  doi: 10.1042/bj1720377
– ident: e_1_3_2_17_2
  doi: 10.1126/science.1218530
– ident: e_1_3_2_3_2
  doi: 10.1038/nature05482
– ident: e_1_3_2_4_2
  doi: 10.1042/bj1380313
– ident: e_1_3_2_18_2
  doi: 10.1016/S0065-2571(01)00061-9
– ident: e_1_3_2_12_2
  doi: 10.1111/j.1432-1033.1990.tb19186.x
– ident: e_1_3_2_10_2
  doi: 10.1016/j.cell.2008.06.016
– ident: e_1_3_2_16_2
  doi: 10.1042/bj1960471
– ident: e_1_3_2_2_2
  doi: 10.1016/j.cell.2011.02.013
– ident: e_1_3_2_9_2
  doi: 10.1007/s11033-007-9169-0
– ident: e_1_3_2_13_2
  doi: 10.1128/JB.180.11.2875-2882.1998
– ident: e_1_3_2_7_2
  doi: 10.1074/jbc.M510425200
– ident: e_1_3_2_11_2
  doi: 10.1073/pnas.2135385100
– ident: e_1_3_2_19_2
  doi: 10.1021/bi00531a023
– ident: e_1_3_2_6_2
  doi: 10.1042/bj1480085
– ident: e_1_3_2_14_2
  doi: 10.1111/j.1432-1033.1974.tb03831.x
– ident: e_1_3_2_20_2
  doi: 10.1016/0020-711X(83)90073-3
– ident: e_1_3_2_15_2
  doi: 10.1016/S1096-7192(03)00016-7
– ident: e_1_3_2_8_2
  doi: 10.1042/BJ20030995
– reference: 2202601 - Eur J Biochem. 1990 Aug 17;191(3):769-74
– reference: 22883228 - Cell Metab. 2012 Aug 8;16(2):141-3
– reference: 16291748 - J Biol Chem. 2006 Jan 20;281(3):1524-31
– reference: 22628554 - Science. 2012 Jul 6;337(6090):93-6
– reference: 22767917 - Science. 2012 Jul 6;337(6090):41-3
– reference: 14576278 - Proc Natl Acad Sci U S A. 2003 Nov 11;100(23):13207-12
– reference: 1156402 - Biochem J. 1975 Apr;148(1):85-96
– reference: 12123719 - Adv Enzyme Regul. 2002;42:249-59
– reference: 7074018 - Biochemistry. 1982 Jan 19;21(2):346-53
– reference: 28726 - Biochem J. 1978 Jun 15;172(3):377-87
– reference: 7316989 - Biochem J. 1981 May 15;196(2):471-9
– reference: 6653863 - Int J Biochem. 1983;15(12):1417-21
– reference: 17167471 - Nature. 2006 Dec 14;444(7121):840-6
– reference: 12887330 - Biochem J. 2003 Sep 15;374(Pt 3):607-11
– reference: 18026869 - Mol Biol Rep. 2009 Feb;36(2):215-20
– reference: 9603875 - J Bacteriol. 1998 Jun;180(11):2875-82
– reference: 21376230 - Cell. 2011 Mar 4;144(5):646-74
– reference: 18614015 - Cell. 2008 Jul 11;134(1):112-23
– reference: 12649063 - Mol Genet Metab. 2003 Mar;78(3):186-92
– reference: 4822737 - Biochem J. 1974 Feb;138(2):313-6
– reference: 4459142 - Eur J Biochem. 1974 Nov 1;49(1):265-74
SSID ssj0009593
Score 2.5919077
Snippet Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial...
Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed into the...
Letting Pyruvate InTransport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to feed...
Letting Pyruvate In Transport of pyruvate is an important event in metabolism whereby the pyruvate formed in glycolysis is transported into mitochondria to...
SourceID pubmedcentral
hal
proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms Amino Acid Sequence
Amino acids
Amino Acids - metabolism
Animals
Anion Transport Proteins - chemistry
Anion Transport Proteins - genetics
Anion Transport Proteins - metabolism
Bacteria
Biochemistry, Molecular Biology
Biological and medical sciences
Biological Transport
Carbohydrate Metabolism
Carriers
Cell physiology
Citric Acid Cycle
Diet
Drosophila
Drosophila melanogaster - chemistry
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - chemistry
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Fundamental and applied biological sciences. Psychology
glycolysis
Human
Humans
Life Sciences
Medical schools
Membrane and intracellular transports
Metabolism
Metabolites
Metabolomics
mice
Mitochondria
Mitochondria - metabolism
Mitochondrial Membrane Transport Proteins - chemistry
Mitochondrial Membrane Transport Proteins - genetics
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Membranes - metabolism
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Molecular and cellular biology
Molecular Sequence Data
Mutation
Oxidation
Oxidation-Reduction
Plasmids
Point Mutation
Proteins
Pyruvates
pyruvic acid
Pyruvic Acid - metabolism
Respiration
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sugars
Transport
Transporter
tricarboxylic acid cycle
Yeast
Yeasts
Title A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans
URI https://www.jstor.org/stable/41585213
https://www.ncbi.nlm.nih.gov/pubmed/22628558
https://www.proquest.com/docview/1023756226
https://www.proquest.com/docview/1024097222
https://www.proquest.com/docview/1551643346
https://www.proquest.com/docview/1808078022
https://www.proquest.com/docview/2000415503
https://hal.science/hal-04299019
https://pubmed.ncbi.nlm.nih.gov/PMC3690818
Volume 337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6Tki8IDYYK4zJIB6GWKbGSZ3mMQWmCXF5YJP2RGQ7jlZty6peJpUfwu_lHNu5lXUCXqIqdt0m58vxd5zj7xDyRooBQ6l8T0iVebiX0ZM6D7xYCQ4zfhaHQ9yc_OUrPzkLP50PzjudX42spcVcHqmfd-4r-R-rwjmwK-6S_QfLVoPCCfgM9oUjWBiOf2Xj5N01PJDgwIrMFN-YLKeLWyCPqDdtKtFNNSb6AqfEZMKqdTGZi0sjFrLEyj3G7UxNPYPxlSjTOU3xvlmTu5ZuADhp9Z6nYd0qYTGxaQVlloH7WmPJYYRS_BYqdod7vdZaLyCgg65LQn83Catl7nC9tPttOhOXK4lObg3Dt_muTgHb-t0-loxk_aDpmAMrB-MQyPu2rqjztLYO7p8TQKNkpUbpjGHfFmBqwGFybfAAxJMNB1Y4fkVzu2zaIJsMwg_WJZvJ6MPouCXn7ISiGluwyt9DhWk3QovubFxgsq3Ne8UkXDGD5zC3BVTuinBWE3UbzOf0MXnkQhaaWPxtkY4utskDW8R0uU22nIFn9MBpmL99Qn4ktAVNWoKPOmjSEpoUYFO3WmjScUENNA9pDcxDCrCkFpZPydnxx9P3J54r5eEpHrG5x6TkLIuyKNJRlMksz_2cSR2rofI10FABLNrXcMOyTIZaK5EBTRcwI-RSAZtQwQ7pFjeF3iVUKfAvwNNlHgeh5kxARBKGuRjyiMuc-T1yVN7xVDmdeyy3cpWaeJfx1FkrddbqkYPqCxMr8bK-62swYdULpdlPks8pnrPEzo9v4Q_sGAtX3YAjD4ElBz2y3zJ51YFBDBPwEIbfKzGQOjczS1FbJYIohfEeeVU1wySAb_ZEoW8Wpg_q1gHXv6cPvhIPgyC8bxxUmY1w9_36Pri3D6OQPlzPMwvP-kIc6nskagG3dcfaLcX4wojaBzxGdc3na8d8QR7WrmOPdOfThX4JAcFc7run8zedxg-M
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+mitochondrial+pyruvate+carrier+required+for+pyruvate+uptake+in+yeast%2C+Drosophila%2C+and+humans&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Bricker%2C+Daniel+K&rft.au=Taylor%2C+Eric+B&rft.au=Schell%2C+John+C&rft.au=Orsak%2C+Thomas&rft.date=2012-07-06&rft.eissn=1095-9203&rft.volume=337&rft.issue=6090&rft.spage=96&rft_id=info:doi/10.1126%2Fscience.1218099&rft_id=info%3Apmid%2F22628558&rft.externalDocID=22628558
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon