Circulating MicroRNA Expression Profiles Associated With Systemic Lupus Erythematosus

Objective To evaluate the specificity of expression patterns of cell‐free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription–polymerase cha...

Full description

Saved in:
Bibliographic Details
Published inArthritis & rheumatology (Hoboken, N.J.) Vol. 65; no. 5; pp. 1324 - 1334
Main Authors Carlsen, Anting Liu, Schetter, Aaron J., Nielsen, Christoffer T., Lood, Christian, Knudsen, Steen, Voss, Anne, Harris, Curtis C., Hellmark, Thomas, Segelmark, Mårten, Jacobsen, Søren, Bengtsson, Anders A., Heegaard, Niels H. H.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.05.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective To evaluate the specificity of expression patterns of cell‐free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription–polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA‐142‐3p (miR‐142‐3p) and miR‐181a was increased, and the expression of miR‐106a, miR‐17, miR‐20a, miR‐203, and miR‐92a was decreased. In addition, the expression of miR‐342‐3p, miR‐223, and miR‐20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10−9). Use of the 4‐miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4‐miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine–cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.
AbstractList To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE).OBJECTIVETo evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE).Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients.METHODSTotal RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients.Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10(-9) ). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis.RESULTSSeven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10(-9) ). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis.Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.CONCLUSIONCirculating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.
Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcriptionpolymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 x 109). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor signaling pathways. Other targets include regulation of apoptosis, cytokinecytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.
Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcriptionpolymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P andlt; 2 x 109). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor signaling pathways. Other targets include regulation of apoptosis, cytokinecytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.
Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 10 super(-9)). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor [beta] signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.
Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10-9). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor [beta] signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. [PUBLICATION ABSTRACT]
Objective To evaluate the specificity of expression patterns of cell‐free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription–polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA‐142‐3p (miR‐142‐3p) and miR‐181a was increased, and the expression of miR‐106a, miR‐17, miR‐20a, miR‐203, and miR‐92a was decreased. In addition, the expression of miR‐342‐3p, miR‐223, and miR‐20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10−9). Use of the 4‐miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4‐miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine–cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.
To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10(-9) ). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.
Author Nielsen, Christoffer T.
Jacobsen, Søren
Heegaard, Niels H. H.
Voss, Anne
Harris, Curtis C.
Carlsen, Anting Liu
Schetter, Aaron J.
Bengtsson, Anders A.
Segelmark, Mårten
Hellmark, Thomas
Lood, Christian
Knudsen, Steen
AuthorAffiliation 5 Anne Voss, MD: Odense University Hospital, Odense, Denmark
7 Søren Jacobsen, MD, DSc: Rigshospitalet, Co-penhagen University Hospital, Copenhagen, Denmark
6 Mårten Segelmark, MD, PhD: County Council of Östergötland and Linköping University, Linköping, Sweden
2 Aaron J. Schetter, PhD, MPH, Curtis C. Harris, MD: National Cancer Institute, NIH, Bethesda, Maryland
3 Christian Lood, PhD, Thomas Hellmark, MD, PhD, Anders A. Bengtsson, MD, PhD: Lund University, Lund, Sweden
4 Steen Knudsen, PhD: Medical Prognosis Institute, Hørsholm, Denmark
1 Anting Liu Carlsen, PhD, Christoffer T. Nielsen, MD, PhD, Niels H. H. Heegaard, MD, DSc: Statens Serum Institut, Copenhagen, Denmark
AuthorAffiliation_xml – name: 7 Søren Jacobsen, MD, DSc: Rigshospitalet, Co-penhagen University Hospital, Copenhagen, Denmark
– name: 5 Anne Voss, MD: Odense University Hospital, Odense, Denmark
– name: 4 Steen Knudsen, PhD: Medical Prognosis Institute, Hørsholm, Denmark
– name: 2 Aaron J. Schetter, PhD, MPH, Curtis C. Harris, MD: National Cancer Institute, NIH, Bethesda, Maryland
– name: 6 Mårten Segelmark, MD, PhD: County Council of Östergötland and Linköping University, Linköping, Sweden
– name: 3 Christian Lood, PhD, Thomas Hellmark, MD, PhD, Anders A. Bengtsson, MD, PhD: Lund University, Lund, Sweden
– name: 1 Anting Liu Carlsen, PhD, Christoffer T. Nielsen, MD, PhD, Niels H. H. Heegaard, MD, DSc: Statens Serum Institut, Copenhagen, Denmark
Author_xml – sequence: 1
  givenname: Anting Liu
  surname: Carlsen
  fullname: Carlsen, Anting Liu
– sequence: 2
  givenname: Aaron J.
  surname: Schetter
  fullname: Schetter, Aaron J.
– sequence: 3
  givenname: Christoffer T.
  surname: Nielsen
  fullname: Nielsen, Christoffer T.
– sequence: 4
  givenname: Christian
  surname: Lood
  fullname: Lood, Christian
– sequence: 5
  givenname: Steen
  surname: Knudsen
  fullname: Knudsen, Steen
– sequence: 6
  givenname: Anne
  surname: Voss
  fullname: Voss, Anne
– sequence: 7
  givenname: Curtis C.
  surname: Harris
  fullname: Harris, Curtis C.
– sequence: 8
  givenname: Thomas
  surname: Hellmark
  fullname: Hellmark, Thomas
– sequence: 9
  givenname: Mårten
  surname: Segelmark
  fullname: Segelmark, Mårten
– sequence: 10
  givenname: Søren
  surname: Jacobsen
  fullname: Jacobsen, Søren
– sequence: 11
  givenname: Anders A.
  surname: Bengtsson
  fullname: Bengtsson, Anders A.
– sequence: 12
  givenname: Niels H. H.
  surname: Heegaard
  fullname: Heegaard, Niels H. H.
  email: nhe@ssi.dk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23401079$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93391$$DView record from Swedish Publication Index
https://lup.lub.lu.se/record/3843340$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/859d6276-65cb-4834-a148-288e921b107b$$DView record from Swedish Publication Index
BookMark eNqNkktvEzEUhUeoiKaFBX8AjcSGSqT1Y-yxN0hRCA8pPFRaWF55PJ7ElTMe7JmW_HtMkiJaEcHCsix_99x77HOUHbS-NVn2FKNTjBA5U6E_paWQ6EE2wozIMcIUH2QjhFAxpkziw-woxqt0JJTRR9khoQXCqJSj7HJqgx6c6m27yD9YHfz5x0k--9EFE6P1bf45-MY6E_NJjF5b1Zs6_2b7Zf5lHXuzsjqfD90Q81lY90uzUr2PQ3ycPWyUi-bJbj_OLt_MLqbvxvNPb99PJ_Ox5iVBY0oVUw1vRF3WnLFCCqSJ4ZRjVVUUy0IZLRAhRgpRacS00k2BZCFZhQWua3qcqa1uvDHdUEEX7EqFNXhlofOhVw6SD6OCXoIbIBpIlLM62fVtBMFkzUnJgTNdQSFoAQoXAogQRhJcpSeqUo_53h5u6NKqdtr_Kfdyr9xr-3UCPizA2QEkpRIn_NUWT-zK1Nq0fUiu7hi9c9PaJSz8NXDOCRMyCbzYCQT_fTCxh5WN2jinWuOHCLigktBSUv5vlBYcY8Y3Yz2_h175IbTprxNFGUaSIJaoZ38O_3vq2_gl4GwLpNzFGEwD2vabz0lerAOM4FfAIQUcNgFPFSf3Km5F_8bu1G9SgNf7QZicX2wrfgKgkQok
CODEN ARHEAW
CitedBy_id crossref_primary_10_3390_ijms161024194
crossref_primary_10_1111_cei_12664
crossref_primary_10_3389_fgene_2022_948505
crossref_primary_10_1002_jcla_21708
crossref_primary_10_1016_j_canlet_2018_04_016
crossref_primary_10_1016_j_clim_2014_12_013
crossref_primary_10_1093_hmg_ddy008
crossref_primary_10_1016_j_molimm_2017_11_009
crossref_primary_10_1111_1744_9987_12471
crossref_primary_10_1016_j_coi_2013_08_005
crossref_primary_10_3109_08916934_2014_929667
crossref_primary_10_3390_ijms23158578
crossref_primary_10_1016_j_gpb_2013_05_003
crossref_primary_10_1016_j_gendis_2022_08_011
crossref_primary_10_1016_j_autrev_2017_02_011
crossref_primary_10_1016_j_jaut_2019_102359
crossref_primary_10_3390_biom10121641
crossref_primary_10_3390_genes13030505
crossref_primary_10_1038_srep12644
crossref_primary_10_1016_j_cellimm_2015_01_004
crossref_primary_10_1111_tan_12874
crossref_primary_10_3390_ijms21062012
crossref_primary_10_1016_j_cbi_2016_11_001
crossref_primary_10_1038_nrendo_2013_161
crossref_primary_10_1177_09612033221133684
crossref_primary_10_1371_journal_pone_0187973
crossref_primary_10_1080_08820139_2017_1322975
crossref_primary_10_1016_j_devcel_2013_06_023
crossref_primary_10_1186_s13045_015_0111_y
crossref_primary_10_1016_j_clim_2014_09_002
crossref_primary_10_1002_art_38065
crossref_primary_10_1093_hmg_ddab327
crossref_primary_10_3390_jcm9010161
crossref_primary_10_3899_jrheum_140502
crossref_primary_10_3390_ijms160511013
crossref_primary_10_1016_j_imlet_2020_07_008
crossref_primary_10_1016_j_jaut_2014_05_001
crossref_primary_10_1186_s41544_019_0032_y
crossref_primary_10_1111_imm_13366
crossref_primary_10_2147_OPTH_S254288
crossref_primary_10_1155_2018_9026357
crossref_primary_10_1177_0961203320944473
crossref_primary_10_1371_journal_pone_0185323
crossref_primary_10_15171_bi_2018_20
crossref_primary_10_1097_MD_0000000000002224
crossref_primary_10_3390_biom10060937
crossref_primary_10_1089_thy_2016_0062
crossref_primary_10_1016_j_jff_2018_07_025
crossref_primary_10_1111_sji_12261
crossref_primary_10_1016_j_cellsig_2013_05_006
crossref_primary_10_1111_jcmm_13672
crossref_primary_10_1038_cmi_2018_1
crossref_primary_10_1038_s41598_017_04086_w
crossref_primary_10_3389_fimmu_2021_683710
crossref_primary_10_1002_rai2_12048
crossref_primary_10_2147_CCID_S378985
crossref_primary_10_1371_journal_pone_0205464
crossref_primary_10_3390_ijms24076193
crossref_primary_10_6061_clinics_2020_e1528
crossref_primary_10_1016_j_intimp_2014_12_038
crossref_primary_10_1016_j_trsl_2022_03_004
crossref_primary_10_3109_00365513_2014_905696
crossref_primary_10_1017_erm_2021_11
crossref_primary_10_1177_0961203319896417
crossref_primary_10_4110_in_2014_14_3_138
crossref_primary_10_1016_j_jaut_2022_102948
crossref_primary_10_1159_000448793
crossref_primary_10_18632_oncotarget_6449
crossref_primary_10_1007_s10753_018_0887_3
crossref_primary_10_1007_s10238_023_01234_7
crossref_primary_10_1080_03009742_2018_1450892
crossref_primary_10_1186_s13075_017_1459_x
crossref_primary_10_3390_ijms221910737
crossref_primary_10_1093_rheumatology_kev234
crossref_primary_10_1007_s11926_022_01058_6
crossref_primary_10_1007_s12010_023_04827_w
crossref_primary_10_1155_2023_6696967
crossref_primary_10_1371_journal_pone_0174585
crossref_primary_10_1007_s10067_018_04417_w
crossref_primary_10_3389_fimmu_2018_01473
crossref_primary_10_3390_ijms16059557
crossref_primary_10_1080_1354750X_2018_1427794
crossref_primary_10_1097_MD_0000000000016225
crossref_primary_10_1016_j_molimm_2015_09_027
crossref_primary_10_1016_j_autrev_2015_05_008
crossref_primary_10_1016_j_rcreu_2020_07_009
crossref_primary_10_1016_j_ejr_2021_08_001
crossref_primary_10_1016_j_biopha_2016_08_020
crossref_primary_10_1016_j_clim_2018_10_004
crossref_primary_10_1093_rheumatology_keab300
crossref_primary_10_1016_j_yexcr_2016_05_011
crossref_primary_10_4078_jrd_2018_25_2_81
crossref_primary_10_1016_j_biopha_2018_05_069
crossref_primary_10_1681_ASN_2013040411
crossref_primary_10_1016_j_yexcr_2016_07_021
crossref_primary_10_1093_aje_kwu135
crossref_primary_10_1177_0192623315601245
crossref_primary_10_1016_j_jim_2013_10_001
crossref_primary_10_1007_s10067_023_06534_7
crossref_primary_10_3389_fimmu_2019_01127
crossref_primary_10_3899_jrheum_150232
crossref_primary_10_18632_oncotarget_15569
crossref_primary_10_3934_Allergy_2021016
crossref_primary_10_1007_s10753_016_0304_8
crossref_primary_10_1002_jcb_28700
crossref_primary_10_1038_s41598_017_15160_8
crossref_primary_10_1016_j_clim_2022_108937
crossref_primary_10_1016_j_autrev_2025_103784
crossref_primary_10_3390_ijms23010114
crossref_primary_10_1038_s41423_019_0268_3
crossref_primary_10_1097_BOR_0000000000000086
crossref_primary_10_1097_BOR_0000000000000083
crossref_primary_10_1155_2024_9936295
crossref_primary_10_1186_s41232_017_0058_1
crossref_primary_10_3892_etm_2017_5407
crossref_primary_10_1016_j_genrep_2021_101476
crossref_primary_10_1016_j_jaut_2015_08_004
crossref_primary_10_1111_sji_12651
crossref_primary_10_1016_j_biopha_2016_06_018
crossref_primary_10_4078_jrd_2022_29_1_33
crossref_primary_10_1111_eci_12130
crossref_primary_10_1111_jcmm_14598
crossref_primary_10_4049_jimmunol_2001039
crossref_primary_10_3389_fimmu_2022_839945
crossref_primary_10_1186_s13075_016_1158_z
crossref_primary_10_1371_journal_pone_0069118
crossref_primary_10_4236_aar_2014_32023
crossref_primary_10_1111_1756_185X_13410
crossref_primary_10_1002_jbmr_2753
crossref_primary_10_2217_ijr_13_59
crossref_primary_10_1111_jgh_15224
crossref_primary_10_1016_j_intimp_2023_110306
crossref_primary_10_1155_2018_4126106
crossref_primary_10_3389_fcell_2022_835566
crossref_primary_10_5507_bp_2016_004
crossref_primary_10_1038_srep09430
crossref_primary_10_1038_nrrheum_2016_186
crossref_primary_10_3389_fimmu_2020_616141
crossref_primary_10_3389_fimmu_2023_1090177
crossref_primary_10_3390_molecules22010030
crossref_primary_10_1186_s12967_016_0917_6
crossref_primary_10_1177_20406223231153572
crossref_primary_10_1038_s41598_019_48770_5
crossref_primary_10_1186_s12967_018_1739_5
crossref_primary_10_3390_ijms160816953
crossref_primary_10_1007_s11033_018_4352_z
crossref_primary_10_1038_nrneph_2014_202
crossref_primary_10_1080_00207454_2016_1209754
crossref_primary_10_1016_j_berh_2017_10_002
crossref_primary_10_1007_s00011_017_1082_y
crossref_primary_10_1016_j_acthis_2014_02_009
crossref_primary_10_1681_ASN_2016101117
crossref_primary_10_1016_j_biopha_2016_12_072
crossref_primary_10_1016_j_canlet_2018_05_044
crossref_primary_10_1016_j_clim_2016_12_005
crossref_primary_10_1002_jgm_3326
crossref_primary_10_1016_j_intimp_2020_106262
crossref_primary_10_1016_j_jri_2014_05_003
crossref_primary_10_1007_s11481_016_9671_z
crossref_primary_10_2217_epi_13_87
crossref_primary_10_1155_2017_8751642
crossref_primary_10_1097_BRS_0000000000001339
crossref_primary_10_18632_oncotarget_6403
crossref_primary_10_1155_2020_4757065
crossref_primary_10_1111_cei_12236
crossref_primary_10_1016_j_biopha_2019_108652
crossref_primary_10_1007_s11926_013_0369_4
crossref_primary_10_1007_s12016_014_8414_2
crossref_primary_10_1161_CIRCGENETICS_116_001678
crossref_primary_10_1007_s12016_015_8497_4
crossref_primary_10_1042_CS20140733
crossref_primary_10_1080_15384101_2016_1215386
crossref_primary_10_3390_ijms17111852
crossref_primary_10_3390_ijms231810731
crossref_primary_10_1016_j_rcreue_2020_07_005
crossref_primary_10_2217_ijr_15_17
crossref_primary_10_1002_art_39219
crossref_primary_10_1136_annrheumdis_2022_222656
crossref_primary_10_3390_ijms20205183
crossref_primary_10_1615_CritRevImmunol_2022045288
Cites_doi 10.3109/s10165-005-0430-x
10.1111/j.2517-6161.1995.tb02031.x
10.1111/j.1365-2249.2003.02386.x
10.1182/blood-2010-03-274605
10.1016/j.cell.2007.03.008
10.4049/jimmunol.1102797
10.1136/ard.2009.117218
10.1182/blood-2011-05-355644
10.1177/0961203307084158
10.1002/ijc.26153
10.1002/art.34505
10.1038/nsmb.1651
10.4049/jimmunol.1100835
10.1126/science.1091903
10.1002/art.24686
10.1002/art.30499
10.1002/art.1780400928
10.1371/journal.pone.0003694
10.1002/art.34504
10.1182/blood-2010-04-280156
10.1182/blood-2009-12-256297
10.1016/j.jaut.2011.02.001
10.1038/ncb1596
10.1002/art.1780350606
10.1007/s10495-005-2941-5
10.4049/jimmunol.1002218
10.1016/j.trsl.2012.04.002
10.1111/j.1365-2230.2011.04158.x
10.1016/j.biocel.2010.03.004
10.1002/art.11237
10.1097/BOR.0b013e32832e089e
10.1016/j.coi.2004.09.014
10.1038/ni.2193
10.1007/s00296-008-0758-6
10.1002/art.24436
10.1371/journal.pone.0010344
10.1073/pnas.1019055108
10.1073/pnas.0804549105
10.1073/pnas.0605298103
10.1002/art.20254
10.1002/art.24852
10.1158/1940-6207.CAPR-11-0370
10.1371/journal.pone.0037000
10.1038/ncb1613
10.1093/carcin/bgp272
10.1038/ncb2210
10.1371/journal.pmed.0030491
10.1002/art.1780400506
ContentType Journal Article
Copyright Copyright © 2013 by the American College of Rheumatology
Copyright © 2013 by the American College of Rheumatology.
Copyright_xml – notice: Copyright © 2013 by the American College of Rheumatology
– notice: Copyright © 2013 by the American College of Rheumatology.
CorporateAuthor Rheumatology
Institutionen för kliniska vetenskaper, Lund
Lunds universitet
Profile areas and other strong research environments
Lund University
Sektion III
Reumatologi och molekylär skelettbiologi
Department of Clinical Sciences, Lund
Strategiska forskningsområden (SFO)
EpiHealth: Epidemiology for Health
Faculty of Medicine
Strategic research areas (SRA)
Section III
Medicinska fakulteten
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Sektion III
– name: EpiHealth: Epidemiology for Health
– name: Institutionen för kliniska vetenskaper, Lund
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Department of Clinical Sciences, Lund
– name: Rheumatology
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Section III
– name: Reumatologi och molekylär skelettbiologi
– name: Profile areas and other strong research environments
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7T5
7TM
7U7
C1K
H94
K9.
7X8
5PM
ADTPV
AOWAS
DG8
D95
DOI 10.1002/art.37890
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Linköpings universitet
SWEPUB Lunds universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Nucleic Acids Abstracts
Toxicology Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1529-0131
2326-5205
EndPage 1334
ExternalDocumentID oai_portal_research_lu_se_publications_859d6276_65cb_4834_a148_288e921b107b
oai_lup_lub_lu_se_859d6276_65cb_4834_a148_288e921b107b
oai_DiVA_org_liu_93391
PMC6662589
2951882571
23401079
10_1002_art_37890
ART37890
Genre article
Multicenter Study
Research Support, N.I.H., Intramural
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Novo Nordisk Research Foundation
– fundername: A. P. Møller Foundation
– fundername: Crafoord Foundation
– fundername: Swedish Renal Foundation and the Swedish Research Council
– fundername: Region of Southern Denmark
– fundername: Danish Rheumatism Association
  funderid: R33‐A1836
– fundername: Swedish Society of Medicine
– fundername: Intramural Research Program of the National Cancer Institute
– fundername: Foundation of the Swedish National Board of Health and Welfare
– fundername: NIH
– fundername: Intramural NIH HHS
  grantid: Z01 BC005480
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
10A
1CY
1KJ
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3O-
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52W
52X
53G
5GY
5RE
66C
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAQQT
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACMXC
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBTR
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADZCM
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J5H
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M65
MEWTI
MJL
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NNB
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
Q11
QB0
QRW
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RXW
RYL
SAMSI
SJN
SUPJJ
SV3
TAE
TEORI
TWZ
UB1
V2E
V8K
V9Y
VH1
W8V
WH7
WIB
WIH
WIJ
WIK
WIN
WJL
WOW
WQJ
WRC
WUP
WXI
WXSBR
X6Y
X7M
XG1
XPP
XV2
YFH
YOC
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
0R~
3SF
52U
52V
5VS
7QL
7QP
7T5
7TM
7U7
AAESR
AASGY
ABLJU
ABPVW
ACGFS
ACGOF
ACIWK
ACPRK
ADBBV
ADKYN
ADXAS
ADZMN
AENEX
AEYWJ
AFRAH
AHMBA
ALAGY
ALVPJ
AZVAB
BFHJK
BHBCM
BMXJE
C1K
DIK
FUBAC
H94
K9.
KBYEO
NF~
O66
O9-
PQQKQ
WBKPD
WHWMO
WOHZO
WVDHM
7X8
5PM
ADTPV
AOWAS
DG8
D95
ID FETCH-LOGICAL-c6720-33a5af6f8d7d6554980c2e6361abb3194aec8022e988bc05cacf409495b181dd3
IEDL.DBID DR2
ISSN 0004-3591
2326-5191
1529-0131
IngestDate Thu Aug 21 06:36:42 EDT 2025
Thu Jul 03 05:23:49 EDT 2025
Thu Aug 21 06:27:16 EDT 2025
Thu Aug 21 13:47:09 EDT 2025
Fri Jul 11 09:03:56 EDT 2025
Fri Jul 11 04:51:26 EDT 2025
Mon Jun 30 08:36:54 EDT 2025
Mon Jul 21 05:30:09 EDT 2025
Thu Apr 24 23:10:14 EDT 2025
Tue Jul 01 01:05:23 EDT 2025
Wed Jan 22 17:08:15 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 by the American College of Rheumatology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6720-33a5af6f8d7d6554980c2e6361abb3194aec8022e988bc05cacf409495b181dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Heegaard had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Acquisition of data. Carlsen, Nielsen, Lood, Voss, Hellmark, Segelmark, Jacobsen, Bengtsson.
Study conception and design. Carlsen, Nielsen, Segelmark, Jacobsen, Bengtsson, Heegaard.
AUTHOR CONTRIBUTIONS
Analysis and interpretation of data. Carlsen, Schetter, Lood, Knudsen, Harris, Segelmark, Jacobsen, Bengtsson, Heegaard.
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/art.37890?download=true
PMID 23401079
PQID 1335109205
PQPubID 946334
PageCount 11
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_859d6276_65cb_4834_a148_288e921b107b
swepub_primary_oai_lup_lub_lu_se_859d6276_65cb_4834_a148_288e921b107b
swepub_primary_oai_DiVA_org_liu_93391
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6662589
proquest_miscellaneous_1439237936
proquest_miscellaneous_1346115691
proquest_journals_1335109205
pubmed_primary_23401079
crossref_citationtrail_10_1002_art_37890
crossref_primary_10_1002_art_37890
wiley_primary_10_1002_art_37890_ART37890
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2013
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: May 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: Atlanta
PublicationTitle Arthritis & rheumatology (Hoboken, N.J.)
PublicationTitleAlternate Arthritis Rheum
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References 2010; 31
1997; 40
2007; 129
2004; 303
2012; 188
2009; 21
2011; 118
2009; 60
1995; 57
2012; 160
2006; 3
2011; 13
2008; 105
1992; 35
2008; 3
2011; 36
2012; 37
2009; 29
2007; 16
2012; 130
2010; 42
2004; 50
2011; 108
2010; 69
2004; 135
2004; 16
2010; 116
2007; 9
2011; 63
2003; 48
2005; 10
2005; 15
2012; 7
2010; 5
2012; 5
2011; 29
2009; 16
2012; 64
2006; 103
2011; 187
2011; 186
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_20_2
Lashine YA (e_1_2_6_39_2) 2011; 29
e_1_2_6_41_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 3
  start-page: e3694
  year: 2008
  article-title: Detection of microRNA expression in human peripheral blood microvesicles
  publication-title: PLoS One
– volume: 63
  start-page: 3067
  year: 2011
  end-page: 77
  article-title: Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 16
  start-page: 939
  year: 2007
  end-page: 46
  article-title: Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients
  publication-title: Lupus
– volume: 187
  start-page: 6171
  year: 2011
  end-page: 5
  article-title: Cutting edge: microRNA‐181 promotes human NK cell development by regulating Notch signaling
  publication-title: J Immunol
– volume: 130
  start-page: 1378
  year: 2012
  end-page: 86
  article-title: Circulating micro‐RNA expression profiles in early stage nonsmall cell lung cancer
  publication-title: Int J Cancer
– volume: 15
  start-page: 383
  year: 2005
  end-page: 90
  article-title: Removal of dying cells and systemic lupus erythematosus
  publication-title: Mod Rheumatol
– volume: 5
  start-page: 492
  year: 2012
  end-page: 7
  article-title: Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies
  publication-title: Cancer Prev Res (Phila)
– volume: 13
  start-page: 423
  year: 2011
  end-page: 33
  article-title: MicroRNAs are transported in plasma and delivered to recipient cells by high‐density lipoproteins
  publication-title: Nat Cell Biol
– volume: 103
  start-page: 12481
  year: 2006
  end-page: 6
  article-title: NF‐κB‐dependent induction of microRNA miR‐146, an inhibitor targeted to signaling proteins of innate immune responses
  publication-title: Proc Natl Acad Sci U S A
– volume: 60
  start-page: 2418
  year: 2009
  end-page: 27
  article-title: Regulation of the interferon‐α production induced by RNA‐containing immune complexes in plasmacytoid dendritic cells
  publication-title: Arthritis Rheum
– volume: 160
  start-page: 198
  year: 2012
  end-page: 206
  article-title: Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus
  publication-title: Transl Res
– volume: 37
  start-page: 34
  year: 2012
  end-page: 9
  article-title: Circulating miR‐142‐3p levels in patients with systemic sclerosis
  publication-title: Clin Exp Dermatol
– volume: 303
  start-page: 83
  year: 2004
  end-page: 6
  article-title: MicroRNAs modulate hematopoietic lineage differentiation
  publication-title: Science
– volume: 129
  start-page: 147
  year: 2007
  end-page: 61
  article-title: miR‐181a is an intrinsic modulator of T cell sensitivity and selection
  publication-title: Cell
– volume: 9
  start-page: 654
  year: 2007
  end-page: 9
  article-title: Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells
  publication-title: Nat Cell Biol
– volume: 35
  start-page: 630
  year: 1992
  end-page: 40
  article-title: Derivation of the SLEDAI: a disease activity index for lupus patients
  publication-title: Arthritis Rheum
– volume: 116
  start-page: 1951
  year: 2010
  end-page: 7
  article-title: Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up‐regulation of the type I interferon system is strongly associated with vascular disease
  publication-title: Blood
– volume: 29
  start-page: 749
  year: 2009
  end-page: 54
  article-title: Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients
  publication-title: Rheumatol Int
– volume: 21
  start-page: 471
  year: 2009
  end-page: 7
  article-title: Type I interferon and lupus
  publication-title: Curr Opin Rheumatol
– volume: 16
  start-page: 961
  year: 2009
  end-page: 6
  article-title: Existence of a microRNA pathway in anucleate platelets
  publication-title: Nat Struct Mol Biol
– volume: 5
  start-page: e10344
  year: 2010
  article-title: Identification of unique microRNA signature associated with lupus nephritis
  publication-title: PLoS One
– volume: 9
  start-page: 775
  year: 2007
  end-page: 87
  article-title: MicroRNAs 17‐5p‐20a‐106a control monocytopoiesis through AML1 targeting and M‐CSF receptor upregulation
  publication-title: Nat Cell Biol
– volume: 64
  start-page: 2953
  year: 2012
  end-page: 63
  article-title: Decreased miR‐142‐3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 108
  start-page: 5003
  year: 2011
  end-page: 8
  article-title: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma
  publication-title: Proc Natl Acad Sci U S A
– volume: 186
  start-page: 924
  year: 2011
  end-page: 30
  article-title: Dicer insufficiency and microRNA‐155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu
  publication-title: J Immunol
– volume: 116
  start-page: 2395
  year: 2010
  end-page: 401
  article-title: Prox1 expression is negatively regulated by miR‐181 in endothelial cells
  publication-title: Blood
– volume: 69
  start-page: i30
  issue: Suppl 1
  year: 2010
  end-page: i36
  article-title: Evidence for microRNA‐mediated regulation in rheumatic diseases
  publication-title: Ann Rheum Dis
– volume: 31
  start-page: 37
  year: 2010
  end-page: 49
  article-title: Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways
  publication-title: Carcinogenesis
– volume: 135
  start-page: 535
  year: 2004
  end-page: 43
  article-title: Induction of apoptosis in monocytes and lymphocytes by serum from patients with systemic lupus erythematosus: an additional mechanism to increased autoantigen load?
  publication-title: Clin Exp Immunol
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Statist Soc B
– volume: 40
  start-page: 809
  year: 1997
  end-page: 13
  article-title: The reliability of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index in patients with systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 48
  start-page: 2888
  year: 2003
  end-page: 97
  article-title: Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 50
  start-page: 1861
  year: 2004
  end-page: 72
  article-title: Induction of interferon‐α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG
  publication-title: Arthritis Rheum
– volume: 16
  start-page: 801
  year: 2004
  end-page: 7
  article-title: The emerging role of interferon in human systemic lupus erythematosus
  publication-title: Curr Opin Immunol
– volume: 105
  start-page: 10513
  year: 2008
  end-page: 8
  article-title: Circulating microRNAs as stable blood‐based markers for cancer detection
  publication-title: Proc Natl Acad Sci U S A
– volume: 118
  start-page: 5487
  year: 2011
  end-page: 97
  article-title: Molecular dissection of the miR‐17‐92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation
  publication-title: Blood
– volume: 40
  start-page: 1725
  year: 1997
  article-title: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
– volume: 7
  start-page: e37000
  year: 2012
  article-title: Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients
  publication-title: PLoS One
– volume: 10
  start-page: 731
  year: 2005
  end-page: 41
  article-title: The release of microparticles by apoptotic cells and their effects on macrophages
  publication-title: Apoptosis
– volume: 60
  start-page: 3081
  year: 2009
  end-page: 90
  article-title: C1q inhibits immune complex‐induced interferon‐α production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis
  publication-title: Arthritis Rheum
– volume: 64
  start-page: 2975
  year: 2012
  end-page: 85
  article-title: Type I interferons modulate vascular function, repair, thrombosis and plaque progression in murine models of lupus and atherosclerosis
  publication-title: Arthritis Rheum
– volume: 188
  start-page: 902
  year: 2012
  end-page: 15
  article-title: Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes
  publication-title: J Immunol
– volume: 42
  start-page: 1348
  year: 2010
  end-page: 54
  article-title: mir‐17‐92, a cluster of miRNAs in the midst of the cancer network
  publication-title: Int J Biochem Cell Biol
– volume: 13
  start-page: 181
  year: 2011
  end-page: 7
  article-title: The thymic epithelial microRNA network elevates the threshold for infection‐associated thymic involution via miR‐29a mediated suppression of the IFN‐α receptor
  publication-title: Nat Immunol
– volume: 3
  start-page: e491
  year: 2006
  article-title: Elevated serum levels of interferon‐regulated chemokines are biomarkers for active human systemic lupus erythematosus
  publication-title: PLoS Med
– volume: 29
  start-page: 351
  year: 2011
  end-page: 7
  article-title: Expression signature of microRNA‐181‐a reveals its crucial role in the pathogenesis of paediatric systemic lupus erythematosus
  publication-title: Clin Exp Rheumatol
– volume: 36
  start-page: 173
  year: 2011
  end-page: 80
  article-title: Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus
  publication-title: J Autoimmun
– volume: 116
  start-page: 5885
  year: 2010
  end-page: 94
  article-title: miR‐155 and its star‐form partner miR‐155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells
  publication-title: Blood
– volume: 60
  start-page: 1065
  year: 2009
  end-page: 75
  article-title: MicroRNA‐146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins
  publication-title: Arthritis Rheum
– ident: e_1_2_6_45_2
  doi: 10.3109/s10165-005-0430-x
– ident: e_1_2_6_26_2
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_2_6_44_2
  doi: 10.1111/j.1365-2249.2003.02386.x
– ident: e_1_2_6_30_2
  doi: 10.1182/blood-2010-03-274605
– ident: e_1_2_6_36_2
  doi: 10.1016/j.cell.2007.03.008
– volume: 29
  start-page: 351
  year: 2011
  ident: e_1_2_6_39_2
  article-title: Expression signature of microRNA‐181‐a reveals its crucial role in the pathogenesis of paediatric systemic lupus erythematosus
  publication-title: Clin Exp Rheumatol
– ident: e_1_2_6_3_2
  doi: 10.4049/jimmunol.1102797
– ident: e_1_2_6_12_2
  doi: 10.1136/ard.2009.117218
– ident: e_1_2_6_42_2
  doi: 10.1182/blood-2011-05-355644
– ident: e_1_2_6_14_2
  doi: 10.1177/0961203307084158
– ident: e_1_2_6_25_2
  doi: 10.1002/ijc.26153
– ident: e_1_2_6_34_2
  doi: 10.1002/art.34505
– ident: e_1_2_6_50_2
  doi: 10.1038/nsmb.1651
– ident: e_1_2_6_35_2
  doi: 10.4049/jimmunol.1100835
– ident: e_1_2_6_37_2
  doi: 10.1126/science.1091903
– ident: e_1_2_6_6_2
  doi: 10.1002/art.24686
– ident: e_1_2_6_21_2
  doi: 10.1002/art.30499
– ident: e_1_2_6_24_2
  doi: 10.1002/art.1780400928
– ident: e_1_2_6_29_2
  doi: 10.1371/journal.pone.0003694
– ident: e_1_2_6_47_2
  doi: 10.1002/art.34504
– ident: e_1_2_6_49_2
  doi: 10.1182/blood-2010-04-280156
– ident: e_1_2_6_38_2
  doi: 10.1182/blood-2009-12-256297
– ident: e_1_2_6_23_2
  doi: 10.1016/j.jaut.2011.02.001
– ident: e_1_2_6_19_2
  doi: 10.1038/ncb1596
– ident: e_1_2_6_27_2
  doi: 10.1002/art.1780350606
– ident: e_1_2_6_22_2
  doi: 10.1007/s10495-005-2941-5
– ident: e_1_2_6_46_2
  doi: 10.4049/jimmunol.1002218
– ident: e_1_2_6_32_2
  doi: 10.1016/j.trsl.2012.04.002
– ident: e_1_2_6_33_2
  doi: 10.1111/j.1365-2230.2011.04158.x
– ident: e_1_2_6_40_2
  doi: 10.1016/j.biocel.2010.03.004
– ident: e_1_2_6_43_2
  doi: 10.1002/art.11237
– ident: e_1_2_6_2_2
  doi: 10.1097/BOR.0b013e32832e089e
– ident: e_1_2_6_4_2
  doi: 10.1016/j.coi.2004.09.014
– ident: e_1_2_6_9_2
  doi: 10.1038/ni.2193
– ident: e_1_2_6_15_2
  doi: 10.1007/s00296-008-0758-6
– ident: e_1_2_6_11_2
  doi: 10.1002/art.24436
– ident: e_1_2_6_16_2
  doi: 10.1371/journal.pone.0010344
– ident: e_1_2_6_17_2
  doi: 10.1073/pnas.1019055108
– ident: e_1_2_6_20_2
  doi: 10.1073/pnas.0804549105
– ident: e_1_2_6_13_2
  doi: 10.1073/pnas.0605298103
– ident: e_1_2_6_8_2
  doi: 10.1002/art.20254
– ident: e_1_2_6_7_2
  doi: 10.1002/art.24852
– ident: e_1_2_6_31_2
  doi: 10.1158/1940-6207.CAPR-11-0370
– ident: e_1_2_6_48_2
  doi: 10.1371/journal.pone.0037000
– ident: e_1_2_6_41_2
  doi: 10.1038/ncb1613
– ident: e_1_2_6_10_2
  doi: 10.1093/carcin/bgp272
– ident: e_1_2_6_18_2
  doi: 10.1038/ncb2210
– ident: e_1_2_6_5_2
  doi: 10.1371/journal.pmed.0030491
– ident: e_1_2_6_28_2
  doi: 10.1002/art.1780400506
SSID ssj0002353
ssj0000970605
Score 2.518843
Snippet Objective To evaluate the specificity of expression patterns of cell‐free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total...
To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Total RNA was purified...
Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total...
To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE).OBJECTIVETo evaluate the...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1324
SubjectTerms Adult
Aged
Arthritis, Rheumatoid - blood
Arthritis, Rheumatoid - diagnosis
Arthritis, Rheumatoid - genetics
Biomarkers - blood
Clinical Medicine
Cohort Studies
Female
Gene Expression Profiling
Humans
Immunocompromised Host
Klinisk medicin
Lupus Erythematosus, Systemic - blood
Lupus Erythematosus, Systemic - diagnosis
Lupus Erythematosus, Systemic - genetics
Male
Medical and Health Sciences
MEDICIN
Medicin och hälsovetenskap
MEDICINE
MicroRNAs - blood
MicroRNAs - classification
Middle Aged
Signal Transduction - genetics
Transforming Growth Factor beta - genetics
Transforming Growth Factor beta - metabolism
Vasculitis - blood
Vasculitis - genetics
Young Adult
Title Circulating MicroRNA Expression Profiles Associated With Systemic Lupus Erythematosus
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.37890
https://www.ncbi.nlm.nih.gov/pubmed/23401079
https://www.proquest.com/docview/1335109205
https://www.proquest.com/docview/1346115691
https://www.proquest.com/docview/1439237936
https://pubmed.ncbi.nlm.nih.gov/PMC6662589
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93391
https://lup.lub.lu.se/record/3843340
oai:portal.research.lu.se:publications/859d6276-65cb-4834-a148-288e921b107b
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelD2Mv-_5w1xVvbNCXpLZkyRJ7Cl1K99EyyrKVMRCSLDdmwQlxDNv--p0s213WbJQ9CAw-CX3cne6k0-8QesEsITjTfJC7W_dEsWggEkPA5zGW5JlDCGnQPk_Z8SR5e07Pt9Cr7i2Mx4foD9ycZDT62gm40tXBJWgozOyQuGecoH9drJYziM4uoaMwaREo3ck_FXGHKhThg77m-l50xcC8GifZoomuG7LNTnR0G33txuADUL4N65Uemp9_wDv-5yDvoFuthRqOPEvdRVu2vIdunLR38PfR5LBYmibpV3kRnrh4vrPTUTj-3kbUluEHnwa8Crult1n4uVhNQ4-OXpjwfb2oq3C8_OEhY-dVXT1Ak6Pxx8PjQZucYWBY6l5dE0VVznKepRkDm0TwyGDLCIuV1iDXibLGPeO1gnNtImqUyZ0vKagGoyLLyEO0Xc5L-xiFCcsps7GlPLIJjpiKHYgfOD7WJAnRaYD2u2WSpkUudwk0ZtJjLmMJ0ySbaQrQ85504eE6NhHtdmstW4mtJPjqoJ4EjmiAnvW_QdbcBYoq7bx2NAkDC5qJ-B80YOFhAlqPBeiRZ5--J5iANxulIkDpGmP1BA7re_1PWUwbzG_wMjHlUPOlZ8G1Kq-LTyM5X17IWVFLQYjr33gD3axeQNFQZGUlpyJjOGWSUaOlO1SWCpxjiTm3AscaeqoD9GVDO94zlC0c1bRtb_HbOfM1G99veP_vKyXBqWs-dq5P-gTdxE3KEheUuou2V8vaPgXDcaX3QEO8ebfX6IlfwsJsHw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkIAXvj8CAwICaS_tEjtxYomXanQq0FZoWmFCQlbsOGtElVZNIwF_PWc7yQgraOIhUqScLX-cnfudz79D6BVVhOBUxL1Mn7oHCfV6LJAEMI9UJEs1Q4hh-5zS0Sx4fxqe7qA3zV0Yyw_ROtz0yjD7tV7g2iF9cM4aCkPbJ_oe5xV0VWf0NoDq-Jw8CpOag1L7_kPmN7xCHj5oi3b_RhdMzIuRkjWfaNeUNf-io1voa9MLG4LyrV9tRF_-_IPg8X-7eRvdrI1Ud2C16g7aUcVddG1SH8PfQ7PDfC1N3q_izJ3okL7j6cAdfq-Dagv3o80EXrrN7KvU_Zxv5q4lSM-lO65WVekO1z8sa-yyrMr7aHY0PDkc9er8DD1JI33xmiRhktEsTqOUglnCYk9iRQn1EyFgaQeJkvomr2JxLKQXykRmGk6yUIBdkabkAdotloV6hNyAZiFVvgpjTwXYo4mvefwA-ygZBEREDtpv5onLmrxc59BYcEu7jDkMEzfD5KCXrejKMnZsE9prJpvXi7bkANdhh2LYCx30ov0My02foSSFWlZaJqBgRFPm_0MGjDxMYOOjDnpo9adtCSYAaL2IOSjqaFYroOm-u1-KfG5ovwFo4jCGkq-tDnaKvM0_DfhyfcYXecUZIbp9wy1yi2oFj4CHl4rHIUspjiinoRRc-5V5AviY4zhWDPsCWioc9GVLPRYc8pqRal7Xt_rN1XzJyveN8v99pjjgOvPy-PKiz9H10clkzMfvph-eoBvYZDDRMap7aHezrtRTsCM34pnZLn4BqpxvQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkCZeuF8CAwICaS_tEjt2bPFUra0GbNU0UZgmJCt2nDWiSqumkYBfz3FuI6ygiYdIkXJs-XKOcz77-DsIvWGGEBwr3kvsqXsQMa8nAk0A82hDktgyhJRsnxN2OA0-nNGzLfSuuQtT8UO0G27WMsr12hr4Mk72L0lDYWT7xF7jvIFuBszjVqWHp5fcUZjUFJR2658Kv6EV8vB-W7T7M7riYV4NlKzpRLuebPkrGt9BX5tOVBEo3_rFWvX1zz_4Hf-zl3fR7dpFdQeVTt1DWya7j3aO60P4B2h6kK50mfUru3CPbUDf6WTgjr7XIbWZe1LlAc_dZu5N7H5J1zO3okdPtXtULIvcHa1-VJyxi7zIH6LpePTp4LBXZ2foaRbaa9ckolHCEh6HMQOnRHBPY8MI8yOlwLCDyGh7j9cIzpX2qI50YsGkoAq8ijgmj9B2tsjME-QGLKHM-IZyzwTYY5FvWfwA-RgdBESFDtprpknqmrrcZtCYy4p0GUsYJlkOk4Net6LLiq9jk9BuM9eyNtlcAliH9UlgjzroVfsZjM2eoESZWRRWJmDgQjPh_0MGXDxMYNljDnpcqU_bEkwAznqhcFDYUaxWwJJ9d79k6awk_QaYiSmHkm8rFewUGaafB3KxupDztJCCENu-0Qa5ebGER8EjcyM5FTHDIZOMaiXtrrKMAB1LzLkR2FfQUuWg8w31VNBQ1nxUs7q-5W8bzdesfK_U_b_PlARUV748vb7oS7RzMhzLo_eTj8_QLVymL7EBqrtoe70qzHNwItfqRblY_AIxp235
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulating+MicroRNA+Expression+Profiles+Associated+With+Systemic+Lupus+Erythematosus&rft.jtitle=Arthritis+and+rheumatism&rft.au=Carlsen%2C+Anting+Liu&rft.au=Schetter%2C+Aaron+J.&rft.au=Nielsen%2C+Christoffer+T.&rft.au=Lood%2C+Christian&rft.date=2013-05-01&rft.issn=1529-0131&rft.volume=65&rft.issue=5&rft.spage=1324&rft_id=info:doi/10.1002%2Fart.37890&rft.externalDocID=oai_portal_research_lu_se_publications_859d6276_65cb_4834_a148_288e921b107b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3591&client=summon