Circulating MicroRNA Expression Profiles Associated With Systemic Lupus Erythematosus
Objective To evaluate the specificity of expression patterns of cell‐free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription–polymerase cha...
Saved in:
Published in | Arthritis & rheumatology (Hoboken, N.J.) Vol. 65; no. 5; pp. 1324 - 1334 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.05.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective
To evaluate the specificity of expression patterns of cell‐free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE).
Methods
Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription–polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients.
Results
Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA‐142‐3p (miR‐142‐3p) and miR‐181a was increased, and the expression of miR‐106a, miR‐17, miR‐20a, miR‐203, and miR‐92a was decreased. In addition, the expression of miR‐342‐3p, miR‐223, and miR‐20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10−9). Use of the 4‐miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis.
Conclusion
Circulating miRNAs are systematically altered in SLE. A 4‐miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine–cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. |
---|---|
AbstractList | To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE).OBJECTIVETo evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE).Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients.METHODSTotal RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients.Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10(-9) ). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis.RESULTSSeven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10(-9) ). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis.Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes.CONCLUSIONCirculating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcriptionpolymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 x 109). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor signaling pathways. Other targets include regulation of apoptosis, cytokinecytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcriptionpolymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P andlt; 2 x 109). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor signaling pathways. Other targets include regulation of apoptosis, cytokinecytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 10 super(-9)). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor [beta] signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10-9). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor [beta] signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. [PUBLICATION ABSTRACT] Objective To evaluate the specificity of expression patterns of cell‐free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription–polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Results Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA‐142‐3p (miR‐142‐3p) and miR‐181a was increased, and the expression of miR‐106a, miR‐17, miR‐20a, miR‐203, and miR‐92a was decreased. In addition, the expression of miR‐342‐3p, miR‐223, and miR‐20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10−9). Use of the 4‐miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Conclusion Circulating miRNAs are systematically altered in SLE. A 4‐miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine–cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Total RNA was purified from plasma, and 45 different specific, mature miRNAs were determined using quantitative reverse transcription-polymerase chain reaction assays. A total of 409 plasma samples were obtained from 364 different patients with SLE, healthy control subjects, and control subjects with other autoimmune diseases. The results in the primary cohort of 62 patients with SLE and 29 healthy control subjects were validated in 2 independent cohorts: a validation cohort comprising 68 patients with SLE and 68 healthy control subjects, and a disease control cohort comprising 20 patients with SLE (19 of whom were from the other validation cohort), 46 healthy control subjects, 38 patients with vasculitis, 18 patients with rheumatoid arthritis, and 20 immunosuppressed patients. Seven miRNAs were statistically significantly differentially expressed in plasma from patients with SLE. The expression of miRNA-142-3p (miR-142-3p) and miR-181a was increased, and the expression of miR-106a, miR-17, miR-20a, miR-203, and miR-92a was decreased. In addition, the expression of miR-342-3p, miR-223, and miR-20a was significantly decreased in SLE patients with active nephritis. A predictive model for SLE based on 2 or 4 miRNAs differentiated patients with SLE from control subjects (76% accuracy) when validated independently (P < 2 × 10(-9) ). Use of the 4-miRNA model provided highly significant differentiation between the SLE group and disease controls, except for those with vasculitis. Circulating miRNAs are systematically altered in SLE. A 4-miRNA signature was diagnostic of SLE, and a specific subset of miRNA profiles was associated with nephritis. All of the signature miRNAs target genes in the transforming growth factor β signaling pathways. Other targets include regulation of apoptosis, cytokine-cytokine receptors, T cell development, and cytoskeletal organization. These findings highlight possible dysregulated pathways in SLE and suggest that circulating miRNA patterns distinguish SLE from other immunoinflammatory phenotypes. |
Author | Nielsen, Christoffer T. Jacobsen, Søren Heegaard, Niels H. H. Voss, Anne Harris, Curtis C. Carlsen, Anting Liu Schetter, Aaron J. Bengtsson, Anders A. Segelmark, Mårten Hellmark, Thomas Lood, Christian Knudsen, Steen |
AuthorAffiliation | 5 Anne Voss, MD: Odense University Hospital, Odense, Denmark 7 Søren Jacobsen, MD, DSc: Rigshospitalet, Co-penhagen University Hospital, Copenhagen, Denmark 6 Mårten Segelmark, MD, PhD: County Council of Östergötland and Linköping University, Linköping, Sweden 2 Aaron J. Schetter, PhD, MPH, Curtis C. Harris, MD: National Cancer Institute, NIH, Bethesda, Maryland 3 Christian Lood, PhD, Thomas Hellmark, MD, PhD, Anders A. Bengtsson, MD, PhD: Lund University, Lund, Sweden 4 Steen Knudsen, PhD: Medical Prognosis Institute, Hørsholm, Denmark 1 Anting Liu Carlsen, PhD, Christoffer T. Nielsen, MD, PhD, Niels H. H. Heegaard, MD, DSc: Statens Serum Institut, Copenhagen, Denmark |
AuthorAffiliation_xml | – name: 7 Søren Jacobsen, MD, DSc: Rigshospitalet, Co-penhagen University Hospital, Copenhagen, Denmark – name: 5 Anne Voss, MD: Odense University Hospital, Odense, Denmark – name: 4 Steen Knudsen, PhD: Medical Prognosis Institute, Hørsholm, Denmark – name: 2 Aaron J. Schetter, PhD, MPH, Curtis C. Harris, MD: National Cancer Institute, NIH, Bethesda, Maryland – name: 6 Mårten Segelmark, MD, PhD: County Council of Östergötland and Linköping University, Linköping, Sweden – name: 3 Christian Lood, PhD, Thomas Hellmark, MD, PhD, Anders A. Bengtsson, MD, PhD: Lund University, Lund, Sweden – name: 1 Anting Liu Carlsen, PhD, Christoffer T. Nielsen, MD, PhD, Niels H. H. Heegaard, MD, DSc: Statens Serum Institut, Copenhagen, Denmark |
Author_xml | – sequence: 1 givenname: Anting Liu surname: Carlsen fullname: Carlsen, Anting Liu – sequence: 2 givenname: Aaron J. surname: Schetter fullname: Schetter, Aaron J. – sequence: 3 givenname: Christoffer T. surname: Nielsen fullname: Nielsen, Christoffer T. – sequence: 4 givenname: Christian surname: Lood fullname: Lood, Christian – sequence: 5 givenname: Steen surname: Knudsen fullname: Knudsen, Steen – sequence: 6 givenname: Anne surname: Voss fullname: Voss, Anne – sequence: 7 givenname: Curtis C. surname: Harris fullname: Harris, Curtis C. – sequence: 8 givenname: Thomas surname: Hellmark fullname: Hellmark, Thomas – sequence: 9 givenname: Mårten surname: Segelmark fullname: Segelmark, Mårten – sequence: 10 givenname: Søren surname: Jacobsen fullname: Jacobsen, Søren – sequence: 11 givenname: Anders A. surname: Bengtsson fullname: Bengtsson, Anders A. – sequence: 12 givenname: Niels H. H. surname: Heegaard fullname: Heegaard, Niels H. H. email: nhe@ssi.dk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23401079$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93391$$DView record from Swedish Publication Index https://lup.lub.lu.se/record/3843340$$DView record from Swedish Publication Index oai:portal.research.lu.se:publications/859d6276-65cb-4834-a148-288e921b107b$$DView record from Swedish Publication Index |
BookMark | eNqNkktvEzEUhUeoiKaFBX8AjcSGSqT1Y-yxN0hRCA8pPFRaWF55PJ7ElTMe7JmW_HtMkiJaEcHCsix_99x77HOUHbS-NVn2FKNTjBA5U6E_paWQ6EE2wozIMcIUH2QjhFAxpkziw-woxqt0JJTRR9khoQXCqJSj7HJqgx6c6m27yD9YHfz5x0k--9EFE6P1bf45-MY6E_NJjF5b1Zs6_2b7Zf5lHXuzsjqfD90Q81lY90uzUr2PQ3ycPWyUi-bJbj_OLt_MLqbvxvNPb99PJ_Ox5iVBY0oVUw1vRF3WnLFCCqSJ4ZRjVVUUy0IZLRAhRgpRacS00k2BZCFZhQWua3qcqa1uvDHdUEEX7EqFNXhlofOhVw6SD6OCXoIbIBpIlLM62fVtBMFkzUnJgTNdQSFoAQoXAogQRhJcpSeqUo_53h5u6NKqdtr_Kfdyr9xr-3UCPizA2QEkpRIn_NUWT-zK1Nq0fUiu7hi9c9PaJSz8NXDOCRMyCbzYCQT_fTCxh5WN2jinWuOHCLigktBSUv5vlBYcY8Y3Yz2_h175IbTprxNFGUaSIJaoZ38O_3vq2_gl4GwLpNzFGEwD2vabz0lerAOM4FfAIQUcNgFPFSf3Km5F_8bu1G9SgNf7QZicX2wrfgKgkQok |
CODEN | ARHEAW |
CitedBy_id | crossref_primary_10_3390_ijms161024194 crossref_primary_10_1111_cei_12664 crossref_primary_10_3389_fgene_2022_948505 crossref_primary_10_1002_jcla_21708 crossref_primary_10_1016_j_canlet_2018_04_016 crossref_primary_10_1016_j_clim_2014_12_013 crossref_primary_10_1093_hmg_ddy008 crossref_primary_10_1016_j_molimm_2017_11_009 crossref_primary_10_1111_1744_9987_12471 crossref_primary_10_1016_j_coi_2013_08_005 crossref_primary_10_3109_08916934_2014_929667 crossref_primary_10_3390_ijms23158578 crossref_primary_10_1016_j_gpb_2013_05_003 crossref_primary_10_1016_j_gendis_2022_08_011 crossref_primary_10_1016_j_autrev_2017_02_011 crossref_primary_10_1016_j_jaut_2019_102359 crossref_primary_10_3390_biom10121641 crossref_primary_10_3390_genes13030505 crossref_primary_10_1038_srep12644 crossref_primary_10_1016_j_cellimm_2015_01_004 crossref_primary_10_1111_tan_12874 crossref_primary_10_3390_ijms21062012 crossref_primary_10_1016_j_cbi_2016_11_001 crossref_primary_10_1038_nrendo_2013_161 crossref_primary_10_1177_09612033221133684 crossref_primary_10_1371_journal_pone_0187973 crossref_primary_10_1080_08820139_2017_1322975 crossref_primary_10_1016_j_devcel_2013_06_023 crossref_primary_10_1186_s13045_015_0111_y crossref_primary_10_1016_j_clim_2014_09_002 crossref_primary_10_1002_art_38065 crossref_primary_10_1093_hmg_ddab327 crossref_primary_10_3390_jcm9010161 crossref_primary_10_3899_jrheum_140502 crossref_primary_10_3390_ijms160511013 crossref_primary_10_1016_j_imlet_2020_07_008 crossref_primary_10_1016_j_jaut_2014_05_001 crossref_primary_10_1186_s41544_019_0032_y crossref_primary_10_1111_imm_13366 crossref_primary_10_2147_OPTH_S254288 crossref_primary_10_1155_2018_9026357 crossref_primary_10_1177_0961203320944473 crossref_primary_10_1371_journal_pone_0185323 crossref_primary_10_15171_bi_2018_20 crossref_primary_10_1097_MD_0000000000002224 crossref_primary_10_3390_biom10060937 crossref_primary_10_1089_thy_2016_0062 crossref_primary_10_1016_j_jff_2018_07_025 crossref_primary_10_1111_sji_12261 crossref_primary_10_1016_j_cellsig_2013_05_006 crossref_primary_10_1111_jcmm_13672 crossref_primary_10_1038_cmi_2018_1 crossref_primary_10_1038_s41598_017_04086_w crossref_primary_10_3389_fimmu_2021_683710 crossref_primary_10_1002_rai2_12048 crossref_primary_10_2147_CCID_S378985 crossref_primary_10_1371_journal_pone_0205464 crossref_primary_10_3390_ijms24076193 crossref_primary_10_6061_clinics_2020_e1528 crossref_primary_10_1016_j_intimp_2014_12_038 crossref_primary_10_1016_j_trsl_2022_03_004 crossref_primary_10_3109_00365513_2014_905696 crossref_primary_10_1017_erm_2021_11 crossref_primary_10_1177_0961203319896417 crossref_primary_10_4110_in_2014_14_3_138 crossref_primary_10_1016_j_jaut_2022_102948 crossref_primary_10_1159_000448793 crossref_primary_10_18632_oncotarget_6449 crossref_primary_10_1007_s10753_018_0887_3 crossref_primary_10_1007_s10238_023_01234_7 crossref_primary_10_1080_03009742_2018_1450892 crossref_primary_10_1186_s13075_017_1459_x crossref_primary_10_3390_ijms221910737 crossref_primary_10_1093_rheumatology_kev234 crossref_primary_10_1007_s11926_022_01058_6 crossref_primary_10_1007_s12010_023_04827_w crossref_primary_10_1155_2023_6696967 crossref_primary_10_1371_journal_pone_0174585 crossref_primary_10_1007_s10067_018_04417_w crossref_primary_10_3389_fimmu_2018_01473 crossref_primary_10_3390_ijms16059557 crossref_primary_10_1080_1354750X_2018_1427794 crossref_primary_10_1097_MD_0000000000016225 crossref_primary_10_1016_j_molimm_2015_09_027 crossref_primary_10_1016_j_autrev_2015_05_008 crossref_primary_10_1016_j_rcreu_2020_07_009 crossref_primary_10_1016_j_ejr_2021_08_001 crossref_primary_10_1016_j_biopha_2016_08_020 crossref_primary_10_1016_j_clim_2018_10_004 crossref_primary_10_1093_rheumatology_keab300 crossref_primary_10_1016_j_yexcr_2016_05_011 crossref_primary_10_4078_jrd_2018_25_2_81 crossref_primary_10_1016_j_biopha_2018_05_069 crossref_primary_10_1681_ASN_2013040411 crossref_primary_10_1016_j_yexcr_2016_07_021 crossref_primary_10_1093_aje_kwu135 crossref_primary_10_1177_0192623315601245 crossref_primary_10_1016_j_jim_2013_10_001 crossref_primary_10_1007_s10067_023_06534_7 crossref_primary_10_3389_fimmu_2019_01127 crossref_primary_10_3899_jrheum_150232 crossref_primary_10_18632_oncotarget_15569 crossref_primary_10_3934_Allergy_2021016 crossref_primary_10_1007_s10753_016_0304_8 crossref_primary_10_1002_jcb_28700 crossref_primary_10_1038_s41598_017_15160_8 crossref_primary_10_1016_j_clim_2022_108937 crossref_primary_10_1016_j_autrev_2025_103784 crossref_primary_10_3390_ijms23010114 crossref_primary_10_1038_s41423_019_0268_3 crossref_primary_10_1097_BOR_0000000000000086 crossref_primary_10_1097_BOR_0000000000000083 crossref_primary_10_1155_2024_9936295 crossref_primary_10_1186_s41232_017_0058_1 crossref_primary_10_3892_etm_2017_5407 crossref_primary_10_1016_j_genrep_2021_101476 crossref_primary_10_1016_j_jaut_2015_08_004 crossref_primary_10_1111_sji_12651 crossref_primary_10_1016_j_biopha_2016_06_018 crossref_primary_10_4078_jrd_2022_29_1_33 crossref_primary_10_1111_eci_12130 crossref_primary_10_1111_jcmm_14598 crossref_primary_10_4049_jimmunol_2001039 crossref_primary_10_3389_fimmu_2022_839945 crossref_primary_10_1186_s13075_016_1158_z crossref_primary_10_1371_journal_pone_0069118 crossref_primary_10_4236_aar_2014_32023 crossref_primary_10_1111_1756_185X_13410 crossref_primary_10_1002_jbmr_2753 crossref_primary_10_2217_ijr_13_59 crossref_primary_10_1111_jgh_15224 crossref_primary_10_1016_j_intimp_2023_110306 crossref_primary_10_1155_2018_4126106 crossref_primary_10_3389_fcell_2022_835566 crossref_primary_10_5507_bp_2016_004 crossref_primary_10_1038_srep09430 crossref_primary_10_1038_nrrheum_2016_186 crossref_primary_10_3389_fimmu_2020_616141 crossref_primary_10_3389_fimmu_2023_1090177 crossref_primary_10_3390_molecules22010030 crossref_primary_10_1186_s12967_016_0917_6 crossref_primary_10_1177_20406223231153572 crossref_primary_10_1038_s41598_019_48770_5 crossref_primary_10_1186_s12967_018_1739_5 crossref_primary_10_3390_ijms160816953 crossref_primary_10_1007_s11033_018_4352_z crossref_primary_10_1038_nrneph_2014_202 crossref_primary_10_1080_00207454_2016_1209754 crossref_primary_10_1016_j_berh_2017_10_002 crossref_primary_10_1007_s00011_017_1082_y crossref_primary_10_1016_j_acthis_2014_02_009 crossref_primary_10_1681_ASN_2016101117 crossref_primary_10_1016_j_biopha_2016_12_072 crossref_primary_10_1016_j_canlet_2018_05_044 crossref_primary_10_1016_j_clim_2016_12_005 crossref_primary_10_1002_jgm_3326 crossref_primary_10_1016_j_intimp_2020_106262 crossref_primary_10_1016_j_jri_2014_05_003 crossref_primary_10_1007_s11481_016_9671_z crossref_primary_10_2217_epi_13_87 crossref_primary_10_1155_2017_8751642 crossref_primary_10_1097_BRS_0000000000001339 crossref_primary_10_18632_oncotarget_6403 crossref_primary_10_1155_2020_4757065 crossref_primary_10_1111_cei_12236 crossref_primary_10_1016_j_biopha_2019_108652 crossref_primary_10_1007_s11926_013_0369_4 crossref_primary_10_1007_s12016_014_8414_2 crossref_primary_10_1161_CIRCGENETICS_116_001678 crossref_primary_10_1007_s12016_015_8497_4 crossref_primary_10_1042_CS20140733 crossref_primary_10_1080_15384101_2016_1215386 crossref_primary_10_3390_ijms17111852 crossref_primary_10_3390_ijms231810731 crossref_primary_10_1016_j_rcreue_2020_07_005 crossref_primary_10_2217_ijr_15_17 crossref_primary_10_1002_art_39219 crossref_primary_10_1136_annrheumdis_2022_222656 crossref_primary_10_3390_ijms20205183 crossref_primary_10_1615_CritRevImmunol_2022045288 |
Cites_doi | 10.3109/s10165-005-0430-x 10.1111/j.2517-6161.1995.tb02031.x 10.1111/j.1365-2249.2003.02386.x 10.1182/blood-2010-03-274605 10.1016/j.cell.2007.03.008 10.4049/jimmunol.1102797 10.1136/ard.2009.117218 10.1182/blood-2011-05-355644 10.1177/0961203307084158 10.1002/ijc.26153 10.1002/art.34505 10.1038/nsmb.1651 10.4049/jimmunol.1100835 10.1126/science.1091903 10.1002/art.24686 10.1002/art.30499 10.1002/art.1780400928 10.1371/journal.pone.0003694 10.1002/art.34504 10.1182/blood-2010-04-280156 10.1182/blood-2009-12-256297 10.1016/j.jaut.2011.02.001 10.1038/ncb1596 10.1002/art.1780350606 10.1007/s10495-005-2941-5 10.4049/jimmunol.1002218 10.1016/j.trsl.2012.04.002 10.1111/j.1365-2230.2011.04158.x 10.1016/j.biocel.2010.03.004 10.1002/art.11237 10.1097/BOR.0b013e32832e089e 10.1016/j.coi.2004.09.014 10.1038/ni.2193 10.1007/s00296-008-0758-6 10.1002/art.24436 10.1371/journal.pone.0010344 10.1073/pnas.1019055108 10.1073/pnas.0804549105 10.1073/pnas.0605298103 10.1002/art.20254 10.1002/art.24852 10.1158/1940-6207.CAPR-11-0370 10.1371/journal.pone.0037000 10.1038/ncb1613 10.1093/carcin/bgp272 10.1038/ncb2210 10.1371/journal.pmed.0030491 10.1002/art.1780400506 |
ContentType | Journal Article |
Copyright | Copyright © 2013 by the American College of Rheumatology Copyright © 2013 by the American College of Rheumatology. |
Copyright_xml | – notice: Copyright © 2013 by the American College of Rheumatology – notice: Copyright © 2013 by the American College of Rheumatology. |
CorporateAuthor | Rheumatology Institutionen för kliniska vetenskaper, Lund Lunds universitet Profile areas and other strong research environments Lund University Sektion III Reumatologi och molekylär skelettbiologi Department of Clinical Sciences, Lund Strategiska forskningsområden (SFO) EpiHealth: Epidemiology for Health Faculty of Medicine Strategic research areas (SRA) Section III Medicinska fakulteten Profilområden och andra starka forskningsmiljöer |
CorporateAuthor_xml | – name: Faculty of Medicine – name: Medicinska fakulteten – name: Strategiska forskningsområden (SFO) – name: Sektion III – name: EpiHealth: Epidemiology for Health – name: Institutionen för kliniska vetenskaper, Lund – name: Strategic research areas (SRA) – name: Lunds universitet – name: Department of Clinical Sciences, Lund – name: Rheumatology – name: Profilområden och andra starka forskningsmiljöer – name: Lund University – name: Section III – name: Reumatologi och molekylär skelettbiologi – name: Profile areas and other strong research environments |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QP 7T5 7TM 7U7 C1K H94 K9. 7X8 5PM ADTPV AOWAS DG8 D95 |
DOI | 10.1002/art.37890 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Nucleic Acids Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Linköpings universitet SWEPUB Lunds universitet |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Calcium & Calcified Tissue Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Nucleic Acids Abstracts Toxicology Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1529-0131 2326-5205 |
EndPage | 1334 |
ExternalDocumentID | oai_portal_research_lu_se_publications_859d6276_65cb_4834_a148_288e921b107b oai_lup_lub_lu_se_859d6276_65cb_4834_a148_288e921b107b oai_DiVA_org_liu_93391 PMC6662589 2951882571 23401079 10_1002_art_37890 ART37890 |
Genre | article Multicenter Study Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Novo Nordisk Research Foundation – fundername: A. P. Møller Foundation – fundername: Crafoord Foundation – fundername: Swedish Renal Foundation and the Swedish Research Council – fundername: Region of Southern Denmark – fundername: Danish Rheumatism Association funderid: R33‐A1836 – fundername: Swedish Society of Medicine – fundername: Intramural Research Program of the National Cancer Institute – fundername: Foundation of the Swedish National Board of Health and Welfare – fundername: NIH – fundername: Intramural NIH HHS grantid: Z01 BC005480 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 10A 1CY 1KJ 1L6 1OB 1OC 1ZS 23N 24P 31~ 33P 3O- 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5RE 66C 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAQQT AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACMXC ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBTR ADEOM ADIZJ ADMGS ADNMO ADOZA ADZCM ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN EX3 F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J5H JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES M65 MEWTI MJL MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NNB OIG OK1 OVD P2P P2W P2X P2Z P4B P4D Q11 QB0 QRW RGB RIWAO RJQFR ROL RWI RX1 RXW RYL SAMSI SJN SUPJJ SV3 TAE TEORI TWZ UB1 V2E V8K V9Y VH1 W8V WH7 WIB WIH WIJ WIK WIN WJL WOW WQJ WRC WUP WXI WXSBR X6Y X7M XG1 XPP XV2 YFH YOC ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAYXX AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 0R~ 3SF 52U 52V 5VS 7QL 7QP 7T5 7TM 7U7 AAESR AASGY ABLJU ABPVW ACGFS ACGOF ACIWK ACPRK ADBBV ADKYN ADXAS ADZMN AENEX AEYWJ AFRAH AHMBA ALAGY ALVPJ AZVAB BFHJK BHBCM BMXJE C1K DIK FUBAC H94 K9. KBYEO NF~ O66 O9- PQQKQ WBKPD WHWMO WOHZO WVDHM 7X8 5PM ADTPV AOWAS DG8 D95 |
ID | FETCH-LOGICAL-c6720-33a5af6f8d7d6554980c2e6361abb3194aec8022e988bc05cacf409495b181dd3 |
IEDL.DBID | DR2 |
ISSN | 0004-3591 2326-5191 1529-0131 |
IngestDate | Thu Aug 21 06:36:42 EDT 2025 Thu Jul 03 05:23:49 EDT 2025 Thu Aug 21 06:27:16 EDT 2025 Thu Aug 21 13:47:09 EDT 2025 Fri Jul 11 09:03:56 EDT 2025 Fri Jul 11 04:51:26 EDT 2025 Mon Jun 30 08:36:54 EDT 2025 Mon Jul 21 05:30:09 EDT 2025 Thu Apr 24 23:10:14 EDT 2025 Tue Jul 01 01:05:23 EDT 2025 Wed Jan 22 17:08:15 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 by the American College of Rheumatology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6720-33a5af6f8d7d6554980c2e6361abb3194aec8022e988bc05cacf409495b181dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be published. Dr. Heegaard had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Acquisition of data. Carlsen, Nielsen, Lood, Voss, Hellmark, Segelmark, Jacobsen, Bengtsson. Study conception and design. Carlsen, Nielsen, Segelmark, Jacobsen, Bengtsson, Heegaard. AUTHOR CONTRIBUTIONS Analysis and interpretation of data. Carlsen, Schetter, Lood, Knudsen, Harris, Segelmark, Jacobsen, Bengtsson, Heegaard. |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/art.37890?download=true |
PMID | 23401079 |
PQID | 1335109205 |
PQPubID | 946334 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_portal_research_lu_se_publications_859d6276_65cb_4834_a148_288e921b107b swepub_primary_oai_lup_lub_lu_se_859d6276_65cb_4834_a148_288e921b107b swepub_primary_oai_DiVA_org_liu_93391 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6662589 proquest_miscellaneous_1439237936 proquest_miscellaneous_1346115691 proquest_journals_1335109205 pubmed_primary_23401079 crossref_citationtrail_10_1002_art_37890 crossref_primary_10_1002_art_37890 wiley_primary_10_1002_art_37890_ART37890 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2013 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: May 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: Atlanta |
PublicationTitle | Arthritis & rheumatology (Hoboken, N.J.) |
PublicationTitleAlternate | Arthritis Rheum |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | 2010; 31 1997; 40 2007; 129 2004; 303 2012; 188 2009; 21 2011; 118 2009; 60 1995; 57 2012; 160 2006; 3 2011; 13 2008; 105 1992; 35 2008; 3 2011; 36 2012; 37 2009; 29 2007; 16 2012; 130 2010; 42 2004; 50 2011; 108 2010; 69 2004; 135 2004; 16 2010; 116 2007; 9 2011; 63 2003; 48 2005; 10 2005; 15 2012; 7 2010; 5 2012; 5 2011; 29 2009; 16 2012; 64 2006; 103 2011; 187 2011; 186 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_20_2 Lashine YA (e_1_2_6_39_2) 2011; 29 e_1_2_6_41_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 3 start-page: e3694 year: 2008 article-title: Detection of microRNA expression in human peripheral blood microvesicles publication-title: PLoS One – volume: 63 start-page: 3067 year: 2011 end-page: 77 article-title: Distinct features of circulating microparticles and their relationship to clinical manifestations in systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 16 start-page: 939 year: 2007 end-page: 46 article-title: Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients publication-title: Lupus – volume: 187 start-page: 6171 year: 2011 end-page: 5 article-title: Cutting edge: microRNA‐181 promotes human NK cell development by regulating Notch signaling publication-title: J Immunol – volume: 130 start-page: 1378 year: 2012 end-page: 86 article-title: Circulating micro‐RNA expression profiles in early stage nonsmall cell lung cancer publication-title: Int J Cancer – volume: 15 start-page: 383 year: 2005 end-page: 90 article-title: Removal of dying cells and systemic lupus erythematosus publication-title: Mod Rheumatol – volume: 5 start-page: 492 year: 2012 end-page: 7 article-title: Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies publication-title: Cancer Prev Res (Phila) – volume: 13 start-page: 423 year: 2011 end-page: 33 article-title: MicroRNAs are transported in plasma and delivered to recipient cells by high‐density lipoproteins publication-title: Nat Cell Biol – volume: 103 start-page: 12481 year: 2006 end-page: 6 article-title: NF‐κB‐dependent induction of microRNA miR‐146, an inhibitor targeted to signaling proteins of innate immune responses publication-title: Proc Natl Acad Sci U S A – volume: 60 start-page: 2418 year: 2009 end-page: 27 article-title: Regulation of the interferon‐α production induced by RNA‐containing immune complexes in plasmacytoid dendritic cells publication-title: Arthritis Rheum – volume: 160 start-page: 198 year: 2012 end-page: 206 article-title: Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus publication-title: Transl Res – volume: 37 start-page: 34 year: 2012 end-page: 9 article-title: Circulating miR‐142‐3p levels in patients with systemic sclerosis publication-title: Clin Exp Dermatol – volume: 303 start-page: 83 year: 2004 end-page: 6 article-title: MicroRNAs modulate hematopoietic lineage differentiation publication-title: Science – volume: 129 start-page: 147 year: 2007 end-page: 61 article-title: miR‐181a is an intrinsic modulator of T cell sensitivity and selection publication-title: Cell – volume: 9 start-page: 654 year: 2007 end-page: 9 article-title: Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells publication-title: Nat Cell Biol – volume: 35 start-page: 630 year: 1992 end-page: 40 article-title: Derivation of the SLEDAI: a disease activity index for lupus patients publication-title: Arthritis Rheum – volume: 116 start-page: 1951 year: 2010 end-page: 7 article-title: Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: up‐regulation of the type I interferon system is strongly associated with vascular disease publication-title: Blood – volume: 29 start-page: 749 year: 2009 end-page: 54 article-title: Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients publication-title: Rheumatol Int – volume: 21 start-page: 471 year: 2009 end-page: 7 article-title: Type I interferon and lupus publication-title: Curr Opin Rheumatol – volume: 16 start-page: 961 year: 2009 end-page: 6 article-title: Existence of a microRNA pathway in anucleate platelets publication-title: Nat Struct Mol Biol – volume: 5 start-page: e10344 year: 2010 article-title: Identification of unique microRNA signature associated with lupus nephritis publication-title: PLoS One – volume: 9 start-page: 775 year: 2007 end-page: 87 article-title: MicroRNAs 17‐5p‐20a‐106a control monocytopoiesis through AML1 targeting and M‐CSF receptor upregulation publication-title: Nat Cell Biol – volume: 64 start-page: 2953 year: 2012 end-page: 63 article-title: Decreased miR‐142‐3p/5p expression causes CD4+ T cell activation and B cell hyperstimulation in systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 108 start-page: 5003 year: 2011 end-page: 8 article-title: Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma publication-title: Proc Natl Acad Sci U S A – volume: 186 start-page: 924 year: 2011 end-page: 30 article-title: Dicer insufficiency and microRNA‐155 overexpression in lupus regulatory T cells: an apparent paradox in the setting of an inflammatory milieu publication-title: J Immunol – volume: 116 start-page: 2395 year: 2010 end-page: 401 article-title: Prox1 expression is negatively regulated by miR‐181 in endothelial cells publication-title: Blood – volume: 69 start-page: i30 issue: Suppl 1 year: 2010 end-page: i36 article-title: Evidence for microRNA‐mediated regulation in rheumatic diseases publication-title: Ann Rheum Dis – volume: 31 start-page: 37 year: 2010 end-page: 49 article-title: Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways publication-title: Carcinogenesis – volume: 135 start-page: 535 year: 2004 end-page: 43 article-title: Induction of apoptosis in monocytes and lymphocytes by serum from patients with systemic lupus erythematosus: an additional mechanism to increased autoantigen load? publication-title: Clin Exp Immunol – volume: 57 start-page: 289 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Statist Soc B – volume: 40 start-page: 809 year: 1997 end-page: 13 article-title: The reliability of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index in patients with systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 48 start-page: 2888 year: 2003 end-page: 97 article-title: Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 50 start-page: 1861 year: 2004 end-page: 72 article-title: Induction of interferon‐α production in plasmacytoid dendritic cells by immune complexes containing nucleic acid released by necrotic or late apoptotic cells and lupus IgG publication-title: Arthritis Rheum – volume: 16 start-page: 801 year: 2004 end-page: 7 article-title: The emerging role of interferon in human systemic lupus erythematosus publication-title: Curr Opin Immunol – volume: 105 start-page: 10513 year: 2008 end-page: 8 article-title: Circulating microRNAs as stable blood‐based markers for cancer detection publication-title: Proc Natl Acad Sci U S A – volume: 118 start-page: 5487 year: 2011 end-page: 97 article-title: Molecular dissection of the miR‐17‐92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation publication-title: Blood – volume: 40 start-page: 1725 year: 1997 article-title: Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus publication-title: Arthritis Rheum – volume: 7 start-page: e37000 year: 2012 article-title: Type I interferons are associated with subclinical markers of cardiovascular disease in a cohort of systemic lupus erythematosus patients publication-title: PLoS One – volume: 10 start-page: 731 year: 2005 end-page: 41 article-title: The release of microparticles by apoptotic cells and their effects on macrophages publication-title: Apoptosis – volume: 60 start-page: 3081 year: 2009 end-page: 90 article-title: C1q inhibits immune complex‐induced interferon‐α production in plasmacytoid dendritic cells: a novel link between C1q deficiency and systemic lupus erythematosus pathogenesis publication-title: Arthritis Rheum – volume: 64 start-page: 2975 year: 2012 end-page: 85 article-title: Type I interferons modulate vascular function, repair, thrombosis and plaque progression in murine models of lupus and atherosclerosis publication-title: Arthritis Rheum – volume: 188 start-page: 902 year: 2012 end-page: 15 article-title: Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes publication-title: J Immunol – volume: 42 start-page: 1348 year: 2010 end-page: 54 article-title: mir‐17‐92, a cluster of miRNAs in the midst of the cancer network publication-title: Int J Biochem Cell Biol – volume: 13 start-page: 181 year: 2011 end-page: 7 article-title: The thymic epithelial microRNA network elevates the threshold for infection‐associated thymic involution via miR‐29a mediated suppression of the IFN‐α receptor publication-title: Nat Immunol – volume: 3 start-page: e491 year: 2006 article-title: Elevated serum levels of interferon‐regulated chemokines are biomarkers for active human systemic lupus erythematosus publication-title: PLoS Med – volume: 29 start-page: 351 year: 2011 end-page: 7 article-title: Expression signature of microRNA‐181‐a reveals its crucial role in the pathogenesis of paediatric systemic lupus erythematosus publication-title: Clin Exp Rheumatol – volume: 36 start-page: 173 year: 2011 end-page: 80 article-title: Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus publication-title: J Autoimmun – volume: 116 start-page: 5885 year: 2010 end-page: 94 article-title: miR‐155 and its star‐form partner miR‐155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells publication-title: Blood – volume: 60 start-page: 1065 year: 2009 end-page: 75 article-title: MicroRNA‐146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins publication-title: Arthritis Rheum – ident: e_1_2_6_45_2 doi: 10.3109/s10165-005-0430-x – ident: e_1_2_6_26_2 doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_6_44_2 doi: 10.1111/j.1365-2249.2003.02386.x – ident: e_1_2_6_30_2 doi: 10.1182/blood-2010-03-274605 – ident: e_1_2_6_36_2 doi: 10.1016/j.cell.2007.03.008 – volume: 29 start-page: 351 year: 2011 ident: e_1_2_6_39_2 article-title: Expression signature of microRNA‐181‐a reveals its crucial role in the pathogenesis of paediatric systemic lupus erythematosus publication-title: Clin Exp Rheumatol – ident: e_1_2_6_3_2 doi: 10.4049/jimmunol.1102797 – ident: e_1_2_6_12_2 doi: 10.1136/ard.2009.117218 – ident: e_1_2_6_42_2 doi: 10.1182/blood-2011-05-355644 – ident: e_1_2_6_14_2 doi: 10.1177/0961203307084158 – ident: e_1_2_6_25_2 doi: 10.1002/ijc.26153 – ident: e_1_2_6_34_2 doi: 10.1002/art.34505 – ident: e_1_2_6_50_2 doi: 10.1038/nsmb.1651 – ident: e_1_2_6_35_2 doi: 10.4049/jimmunol.1100835 – ident: e_1_2_6_37_2 doi: 10.1126/science.1091903 – ident: e_1_2_6_6_2 doi: 10.1002/art.24686 – ident: e_1_2_6_21_2 doi: 10.1002/art.30499 – ident: e_1_2_6_24_2 doi: 10.1002/art.1780400928 – ident: e_1_2_6_29_2 doi: 10.1371/journal.pone.0003694 – ident: e_1_2_6_47_2 doi: 10.1002/art.34504 – ident: e_1_2_6_49_2 doi: 10.1182/blood-2010-04-280156 – ident: e_1_2_6_38_2 doi: 10.1182/blood-2009-12-256297 – ident: e_1_2_6_23_2 doi: 10.1016/j.jaut.2011.02.001 – ident: e_1_2_6_19_2 doi: 10.1038/ncb1596 – ident: e_1_2_6_27_2 doi: 10.1002/art.1780350606 – ident: e_1_2_6_22_2 doi: 10.1007/s10495-005-2941-5 – ident: e_1_2_6_46_2 doi: 10.4049/jimmunol.1002218 – ident: e_1_2_6_32_2 doi: 10.1016/j.trsl.2012.04.002 – ident: e_1_2_6_33_2 doi: 10.1111/j.1365-2230.2011.04158.x – ident: e_1_2_6_40_2 doi: 10.1016/j.biocel.2010.03.004 – ident: e_1_2_6_43_2 doi: 10.1002/art.11237 – ident: e_1_2_6_2_2 doi: 10.1097/BOR.0b013e32832e089e – ident: e_1_2_6_4_2 doi: 10.1016/j.coi.2004.09.014 – ident: e_1_2_6_9_2 doi: 10.1038/ni.2193 – ident: e_1_2_6_15_2 doi: 10.1007/s00296-008-0758-6 – ident: e_1_2_6_11_2 doi: 10.1002/art.24436 – ident: e_1_2_6_16_2 doi: 10.1371/journal.pone.0010344 – ident: e_1_2_6_17_2 doi: 10.1073/pnas.1019055108 – ident: e_1_2_6_20_2 doi: 10.1073/pnas.0804549105 – ident: e_1_2_6_13_2 doi: 10.1073/pnas.0605298103 – ident: e_1_2_6_8_2 doi: 10.1002/art.20254 – ident: e_1_2_6_7_2 doi: 10.1002/art.24852 – ident: e_1_2_6_31_2 doi: 10.1158/1940-6207.CAPR-11-0370 – ident: e_1_2_6_48_2 doi: 10.1371/journal.pone.0037000 – ident: e_1_2_6_41_2 doi: 10.1038/ncb1613 – ident: e_1_2_6_10_2 doi: 10.1093/carcin/bgp272 – ident: e_1_2_6_18_2 doi: 10.1038/ncb2210 – ident: e_1_2_6_5_2 doi: 10.1371/journal.pmed.0030491 – ident: e_1_2_6_28_2 doi: 10.1002/art.1780400506 |
SSID | ssj0002353 ssj0000970605 |
Score | 2.518843 |
Snippet | Objective
To evaluate the specificity of expression patterns of cell‐free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE).
Methods
Total... To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Total RNA was purified... Objective To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE). Methods Total... To evaluate the specificity of expression patterns of cell-free circulating microRNAs (miRNAs) in systemic lupus erythematosus (SLE).OBJECTIVETo evaluate the... |
SourceID | swepub pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1324 |
SubjectTerms | Adult Aged Arthritis, Rheumatoid - blood Arthritis, Rheumatoid - diagnosis Arthritis, Rheumatoid - genetics Biomarkers - blood Clinical Medicine Cohort Studies Female Gene Expression Profiling Humans Immunocompromised Host Klinisk medicin Lupus Erythematosus, Systemic - blood Lupus Erythematosus, Systemic - diagnosis Lupus Erythematosus, Systemic - genetics Male Medical and Health Sciences MEDICIN Medicin och hälsovetenskap MEDICINE MicroRNAs - blood MicroRNAs - classification Middle Aged Signal Transduction - genetics Transforming Growth Factor beta - genetics Transforming Growth Factor beta - metabolism Vasculitis - blood Vasculitis - genetics Young Adult |
Title | Circulating MicroRNA Expression Profiles Associated With Systemic Lupus Erythematosus |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fart.37890 https://www.ncbi.nlm.nih.gov/pubmed/23401079 https://www.proquest.com/docview/1335109205 https://www.proquest.com/docview/1346115691 https://www.proquest.com/docview/1439237936 https://pubmed.ncbi.nlm.nih.gov/PMC6662589 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93391 https://lup.lub.lu.se/record/3843340 oai:portal.research.lu.se:publications/859d6276-65cb-4834-a148-288e921b107b |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelD2Mv-_5w1xVvbNCXpLZkyRJ7Cl1K99EyyrKVMRCSLDdmwQlxDNv--p0s213WbJQ9CAw-CX3cne6k0-8QesEsITjTfJC7W_dEsWggEkPA5zGW5JlDCGnQPk_Z8SR5e07Pt9Cr7i2Mx4foD9ycZDT62gm40tXBJWgozOyQuGecoH9drJYziM4uoaMwaREo3ck_FXGHKhThg77m-l50xcC8GifZoomuG7LNTnR0G33txuADUL4N65Uemp9_wDv-5yDvoFuthRqOPEvdRVu2vIdunLR38PfR5LBYmibpV3kRnrh4vrPTUTj-3kbUluEHnwa8Crult1n4uVhNQ4-OXpjwfb2oq3C8_OEhY-dVXT1Ak6Pxx8PjQZucYWBY6l5dE0VVznKepRkDm0TwyGDLCIuV1iDXibLGPeO1gnNtImqUyZ0vKagGoyLLyEO0Xc5L-xiFCcsps7GlPLIJjpiKHYgfOD7WJAnRaYD2u2WSpkUudwk0ZtJjLmMJ0ySbaQrQ85504eE6NhHtdmstW4mtJPjqoJ4EjmiAnvW_QdbcBYoq7bx2NAkDC5qJ-B80YOFhAlqPBeiRZ5--J5iANxulIkDpGmP1BA7re_1PWUwbzG_wMjHlUPOlZ8G1Kq-LTyM5X17IWVFLQYjr33gD3axeQNFQZGUlpyJjOGWSUaOlO1SWCpxjiTm3AscaeqoD9GVDO94zlC0c1bRtb_HbOfM1G99veP_vKyXBqWs-dq5P-gTdxE3KEheUuou2V8vaPgXDcaX3QEO8ebfX6IlfwsJsHw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfGkIAXvj8CAwICaS_tEjtxYomXanQq0FZoWmFCQlbsOGtElVZNIwF_PWc7yQgraOIhUqScLX-cnfudz79D6BVVhOBUxL1Mn7oHCfV6LJAEMI9UJEs1Q4hh-5zS0Sx4fxqe7qA3zV0Yyw_ROtz0yjD7tV7g2iF9cM4aCkPbJ_oe5xV0VWf0NoDq-Jw8CpOag1L7_kPmN7xCHj5oi3b_RhdMzIuRkjWfaNeUNf-io1voa9MLG4LyrV9tRF_-_IPg8X-7eRvdrI1Ud2C16g7aUcVddG1SH8PfQ7PDfC1N3q_izJ3okL7j6cAdfq-Dagv3o80EXrrN7KvU_Zxv5q4lSM-lO65WVekO1z8sa-yyrMr7aHY0PDkc9er8DD1JI33xmiRhktEsTqOUglnCYk9iRQn1EyFgaQeJkvomr2JxLKQXykRmGk6yUIBdkabkAdotloV6hNyAZiFVvgpjTwXYo4mvefwA-ygZBEREDtpv5onLmrxc59BYcEu7jDkMEzfD5KCXrejKMnZsE9prJpvXi7bkANdhh2LYCx30ov0My02foSSFWlZaJqBgRFPm_0MGjDxMYOOjDnpo9adtCSYAaL2IOSjqaFYroOm-u1-KfG5ovwFo4jCGkq-tDnaKvM0_DfhyfcYXecUZIbp9wy1yi2oFj4CHl4rHIUspjiinoRRc-5V5AviY4zhWDPsCWioc9GVLPRYc8pqRal7Xt_rN1XzJyveN8v99pjjgOvPy-PKiz9H10clkzMfvph-eoBvYZDDRMap7aHezrtRTsCM34pnZLn4BqpxvQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkCZeuF8CAwICaS_tEjt2bPFUra0GbNU0UZgmJCt2nDWiSqumkYBfz3FuI6ygiYdIkXJs-XKOcz77-DsIvWGGEBwr3kvsqXsQMa8nAk0A82hDktgyhJRsnxN2OA0-nNGzLfSuuQtT8UO0G27WMsr12hr4Mk72L0lDYWT7xF7jvIFuBszjVqWHp5fcUZjUFJR2658Kv6EV8vB-W7T7M7riYV4NlKzpRLuebPkrGt9BX5tOVBEo3_rFWvX1zz_4Hf-zl3fR7dpFdQeVTt1DWya7j3aO60P4B2h6kK50mfUru3CPbUDf6WTgjr7XIbWZe1LlAc_dZu5N7H5J1zO3okdPtXtULIvcHa1-VJyxi7zIH6LpePTp4LBXZ2foaRbaa9ckolHCEh6HMQOnRHBPY8MI8yOlwLCDyGh7j9cIzpX2qI50YsGkoAq8ijgmj9B2tsjME-QGLKHM-IZyzwTYY5FvWfwA-RgdBESFDtprpknqmrrcZtCYy4p0GUsYJlkOk4Net6LLiq9jk9BuM9eyNtlcAliH9UlgjzroVfsZjM2eoESZWRRWJmDgQjPh_0MGXDxMYNljDnpcqU_bEkwAznqhcFDYUaxWwJJ9d79k6awk_QaYiSmHkm8rFewUGaafB3KxupDztJCCENu-0Qa5ebGER8EjcyM5FTHDIZOMaiXtrrKMAB1LzLkR2FfQUuWg8w31VNBQ1nxUs7q-5W8bzdesfK_U_b_PlARUV748vb7oS7RzMhzLo_eTj8_QLVymL7EBqrtoe70qzHNwItfqRblY_AIxp235 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Circulating+MicroRNA+Expression+Profiles+Associated+With+Systemic+Lupus+Erythematosus&rft.jtitle=Arthritis+and+rheumatism&rft.au=Carlsen%2C+Anting+Liu&rft.au=Schetter%2C+Aaron+J.&rft.au=Nielsen%2C+Christoffer+T.&rft.au=Lood%2C+Christian&rft.date=2013-05-01&rft.issn=1529-0131&rft.volume=65&rft.issue=5&rft.spage=1324&rft_id=info:doi/10.1002%2Fart.37890&rft.externalDocID=oai_portal_research_lu_se_publications_859d6276_65cb_4834_a148_288e921b107b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3591&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3591&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3591&client=summon |