Blur image detection and classification using resnet-50

Blur classification is important for blind image restoration. It is difficult to detect blur in a single image without knowing any additional information. This paper uses edge detection methods and a deep learning convolutional neural network called Resnet-50 to classify blurry-type images. The Resn...

Full description

Saved in:
Bibliographic Details
Published inI-manager's Journal on Image Processing Vol. 9; no. 2; p. 37
Main Authors Bhuvaneswari, Polavarapu, Hema, Mamidipaka
Format Journal Article
LanguageEnglish
Published Nagercoil iManager Publications 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Blur classification is important for blind image restoration. It is difficult to detect blur in a single image without knowing any additional information. This paper uses edge detection methods and a deep learning convolutional neural network called Resnet-50 to classify blurry-type images. The Resnet model effectively reduces the gradient vanishing problem and uses connection skipping to train the network. Typically, images are subject to defocus blur and motion blur, which are caused by the incorrect depth of field and the movement of objects during capture. The dataset used here is the blur dataset from Kaggle, which consists of sharp images, images with blur, and motion blur. In this paper, edge detection methods are applied to images using Laplace, Sobel, Prewitt, and Roberts filters and derived features such as mean, variance, and maximum signal-to-noise ratio, which are used to train a classification algorithm for image classification.
AbstractList Blur classification is important for blind image restoration. It is difficult to detect blur in a single image without knowing any additional information. This paper uses edge detection methods and a deep learning convolutional neural network called Resnet-50 to classify blurry-type images. The Resnet model effectively reduces the gradient vanishing problem and uses connection skipping to train the network. Typically, images are subject to defocus blur and motion blur, which are caused by the incorrect depth of field and the movement of objects during capture. The dataset used here is the blur dataset from Kaggle, which consists of sharp images, images with blur, and motion blur. In this paper, edge detection methods are applied to images using Laplace, Sobel, Prewitt, and Roberts filters and derived features such as mean, variance, and maximum signal-to-noise ratio, which are used to train a classification algorithm for image classification.
Author Bhuvaneswari, Polavarapu
Hema, Mamidipaka
Author_xml – sequence: 1
  givenname: Polavarapu
  surname: Bhuvaneswari
  fullname: Bhuvaneswari, Polavarapu
– sequence: 2
  givenname: Mamidipaka
  surname: Hema
  fullname: Hema, Mamidipaka
BookMark eNotkEtrwzAQhEVJoWmaa8-Gnu3KK-t1bENfEOgldyFLq-CQyq5kH_rva5ycZhiGWfa7J6vYRyTksaYVCMGa51M3VLqCqlZK8huyBtboUiiQq6tvOKN3ZJvziVIKWjRa12siX89TKrofe8TC44hu7PpY2OgLd7Y5d6Fzdomm3MVjkTBHHEtOH8htsOeM26tuyOH97bD7LPffH1-7l33phIQSZfBUMJRaWvDB19J5BMG1Fk5oLlqFlluQyFXDwSvntGxV0MEzH1rdsg15uswOqf-dMI_m1E8pzhcNSOC1AqAwt6pLy6U-54TBDGl-Kf2ZmpoFj5nxGG3ALHjYP-r9WaY
Cites_doi 10.1109/TIP.2010.2053549
10.1109/ICIP.2014.7025113
10.1109/IST.2017.8261503
10.1109/ICMA.2015.7237865
10.1007/978-1-4419-9326-7
10.1145/3065386
10.1117/12.526949
10.1016/S0893-6080(96)00086-X
10.1016/j.procs.2020.03.309
10.1117/12.468009
10.1016/j.sigpro.2016.02.003
10.1109/CVPR.2016.90
10.1007/s00521-019-04316-4
10.1109/ARTCom.2009.219
ContentType Journal Article
Copyright 2022 i-manager publications. All rights reserved.
Copyright_xml – notice: 2022 i-manager publications. All rights reserved.
DBID AAYXX
CITATION
3V.
7XB
8AL
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.26634/jip.9.2.18875
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Computing Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2349-6827
ExternalDocumentID 10_26634_jip_9_2_18875
GroupedDBID 8FE
8FG
AAYXX
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K6V
K7-
P62
PHGZM
PHGZT
PQQKQ
PROAC
3V.
7XB
8AL
8FK
JQ2
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c672-e7fd063e797a2dfd17cde265996c6956b8ea5a27e58452d8cc97b8f9fd3dfb9b3
IEDL.DBID BENPR
ISSN 2349-4530
IngestDate Fri Jul 25 05:56:09 EDT 2025
Tue Jul 01 02:42:48 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c672-e7fd063e797a2dfd17cde265996c6956b8ea5a27e58452d8cc97b8f9fd3dfb9b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2725182202
PQPubID 2042734
ParticipantIDs proquest_journals_2725182202
crossref_primary_10_26634_jip_9_2_18875
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 20220401
  day: 01
PublicationDecade 2020
PublicationPlace Nagercoil
PublicationPlace_xml – name: Nagercoil
PublicationTitle I-manager's Journal on Image Processing
PublicationYear 2022
Publisher iManager Publications
Publisher_xml – name: iManager Publications
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TIP.2010.2053549
– ident: ref4
– ident: ref8
  doi: 10.1109/ICIP.2014.7025113
– ident: ref13
  doi: 10.1109/IST.2017.8261503
– ident: ref14
  doi: 10.1109/ICMA.2015.7237865
– ident: ref15
  doi: 10.1007/978-1-4419-9326-7
– ident: ref7
  doi: 10.1145/3065386
– ident: ref9
  doi: 10.1117/12.526949
– ident: ref10
  doi: 10.1016/S0893-6080(96)00086-X
– ident: ref1
  doi: 10.1016/j.procs.2020.03.309
– ident: ref2
  doi: 10.1117/12.468009
– ident: ref12
  doi: 10.1016/j.sigpro.2016.02.003
– ident: ref5
  doi: 10.1109/CVPR.2016.90
– ident: ref6
  doi: 10.1007/s00521-019-04316-4
– ident: ref11
  doi: 10.1109/ARTCom.2009.219
SSID ssj0002964991
Score 2.1786516
Snippet Blur classification is important for blind image restoration. It is difficult to detect blur in a single image without knowing any additional information. This...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 37
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Blurring
Classification
Datasets
Depth of field
Edge detection
Image classification
Image detection
Image restoration
Machine learning
Neural networks
Signal to noise ratio
Support vector machines
Title Blur image detection and classification using resnet-50
URI https://www.proquest.com/docview/2725182202
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTwIxEG0ELl6MRo0okh5MPBWW7na7PRlRED0QQzDh1my_jEYWhOX_Oy2LHxev273sTHfem-nrDEJXuXAWeGtKTNrLSWIUI0q7mMAjaiGjMEyFbp_jdPSSPM3YrCq4rStZ5S4mhkBtFtrXyLuUAxIDmkX0ZvlJ_NQof7pajdCooQaE4AySr0Z_MH6efFdZ_KGiCGPzaJwIkrA42nZuBFyKk-7727IjOrTTy4LQ8Dcy_Q3MAW2Gh-igoon4duvXI7Rni2PE-x-bFX6cQwjA97YMIqoC54XBYbSlF_0EO2MvZn_FE7subElYdIKmw8H0bkSqwQdEp5wSy50B5mC54Dk1zvS4NpamvpGKTiGfUZnNWU65BfLAqMm0FlxlTjgTG6eEik9RvVgU9gxhYFfKwU_KLFAFDe9oEScOkjBtI0HztImud98sl9v2FhLSgmAdCdaRQlIZrNNErZ1JZLXN1_LHKef_L1-gfervDQTJSwvVy9XGXgKal6qNatnwoV057gtk455L
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TgMxELU4CmgQCBBHABcgKuewd9frAiEghARCChSkdNb6QiDYhCQI8VH8I2Mny9HQpV2vLHlmPG_Gfp5B6DATzkLcmhCT1DISGRUTpR0j8IlayChMrEK1z07SvI-ue3FvDn0Wb2E8rbLwicFRm772Z-QVygGJAc2q9HTwSnzXKH-7WrTQmJjFjf14h5RtdNKqg36PKG1cdi-aZNpVgOiEU2K5MwDLlgueUeNMjWtjaeKrlOgEkgWV2izOKLeAzDE1qdaCq9QJZ5hxSigG086jxYgx4TdU2rj6PtLxN5gi9OijLBIkill1UiYSQJBFlafHQVmUabmWBlbjbxj8iwIB2hqraGUak-KziRGtoTmbryN-_vw2xK0X8De4bseBsZXjLDc49NH0DKOgVOyZ8w_4zo5yOyZxdQN1ZyGPTbSQ93O7hTCEcsqBR4gtxCUa_tGCRQ4yPm2rgmbJNjou1iwHk1oaEnKQIB0J0pFCUhmks41KhUjkdE-N5I8F7Pw_fICWmt3btmy3Oje7aJn6BwuBa1NCC-Phm92DMGKs9oPyMJIzNpYvmXfZtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blur+Image+Detection+and+Classification+using+Resnet-50&rft.jtitle=I-manager%27s+Journal+on+Image+Processing&rft.au=Polavarapu%2C+Bhuvaneswari&rft.au=Mamidipaka%2C+Hema&rft.date=2022-04-01&rft.pub=iManager+Publications&rft.issn=2349-4530&rft.eissn=2349-6827&rft.volume=9&rft.issue=2&rft.spage=37&rft_id=info:doi/10.26634%2Fjip.9.2.18875
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2349-4530&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2349-4530&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2349-4530&client=summon