Genome-wide association study and Mendelian randomization analysis provide insights for improving rice yield potential

Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 6894 - 11
Main Authors Su, Jing, Xu, Kai, Li, Zirong, Hu, Yuan, Hu, Zhongli, Zheng, Xingfei, Song, Shufeng, Tang, Zhonghai, Li, Lanzhi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.03.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits is an alternative route for further improving rice production. To understand the genetic basis of the relationship between rice yield and component traits, we investigated the four traits of two rice hybrid populations (575 + 1495 F 1 ) in different environments and conducted meta-analyses of genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene affected component traits to further enhance yield is recommended. Mendelian randomization design is adopted to investigate the genetic effects of loci on yield through component traits and estimate the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects (positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved yield. A combination of direct and indirect effects may better contribute to the yield potential of rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice yield, which will be helpful for further understanding the genetic basis of yield and provide valuable information for improving rice yield potential.
AbstractList Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits is an alternative route for further improving rice production. To understand the genetic basis of the relationship between rice yield and component traits, we investigated the four traits of two rice hybrid populations (575 + 1495 F1) in different environments and conducted meta-analyses of genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene affected component traits to further enhance yield is recommended. Mendelian randomization design is adopted to investigate the genetic effects of loci on yield through component traits and estimate the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects (positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved yield. A combination of direct and indirect effects may better contribute to the yield potential of rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice yield, which will be helpful for further understanding the genetic basis of yield and provide valuable information for improving rice yield potential.Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits is an alternative route for further improving rice production. To understand the genetic basis of the relationship between rice yield and component traits, we investigated the four traits of two rice hybrid populations (575 + 1495 F1) in different environments and conducted meta-analyses of genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene affected component traits to further enhance yield is recommended. Mendelian randomization design is adopted to investigate the genetic effects of loci on yield through component traits and estimate the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects (positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved yield. A combination of direct and indirect effects may better contribute to the yield potential of rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice yield, which will be helpful for further understanding the genetic basis of yield and provide valuable information for improving rice yield potential.
Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits is an alternative route for further improving rice production. To understand the genetic basis of the relationship between rice yield and component traits, we investigated the four traits of two rice hybrid populations (575 + 1495 F 1 ) in different environments and conducted meta-analyses of genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene affected component traits to further enhance yield is recommended. Mendelian randomization design is adopted to investigate the genetic effects of loci on yield through component traits and estimate the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects (positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved yield. A combination of direct and indirect effects may better contribute to the yield potential of rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice yield, which will be helpful for further understanding the genetic basis of yield and provide valuable information for improving rice yield potential.
Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits is an alternative route for further improving rice production. To understand the genetic basis of the relationship between rice yield and component traits, we investigated the four traits of two rice hybrid populations (575 + 1495 F ) in different environments and conducted meta-analyses of genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene affected component traits to further enhance yield is recommended. Mendelian randomization design is adopted to investigate the genetic effects of loci on yield through component traits and estimate the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects (positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved yield. A combination of direct and indirect effects may better contribute to the yield potential of rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice yield, which will be helpful for further understanding the genetic basis of yield and provide valuable information for improving rice yield potential.
Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits is an alternative route for further improving rice production. To understand the genetic basis of the relationship between rice yield and component traits, we investigated the four traits of two rice hybrid populations (575 + 1495 F1) in different environments and conducted meta-analyses of genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene affected component traits to further enhance yield is recommended. Mendelian randomization design is adopted to investigate the genetic effects of loci on yield through component traits and estimate the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects (positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved yield. A combination of direct and indirect effects may better contribute to the yield potential of rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice yield, which will be helpful for further understanding the genetic basis of yield and provide valuable information for improving rice yield potential.
Abstract Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP), kilo-grain weight (KGW), and tillers per plant (TP). Exploring ideotype breeding based on selection for genetically less complex component traits is an alternative route for further improving rice production. To understand the genetic basis of the relationship between rice yield and component traits, we investigated the four traits of two rice hybrid populations (575 + 1495 F1) in different environments and conducted meta-analyses of genome-wide association study (meta-GWAS). In total, 3589 significant loci for three components traits were detected, while only 3 loci for yield were detected. It indicated that rice yield is mainly controlled by minor-effect loci and hardly to be identified. Selecting quantitative trait locus/gene affected component traits to further enhance yield is recommended. Mendelian randomization design is adopted to investigate the genetic effects of loci on yield through component traits and estimate the genetic relationship between rice yield and its component traits by these loci. The loci for GPP or TP mainly had a positive genetic effect on yield, but the loci for KGW with different direction effects (positive effect or negative effect). Additionally, TP (Beta = 1.865) has a greater effect on yield than KGW (Beta = 1.016) and GPP (Beta = 0.086). Five significant loci for component traits that had an indirect effect on yield were identified. Pyramiding superior alleles of the five loci revealed improved yield. A combination of direct and indirect effects may better contribute to the yield potential of rice. Our findings provided a rationale for using component traits as indirect indices to enhanced rice yield, which will be helpful for further understanding the genetic basis of yield and provide valuable information for improving rice yield potential.
ArticleNumber 6894
Author Hu, Zhongli
Xu, Kai
Song, Shufeng
Li, Lanzhi
Su, Jing
Hu, Yuan
Tang, Zhonghai
Li, Zirong
Zheng, Xingfei
Author_xml – sequence: 1
  givenname: Jing
  surname: Su
  fullname: Su, Jing
  organization: Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University
– sequence: 2
  givenname: Kai
  surname: Xu
  fullname: Xu, Kai
  organization: Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University
– sequence: 3
  givenname: Zirong
  surname: Li
  fullname: Li, Zirong
  organization: Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University
– sequence: 4
  givenname: Yuan
  surname: Hu
  fullname: Hu, Yuan
  organization: Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University
– sequence: 5
  givenname: Zhongli
  surname: Hu
  fullname: Hu, Zhongli
  organization: State Key Laboratory of Hybrid Rice, Wuhan University
– sequence: 6
  givenname: Xingfei
  surname: Zheng
  fullname: Zheng, Xingfei
  organization: Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crop Institute, Hubei Academy of Agricultural Sciences
– sequence: 7
  givenname: Shufeng
  surname: Song
  fullname: Song, Shufeng
  organization: State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center
– sequence: 8
  givenname: Zhonghai
  surname: Tang
  fullname: Tang, Zhonghai
  organization: College of Food Science and Technology, Hunan Agricultural University
– sequence: 9
  givenname: Lanzhi
  orcidid: 0000-0002-1531-8500
  surname: Li
  fullname: Li, Lanzhi
  email: lancy0829@163.com
  organization: Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, Hunan Agricultural University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33767346$$D View this record in MEDLINE/PubMed
BookMark eNp9kltrFDEcxQep2Fr7BXyQgC--jE7uyYsgRWuh4os-h0wu0ywzyZrMblk_vdmdVtuCDYHcfufwT3JeNkcxRdc0r2H3HnZYfCgEUinaDsFWMCxky581J6gjtEUYoaN78-PmrJRVVxtFkkD5ojnGmDOOCTtpthcupsm1N8E6oEtJJug5pAjKvLE7oKMF31y0bgw6glyXaQq_F0JHPe5KKGCd03YvD7GE4XouwKcMwnTYjgPIwTiwC260YJ1mF-egx1fNc6_H4s5ux9Pm55fPP86_tlffLy7PP121hnE4t54h3lEGkRe97Qlx2kNqUEf7nhvtuSWCOwyl6LWQ3BnPfO1aIIQpFbjHp83l4muTXql1DpPOO5V0UIeNlAel8xzM6JTGPTHaaEs9JlDY3lonJOLMME-dodXr4-K13vSTs6beJOvxgenDkxiu1ZC2iktJGEbV4N2tQU6_Nq7MagrFuHHU0aVNUYh2DAksmajo20foKm1yffBKMUg5QfJg-H-K1t-mGHJeqTf36_5b8F0IKiAWwORUSnZemTAf_rheI4wKdmofObVETtXIqUPk1N4bPZLeuT8pwouoVDgOLv8r-wnVH8bI65M
CitedBy_id crossref_primary_10_1007_s11032_022_01289_6
crossref_primary_10_3390_agriculture12111757
crossref_primary_10_3390_metabo13070826
crossref_primary_10_3389_fpls_2021_704941
crossref_primary_10_3390_plants13060770
crossref_primary_10_1186_s13068_021_02064_z
crossref_primary_10_3390_agronomy12071549
crossref_primary_10_3390_plants13020289
Cites_doi 10.1007/s00122-019-03473-3
10.1038/ng.591
10.1371/journal.pmed.1001866
10.1186/s13742-015-0047-8
10.1093/jxb/ert397
10.3389/fpls.2019.00543
10.1111/j.1744-7909.2008.00783.x
10.1016/j.ajhg.2018.07.015
10.2307/3001666
10.1111/tpj.12820
10.1186/s12870-018-1504-1
10.1038/ng.977
10.1371/journal.pgen.1004022
10.1111/nph.16071
10.1038/ng2014
10.1038/nplants.2017.31
10.1186/s12284-019-0302-1
10.1093/bioinformatics/btq340
10.1093/mp/ssq070
10.1016/j.ajhg.2011.04.014
10.1186/2047-217X-3-8
10.1093/ije/dyy258
10.1007/s00122-018-3104-8
10.1111/j.1467-7652.2010.00570.x
10.1186/s12284-018-0223-4
10.1146/annurev-arplant-042809-112209
10.1186/s12284-015-0058-1
10.1002/gepi.21965
10.1016/j.tplants.2018.11.008
10.1038/nrg3472
10.3389/fpls.2018.00650
10.1038/ng.3352
10.1038/ng.2876
10.1270/jsbbs.65.226
10.1007/s00425-010-1263-1
10.1056/NEJMoa1806747
10.1093/nsr/nww006
10.1002/gepi.21758
10.1093/jxb/ery186
10.1155/2018/8936767
10.1111/j.1467-7652.2011.00637.x
10.1038/ng.352
10.1007/s10654-017-0255-x
10.1038/hdy.2016.87
10.1186/s12284-020-00374-8
10.1146/annurev-genom-091212-153520
10.1038/s41467-018-07882-8
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-86389-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Publicly Available Content Database


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_a3b4cacad5f3418dbdde89276c6f5ec5
PMC7994632
33767346
10_1038_s41598_021_86389_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Hubei Provincial cooperative Innovation Center
  grantid: Hubei Science and Education letter (2016) No.3.
– fundername: Open Research Fund of State Key Laboratory of Hybrid Rice (Wuhan University)
  grantid: KF201912
– fundername: Research Foundation of Education Bureau of Hunan Province
  grantid: 19A244
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2020JJ4039
– fundername: National Science and Technology Infrastructure Program
  grantid: 2016YFD0100101
  funderid: http://dx.doi.org/10.13039/501100012167
– fundername: Open Research Fund of State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center)
  grantid: 2019KF05
– fundername: ;
  grantid: 2020JJ4039
– fundername: ;
  grantid: 19A244
– fundername: ;
  grantid: Hubei Science and Education letter (2016) No.3.
– fundername: ;
  grantid: 2016YFD0100101
– fundername: ;
  grantid: KF201912
– fundername: ;
  grantid: 2019KF05
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c671t-f62705612f8bdb44eaf15c205bb7caf7d487e3198ba897ecf6ff6fa82235583b3
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:22 EDT 2025
Thu Aug 21 14:08:18 EDT 2025
Thu Jul 10 19:57:54 EDT 2025
Wed Aug 13 10:53:32 EDT 2025
Wed Aug 13 08:05:46 EDT 2025
Mon Jul 21 05:44:29 EDT 2025
Tue Jul 01 01:07:48 EDT 2025
Thu Apr 24 22:59:39 EDT 2025
Fri Feb 21 02:39:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c671t-f62705612f8bdb44eaf15c205bb7caf7d487e3198ba897ecf6ff6fa82235583b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1531-8500
OpenAccessLink https://www.proquest.com/docview/2615742932?pq-origsite=%requestingapplication%
PMID 33767346
PQID 2505253177
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_a3b4cacad5f3418dbdde89276c6f5ec5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7994632
proquest_miscellaneous_2506283968
proquest_journals_2615742932
proquest_journals_2505253177
pubmed_primary_33767346
crossref_citationtrail_10_1038_s41598_021_86389_7
crossref_primary_10_1038_s41598_021_86389_7
springer_journals_10_1038_s41598_021_86389_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-25
PublicationDateYYYYMMDD 2021-03-25
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Willer, Li, Abecasis (CR46) 2010; 26
Browning, Zhou, Browning (CR43) 2018; 103
Le Nguyen, Grondin, Courtois, Gantet (CR4) 2019; 24
Chang (CR49) 2015; 4
Panagiotou, Willer, Hirschhorn, Ioannidis (CR14) 2013; 14
Izquierdo (CR16) 2018; 131
Xu (CR29) 2018; 11
Bowden, Davey Smith, Haycock, Burgess (CR41) 2016; 40
Kwon, Kim, Kim, Paek (CR34) 2015; 8
Oladosu (CR12) 2018; 2018
Li (CR22) 2018; 9
Jiao (CR26) 2010; 42
Wang (CR36) 2017; 118
Cochran (CR47) 1954; 10
Wang, Tang, Han, Huang (CR5) 2019; 133
Bowden (CR19) 2019; 48
Zhu (CR25) 2015; 82
Wang (CR8) 2020; 13
Zhao (CR17) 2019; 10
Kang (CR18) 2014; 10
Li, Wu, Weng, Zhang, Zhang, Shi (CR35) 2010; 232
Luan (CR30) 2011; 9
Burgess, Butterworth, Thompson (CR40) 2013; 37
Wang (CR37) 2015; 47
Yan (CR39) 2011; 4
Zeng (CR9) 2017; 3
Mokry (CR21) 2015; 12
Jiang (CR24) 2019; 12
Meinke (CR27) 2020; 226
Xu, Chen, Xu (CR13) 2015; 65
Chen, Fan, Song, Zhang, Xu (CR32) 2012; 10
Song, Huang, Shi, Zhu, Lin (CR31) 2007; 39
Qian, Guo, Smith, Li (CR6) 2016; 3
Kadam, Struik, Rebolledo, Yin, Jagadish (CR1) 2018; 69
Liu, Tao, Shi, Ye, Qian, Guo (CR7) 2012; 26
Liu (CR28) 2009; 51
Ference (CR20) 2019; 380
Burgess, Thompson (CR42) 2017; 32
Evangelou, Ioannidis (CR15) 2013; 14
Kim (CR33) 2014; 65
Li (CR38) 2011; 43
Ta (CR23) 2018; 18
Huang (CR2) 2009; 41
Li, Wang, Zeigler (CR44) 2014; 3
Li, Li, Ashraf, Liu, Zhang (CR10) 2019; 10
Huang (CR11) 2015; 6
Xing, Zhang (CR3) 2010; 61
Han, Eskin (CR48) 2011; 88
Yang, Zaitlen, Goddard, Visscher, Price (CR45) 2014; 46
CT Kwon (86389_CR34) 2015; 8
W Li (86389_CR35) 2010; 232
S Jiang (86389_CR24) 2019; 12
DW Meinke (86389_CR27) 2020; 226
J Yang (86389_CR45) 2014; 46
CC Chang (86389_CR49) 2015; 4
Q Xu (86389_CR13) 2015; 65
LE Mokry (86389_CR21) 2015; 12
J Bowden (86389_CR41) 2016; 40
Y Xing (86389_CR3) 2010; 61
BL Browning (86389_CR43) 2018; 103
K Le Nguyen (86389_CR4) 2019; 24
Q Wang (86389_CR5) 2019; 133
S Burgess (86389_CR40) 2013; 37
Y Wang (86389_CR8) 2020; 13
X Huang (86389_CR11) 2015; 6
S Burgess (86389_CR42) 2017; 32
WH Yan (86389_CR39) 2011; 4
E Evangelou (86389_CR15) 2013; 14
H Kim (86389_CR33) 2014; 65
WG Cochran (86389_CR47) 1954; 10
F Li (86389_CR22) 2018; 9
D Zeng (86389_CR9) 2017; 3
P Izquierdo (86389_CR16) 2018; 131
Y Chen (86389_CR32) 2012; 10
S Wang (86389_CR37) 2015; 47
JY Li (86389_CR44) 2014; 3
J Zhao (86389_CR17) 2019; 10
NN Kadam (86389_CR1) 2018; 69
R Li (86389_CR10) 2019; 10
Y Li (86389_CR38) 2011; 43
CJ Willer (86389_CR46) 2010; 26
Y Xu (86389_CR29) 2018; 11
B Han (86389_CR48) 2011; 88
BA Ference (86389_CR20) 2019; 380
J Liu (86389_CR7) 2012; 26
J Bowden (86389_CR19) 2019; 48
KN Ta (86389_CR23) 2018; 18
Y Oladosu (86389_CR12) 2018; 2018
X Wang (86389_CR36) 2017; 118
EY Kang (86389_CR18) 2014; 10
Q Qian (86389_CR6) 2016; 3
OA Panagiotou (86389_CR14) 2013; 14
Y Jiao (86389_CR26) 2010; 42
M Liu (86389_CR28) 2009; 51
W Luan (86389_CR30) 2011; 9
X Zhu (86389_CR25) 2015; 82
X Huang (86389_CR2) 2009; 41
XJ Song (86389_CR31) 2007; 39
References_xml – volume: 133
  start-page: 1415
  year: 2019
  end-page: 1425
  ident: CR5
  article-title: Advances in genome-wide association studies of complex traits in rice
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-019-03473-3
– volume: 42
  start-page: 541
  issue: 6
  year: 2010
  ident: CR26
  article-title: Regulation of by OsmiR156 defines ideal plant architecture in rice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.591
– volume: 12
  start-page: e1001866
  issue: 8
  year: 2015
  ident: CR21
  article-title: Vitamin D and risk of multiple sclerosis: A Mendelian randomization study
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001866
– volume: 4
  start-page: s13742
  issue: 1
  year: 2015
  end-page: s14015
  ident: CR49
  article-title: Second-generation PLINK: Rising to the challenge of larger and richer datasets
  publication-title: Gigascience.
  doi: 10.1186/s13742-015-0047-8
– volume: 65
  start-page: 453
  issue: 2
  year: 2014
  end-page: 464
  ident: CR33
  article-title: Overexpression of PYL5 in rice enhances drought tolerance, inhibits growth, and modulates gene expression
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert397
– volume: 10
  start-page: 543
  year: 2019
  ident: CR10
  article-title: Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00543
– volume: 51
  start-page: 261
  issue: 3
  year: 2009
  end-page: 271
  ident: CR28
  article-title: GAMETOPHYTIC FACTOR 1, involved in pre-mRNA splicing, is essential for megagametogenesis and embryogenesis in Arabidopsis
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2008.00783.x
– volume: 103
  start-page: 338
  issue: 3
  year: 2018
  end-page: 348
  ident: CR43
  article-title: A one-penny imputed genome from next-generation reference panels
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.07.015
– volume: 10
  start-page: 101
  issue: 1
  year: 1954
  end-page: 129
  ident: CR47
  article-title: The combination of estimates from different experiments
  publication-title: Biometrics
  doi: 10.2307/3001666
– volume: 82
  start-page: 570
  issue: 4
  year: 2015
  end-page: 581
  ident: CR25
  article-title: Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein
  publication-title: Plant J.
  doi: 10.1111/tpj.12820
– volume: 18
  start-page: 282
  issue: 1
  year: 2018
  ident: CR23
  article-title: A genome-wide association study using a Vietnamese landrace panel of rice ( ) reveals new QTLs controlling panicle morphological traits
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1504-1
– volume: 43
  start-page: 1266
  issue: 12
  year: 2011
  end-page: 1269
  ident: CR38
  article-title: Natural variation in GS5 plays an important role in regulating grain size and yield in rice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.977
– volume: 10
  start-page: e1004022
  issue: 1
  year: 2014
  ident: CR18
  article-title: Meta-analysis identifies gene-by-environment interactions as demonstrated in a study of 4,965 mice
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004022
– volume: 226
  start-page: 306
  issue: 2
  year: 2020
  end-page: 325
  ident: CR27
  article-title: Genome-wide identification of EMBRYO: DEFECTIVE (EMB) genes required for growth and development in Arabidopsis
  publication-title: New Phytol.
  doi: 10.1111/nph.16071
– volume: 39
  start-page: 623
  issue: 5
  year: 2007
  end-page: 630
  ident: CR31
  article-title: A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase
  publication-title: Nat. Genet.
  doi: 10.1038/ng2014
– volume: 3
  start-page: 1
  issue: 4
  year: 2017
  end-page: 5
  ident: CR9
  article-title: Rational design of high-yield and superior-quality rice
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2017.31
– volume: 12
  start-page: 43
  issue: 1
  year: 2019
  ident: CR24
  article-title: Dissection of the genetic architecture of rice tillering using a genome-wide association study
  publication-title: Rice.
  doi: 10.1186/s12284-019-0302-1
– volume: 26
  start-page: 2190
  issue: 17
  year: 2010
  end-page: 2191
  ident: CR46
  article-title: METAL: Fast and efficient meta-analysis of genomewide association scans
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
– volume: 4
  start-page: 319
  issue: 2
  year: 2011
  end-page: 330
  ident: CR39
  article-title: A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssq070
– volume: 88
  start-page: 586
  issue: 5
  year: 2011
  end-page: 598
  ident: CR48
  article-title: Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.04.014
– volume: 3
  start-page: 8
  issue: 1
  year: 2014
  ident: CR44
  article-title: The 3000 rice genomes project: new opportunities and challenges for future rice research
  publication-title: Gigascience
  doi: 10.1186/2047-217X-3-8
– volume: 48
  start-page: 728
  issue: 3
  year: 2019
  end-page: 742
  ident: CR19
  article-title: Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyy258
– volume: 131
  start-page: 1645
  issue: 8
  year: 2018
  end-page: 1658
  ident: CR16
  article-title: Meta-QTL analysis of seed iron and zinc concentration and content in common bean ( L.)
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-018-3104-8
– volume: 9
  start-page: 513
  issue: 4
  year: 2011
  end-page: 524
  ident: CR30
  article-title: OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2010.00570.x
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 12
  ident: CR17
  article-title: Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  end-page: 10
  ident: CR29
  article-title: Genomic selection of agronomic traits in hybrid rice using an NCII population
  publication-title: Rice.
  doi: 10.1186/s12284-018-0223-4
– volume: 61
  start-page: 421
  year: 2010
  end-page: 442
  ident: CR3
  article-title: Genetic and molecular bases of rice yield
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112209
– volume: 8
  start-page: 23
  issue: 1
  year: 2015
  ident: CR34
  article-title: The rice floral repressor Early flowering1 affects spikelet fertility by modulating gibberellin signaling
  publication-title: Rice.
  doi: 10.1186/s12284-015-0058-1
– volume: 40
  start-page: 304
  issue: 4
  year: 2016
  end-page: 314
  ident: CR41
  article-title: Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21965
– volume: 24
  start-page: 263
  issue: 3
  year: 2019
  end-page: 274
  ident: CR4
  article-title: Next-generation sequencing accelerates crop gene discovery
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2018.11.008
– volume: 14
  start-page: 379
  issue: 6
  year: 2013
  end-page: 389
  ident: CR15
  article-title: Meta-analysis methods for genome-wide association studies and beyond
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3472
– volume: 9
  start-page: 650
  year: 2018
  ident: CR22
  article-title: Genetic basis underlying correlations among growth duration and yield traits revealed by GWAS in rice ( L.)
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00650
– volume: 47
  start-page: 949
  issue: 8
  year: 2015
  end-page: 954
  ident: CR37
  article-title: The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3352
– volume: 46
  start-page: 100
  issue: 2
  year: 2014
  end-page: 106
  ident: CR45
  article-title: Mixed model association methods: Advantages and pitfalls
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2876
– volume: 65
  start-page: 226
  issue: 3
  year: 2015
  end-page: 232
  ident: CR13
  article-title: Relationship between grain yield and quality in rice germplasms grown across different growing areas
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.65.226
– volume: 232
  start-page: 1383
  issue: 6
  year: 2010
  end-page: 1396
  ident: CR35
  article-title: Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice
  publication-title: Planta
  doi: 10.1007/s00425-010-1263-1
– volume: 26
  start-page: 227
  issue: 2
  year: 2012
  end-page: 234
  ident: CR7
  article-title: Genetics and breeding improvement for panicle type in rice
  publication-title: Chin. J. Rice Sci.
– volume: 380
  start-page: 1033
  issue: 11
  year: 2019
  end-page: 1042
  ident: CR20
  article-title: Mendelian randomization study of ACLY and cardiovascular disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1806747
– volume: 3
  start-page: 283
  issue: 3
  year: 2016
  end-page: 294
  ident: CR6
  article-title: Breeding high-yield superior quality hybrid super rice by rational design
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nww006
– volume: 37
  start-page: 658
  issue: 7
  year: 2013
  end-page: 665
  ident: CR40
  article-title: Mendelian randomization analysis with multiple genetic variants using summarized data
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21758
– volume: 69
  start-page: 4017
  issue: 16
  year: 2018
  end-page: 4032
  ident: CR1
  article-title: Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery186
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  end-page: 9
  ident: CR11
  article-title: Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis
  publication-title: Nat. Commun.
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: CR12
  article-title: Genotypic and phenotypic relationship among yield components in rice under tropical conditions
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2018/8936767
– volume: 10
  start-page: 139
  issue: 2
  year: 2012
  end-page: 149
  ident: CR32
  article-title: Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2011.00637.x
– volume: 41
  start-page: 494
  issue: 4
  year: 2009
  ident: CR2
  article-title: Natural variation at the DEP1 locus enhances grain yield in rice
  publication-title: Nat. Genet.
  doi: 10.1038/ng.352
– volume: 32
  start-page: 377
  issue: 5
  year: 2017
  end-page: 389
  ident: CR42
  article-title: Interpreting findings from Mendelian randomization using the MR-Egger method
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-017-0255-x
– volume: 118
  start-page: 302
  issue: 3
  year: 2017
  end-page: 310
  ident: CR36
  article-title: Predicting rice hybrid performance using univariate and multivariate GBLUP models based on North Carolina mating design II
  publication-title: Heredity
  doi: 10.1038/hdy.2016.87
– volume: 13
  start-page: 1
  issue: 1
  year: 2020
  end-page: 15
  ident: CR8
  article-title: Natural sequence variations and combinations of GNP1 and NAL1 determine the grain number per panicle in rice
  publication-title: Rice
  doi: 10.1186/s12284-020-00374-8
– volume: 14
  start-page: 441
  year: 2013
  end-page: 465
  ident: CR14
  article-title: The power of meta-analysis in genome-wide association studies
  publication-title: Annu. Rev. Genom. Hum. Genet.
  doi: 10.1146/annurev-genom-091212-153520
– volume: 4
  start-page: s13742
  issue: 1
  year: 2015
  ident: 86389_CR49
  publication-title: Gigascience.
  doi: 10.1186/s13742-015-0047-8
– volume: 41
  start-page: 494
  issue: 4
  year: 2009
  ident: 86389_CR2
  publication-title: Nat. Genet.
  doi: 10.1038/ng.352
– volume: 14
  start-page: 379
  issue: 6
  year: 2013
  ident: 86389_CR15
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3472
– volume: 4
  start-page: 319
  issue: 2
  year: 2011
  ident: 86389_CR39
  publication-title: Mol. Plant
  doi: 10.1093/mp/ssq070
– volume: 10
  start-page: e1004022
  issue: 1
  year: 2014
  ident: 86389_CR18
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004022
– volume: 10
  start-page: 139
  issue: 2
  year: 2012
  ident: 86389_CR32
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2011.00637.x
– volume: 9
  start-page: 513
  issue: 4
  year: 2011
  ident: 86389_CR30
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/j.1467-7652.2010.00570.x
– volume: 24
  start-page: 263
  issue: 3
  year: 2019
  ident: 86389_CR4
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2018.11.008
– volume: 9
  start-page: 650
  year: 2018
  ident: 86389_CR22
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00650
– volume: 42
  start-page: 541
  issue: 6
  year: 2010
  ident: 86389_CR26
  publication-title: Nat. Genet.
  doi: 10.1038/ng.591
– volume: 6
  start-page: 1
  issue: 1
  year: 2015
  ident: 86389_CR11
  publication-title: Nat. Commun.
– volume: 51
  start-page: 261
  issue: 3
  year: 2009
  ident: 86389_CR28
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2008.00783.x
– volume: 133
  start-page: 1415
  year: 2019
  ident: 86389_CR5
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-019-03473-3
– volume: 232
  start-page: 1383
  issue: 6
  year: 2010
  ident: 86389_CR35
  publication-title: Planta
  doi: 10.1007/s00425-010-1263-1
– volume: 37
  start-page: 658
  issue: 7
  year: 2013
  ident: 86389_CR40
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21758
– volume: 3
  start-page: 8
  issue: 1
  year: 2014
  ident: 86389_CR44
  publication-title: Gigascience
  doi: 10.1186/2047-217X-3-8
– volume: 65
  start-page: 453
  issue: 2
  year: 2014
  ident: 86389_CR33
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ert397
– volume: 12
  start-page: 43
  issue: 1
  year: 2019
  ident: 86389_CR24
  publication-title: Rice.
  doi: 10.1186/s12284-019-0302-1
– volume: 82
  start-page: 570
  issue: 4
  year: 2015
  ident: 86389_CR25
  publication-title: Plant J.
  doi: 10.1111/tpj.12820
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 86389_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 8
  start-page: 23
  issue: 1
  year: 2015
  ident: 86389_CR34
  publication-title: Rice.
  doi: 10.1186/s12284-015-0058-1
– volume: 12
  start-page: e1001866
  issue: 8
  year: 2015
  ident: 86389_CR21
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1001866
– volume: 69
  start-page: 4017
  issue: 16
  year: 2018
  ident: 86389_CR1
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ery186
– volume: 43
  start-page: 1266
  issue: 12
  year: 2011
  ident: 86389_CR38
  publication-title: Nat. Genet.
  doi: 10.1038/ng.977
– volume: 3
  start-page: 283
  issue: 3
  year: 2016
  ident: 86389_CR6
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nww006
– volume: 39
  start-page: 623
  issue: 5
  year: 2007
  ident: 86389_CR31
  publication-title: Nat. Genet.
  doi: 10.1038/ng2014
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  ident: 86389_CR29
  publication-title: Rice.
  doi: 10.1186/s12284-018-0223-4
– volume: 65
  start-page: 226
  issue: 3
  year: 2015
  ident: 86389_CR13
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.65.226
– volume: 10
  start-page: 543
  year: 2019
  ident: 86389_CR10
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00543
– volume: 380
  start-page: 1033
  issue: 11
  year: 2019
  ident: 86389_CR20
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1806747
– volume: 40
  start-page: 304
  issue: 4
  year: 2016
  ident: 86389_CR41
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.21965
– volume: 61
  start-page: 421
  year: 2010
  ident: 86389_CR3
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042809-112209
– volume: 118
  start-page: 302
  issue: 3
  year: 2017
  ident: 86389_CR36
  publication-title: Heredity
  doi: 10.1038/hdy.2016.87
– volume: 13
  start-page: 1
  issue: 1
  year: 2020
  ident: 86389_CR8
  publication-title: Rice
  doi: 10.1186/s12284-020-00374-8
– volume: 3
  start-page: 1
  issue: 4
  year: 2017
  ident: 86389_CR9
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2017.31
– volume: 226
  start-page: 306
  issue: 2
  year: 2020
  ident: 86389_CR27
  publication-title: New Phytol.
  doi: 10.1111/nph.16071
– volume: 26
  start-page: 2190
  issue: 17
  year: 2010
  ident: 86389_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq340
– volume: 46
  start-page: 100
  issue: 2
  year: 2014
  ident: 86389_CR45
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2876
– volume: 103
  start-page: 338
  issue: 3
  year: 2018
  ident: 86389_CR43
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.07.015
– volume: 88
  start-page: 586
  issue: 5
  year: 2011
  ident: 86389_CR48
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2011.04.014
– volume: 131
  start-page: 1645
  issue: 8
  year: 2018
  ident: 86389_CR16
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-018-3104-8
– volume: 18
  start-page: 282
  issue: 1
  year: 2018
  ident: 86389_CR23
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-018-1504-1
– volume: 32
  start-page: 377
  issue: 5
  year: 2017
  ident: 86389_CR42
  publication-title: Eur. J. Epidemiol.
  doi: 10.1007/s10654-017-0255-x
– volume: 14
  start-page: 441
  year: 2013
  ident: 86389_CR14
  publication-title: Annu. Rev. Genom. Hum. Genet.
  doi: 10.1146/annurev-genom-091212-153520
– volume: 26
  start-page: 227
  issue: 2
  year: 2012
  ident: 86389_CR7
  publication-title: Chin. J. Rice Sci.
– volume: 47
  start-page: 949
  issue: 8
  year: 2015
  ident: 86389_CR37
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3352
– volume: 10
  start-page: 101
  issue: 1
  year: 1954
  ident: 86389_CR47
  publication-title: Biometrics
  doi: 10.2307/3001666
– volume: 2018
  start-page: 1
  year: 2018
  ident: 86389_CR12
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2018/8936767
– volume: 48
  start-page: 728
  issue: 3
  year: 2019
  ident: 86389_CR19
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyy258
SSID ssj0000529419
Score 2.3827126
Snippet Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle (GPP),...
Abstract Rice yield per plant has a complex genetic architecture, which is mainly determined by its three component traits: the number of grains per panicle...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6894
SubjectTerms 631/208/8
631/449/2491
631/449/711
Chromosome Mapping
Chromosomes, Plant - genetics
Crop production
Crop yield
Gene mapping
Genetic effects
Genetic relationship
Genome, Plant
Genome-wide association studies
Genome-Wide Association Study
Genomes
Genotype
Humanities and Social Sciences
Mendelian Randomization Analysis
multidisciplinary
Oryza - genetics
Oryza - growth & development
Plant Breeding
Quantitative Trait Loci
Rice
Science
Science (multidisciplinary)
Tillers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLchI3MBq4rePgCgVEpyo1JtlO7ZYqU0qdgvqv2fGyW67UOCClEsyTuLMIzPjxzeEvEyhTVo7y0R0ickcNXMFTktSIQXpgF7RPj_ro2P58USdXCv1hWvCJnjgiXEHQUSZ4LZeFfjh2j6CPVrHjU66qJwqein4vGvJ1ITqzZ3s3LxLphX2YAmeCneT8Y5Z9NLMbHmiCth_U5T5-2LJX2ZMqyM6vEfuzhEkfTP1fJfcysN9cnuqKXn5gHz_kIfxLLMfiz7TcMV8WoFkaRh6-gmHvXF4g4Kj6sezeSsm0CaAEjpvz6OLYYm5-5JCZEsX6-EHijhE9BKXvtHzcYXLjcLpQ3J8-P7LuyM2F1dgSZtuxYrmBrMHXmzso5Q5lE4l3qoYTQrF9JDJZLBPG4N1JqeiCxwB4gkEZBdRPCI7wzjkJ4TaXtnWxix73smgrVUBJy9lNG1woaiGdGtG-zQjj2MBjFNfZ8CF9ZNwPAjHV-F405BXm3vOJ9yNv7Z-i_LbtETM7HoBNMnPmuT_pUkN2V9L38-GvPS8FvqDIMvcTIaA0IBLF7whLzZksFCcdglDHi_qIzQEcU7bhjyedGnTUYFgOkLqhpgtLdv6km3KsPhaUcCNc1Lje1-v9fGqW3_m1NP_wak9coejIbWCcbVPdlbfLvIziM1W8Xk1w58Ymzni
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGEBIviG8CAxmJNwg0jj8fEALEmJDGE5X2ZtmOzSp1yWg7oP89d07SqVAm5aW5JHV8d7mfP-53hLwIbhKkNLqsvQklj16WJsHPFIQLjhuQZ7bPr_Joyr-ciJM9MpY7GjpwuXNoh_Wkpov5698_1u_A4d_2KeP6zRKCECaKsarUGIBLdY1ch8ik0FGPB7jfc30zwysz5M7svnUrPmUa_13Y898tlH-to-bwdHib3BpwJX3fG8Idshfbu-RGX2lyfY_8_Bzb7iyWv2ZNpO5SJTTTy1LXNvQYJ8Nx0oNC-Gq6syFBE2Q9bQkdkvborF3iiH5JAe_S2TgpQZGdiK5xQxw971a4CcnN75Pp4advH4_KoeRCGaSqVmWSTOGYgiXtG895dKkSgU2E9yq4pBoY30TwWu2dNiqGJBMcDlAG0rTXvn5A9tuujY8I1Y3QE-0jb1jFndRaOFzS5F5NnHFJFKQaO9qGgY8cy2LMbV4Xr7XtlWNBOTYrx6qCvNzcc96zcVx59QfU3-ZKZNLOJ7rFdzs4pnW15wHMshEJArpuPHzvtWFKBplEDNDMg1H7drROy3L5P4BearcYYKKCQF-zgjzfiMFvcTHGtbG7yI-QAO2M1AV52NvSpqE1UuzUXBZEbVnZ1ptsS9rZaeYGV8Zwif_7arTHy2b9v6ceX_0WT8hNhi4yqUsmDsj-anERnwIWW_ln2cH-AHmCMqM
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_GEBIviG8KAwWJN4ho851HODEmJHhi0t6qJE3gpK2ddjfQ_nvstL3p4EBC6kvrtE1ju3Zi-xdCXkVfR62dZSK4yGQKmrkMpzkqH710QC9on1_00bH8dKJO9gifa2FK0n6BtCy_6Tk77O0KDA0Wg_GGWTSyzNwgNxG6HaV6oRebdRWMXMnGTfUxtbA7bt2yQQWqf5d_-Wea5G-x0mKCDu-SO5PvSN-Nvb1H9lJ_n9wad5O8ekB-fEz9cJbYz2WXqL8edlogZKnvO_oZF7xxYYOCieqGs6kIE2gjNAmdCvPosl_hrH1Fwaely3nhgSICEb3CpDd6Pqwx0cifPiTHhx--Lo7YtK0Ci9o0a5Y1Nzhv4NmGLkiZfG5U5LUKwUSfTQdzmASaaYO3zqSYdYbDgyeBUOwiiEdkvx_69IRQ2ylb25BkxxvptbXKY9hSBlN757OqSDMPdBsnzHHc-uK0LbFvYduROS0wpy3MaU1FXm_uOR8RN_7Z-j3yb9MS0bLLheHiWztJT-tFkBFEr1MZjLbtAvzTreNGR51VitDNg5n77aTCq5aXLf7AvTK7yeAKGjDmglfk5YYMuokBF9-n4bI8QoP75rStyONRljYdFQijI6SuiNmSsq0v2ab0y-8F_9s4JzW-980sj9fd-vtIPf2_5s_IbY4qUwvG1QHZX19cpufgf63Di6JwvwAn7C1V
  priority: 102
  providerName: Springer Nature
Title Genome-wide association study and Mendelian randomization analysis provide insights for improving rice yield potential
URI https://link.springer.com/article/10.1038/s41598-021-86389-7
https://www.ncbi.nlm.nih.gov/pubmed/33767346
https://www.proquest.com/docview/2505253177
https://www.proquest.com/docview/2615742932
https://www.proquest.com/docview/2506283968
https://pubmed.ncbi.nlm.nih.gov/PMC7994632
https://doaj.org/article/a3b4cacad5f3418dbdde89276c6f5ec5
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8KozISb2AtH_58Ql21MVXahIBJe4tsxxmVtqSsHWj_PXeOm6kwJlWtmktaJ3fnO9-df0fIe28zL6XRrHTGMx6cZKaBr40X1ltugB7RPo_l4QmfnYrTFHBbprLK9ZwYJ-q68xgj3wVPX8AyDtyNT4ufDLtGYXY1tdC4T7YRugxLutSpGmIsmMXiuUl7ZbJS7y7BXuGesiJnGm01Uxv2KML23-Zr_lsy-VfeNJqjg8fkUfIj6aRn_BNyL7RPyYO-s-T1M_Lrc2i7i8B-z-tA7Q0LaISTpbat6REGvzHIQcFc1d1F2pAJtB6mhKZNenTeLnEFv6Tg39L5OghBEY2IXmMBHF10Kyw6sufPycnB_vfpIUstFpiXKl-xRhYK1xBFo13tOA-2yYUvMuGc8rZRNaxnAmipdlYbFXwjG3hZ8CoQlr105Quy1XZteEWoroXOtAu8LnJupdbCYgqTO5VZYxsxIvn6QVc-4Y9jG4zzKubBS131zKmAOVVkTqVG5MNwzaJH37jz7D3k33AmImfHA93lWZUUsbKl4x7EsBYNGHBdO5jftSmU9LIRwcMwd9bcr5I6L6sitvsDV0vdTh5kc0TeDWTQU0y-2DZ0V_EnJLhyRuoRednL0jDQEiF1Si5HRG1I2cadbFLa-Y-IBa6M4RL_9-NaHm-G9f8n9fruu3hDHhaoIlnJCrFDtlaXV-Et-F4rN44KNibbk8ns2ww-9_aPv3yFo1M5Hcd4Brwfcf0HVwA1Nw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgQXxJtAASPBCVbdh58HhCi0pLSNEGql3hbb64VI7W5oUqr8KX4jM95HFSi9Vcolmc2u1zPj-TzjmSHkpTOxE0KrKLPaRcxbEekSvpaOG2eYBnqo9jkWowP2-ZAfrpDfXS4MHqvs1sSwUBe1Qx_5OiB9Dts4gBvvpj8j7BqF0dWuhUYjFjt-cQZbttnb7Y_A31dpurW5_2EUtV0FIidkMo9KkUqEzWmpbGEZ86ZMuEtjbq10ppQFQHgPgqmsUVp6V4oSPgYMKVYiz2wG971GVlkGW5kBWd3YHH_52nt1MG7GEt1m58SZWp-BhcQstjSJFKKDSC5ZwNAo4CJ0--8hzb8itcEAbt0mt1rkSt83onaHrPjqLrne9LJc3CO_PvmqPvbR2aTw1JwznYYCttRUBd1Ddzu6VSgYyKI-blNAgdYURqFtWiCdVDP0GcwoIGo66dweFOsf0QUeuaPTeo7HnMzRfXJwJdP_gAyquvKPCFUFV7GynhVpwoxQihsMmjIrY6NNyYck6SY6d23Fc2y8cZSHyHum8oY5OTAnD8zJ5ZC87v8zbep9XHr1BvKvvxJrdYcf6pPveav6uckscyD4BS8BMqjCgkVROpXCiZJ7B8Nc67iftwvILE9Dg0EAd_Jicq8NQ_KiJ8PKgOEeU_n6NNxCAHjUQg3Jw0aW-oFmWMQnY2JI5JKULb3JMqWa_AjVx6XWTOBz33TyeD6s_8_U48vf4jm5Mdrf2813t8c7T8jNFNUlzqKUr5HB_OTUPwXkN7fPWnWj5NtVa_gf-M9uVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDI5KEYgL4s1CgSDBCaKdR15zQAgoS0uh4kCl3oYkk8BK7czS3VLtX-PXYWce1ULprdJeZj2PTGzH39iOTcgzZxInZaFZbgvHuLeSFQEOgxPGGV4APVb73JVbe_zjvthfI7_7vTCYVtmviXGhrhqHPvIxIH0Bn3EAN8ahS4v4sjl5PfvJsIMURlr7dhqtiOz45Ql8vs1fbW8Cr59n2eT913dbrOswwJxU6YIFmSmE0FnQtrKcexNS4bJEWKucCaoCOO9BSLU1ulDeBRngZ8CoYlXy3OZw30vksspFijqm9tXg38EIGk-Lbp9OkuvxHGwl7mfLUqYRJzC1Ygtjy4CzcO6_6Zp_xWyjKZzcINc7DEvftEJ3k6z5-ha50na1XN4mvz74ujn07GRaeWpO2U9jKVtq6op-Rsc7OlgomMqqOew2gwKtLZFCuw2CdFrP0Xswp4Ct6bR3gFCshESXmHxHZ80CE57MwR2ydyGTf5es103t7xOqK6ETbT2vspQbqbUwGD7lViWmMEGMSNpPdOm62ufYguOgjDH4XJctc0pgThmZU6oReTFcM2srf5x79lvk33AmVu2OfzRH38tuEShNbrkDFahEAPCgKwu2RReZkk4G4R0Mc6PnftktJfMyi60GAeaps8mDXozI04EMawQGfkztm-N4CwkwspB6RO61sjQMNMdyPjmXI6JWpGzlTVYp9fRHrEOuioJLfO7LXh5Ph_X_mXpw_ls8IVdBr8tP27s7D8m1DLUlyVkmNsj64ujYPwIIuLCPo65R8u2ilfsPyzxxJA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+association+study+and+Mendelian+randomization+analysis+provide+insights+for+improving+rice+yield+potential&rft.jtitle=Scientific+reports&rft.au=Su%2C+Jing&rft.au=Xu%2C+Kai&rft.au=Li%2C+Zirong&rft.au=Hu%2C+Yuan&rft.date=2021-03-25&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-86389-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon