Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data

Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study,...

Full description

Saved in:
Bibliographic Details
Published inMovement ecology Vol. 10; no. 1; p. 40
Main Authors Rautiainen, Heidi, Alam, Moudud, Blackwell, Paul G., Skarin, Anna
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 20.09.2022
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events.
AbstractList Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events.
Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events. Keywords: Activity recognition, Tri-axial accelerometer, Random forests, Support vector machines, Hidden Markov models, Rangifer tarandus
Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events.Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events.
Abstract Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events.
ArticleNumber 40
Audience Academic
Author Rautiainen, Heidi
Alam, Moudud
Skarin, Anna
Blackwell, Paul G.
Author_xml – sequence: 1
  givenname: Heidi
  orcidid: 0000-0001-8348-8811
  surname: Rautiainen
  fullname: Rautiainen, Heidi
– sequence: 2
  givenname: Moudud
  orcidid: 0000-0002-3183-3756
  surname: Alam
  fullname: Alam, Moudud
– sequence: 3
  givenname: Paul G.
  orcidid: 0000-0002-3141-4914
  surname: Blackwell
  fullname: Blackwell, Paul G.
– sequence: 4
  givenname: Anna
  orcidid: 0000-0003-3221-1024
  surname: Skarin
  fullname: Skarin, Anna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36127747$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:du-42769$$DView record from Swedish Publication Index
https://res.slu.se/id/publ/119121$$DView record from Swedish Publication Index
BookMark eNqFk8tu1DAUhiNUREvpC7BAkdhUQim-xY43SKNyG6kSG2DDwnJ8mXqUsYudFHh7TmZa2qkEJIpO4vz_Z_v4nKfVQUzRVdVzjM4w7vjrwhDjpEEEHkSpbNCj6oigFjdUUnpw7_2wOilljeCSAhHRPakOKcdECCaOqm9L6-IYfDB6DCnWydfZhWidy7UP0TXF6MHVPmW9CnFV9-5SX4c05Xoq8_eYQ6N_Bj3U2hg3uJw2bgSv1aN-Vj32eiju5CYeV1_ev_t8_rG5-PRheb64aAwXeGxEb1vMJLHGas8pl62HnbnOt73oKedW605SYqRnVhJufWcksp3rGbbO9x09rpY7rk16ra5y2Oj8SyUd1HYg5ZXSeQxmcAr3ghHaQWgpY5T1CBkJaI6k7p1nwDrbscoPdzX1e7QyTL3Oc1AFUFhigsHw6q-Gt-HrYju9nRQjgktQv9mpQbpx1kDusx72TPt_YrhUq3StJJPz8QHg9AaQ0_fJlVFtQoHEDzq6NBVFBKGwMrqd639SzFvCW0ZB-vKBdA1HHOHQZmALG0UM3alWUBIqRJ9giWaGqoWAmmSEc3KXwT0V3NZtgoEi9gHG9wwv7ufkTzJuixQE3U5gciolO69MGLflCuQwKIzU3BJq1xIKWkJtW0LNSyYPrLf0f5h-A-5QDO0
CitedBy_id crossref_primary_10_1016_j_foreco_2023_121062
crossref_primary_10_1186_s40317_024_00377_y
crossref_primary_10_1016_j_compag_2025_109915
crossref_primary_10_1186_s40317_025_00400_w
crossref_primary_10_1016_j_biosystemseng_2024_08_003
crossref_primary_10_3389_fanim_2023_1083272
crossref_primary_10_1016_j_atech_2024_100675
crossref_primary_10_1186_s40317_023_00343_0
Cites_doi 10.1186/s40462-021-00245-x
10.1109/ACCESS.2020.3010715
10.1111/1365-2435.12729
10.1111/j.1469-185X.2010.00164.x
10.1016/j.crm.2016.01.002
10.1109/ICSENS.2015.7370529
10.1111/2041-210X.13172
10.1242/jeb.111070
10.1109/ISWTA.2013.6688796
10.1186/s40462-017-0097-x
10.1111/2041-210X.13491
10.1242/jeb.00265
10.1109/MCI.2018.2866730
10.1007/978-3-540-39863-9_19
10.1016/j.inpa.2022.04.001
10.1002/jwmg.21427
10.1111/ele.13610
10.1002/ece3.4786
10.1111/2041-210X.12584
10.1016/j.applanim.2018.12.003
10.1038/s41586-021-03991-5
10.1016/j.compag.2009.03.002
10.1016/j.compag.2019.104961
10.1111/1365-2656.12187
10.14430/arctic4102
10.1242/jeb.058263
10.1038/nature12295
10.3354/esr00452
10.2307/2402479
10.1016/j.applanim.2009.03.005
10.1145/3191747
10.1016/j.rvsc.2017.10.005
10.1145/2499621
10.1139/z01-186
10.1186/s40317-017-0140-0
10.1016/j.applanim.2004.06.009
10.1186/s40317-014-0021-8
10.1023/A:1010933404324
10.1007/978-981-4585-18-7_2
10.1186/2050-3385-2-5
10.1088/1748-9326/aa5128
10.3390/data4040131
10.1186/s40317-016-0104-9
10.1016/j.applanim.2013.09.001
10.3354/esr00091
10.1016/B978-0-12-809633-8.20349-X
10.1088/1748-9326/abbf15
10.1371/journal.pone.0049120
10.3168/jds.2016-12172
10.1098/rsos.171442
10.1111/2041-210X.12657
10.4108/icst.mobiquitous.2014.258034
10.1016/j.compag.2019.105179
10.1186/s40317-016-0113-8
10.1111/j.1744-697X.2008.00126.x
10.1109/CIP.2012.6232914
10.1109/86.547939
10.1038/s41592-019-0476-x
10.3354/ab00104
10.18637/jss.v011.i09
10.1109/WACV45572.2020.9093475
10.1242/jeb.058602
10.1007/978-0-387-84858-7
10.3390/rs12040646
10.1109/SSCI47803.2020.9308497
10.1111/eth.13194
10.1007/s00227-018-3318-y
10.1016/j.applanim.2016.05.026
10.1109/ISWC.2007.4373774
10.1098/rsos.160404
10.1016/S0168-1591(97)00072-5
10.1038/nclimate1558
10.1371/journal.pone.0080366
10.1890/0012-9658(1998)079[1435:FRIHUA]2.0.CO;2
10.1145/2493432.2493519
10.3354/esr00084
10.1111/j.1365-2656.2006.01127.x
10.1016/j.compag.2019.105175
10.1186/2050-3385-1-20
10.1016/j.compag.2021.106610
10.1007/BF00346989
10.1186/s40317-017-0125-z
10.1007/s00114-006-0174-2
10.2527/jas.2008-1297
10.1080/15472450.2013.824762
10.1071/AN12286
10.3390/s140304239
10.3390/s18103532
10.1007/BF00378733
10.1242/jeb.204.4.685
ContentType Journal Article
Copyright 2022. The Author(s).
COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.1186/s40462-022-00339-0
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
PubMed


CrossRef
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Zoology
EISSN 2051-3933
EndPage 40
ExternalDocumentID oai_doaj_org_article_1b742381b7534434b00c92c9609abef4
oai_slubar_slu_se_119121
oai_DiVA_org_du_42769
PMC9490970
A718642662
36127747
10_1186_s40462_022_00339_0
Genre Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GrantInformation_xml – fundername: Svenska Forskningsrådet Formas
  grantid: FR-2018/0010
– fundername: ;
– fundername: ;
  grantid: FR-2018/0010; FR-2018/0010; FR-2018/0010
GroupedDBID 0R~
2XV
5VS
7XC
8FE
8FH
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ACGFS
ADBBV
ADRAZ
ADUKV
AEUYN
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
C6C
CCPQU
CITATION
DIK
EBLON
EBS
ECGQY
EYRJQ
GROUPED_DOAJ
HCIFZ
HYE
IAO
IEP
IHR
ITC
KQ8
LK8
M48
M7P
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RBZ
ROL
RPM
RSV
SOJ
NPM
PQGLB
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
ADTPV
AHSBF
AOWAS
D8T
EJD
H13
ZZAVC
PUEGO
ID FETCH-LOGICAL-c671t-7bd51492dcdaf63695f462e8f5b7b366daa8932c9f4d926df8c90d8eb41defb83
IEDL.DBID BENPR
ISSN 2051-3933
IngestDate Wed Aug 27 01:24:56 EDT 2025
Thu Aug 21 06:58:39 EDT 2025
Thu Aug 21 07:12:19 EDT 2025
Thu Aug 21 18:39:52 EDT 2025
Fri Jul 11 10:50:36 EDT 2025
Fri Jul 11 15:28:08 EDT 2025
Sun Jul 13 04:22:11 EDT 2025
Tue Jun 17 21:01:15 EDT 2025
Tue Jun 10 20:41:23 EDT 2025
Mon Jul 21 06:00:50 EDT 2025
Tue Jul 01 00:17:48 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Support vector machines
Activity recognition
Rangifer tarandus
Tri-axial accelerometer
Hidden Markov models
Random forests
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c671t-7bd51492dcdaf63695f462e8f5b7b366daa8932c9f4d926df8c90d8eb41defb83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3221-1024
0000-0002-3183-3756
0000-0002-3141-4914
0000-0001-8348-8811
OpenAccessLink https://www.proquest.com/docview/2725912040?pq-origsite=%requestingapplication%
PMID 36127747
PQID 2725912040
PQPubID 2040201
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1b742381b7534434b00c92c9609abef4
swepub_primary_oai_slubar_slu_se_119121
swepub_primary_oai_DiVA_org_du_42769
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9490970
proquest_miscellaneous_2723119369
proquest_miscellaneous_2716526543
proquest_journals_2725912040
gale_infotracmisc_A718642662
gale_infotracacademiconefile_A718642662
pubmed_primary_36127747
crossref_citationtrail_10_1186_s40462_022_00339_0
crossref_primary_10_1186_s40462_022_00339_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-20
PublicationDateYYYYMMDD 2022-09-20
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-20
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Movement ecology
PublicationTitleAlternate Mov Ecol
PublicationYear 2022
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References DM Weary (339_CR3) 2009; 87
MA Ryan (339_CR33) 2013; 8
339_CR84
339_CR85
339_CR86
339_CR88
JK Grewal (339_CR76) 2019; 16
EK Studd (339_CR48) 2019; 9
V Ganganwar (339_CR97) 2012; 2
S Grunewalder (339_CR90) 2012; 7
BT McClintock (339_CR77) 2020; 23
DD Brown (339_CR21) 2013; 1
AA Mosser (339_CR18) 2014; 83
KE Turner (339_CR83) 2022
J Soltis (339_CR30) 2012; 18
T Hastie (339_CR72) 2009
339_CR94
339_CR98
339_CR13
N Watanabe (339_CR9) 2008; 54
N Mansbridge (339_CR35) 2018; 18
D Gholamiangonabadi (339_CR89) 2020; 8
MS Painter (339_CR31) 2016; 4
339_CR92
RR Hofmann (339_CR14) 1989; 78
339_CR93
JW Kamminga (339_CR49) 2018; 2
CT Williams (339_CR10) 2016; 3
T Jeanniard-du-Dot (339_CR45) 2016; 31
339_CR69
K Sato (339_CR22) 2003; 206
N Kokubun (339_CR40) 2011; 214
MS Savoca (339_CR6) 2021; 599
339_CR65
339_CR68
JW Kamminga (339_CR87) 2019; 4
AM Wilson (339_CR7) 2013; 498
339_CR60
RP Wilson (339_CR38) 2006; 75
A Mysterud (339_CR2) 1998; 79
A Liaw (339_CR73) 2002; 2
A Karatzoglou (339_CR75) 2004; 11
ES Fogarty (339_CR82) 2020; 169
AV Oppenheim (339_CR57) 1997
339_CR74
EL Shepard (339_CR39) 2008; 4
HJ Williams (339_CR51) 2017; 5
J Barwick (339_CR79) 2020; 12
L Riaboff (339_CR101) 2022; 192
Y-J Byon (339_CR44) 2014; 18
339_CR70
339_CR8
M Kröschel (339_CR12) 2017; 5
U Tuomainen (339_CR4) 2011; 86
KS Ydesen (339_CR11) 2014; 217
V Leos-Barajas (339_CR26) 2017; 8
L-O Eriksson (339_CR62) 1981; 48
339_CR43
339_CR103
339_CR102
M Raponi (339_CR19) 2018; 82
H Yu (339_CR34) 2021; 9
E Walton (339_CR59) 2018; 5
AG Laich (339_CR25) 2008; 10
B Robert (339_CR91) 2009; 67
R Nathan (339_CR37) 2012; 215
H Nyquist (339_CR56) 1928; 47
JE Colman (339_CR63) 2001; 79
LR Brewster (339_CR32) 2018; 165
339_CR52
339_CR53
339_CR54
339_CR55
PH Veltink (339_CR23) 1996; 4
MT Turunen (339_CR104) 2016; 11
L Riaboff (339_CR96) 2019; 165
DW McClune (339_CR36) 2014; 2
A Skarin (339_CR17) 2020; 15
K Yoda (339_CR24) 2001; 204
T Vuojala-Magga (339_CR105) 2011; 64
L Breiman (339_CR71) 2001; 45
MS Santos (339_CR99) 2018; 13
ZE Barker (339_CR50) 2018; 101
EL Shepard (339_CR27) 2008; 10
BE van Oort (339_CR64) 2007; 94
M Te Beest (339_CR106) 2016; 11
A Bulling (339_CR41) 2014; 46
SP Le Roux (339_CR28) 2017; 5
BEH Van Oort (339_CR20) 2004; 89
P Sepúlveda-Varas (339_CR5) 2013; 53
L Riaboff (339_CR66) 2020; 169
FAP Alvarenga (339_CR78) 2016; 181
A Kölzsch (339_CR47) 2016; 4
O Friard (339_CR61) 2016; 7
P Chakravarty (339_CR95) 2020; 11
S Benaissa (339_CR58) 2019; 211
P Chakravarty (339_CR100) 2019; 10
PP Nielsen (339_CR46) 2013; 148
RF Oliveira (339_CR1) 2021; 127
M Macias-Fauria (339_CR16) 2012; 2
J Trudell (339_CR15) 1981; 18
JAV Diosdado (339_CR29) 2015; 3
SD Bersch (339_CR67) 2014; 14
S Benaissa (339_CR80) 2019; 125
P Martiskainen (339_CR81) 2009; 119
KM Scheibe (339_CR42) 1998; 55
References_xml – volume: 9
  start-page: 1
  year: 2021
  ident: 339_CR34
  publication-title: Mov Ecol
  doi: 10.1186/s40462-021-00245-x
– volume: 8
  start-page: 133982
  year: 2020
  ident: 339_CR89
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010715
– volume: 31
  start-page: 377
  year: 2016
  ident: 339_CR45
  publication-title: Funct Ecol
  doi: 10.1111/1365-2435.12729
– volume: 86
  start-page: 640
  year: 2011
  ident: 339_CR4
  publication-title: Biol Rev
  doi: 10.1111/j.1469-185X.2010.00164.x
– volume: 11
  start-page: 15
  year: 2016
  ident: 339_CR104
  publication-title: Clim Risk Manag
  doi: 10.1016/j.crm.2016.01.002
– ident: 339_CR94
  doi: 10.1109/ICSENS.2015.7370529
– volume: 10
  start-page: 802
  year: 2019
  ident: 339_CR100
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13172
– volume: 217
  start-page: 2239
  year: 2014
  ident: 339_CR11
  publication-title: J Exp Biol
  doi: 10.1242/jeb.111070
– ident: 339_CR43
  doi: 10.1109/ISWTA.2013.6688796
– volume: 5
  start-page: 1
  year: 2017
  ident: 339_CR51
  publication-title: Mov Ecol
  doi: 10.1186/s40462-017-0097-x
– volume: 11
  start-page: 1639
  year: 2020
  ident: 339_CR95
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.13491
– ident: 339_CR84
– ident: 339_CR69
– volume: 206
  start-page: 1461
  year: 2003
  ident: 339_CR22
  publication-title: J Exp Biol
  doi: 10.1242/jeb.00265
– volume: 13
  start-page: 59
  year: 2018
  ident: 339_CR99
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2018.2866730
– ident: 339_CR93
  doi: 10.1007/978-3-540-39863-9_19
– year: 2022
  ident: 339_CR83
  publication-title: Inf Process Agric
  doi: 10.1016/j.inpa.2022.04.001
– ident: 339_CR70
– volume: 82
  start-page: 833
  year: 2018
  ident: 339_CR19
  publication-title: J Wildlife Manage
  doi: 10.1002/jwmg.21427
– volume: 23
  start-page: 1878
  year: 2020
  ident: 339_CR77
  publication-title: Ecol Lett
  doi: 10.1111/ele.13610
– volume: 9
  start-page: 619
  year: 2019
  ident: 339_CR48
  publication-title: Ecol Evol
  doi: 10.1002/ece3.4786
– volume: 7
  start-page: 1325
  year: 2016
  ident: 339_CR61
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12584
– volume: 211
  start-page: 9
  year: 2019
  ident: 339_CR58
  publication-title: Appl Anim Behav Sci
  doi: 10.1016/j.applanim.2018.12.003
– volume: 599
  start-page: 85
  year: 2021
  ident: 339_CR6
  publication-title: Nature
  doi: 10.1038/s41586-021-03991-5
– volume: 67
  start-page: 80
  year: 2009
  ident: 339_CR91
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2009.03.002
– volume: 165
  year: 2019
  ident: 339_CR96
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.104961
– volume: 83
  start-page: 916
  year: 2014
  ident: 339_CR18
  publication-title: J Anim Ecol
  doi: 10.1111/1365-2656.12187
– ident: 339_CR54
– volume: 64
  start-page: 227
  year: 2011
  ident: 339_CR105
  publication-title: Arctic
  doi: 10.14430/arctic4102
– volume: 214
  start-page: 3760
  year: 2011
  ident: 339_CR40
  publication-title: J Exp Biol
  doi: 10.1242/jeb.058263
– volume: 2
  start-page: 18
  year: 2002
  ident: 339_CR73
  publication-title: R News
– volume: 498
  start-page: 185
  year: 2013
  ident: 339_CR7
  publication-title: Nature
  doi: 10.1038/nature12295
– volume: 18
  start-page: 255
  year: 2012
  ident: 339_CR30
  publication-title: Endanger Species Res
  doi: 10.3354/esr00452
– volume: 18
  start-page: 63
  year: 1981
  ident: 339_CR15
  publication-title: J Appl Ecol
  doi: 10.2307/2402479
– volume: 119
  start-page: 32
  year: 2009
  ident: 339_CR81
  publication-title: Appl Anim Behav Sci
  doi: 10.1016/j.applanim.2009.03.005
– volume: 2
  start-page: 1
  year: 2018
  ident: 339_CR49
  publication-title: Proc ACM Interact Mob Wearable Ubiquitous Technol
  doi: 10.1145/3191747
– volume: 125
  start-page: 425
  year: 2019
  ident: 339_CR80
  publication-title: Res Vet Sci
  doi: 10.1016/j.rvsc.2017.10.005
– volume: 46
  start-page: 1
  year: 2014
  ident: 339_CR41
  publication-title: Acm Comput Surv
  doi: 10.1145/2499621
– volume: 79
  start-page: 2168
  year: 2001
  ident: 339_CR63
  publication-title: Can J Zool
  doi: 10.1139/z01-186
– volume: 5
  start-page: 1
  year: 2017
  ident: 339_CR28
  publication-title: Anim Biotelemetry
  doi: 10.1186/s40317-017-0140-0
– volume: 89
  start-page: 299
  year: 2004
  ident: 339_CR20
  publication-title: Appl Anim Behav Sci
  doi: 10.1016/j.applanim.2004.06.009
– volume: 3
  start-page: 1
  year: 2015
  ident: 339_CR29
  publication-title: Anim Biotelemetry
  doi: 10.1186/s40317-014-0021-8
– volume: 45
  start-page: 5
  year: 2001
  ident: 339_CR71
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 339_CR98
  doi: 10.1007/978-981-4585-18-7_2
– volume: 2
  start-page: 1
  year: 2014
  ident: 339_CR36
  publication-title: Anim Biotelemetry
  doi: 10.1186/2050-3385-2-5
– volume: 11
  start-page: 125013
  year: 2016
  ident: 339_CR106
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/aa5128
– volume: 4
  start-page: 131
  year: 2019
  ident: 339_CR87
  publication-title: Data
  doi: 10.3390/data4040131
– volume: 4
  start-page: 1
  year: 2016
  ident: 339_CR47
  publication-title: Anim Biotelemetry
  doi: 10.1186/s40317-016-0104-9
– volume: 148
  start-page: 179
  year: 2013
  ident: 339_CR46
  publication-title: Appl Anim Behav Sci
  doi: 10.1016/j.applanim.2013.09.001
– volume: 10
  start-page: 29
  year: 2008
  ident: 339_CR25
  publication-title: Endanger Species Res
  doi: 10.3354/esr00091
– ident: 339_CR88
  doi: 10.1016/B978-0-12-809633-8.20349-X
– volume: 15
  start-page: 115012
  year: 2020
  ident: 339_CR17
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/abbf15
– volume: 7
  start-page: e49120
  year: 2012
  ident: 339_CR90
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049120
– volume: 2
  start-page: 42
  year: 2012
  ident: 339_CR97
  publication-title: Int J Emerg Technol Adv Eng
– volume: 101
  start-page: 6310
  year: 2018
  ident: 339_CR50
  publication-title: J Dairy Sci
  doi: 10.3168/jds.2016-12172
– volume: 5
  year: 2018
  ident: 339_CR59
  publication-title: R Soc Open Sci
  doi: 10.1098/rsos.171442
– volume: 8
  start-page: 161
  year: 2017
  ident: 339_CR26
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12657
– ident: 339_CR53
  doi: 10.4108/icst.mobiquitous.2014.258034
– volume: 169
  start-page: 1
  year: 2020
  ident: 339_CR66
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.105179
– volume: 4
  start-page: 1
  year: 2016
  ident: 339_CR31
  publication-title: Anim Biotelemetry
  doi: 10.1186/s40317-016-0113-8
– volume: 54
  start-page: 231
  year: 2008
  ident: 339_CR9
  publication-title: Grassl Sci
  doi: 10.1111/j.1744-697X.2008.00126.x
– ident: 339_CR65
– ident: 339_CR52
  doi: 10.1109/CIP.2012.6232914
– volume: 4
  start-page: 375
  year: 1996
  ident: 339_CR23
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/86.547939
– ident: 339_CR13
– volume: 16
  start-page: 663
  year: 2019
  ident: 339_CR76
  publication-title: Nat Methods
  doi: 10.1038/s41592-019-0476-x
– volume: 4
  start-page: 235
  year: 2008
  ident: 339_CR39
  publication-title: Aquat Biol
  doi: 10.3354/ab00104
– volume: 11
  start-page: 1
  year: 2004
  ident: 339_CR75
  publication-title: J Stat Softw
  doi: 10.18637/jss.v011.i09
– ident: 339_CR102
  doi: 10.1109/WACV45572.2020.9093475
– volume: 215
  start-page: 986
  year: 2012
  ident: 339_CR37
  publication-title: J Exp Biol
  doi: 10.1242/jeb.058602
– volume: 47
  start-page: 617
  year: 1928
  ident: 339_CR56
  publication-title: Trans AIEE
– ident: 339_CR74
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 339_CR72
  doi: 10.1007/978-0-387-84858-7
– volume: 12
  start-page: 3
  year: 2020
  ident: 339_CR79
  publication-title: Remote Sens
  doi: 10.3390/rs12040646
– ident: 339_CR85
  doi: 10.1109/SSCI47803.2020.9308497
– volume: 127
  start-page: 758
  year: 2021
  ident: 339_CR1
  publication-title: Ethology
  doi: 10.1111/eth.13194
– volume: 165
  start-page: 1
  year: 2018
  ident: 339_CR32
  publication-title: Mar Biol
  doi: 10.1007/s00227-018-3318-y
– ident: 339_CR60
– volume: 181
  start-page: 91
  year: 2016
  ident: 339_CR78
  publication-title: Appl Anim Behav Sci
  doi: 10.1016/j.applanim.2016.05.026
– ident: 339_CR92
  doi: 10.1109/ISWC.2007.4373774
– volume: 3
  year: 2016
  ident: 339_CR10
  publication-title: R Soc Open Sci
  doi: 10.1098/rsos.160404
– volume: 55
  start-page: 195
  year: 1998
  ident: 339_CR42
  publication-title: Appl Anim Behav Sci
  doi: 10.1016/S0168-1591(97)00072-5
– ident: 339_CR68
– volume: 2
  start-page: 613
  year: 2012
  ident: 339_CR16
  publication-title: Nat Clim Change
  doi: 10.1038/nclimate1558
– volume: 8
  start-page: e80366
  year: 2013
  ident: 339_CR33
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0080366
– volume: 79
  start-page: 1435
  year: 1998
  ident: 339_CR2
  publication-title: Ecology
  doi: 10.1890/0012-9658(1998)079[1435:FRIHUA]2.0.CO;2
– ident: 339_CR8
  doi: 10.1145/2493432.2493519
– volume: 10
  start-page: 47
  year: 2008
  ident: 339_CR27
  publication-title: Endanger Species Res
  doi: 10.3354/esr00084
– volume: 75
  start-page: 1081
  year: 2006
  ident: 339_CR38
  publication-title: J Anim Ecol
  doi: 10.1111/j.1365-2656.2006.01127.x
– volume: 169
  start-page: 105175
  year: 2020
  ident: 339_CR82
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2019.105175
– volume: 1
  start-page: 1
  year: 2013
  ident: 339_CR21
  publication-title: Anim Biotelemetry
  doi: 10.1186/2050-3385-1-20
– volume: 192
  start-page: 1
  year: 2022
  ident: 339_CR101
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2021.106610
– volume: 48
  start-page: 64
  year: 1981
  ident: 339_CR62
  publication-title: Oecologia
  doi: 10.1007/BF00346989
– ident: 339_CR86
– volume: 5
  start-page: 1
  year: 2017
  ident: 339_CR12
  publication-title: Anim Biotelemetry
  doi: 10.1186/s40317-017-0125-z
– ident: 339_CR55
– volume-title: Signals and systems
  year: 1997
  ident: 339_CR57
– volume: 94
  start-page: 183
  year: 2007
  ident: 339_CR64
  publication-title: Sci Nat
  doi: 10.1007/s00114-006-0174-2
– volume: 87
  start-page: 770
  year: 2009
  ident: 339_CR3
  publication-title: J Anim Sci
  doi: 10.2527/jas.2008-1297
– volume: 18
  start-page: 264
  year: 2014
  ident: 339_CR44
  publication-title: J Intell Transp Syst
  doi: 10.1080/15472450.2013.824762
– volume: 53
  start-page: 988
  year: 2013
  ident: 339_CR5
  publication-title: Anim Prod Sci
  doi: 10.1071/AN12286
– volume: 14
  start-page: 4239
  year: 2014
  ident: 339_CR67
  publication-title: Sensors
  doi: 10.3390/s140304239
– ident: 339_CR103
– volume: 18
  start-page: 2
  year: 2018
  ident: 339_CR35
  publication-title: Sensors
  doi: 10.3390/s18103532
– volume: 78
  start-page: 443
  year: 1989
  ident: 339_CR14
  publication-title: Oecologia
  doi: 10.1007/BF00378733
– volume: 204
  start-page: 685
  year: 2001
  ident: 339_CR24
  publication-title: J Exp Biol
  doi: 10.1242/jeb.204.4.685
SSID ssj0000970278
Score 2.2671793
Snippet Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal...
Abstract Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of...
SourceID doaj
swepub
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 40
SubjectTerms Accelerometers
Activity recognition
Algorithms
Animal behavior
Annotations
Browsing
Cameras
Caribou
Classification
Collars
Data mining
Domestication
Ecology
Ekologi
Foraging behavior
herbivores
Hidden Markov models
Machine learning
Markov chains
Markov processes
Methodology
Random forests
Rangifer tarandus
Reindeer
Remote monitoring
Sensors
Shrubs
species
Support vector machines
Tri-axial accelerometer
Zoologi
Zoology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_VUyIc3IOE26Zp0jyuesch6JMnBz6EfOrC0ZV2C95_70zaXbYq54tPC9sJ285H5pftzG8IOQ4a8pwLljnrPROqVkzbGJmwFqBcI6xosN_54yd5cSk-XNVXe6O-sCZspAceFXdaOnyXCOAKcLUQlQA38Zp7JEqzLqbMBAo5b-8wlfdgrfCV2rZLppGnvcA2TIbF6zi_TLPFLBNlwv4_t-W9vPR7zeSMWTRno_MH5P4EI-lyvP1Dcie2D8nds0xBffOIfB37b9P0hxxdJ9pFJEaMHU2AK1kPpokUAGseUkSnZv2ho1gH_41uuhWzP8E1KegWEhNyGoABKNaTPiaX52ef312waYwC81KVG6ZcAFSkefDBJllJXSfQRGxS7ZSrpAzWAmgBlSYRNJchNV4vQhOdKENMrqmekIN23cZnhEJqk2D1RW25BVvAUSOGmvumSk5rL3xByq1KjZ84xnHUxbXJZ41GmtEMBsxgshnMoiBvdmt-jAwbt0q_RUvtJJEdO38BPmMmnzH_8pmCnKCdDcYw3J63UysCPCSyYZklJGyJ0IUX5GgmCbHn55e3nmKm2O8NV3CkLDnsjgV5vbuMK7GerY3rAWVKiYMJRHWbDGDvEgcuFuTp6Hy7x64AmAJwVwVRM7ec6WV-pV19z-zhWmiMjoIcjw48W_J-9WWZVRkGI7jCnz75i1h_PTjb4YfpQd1w5ufl8_9hmRfkHs8hqmH7PiIHm26ILwH1bdyrHOC_AHx1U-o
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEF-OE8EX8dvoKSsc3IOsNslmN_sgUvWOQzifrBz4sOznXaG0mrRw9987s0mK0dKnQneWZudj5zfNfBBy7BX4OesNs8Y5xmUlmTIhMG4MQLmaG15jvfPFN3E-418vq8sDMow76hnY7gztcJ7UrFm8u_l9-xEM_kMy-Fq8bzlWWDLMS8fRZIpBCH8HPJNEQ73o4X66mZXEF21D7czOrSP_lNr4_39Z_-Wt_s2kHPUbTT7q7AG534NLOu204SE5CMtH5O5pakx9-5j87KpyY_83HV1F2gRslxgaGgFtshYEFijA2DS6iPYl_JuGYnb8FV03c2ZuQGEpcBzcFXY6ALFQzDJ9QmZnp98_n7N-uAJzQuZrJq0HrKQK77yJohSqisCJUMfKSlsK4Y0BKFM4FblXhfCxdmri62B57kO0dfmUHC5Xy_CcUHB4AnRhUpnC8JJDABJ8Vbi6jFYpx11G8oGl2vWdx3EAxkKnCKQWuhODBjHoJAY9ycjb7Z5fXd-NvdSfUFJbSuyZnb5YNVe6N0GdW3wrDTAdIjQOzwkXjlNwQDFRxobIM3KCctaoa_B4zvQFCnBI7JGlp-DGBQKaIiNHI0qwSDdeHjRFDwqtCwmBZl7AnZmRN9tl3IlZbsuw2iBNLnBcAS_30QAiz3EMY0aedcq3PXYJcBXgvMyIHKnliC_jleX8OvUUV1yhdWTkuFPg0ZYv8x_TxEq_0byQ-NMnO8jaxcaaBj90C-zO4bj5i_28eEnuFcn4FFzXR-Rw3WzCK0B5a_s6me4fCV5Pmg
  priority: 102
  providerName: Scholars Portal
Title Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data
URI https://www.ncbi.nlm.nih.gov/pubmed/36127747
https://www.proquest.com/docview/2725912040
https://www.proquest.com/docview/2716526543
https://www.proquest.com/docview/2723119369
https://pubmed.ncbi.nlm.nih.gov/PMC9490970
https://urn.kb.se/resolve?urn=urn:nbn:se:du-42769
https://res.slu.se/id/publ/119121
https://doaj.org/article/1b742381b7534434b00c92c9609abef4
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEF-0QfBF_Pa0hhMKfZCld3t7e7dPkmpKCbSIWin4sOzXtYGS1LsE9L93Zm8TPZW8JJCdI7fz-duPmSHkwEmIc8ZparS1lFdlRaX2nnKtAcrVXPMa853PzsXpBZ9dlpdxw62L1yo3PjE4are0uEd-xCoA6jkDnXt3-51i1yg8XY0tNO6SEbjgGhZfo-Pp-cdP212WTFZ4tLbJlqnFUccxHZPiJXbsYyZpNohIoXD_v-75j_j0993JQYXREJVOHpIHEU6mk17-j8gdv3hM7k1DKeqfT8i3Pg-3iRtz6bJJW48FEn2bNoAvaQci8ikA19CsKI1J--s2xfvwV-mqnVP9A1Q0BR5DgMLaBiCIFO-VPiUXJ9Mv709pbKdArajyFa2MA3QkmbNON6IQsmyAE75uSlOZQginNYAXZmXDnWTCNbWVmau94bnzjamLZ2RvsVz4FySFECdA-lmpmeYFhyWHdyWzddEYKS23Cck3LFU21hrHlhc3Kqw5aqF6MSgQgwpiUFlC3m6fue0rbeykPkZJbSmxSnb4YdleqWh0Kjd4Dg3AHNZkHN4TXIyVMEGRSW18wxNyiHJWaMvwelbHlASYJFbFUhMI3AIhDEvI_oASbNAOhzeaoqIP6NRvjU3Im-0wPon32hZ-uUaaXGCDAl7sogEMnmPjxYQ875VvO-0CACoA-Coh1UAtB3wZjizm16GKuOQSrSMhB70CDx75MP86Cax0a8VZhX99-B-y7mZtdItfqgN2w9qf5S938-IVuc-C8Ulw0Ptkb9Wu_WvAdSszJqPJZPZ5No5GPA77I_B5xutfDpdRMA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFVSIbgg3hgKGKmoB7SqvV6vvQeEUpoqpW2EUIsq9bDsyyVSlRQnEfSn-EZm_AgYUG49RYpnE--8Z3cehGw6CXbOOE2NtpbyLM2o1N5TrjW4cjnXPMd656ORGJ7wD6fp6Rr52dbCYFplqxMrRe2mFs_It1kGjnrMgOfeXX6jODUKb1fbERo1Wxz4q-8Qss3e7u8CfV8ztjc4fj-kzVQBakUWz2lmHDgJkjnrdCESIdOCC-bzIjWZSYRwWoMNZ1YW3EkmXJFbGbncGx47X5g8gd-9QdZ5AqFMj6zvDEYfPy1PdSKZ4VVeW52Ti-0Zx_JPiknzODdN0qhjAatBAf-agz_s4d-5mp2OppUV3LtL7jTua9iv-e0eWfOT--TmoGp9ffWAnNV1v0VzEBhOi7D02JDRl2EB_iydAUv4EBzlajhS2DQJWJQh5t-fh_NyTPUPEIkQaAoGEXspAOFDzGN9SE6uBdGPSG8ynfgnJASTKoDbolQzzRMOIY53KbN5UhgpLbcBiVuUKtv0NscRGxeqinFyoWoyKCCDqsigooC8Wa65rDt7rITeQUotIbErd_XFtDxXjZCr2OC9NwQCEANyeE9QaVbCBkUktfEFD8gW0lmh7oDXs7opgYBNYhcu1QdHQaDLxAKy0YEEmbfdxy2nqEbnzNRvCQnIq-VjXIl5dBM_XSBMLHAgAk9WwYDPH-Ogx4A8rplvue0EHGIIGLKAZB227OCl-2Qy_lp1LZdconQEZLNm4M6S3fHnfoVKt1CcZfjXW_8Bm10sjC7xQ80A3TFsN366Ghcvya3h8dGhOtwfHTwjt1kliBKMwwbpzcuFfw4-5dy8aAQ5JF-uW3f8AhX4jEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+reindeer+fine-scale+foraging+behaviour+using+tri-axial+accelerometer+data&rft.jtitle=Movement+ecology&rft.au=Rautiainen%2C+Heidi&rft.au=Alam%2C+Moudud&rft.au=Blackwell%2C+Paul+G&rft.au=Skarin%2C+Anna&rft.date=2022-09-20&rft.pub=BioMed+Central&rft.eissn=2051-3933&rft.volume=10&rft.spage=1&rft_id=info:doi/10.1186%2Fs40462-022-00339-0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3933&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3933&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3933&client=summon