Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data
Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study,...
Saved in:
Published in | Movement ecology Vol. 10; no. 1; p. 40 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
20.09.2022
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events. |
---|---|
AbstractList | Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events. Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events. Keywords: Activity recognition, Tri-axial accelerometer, Random forests, Support vector machines, Hidden Markov models, Rangifer tarandus Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events.Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events. Abstract Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events. |
ArticleNumber | 40 |
Audience | Academic |
Author | Rautiainen, Heidi Alam, Moudud Skarin, Anna Blackwell, Paul G. |
Author_xml | – sequence: 1 givenname: Heidi orcidid: 0000-0001-8348-8811 surname: Rautiainen fullname: Rautiainen, Heidi – sequence: 2 givenname: Moudud orcidid: 0000-0002-3183-3756 surname: Alam fullname: Alam, Moudud – sequence: 3 givenname: Paul G. orcidid: 0000-0002-3141-4914 surname: Blackwell fullname: Blackwell, Paul G. – sequence: 4 givenname: Anna orcidid: 0000-0003-3221-1024 surname: Skarin fullname: Skarin, Anna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36127747$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:du-42769$$DView record from Swedish Publication Index https://res.slu.se/id/publ/119121$$DView record from Swedish Publication Index |
BookMark | eNqFk8tu1DAUhiNUREvpC7BAkdhUQim-xY43SKNyG6kSG2DDwnJ8mXqUsYudFHh7TmZa2qkEJIpO4vz_Z_v4nKfVQUzRVdVzjM4w7vjrwhDjpEEEHkSpbNCj6oigFjdUUnpw7_2wOilljeCSAhHRPakOKcdECCaOqm9L6-IYfDB6DCnWydfZhWidy7UP0TXF6MHVPmW9CnFV9-5SX4c05Xoq8_eYQ6N_Bj3U2hg3uJw2bgSv1aN-Vj32eiju5CYeV1_ev_t8_rG5-PRheb64aAwXeGxEb1vMJLHGas8pl62HnbnOt73oKedW605SYqRnVhJufWcksp3rGbbO9x09rpY7rk16ra5y2Oj8SyUd1HYg5ZXSeQxmcAr3ghHaQWgpY5T1CBkJaI6k7p1nwDrbscoPdzX1e7QyTL3Oc1AFUFhigsHw6q-Gt-HrYju9nRQjgktQv9mpQbpx1kDusx72TPt_YrhUq3StJJPz8QHg9AaQ0_fJlVFtQoHEDzq6NBVFBKGwMrqd639SzFvCW0ZB-vKBdA1HHOHQZmALG0UM3alWUBIqRJ9giWaGqoWAmmSEc3KXwT0V3NZtgoEi9gHG9wwv7ufkTzJuixQE3U5gciolO69MGLflCuQwKIzU3BJq1xIKWkJtW0LNSyYPrLf0f5h-A-5QDO0 |
CitedBy_id | crossref_primary_10_1016_j_foreco_2023_121062 crossref_primary_10_1186_s40317_024_00377_y crossref_primary_10_1016_j_compag_2025_109915 crossref_primary_10_1186_s40317_025_00400_w crossref_primary_10_1016_j_biosystemseng_2024_08_003 crossref_primary_10_3389_fanim_2023_1083272 crossref_primary_10_1016_j_atech_2024_100675 crossref_primary_10_1186_s40317_023_00343_0 |
Cites_doi | 10.1186/s40462-021-00245-x 10.1109/ACCESS.2020.3010715 10.1111/1365-2435.12729 10.1111/j.1469-185X.2010.00164.x 10.1016/j.crm.2016.01.002 10.1109/ICSENS.2015.7370529 10.1111/2041-210X.13172 10.1242/jeb.111070 10.1109/ISWTA.2013.6688796 10.1186/s40462-017-0097-x 10.1111/2041-210X.13491 10.1242/jeb.00265 10.1109/MCI.2018.2866730 10.1007/978-3-540-39863-9_19 10.1016/j.inpa.2022.04.001 10.1002/jwmg.21427 10.1111/ele.13610 10.1002/ece3.4786 10.1111/2041-210X.12584 10.1016/j.applanim.2018.12.003 10.1038/s41586-021-03991-5 10.1016/j.compag.2009.03.002 10.1016/j.compag.2019.104961 10.1111/1365-2656.12187 10.14430/arctic4102 10.1242/jeb.058263 10.1038/nature12295 10.3354/esr00452 10.2307/2402479 10.1016/j.applanim.2009.03.005 10.1145/3191747 10.1016/j.rvsc.2017.10.005 10.1145/2499621 10.1139/z01-186 10.1186/s40317-017-0140-0 10.1016/j.applanim.2004.06.009 10.1186/s40317-014-0021-8 10.1023/A:1010933404324 10.1007/978-981-4585-18-7_2 10.1186/2050-3385-2-5 10.1088/1748-9326/aa5128 10.3390/data4040131 10.1186/s40317-016-0104-9 10.1016/j.applanim.2013.09.001 10.3354/esr00091 10.1016/B978-0-12-809633-8.20349-X 10.1088/1748-9326/abbf15 10.1371/journal.pone.0049120 10.3168/jds.2016-12172 10.1098/rsos.171442 10.1111/2041-210X.12657 10.4108/icst.mobiquitous.2014.258034 10.1016/j.compag.2019.105179 10.1186/s40317-016-0113-8 10.1111/j.1744-697X.2008.00126.x 10.1109/CIP.2012.6232914 10.1109/86.547939 10.1038/s41592-019-0476-x 10.3354/ab00104 10.18637/jss.v011.i09 10.1109/WACV45572.2020.9093475 10.1242/jeb.058602 10.1007/978-0-387-84858-7 10.3390/rs12040646 10.1109/SSCI47803.2020.9308497 10.1111/eth.13194 10.1007/s00227-018-3318-y 10.1016/j.applanim.2016.05.026 10.1109/ISWC.2007.4373774 10.1098/rsos.160404 10.1016/S0168-1591(97)00072-5 10.1038/nclimate1558 10.1371/journal.pone.0080366 10.1890/0012-9658(1998)079[1435:FRIHUA]2.0.CO;2 10.1145/2493432.2493519 10.3354/esr00084 10.1111/j.1365-2656.2006.01127.x 10.1016/j.compag.2019.105175 10.1186/2050-3385-1-20 10.1016/j.compag.2021.106610 10.1007/BF00346989 10.1186/s40317-017-0125-z 10.1007/s00114-006-0174-2 10.2527/jas.2008-1297 10.1080/15472450.2013.824762 10.1071/AN12286 10.3390/s140304239 10.3390/s18103532 10.1007/BF00378733 10.1242/jeb.204.4.685 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022 |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.1186/s40462-022-00339-0 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ - Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Zoology |
EISSN | 2051-3933 |
EndPage | 40 |
ExternalDocumentID | oai_doaj_org_article_1b742381b7534434b00c92c9609abef4 oai_slubar_slu_se_119121 oai_DiVA_org_du_42769 PMC9490970 A718642662 36127747 10_1186_s40462_022_00339_0 |
Genre | Journal Article |
GeographicLocations | Sweden |
GeographicLocations_xml | – name: Sweden |
GrantInformation_xml | – fundername: Svenska Forskningsrådet Formas grantid: FR-2018/0010 – fundername: ; – fundername: ; grantid: FR-2018/0010; FR-2018/0010; FR-2018/0010 |
GroupedDBID | 0R~ 2XV 5VS 7XC 8FE 8FH AAFWJ AAHBH AAJSJ AASML AAYXX ACGFS ADBBV ADRAZ ADUKV AEUYN AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG ATCPS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC C6C CCPQU CITATION DIK EBLON EBS ECGQY EYRJQ GROUPED_DOAJ HCIFZ HYE IAO IEP IHR ITC KQ8 LK8 M48 M7P M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RBZ ROL RPM RSV SOJ NPM PQGLB PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM ADTPV AHSBF AOWAS D8T EJD H13 ZZAVC PUEGO |
ID | FETCH-LOGICAL-c671t-7bd51492dcdaf63695f462e8f5b7b366daa8932c9f4d926df8c90d8eb41defb83 |
IEDL.DBID | BENPR |
ISSN | 2051-3933 |
IngestDate | Wed Aug 27 01:24:56 EDT 2025 Thu Aug 21 06:58:39 EDT 2025 Thu Aug 21 07:12:19 EDT 2025 Thu Aug 21 18:39:52 EDT 2025 Fri Jul 11 10:50:36 EDT 2025 Fri Jul 11 15:28:08 EDT 2025 Sun Jul 13 04:22:11 EDT 2025 Tue Jun 17 21:01:15 EDT 2025 Tue Jun 10 20:41:23 EDT 2025 Mon Jul 21 06:00:50 EDT 2025 Tue Jul 01 00:17:48 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Support vector machines Activity recognition Rangifer tarandus Tri-axial accelerometer Hidden Markov models Random forests |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c671t-7bd51492dcdaf63695f462e8f5b7b366daa8932c9f4d926df8c90d8eb41defb83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3221-1024 0000-0002-3183-3756 0000-0002-3141-4914 0000-0001-8348-8811 |
OpenAccessLink | https://www.proquest.com/docview/2725912040?pq-origsite=%requestingapplication% |
PMID | 36127747 |
PQID | 2725912040 |
PQPubID | 2040201 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1b742381b7534434b00c92c9609abef4 swepub_primary_oai_slubar_slu_se_119121 swepub_primary_oai_DiVA_org_du_42769 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9490970 proquest_miscellaneous_2723119369 proquest_miscellaneous_2716526543 proquest_journals_2725912040 gale_infotracmisc_A718642662 gale_infotracacademiconefile_A718642662 pubmed_primary_36127747 crossref_citationtrail_10_1186_s40462_022_00339_0 crossref_primary_10_1186_s40462_022_00339_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-20 |
PublicationDateYYYYMMDD | 2022-09-20 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Movement ecology |
PublicationTitleAlternate | Mov Ecol |
PublicationYear | 2022 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | DM Weary (339_CR3) 2009; 87 MA Ryan (339_CR33) 2013; 8 339_CR84 339_CR85 339_CR86 339_CR88 JK Grewal (339_CR76) 2019; 16 EK Studd (339_CR48) 2019; 9 V Ganganwar (339_CR97) 2012; 2 S Grunewalder (339_CR90) 2012; 7 BT McClintock (339_CR77) 2020; 23 DD Brown (339_CR21) 2013; 1 AA Mosser (339_CR18) 2014; 83 KE Turner (339_CR83) 2022 J Soltis (339_CR30) 2012; 18 T Hastie (339_CR72) 2009 339_CR94 339_CR98 339_CR13 N Watanabe (339_CR9) 2008; 54 N Mansbridge (339_CR35) 2018; 18 D Gholamiangonabadi (339_CR89) 2020; 8 MS Painter (339_CR31) 2016; 4 339_CR92 RR Hofmann (339_CR14) 1989; 78 339_CR93 JW Kamminga (339_CR49) 2018; 2 CT Williams (339_CR10) 2016; 3 T Jeanniard-du-Dot (339_CR45) 2016; 31 339_CR69 K Sato (339_CR22) 2003; 206 N Kokubun (339_CR40) 2011; 214 MS Savoca (339_CR6) 2021; 599 339_CR65 339_CR68 JW Kamminga (339_CR87) 2019; 4 AM Wilson (339_CR7) 2013; 498 339_CR60 RP Wilson (339_CR38) 2006; 75 A Mysterud (339_CR2) 1998; 79 A Liaw (339_CR73) 2002; 2 A Karatzoglou (339_CR75) 2004; 11 ES Fogarty (339_CR82) 2020; 169 AV Oppenheim (339_CR57) 1997 339_CR74 EL Shepard (339_CR39) 2008; 4 HJ Williams (339_CR51) 2017; 5 J Barwick (339_CR79) 2020; 12 L Riaboff (339_CR101) 2022; 192 Y-J Byon (339_CR44) 2014; 18 339_CR70 339_CR8 M Kröschel (339_CR12) 2017; 5 U Tuomainen (339_CR4) 2011; 86 KS Ydesen (339_CR11) 2014; 217 V Leos-Barajas (339_CR26) 2017; 8 L-O Eriksson (339_CR62) 1981; 48 339_CR43 339_CR103 339_CR102 M Raponi (339_CR19) 2018; 82 H Yu (339_CR34) 2021; 9 E Walton (339_CR59) 2018; 5 AG Laich (339_CR25) 2008; 10 B Robert (339_CR91) 2009; 67 R Nathan (339_CR37) 2012; 215 H Nyquist (339_CR56) 1928; 47 JE Colman (339_CR63) 2001; 79 LR Brewster (339_CR32) 2018; 165 339_CR52 339_CR53 339_CR54 339_CR55 PH Veltink (339_CR23) 1996; 4 MT Turunen (339_CR104) 2016; 11 L Riaboff (339_CR96) 2019; 165 DW McClune (339_CR36) 2014; 2 A Skarin (339_CR17) 2020; 15 K Yoda (339_CR24) 2001; 204 T Vuojala-Magga (339_CR105) 2011; 64 L Breiman (339_CR71) 2001; 45 MS Santos (339_CR99) 2018; 13 ZE Barker (339_CR50) 2018; 101 EL Shepard (339_CR27) 2008; 10 BE van Oort (339_CR64) 2007; 94 M Te Beest (339_CR106) 2016; 11 A Bulling (339_CR41) 2014; 46 SP Le Roux (339_CR28) 2017; 5 BEH Van Oort (339_CR20) 2004; 89 P Sepúlveda-Varas (339_CR5) 2013; 53 L Riaboff (339_CR66) 2020; 169 FAP Alvarenga (339_CR78) 2016; 181 A Kölzsch (339_CR47) 2016; 4 O Friard (339_CR61) 2016; 7 P Chakravarty (339_CR95) 2020; 11 S Benaissa (339_CR58) 2019; 211 P Chakravarty (339_CR100) 2019; 10 PP Nielsen (339_CR46) 2013; 148 RF Oliveira (339_CR1) 2021; 127 M Macias-Fauria (339_CR16) 2012; 2 J Trudell (339_CR15) 1981; 18 JAV Diosdado (339_CR29) 2015; 3 SD Bersch (339_CR67) 2014; 14 S Benaissa (339_CR80) 2019; 125 P Martiskainen (339_CR81) 2009; 119 KM Scheibe (339_CR42) 1998; 55 |
References_xml | – volume: 9 start-page: 1 year: 2021 ident: 339_CR34 publication-title: Mov Ecol doi: 10.1186/s40462-021-00245-x – volume: 8 start-page: 133982 year: 2020 ident: 339_CR89 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3010715 – volume: 31 start-page: 377 year: 2016 ident: 339_CR45 publication-title: Funct Ecol doi: 10.1111/1365-2435.12729 – volume: 86 start-page: 640 year: 2011 ident: 339_CR4 publication-title: Biol Rev doi: 10.1111/j.1469-185X.2010.00164.x – volume: 11 start-page: 15 year: 2016 ident: 339_CR104 publication-title: Clim Risk Manag doi: 10.1016/j.crm.2016.01.002 – ident: 339_CR94 doi: 10.1109/ICSENS.2015.7370529 – volume: 10 start-page: 802 year: 2019 ident: 339_CR100 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13172 – volume: 217 start-page: 2239 year: 2014 ident: 339_CR11 publication-title: J Exp Biol doi: 10.1242/jeb.111070 – ident: 339_CR43 doi: 10.1109/ISWTA.2013.6688796 – volume: 5 start-page: 1 year: 2017 ident: 339_CR51 publication-title: Mov Ecol doi: 10.1186/s40462-017-0097-x – volume: 11 start-page: 1639 year: 2020 ident: 339_CR95 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.13491 – ident: 339_CR84 – ident: 339_CR69 – volume: 206 start-page: 1461 year: 2003 ident: 339_CR22 publication-title: J Exp Biol doi: 10.1242/jeb.00265 – volume: 13 start-page: 59 year: 2018 ident: 339_CR99 publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2018.2866730 – ident: 339_CR93 doi: 10.1007/978-3-540-39863-9_19 – year: 2022 ident: 339_CR83 publication-title: Inf Process Agric doi: 10.1016/j.inpa.2022.04.001 – ident: 339_CR70 – volume: 82 start-page: 833 year: 2018 ident: 339_CR19 publication-title: J Wildlife Manage doi: 10.1002/jwmg.21427 – volume: 23 start-page: 1878 year: 2020 ident: 339_CR77 publication-title: Ecol Lett doi: 10.1111/ele.13610 – volume: 9 start-page: 619 year: 2019 ident: 339_CR48 publication-title: Ecol Evol doi: 10.1002/ece3.4786 – volume: 7 start-page: 1325 year: 2016 ident: 339_CR61 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12584 – volume: 211 start-page: 9 year: 2019 ident: 339_CR58 publication-title: Appl Anim Behav Sci doi: 10.1016/j.applanim.2018.12.003 – volume: 599 start-page: 85 year: 2021 ident: 339_CR6 publication-title: Nature doi: 10.1038/s41586-021-03991-5 – volume: 67 start-page: 80 year: 2009 ident: 339_CR91 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2009.03.002 – volume: 165 year: 2019 ident: 339_CR96 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.104961 – volume: 83 start-page: 916 year: 2014 ident: 339_CR18 publication-title: J Anim Ecol doi: 10.1111/1365-2656.12187 – ident: 339_CR54 – volume: 64 start-page: 227 year: 2011 ident: 339_CR105 publication-title: Arctic doi: 10.14430/arctic4102 – volume: 214 start-page: 3760 year: 2011 ident: 339_CR40 publication-title: J Exp Biol doi: 10.1242/jeb.058263 – volume: 2 start-page: 18 year: 2002 ident: 339_CR73 publication-title: R News – volume: 498 start-page: 185 year: 2013 ident: 339_CR7 publication-title: Nature doi: 10.1038/nature12295 – volume: 18 start-page: 255 year: 2012 ident: 339_CR30 publication-title: Endanger Species Res doi: 10.3354/esr00452 – volume: 18 start-page: 63 year: 1981 ident: 339_CR15 publication-title: J Appl Ecol doi: 10.2307/2402479 – volume: 119 start-page: 32 year: 2009 ident: 339_CR81 publication-title: Appl Anim Behav Sci doi: 10.1016/j.applanim.2009.03.005 – volume: 2 start-page: 1 year: 2018 ident: 339_CR49 publication-title: Proc ACM Interact Mob Wearable Ubiquitous Technol doi: 10.1145/3191747 – volume: 125 start-page: 425 year: 2019 ident: 339_CR80 publication-title: Res Vet Sci doi: 10.1016/j.rvsc.2017.10.005 – volume: 46 start-page: 1 year: 2014 ident: 339_CR41 publication-title: Acm Comput Surv doi: 10.1145/2499621 – volume: 79 start-page: 2168 year: 2001 ident: 339_CR63 publication-title: Can J Zool doi: 10.1139/z01-186 – volume: 5 start-page: 1 year: 2017 ident: 339_CR28 publication-title: Anim Biotelemetry doi: 10.1186/s40317-017-0140-0 – volume: 89 start-page: 299 year: 2004 ident: 339_CR20 publication-title: Appl Anim Behav Sci doi: 10.1016/j.applanim.2004.06.009 – volume: 3 start-page: 1 year: 2015 ident: 339_CR29 publication-title: Anim Biotelemetry doi: 10.1186/s40317-014-0021-8 – volume: 45 start-page: 5 year: 2001 ident: 339_CR71 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 339_CR98 doi: 10.1007/978-981-4585-18-7_2 – volume: 2 start-page: 1 year: 2014 ident: 339_CR36 publication-title: Anim Biotelemetry doi: 10.1186/2050-3385-2-5 – volume: 11 start-page: 125013 year: 2016 ident: 339_CR106 publication-title: Environ Res Lett doi: 10.1088/1748-9326/aa5128 – volume: 4 start-page: 131 year: 2019 ident: 339_CR87 publication-title: Data doi: 10.3390/data4040131 – volume: 4 start-page: 1 year: 2016 ident: 339_CR47 publication-title: Anim Biotelemetry doi: 10.1186/s40317-016-0104-9 – volume: 148 start-page: 179 year: 2013 ident: 339_CR46 publication-title: Appl Anim Behav Sci doi: 10.1016/j.applanim.2013.09.001 – volume: 10 start-page: 29 year: 2008 ident: 339_CR25 publication-title: Endanger Species Res doi: 10.3354/esr00091 – ident: 339_CR88 doi: 10.1016/B978-0-12-809633-8.20349-X – volume: 15 start-page: 115012 year: 2020 ident: 339_CR17 publication-title: Environ Res Lett doi: 10.1088/1748-9326/abbf15 – volume: 7 start-page: e49120 year: 2012 ident: 339_CR90 publication-title: PLoS ONE doi: 10.1371/journal.pone.0049120 – volume: 2 start-page: 42 year: 2012 ident: 339_CR97 publication-title: Int J Emerg Technol Adv Eng – volume: 101 start-page: 6310 year: 2018 ident: 339_CR50 publication-title: J Dairy Sci doi: 10.3168/jds.2016-12172 – volume: 5 year: 2018 ident: 339_CR59 publication-title: R Soc Open Sci doi: 10.1098/rsos.171442 – volume: 8 start-page: 161 year: 2017 ident: 339_CR26 publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12657 – ident: 339_CR53 doi: 10.4108/icst.mobiquitous.2014.258034 – volume: 169 start-page: 1 year: 2020 ident: 339_CR66 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.105179 – volume: 4 start-page: 1 year: 2016 ident: 339_CR31 publication-title: Anim Biotelemetry doi: 10.1186/s40317-016-0113-8 – volume: 54 start-page: 231 year: 2008 ident: 339_CR9 publication-title: Grassl Sci doi: 10.1111/j.1744-697X.2008.00126.x – ident: 339_CR65 – ident: 339_CR52 doi: 10.1109/CIP.2012.6232914 – volume: 4 start-page: 375 year: 1996 ident: 339_CR23 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/86.547939 – ident: 339_CR13 – volume: 16 start-page: 663 year: 2019 ident: 339_CR76 publication-title: Nat Methods doi: 10.1038/s41592-019-0476-x – volume: 4 start-page: 235 year: 2008 ident: 339_CR39 publication-title: Aquat Biol doi: 10.3354/ab00104 – volume: 11 start-page: 1 year: 2004 ident: 339_CR75 publication-title: J Stat Softw doi: 10.18637/jss.v011.i09 – ident: 339_CR102 doi: 10.1109/WACV45572.2020.9093475 – volume: 215 start-page: 986 year: 2012 ident: 339_CR37 publication-title: J Exp Biol doi: 10.1242/jeb.058602 – volume: 47 start-page: 617 year: 1928 ident: 339_CR56 publication-title: Trans AIEE – ident: 339_CR74 – volume-title: The elements of statistical learning: data mining, inference, and prediction year: 2009 ident: 339_CR72 doi: 10.1007/978-0-387-84858-7 – volume: 12 start-page: 3 year: 2020 ident: 339_CR79 publication-title: Remote Sens doi: 10.3390/rs12040646 – ident: 339_CR85 doi: 10.1109/SSCI47803.2020.9308497 – volume: 127 start-page: 758 year: 2021 ident: 339_CR1 publication-title: Ethology doi: 10.1111/eth.13194 – volume: 165 start-page: 1 year: 2018 ident: 339_CR32 publication-title: Mar Biol doi: 10.1007/s00227-018-3318-y – ident: 339_CR60 – volume: 181 start-page: 91 year: 2016 ident: 339_CR78 publication-title: Appl Anim Behav Sci doi: 10.1016/j.applanim.2016.05.026 – ident: 339_CR92 doi: 10.1109/ISWC.2007.4373774 – volume: 3 year: 2016 ident: 339_CR10 publication-title: R Soc Open Sci doi: 10.1098/rsos.160404 – volume: 55 start-page: 195 year: 1998 ident: 339_CR42 publication-title: Appl Anim Behav Sci doi: 10.1016/S0168-1591(97)00072-5 – ident: 339_CR68 – volume: 2 start-page: 613 year: 2012 ident: 339_CR16 publication-title: Nat Clim Change doi: 10.1038/nclimate1558 – volume: 8 start-page: e80366 year: 2013 ident: 339_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0080366 – volume: 79 start-page: 1435 year: 1998 ident: 339_CR2 publication-title: Ecology doi: 10.1890/0012-9658(1998)079[1435:FRIHUA]2.0.CO;2 – ident: 339_CR8 doi: 10.1145/2493432.2493519 – volume: 10 start-page: 47 year: 2008 ident: 339_CR27 publication-title: Endanger Species Res doi: 10.3354/esr00084 – volume: 75 start-page: 1081 year: 2006 ident: 339_CR38 publication-title: J Anim Ecol doi: 10.1111/j.1365-2656.2006.01127.x – volume: 169 start-page: 105175 year: 2020 ident: 339_CR82 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2019.105175 – volume: 1 start-page: 1 year: 2013 ident: 339_CR21 publication-title: Anim Biotelemetry doi: 10.1186/2050-3385-1-20 – volume: 192 start-page: 1 year: 2022 ident: 339_CR101 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2021.106610 – volume: 48 start-page: 64 year: 1981 ident: 339_CR62 publication-title: Oecologia doi: 10.1007/BF00346989 – ident: 339_CR86 – volume: 5 start-page: 1 year: 2017 ident: 339_CR12 publication-title: Anim Biotelemetry doi: 10.1186/s40317-017-0125-z – ident: 339_CR55 – volume-title: Signals and systems year: 1997 ident: 339_CR57 – volume: 94 start-page: 183 year: 2007 ident: 339_CR64 publication-title: Sci Nat doi: 10.1007/s00114-006-0174-2 – volume: 87 start-page: 770 year: 2009 ident: 339_CR3 publication-title: J Anim Sci doi: 10.2527/jas.2008-1297 – volume: 18 start-page: 264 year: 2014 ident: 339_CR44 publication-title: J Intell Transp Syst doi: 10.1080/15472450.2013.824762 – volume: 53 start-page: 988 year: 2013 ident: 339_CR5 publication-title: Anim Prod Sci doi: 10.1071/AN12286 – volume: 14 start-page: 4239 year: 2014 ident: 339_CR67 publication-title: Sensors doi: 10.3390/s140304239 – ident: 339_CR103 – volume: 18 start-page: 2 year: 2018 ident: 339_CR35 publication-title: Sensors doi: 10.3390/s18103532 – volume: 78 start-page: 443 year: 1989 ident: 339_CR14 publication-title: Oecologia doi: 10.1007/BF00378733 – volume: 204 start-page: 685 year: 2001 ident: 339_CR24 publication-title: J Exp Biol doi: 10.1242/jeb.204.4.685 |
SSID | ssj0000970278 |
Score | 2.2671793 |
Snippet | Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal... Abstract Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of... |
SourceID | doaj swepub pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 40 |
SubjectTerms | Accelerometers Activity recognition Algorithms Animal behavior Annotations Browsing Cameras Caribou Classification Collars Data mining Domestication Ecology Ekologi Foraging behavior herbivores Hidden Markov models Machine learning Markov chains Markov processes Methodology Random forests Rangifer tarandus Reindeer Remote monitoring Sensors Shrubs species Support vector machines Tri-axial accelerometer Zoologi Zoology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_VUyIc3IOE26Zp0jyuesch6JMnBz6EfOrC0ZV2C95_70zaXbYq54tPC9sJ285H5pftzG8IOQ4a8pwLljnrPROqVkzbGJmwFqBcI6xosN_54yd5cSk-XNVXe6O-sCZspAceFXdaOnyXCOAKcLUQlQA38Zp7JEqzLqbMBAo5b-8wlfdgrfCV2rZLppGnvcA2TIbF6zi_TLPFLBNlwv4_t-W9vPR7zeSMWTRno_MH5P4EI-lyvP1Dcie2D8nds0xBffOIfB37b9P0hxxdJ9pFJEaMHU2AK1kPpokUAGseUkSnZv2ho1gH_41uuhWzP8E1KegWEhNyGoABKNaTPiaX52ef312waYwC81KVG6ZcAFSkefDBJllJXSfQRGxS7ZSrpAzWAmgBlSYRNJchNV4vQhOdKENMrqmekIN23cZnhEJqk2D1RW25BVvAUSOGmvumSk5rL3xByq1KjZ84xnHUxbXJZ41GmtEMBsxgshnMoiBvdmt-jAwbt0q_RUvtJJEdO38BPmMmnzH_8pmCnKCdDcYw3J63UysCPCSyYZklJGyJ0IUX5GgmCbHn55e3nmKm2O8NV3CkLDnsjgV5vbuMK7GerY3rAWVKiYMJRHWbDGDvEgcuFuTp6Hy7x64AmAJwVwVRM7ec6WV-pV19z-zhWmiMjoIcjw48W_J-9WWZVRkGI7jCnz75i1h_PTjb4YfpQd1w5ufl8_9hmRfkHs8hqmH7PiIHm26ILwH1bdyrHOC_AHx1U-o priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9NAEF-OE8EX8dvoKSsc3IOsNslmN_sgUvWOQzifrBz4sOznXaG0mrRw9987s0mK0dKnQneWZudj5zfNfBBy7BX4OesNs8Y5xmUlmTIhMG4MQLmaG15jvfPFN3E-418vq8sDMow76hnY7gztcJ7UrFm8u_l9-xEM_kMy-Fq8bzlWWDLMS8fRZIpBCH8HPJNEQ73o4X66mZXEF21D7czOrSP_lNr4_39Z_-Wt_s2kHPUbTT7q7AG534NLOu204SE5CMtH5O5pakx9-5j87KpyY_83HV1F2gRslxgaGgFtshYEFijA2DS6iPYl_JuGYnb8FV03c2ZuQGEpcBzcFXY6ALFQzDJ9QmZnp98_n7N-uAJzQuZrJq0HrKQK77yJohSqisCJUMfKSlsK4Y0BKFM4FblXhfCxdmri62B57kO0dfmUHC5Xy_CcUHB4AnRhUpnC8JJDABJ8Vbi6jFYpx11G8oGl2vWdx3EAxkKnCKQWuhODBjHoJAY9ycjb7Z5fXd-NvdSfUFJbSuyZnb5YNVe6N0GdW3wrDTAdIjQOzwkXjlNwQDFRxobIM3KCctaoa_B4zvQFCnBI7JGlp-DGBQKaIiNHI0qwSDdeHjRFDwqtCwmBZl7AnZmRN9tl3IlZbsuw2iBNLnBcAS_30QAiz3EMY0aedcq3PXYJcBXgvMyIHKnliC_jleX8OvUUV1yhdWTkuFPg0ZYv8x_TxEq_0byQ-NMnO8jaxcaaBj90C-zO4bj5i_28eEnuFcn4FFzXR-Rw3WzCK0B5a_s6me4fCV5Pmg priority: 102 providerName: Scholars Portal |
Title | Identification of reindeer fine-scale foraging behaviour using tri-axial accelerometer data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36127747 https://www.proquest.com/docview/2725912040 https://www.proquest.com/docview/2716526543 https://www.proquest.com/docview/2723119369 https://pubmed.ncbi.nlm.nih.gov/PMC9490970 https://urn.kb.se/resolve?urn=urn:nbn:se:du-42769 https://res.slu.se/id/publ/119121 https://doaj.org/article/1b742381b7534434b00c92c9609abef4 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxNBEF-0QfBF_Pa0hhMKfZCld3t7e7dPkmpKCbSIWin4sOzXtYGS1LsE9L93Zm8TPZW8JJCdI7fz-duPmSHkwEmIc8ZparS1lFdlRaX2nnKtAcrVXPMa853PzsXpBZ9dlpdxw62L1yo3PjE4are0uEd-xCoA6jkDnXt3-51i1yg8XY0tNO6SEbjgGhZfo-Pp-cdP212WTFZ4tLbJlqnFUccxHZPiJXbsYyZpNohIoXD_v-75j_j0993JQYXREJVOHpIHEU6mk17-j8gdv3hM7k1DKeqfT8i3Pg-3iRtz6bJJW48FEn2bNoAvaQci8ikA19CsKI1J--s2xfvwV-mqnVP9A1Q0BR5DgMLaBiCIFO-VPiUXJ9Mv709pbKdArajyFa2MA3QkmbNON6IQsmyAE75uSlOZQginNYAXZmXDnWTCNbWVmau94bnzjamLZ2RvsVz4FySFECdA-lmpmeYFhyWHdyWzddEYKS23Cck3LFU21hrHlhc3Kqw5aqF6MSgQgwpiUFlC3m6fue0rbeykPkZJbSmxSnb4YdleqWh0Kjd4Dg3AHNZkHN4TXIyVMEGRSW18wxNyiHJWaMvwelbHlASYJFbFUhMI3AIhDEvI_oASbNAOhzeaoqIP6NRvjU3Im-0wPon32hZ-uUaaXGCDAl7sogEMnmPjxYQ875VvO-0CACoA-Coh1UAtB3wZjizm16GKuOQSrSMhB70CDx75MP86Cax0a8VZhX99-B-y7mZtdItfqgN2w9qf5S938-IVuc-C8Ulw0Ptkb9Wu_WvAdSszJqPJZPZ5No5GPA77I_B5xutfDpdRMA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFVSIbgg3hgKGKmoB7SqvV6vvQeEUpoqpW2EUIsq9bDsyyVSlRQnEfSn-EZm_AgYUG49RYpnE--8Z3cehGw6CXbOOE2NtpbyLM2o1N5TrjW4cjnXPMd656ORGJ7wD6fp6Rr52dbCYFplqxMrRe2mFs_It1kGjnrMgOfeXX6jODUKb1fbERo1Wxz4q-8Qss3e7u8CfV8ztjc4fj-kzVQBakUWz2lmHDgJkjnrdCESIdOCC-bzIjWZSYRwWoMNZ1YW3EkmXJFbGbncGx47X5g8gd-9QdZ5AqFMj6zvDEYfPy1PdSKZ4VVeW52Ti-0Zx_JPiknzODdN0qhjAatBAf-agz_s4d-5mp2OppUV3LtL7jTua9iv-e0eWfOT--TmoGp9ffWAnNV1v0VzEBhOi7D02JDRl2EB_iydAUv4EBzlajhS2DQJWJQh5t-fh_NyTPUPEIkQaAoGEXspAOFDzGN9SE6uBdGPSG8ynfgnJASTKoDbolQzzRMOIY53KbN5UhgpLbcBiVuUKtv0NscRGxeqinFyoWoyKCCDqsigooC8Wa65rDt7rITeQUotIbErd_XFtDxXjZCr2OC9NwQCEANyeE9QaVbCBkUktfEFD8gW0lmh7oDXs7opgYBNYhcu1QdHQaDLxAKy0YEEmbfdxy2nqEbnzNRvCQnIq-VjXIl5dBM_XSBMLHAgAk9WwYDPH-Ogx4A8rplvue0EHGIIGLKAZB227OCl-2Qy_lp1LZdconQEZLNm4M6S3fHnfoVKt1CcZfjXW_8Bm10sjC7xQ80A3TFsN366Ghcvya3h8dGhOtwfHTwjt1kliBKMwwbpzcuFfw4-5dy8aAQ5JF-uW3f8AhX4jEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+reindeer+fine-scale+foraging+behaviour+using+tri-axial+accelerometer+data&rft.jtitle=Movement+ecology&rft.au=Rautiainen%2C+Heidi&rft.au=Alam%2C+Moudud&rft.au=Blackwell%2C+Paul+G&rft.au=Skarin%2C+Anna&rft.date=2022-09-20&rft.pub=BioMed+Central&rft.eissn=2051-3933&rft.volume=10&rft.spage=1&rft_id=info:doi/10.1186%2Fs40462-022-00339-0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3933&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3933&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3933&client=summon |