Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress

The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 17; no. 1; p. e1009277
Main Authors Lehman, Bettina J., Lopez-Diaz, Fernando J., Santisakultarm, Thom P., Fang, Linjing, Shokhirev, Maxim N., Diffenderfer, Kenneth E., Manor, Uri, Emerson, Beverly M.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 07.01.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed “variant” HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases.
AbstractList The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases.
The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases.The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases.
The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed “variant” HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases. Our tissues are subject to chronic physiological and environmental damage, yet little is known about how healthy human cells normally respond to stress. We examined the effect of damage on cells obtained from breast tissue of disease-free women. Unexpectedly, we identified a well-known protein regulator of chromosomal function, CTCF, as a robust target of stress signals. In normal mammary cells, a pool of CTCF is localized to large “depots” within the nucleus that regulate RNA processing. Upon cellular damage, CTCF rapidly disappears from nuclear “depots” by stress-inducible protein degradation while genome occupancy by CTCF is relatively unaffected. We observe the same phenomenon in neuronal progenitors differentiated from human pluripotent stem cells. We propose that in specific cell types, stress-sensitive forms of CTCF exist that have a unique function in RNA metabolism potentially by fine-tuning gene expression near nuclear speckles, which may maintain cells in a progenitor or adaptive state. Upon stress, this particular CTCF function is rapidly disabled, which may change the identity of cells most vulnerable to disease in order to safeguard them from becoming dysfunctional. Persistently stressed cells have lost this CTCF function, which may facilitate the genesis of damage-induced cancer initiation and neuro-degeneration.
Audience Academic
Author Lehman, Bettina J.
Lopez-Diaz, Fernando J.
Fang, Linjing
Shokhirev, Maxim N.
Manor, Uri
Diffenderfer, Kenneth E.
Santisakultarm, Thom P.
Emerson, Beverly M.
AuthorAffiliation 4 Stem Cell Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
2 Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America
University of Cologne, GERMANY
3 Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
1 Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
AuthorAffiliation_xml – name: 4 Stem Cell Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
– name: 2 Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America
– name: 1 Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
– name: University of Cologne, GERMANY
– name: 3 Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
Author_xml – sequence: 1
  givenname: Bettina J.
  orcidid: 0000-0002-8868-494X
  surname: Lehman
  fullname: Lehman, Bettina J.
– sequence: 2
  givenname: Fernando J.
  orcidid: 0000-0003-4329-0952
  surname: Lopez-Diaz
  fullname: Lopez-Diaz, Fernando J.
– sequence: 3
  givenname: Thom P.
  orcidid: 0000-0001-6507-6282
  surname: Santisakultarm
  fullname: Santisakultarm, Thom P.
– sequence: 4
  givenname: Linjing
  orcidid: 0000-0003-2232-2601
  surname: Fang
  fullname: Fang, Linjing
– sequence: 5
  givenname: Maxim N.
  orcidid: 0000-0002-8379-8657
  surname: Shokhirev
  fullname: Shokhirev, Maxim N.
– sequence: 6
  givenname: Kenneth E.
  surname: Diffenderfer
  fullname: Diffenderfer, Kenneth E.
– sequence: 7
  givenname: Uri
  orcidid: 0000-0002-9802-1955
  surname: Manor
  fullname: Manor, Uri
– sequence: 8
  givenname: Beverly M.
  orcidid: 0000-0003-3677-2793
  surname: Emerson
  fullname: Emerson, Beverly M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33411704$$D View this record in MEDLINE/PubMed
BookMark eNqVk12L1DAUhousuB_6D0QKgujFjGmaNOleCMvo6sDigq56GdI06WTIJGOSiuOvN93OylRElFzk63lfTk7OOc2OrLMyyx4XYF6UpHi5dr233My3nbTzAoAaEnIvOykwLmcEAXR0sD7OTkNYA1BiWpMH2XFZoqIgAJ1kX17vLN9okXvZ9YZH7WzuVL64WVzmIfJGGx13ObdtHvpmZnthJPe5cYIb_WPEtU3isHU2yDy6pEq78DC7r7gJ8tF-Pss-Xb65WbybXV2_XS4urmaiIiDOFFKorBsKZSsUQC3BFW2qggNa10LIlraqbAjFGEIFJYISQlAr0GBEG4RaUJ5ly9G3dXzNtl5vuN8xxzW7PXC-Y9xHncJmlGIIoMICNTVCVU2RqlBVthw2SOJi8Ho1em37ZpMCkjZ6biam0xurV6xz3xghNYC0TAbP9wbefe1liGyjg5DGcCtdHxhEpMJVnZ6Q0Kcj2vEUmrbKJUcx4OyiwoAWKbKBmv-BSqOV6c9SPSidzieCFxNBYqL8Hjveh8CWHz_8B_v-39nrz1P22QG7ktzEVXCmH4olTMEnh_n-lei76kzA-QgI70LwUjGh423RpTRowwrAhlZg-1ZgQyuwfSskMfpNfOf_V9lPJmgNLg
CitedBy_id crossref_primary_10_1080_19491034_2022_2034269
crossref_primary_10_3390_cancers14122866
crossref_primary_10_1016_j_tcb_2023_10_012
crossref_primary_10_3390_ijms251910705
crossref_primary_10_1016_j_isci_2023_107128
crossref_primary_10_1073_pnas_2025647118
crossref_primary_10_5483_BMBRep_2024_0101
crossref_primary_10_1016_j_arr_2024_102206
crossref_primary_10_1016_j_bbagen_2023_130500
crossref_primary_10_1016_j_cell_2023_09_009
crossref_primary_10_1093_nar_gkab520
crossref_primary_10_3390_genes13081383
crossref_primary_10_1242_jcs_259594
crossref_primary_10_3390_ijms242015497
Cites_doi 10.18632/oncotarget.19841
10.1038/s41419-018-1177-6
10.1016/j.bbagrm.2018.06.010
10.1038/nrm.2017.27
10.1146/annurev-genom-083115-022339
10.1016/j.febslet.2005.01.044
10.1101/gr.082800.108
10.1042/BJ20081501
10.1523/JNEUROSCI.3769-13.2014
10.1080/19491034.2017.1389365
10.1016/j.neuroscience.2017.03.030
10.1002/wrna.1436
10.1186/bcr3368
10.3390/ijms18102039
10.1242/jcs.114.8.1491
10.1073/pnas.1403470111
10.7554/eLife.25384
10.1016/S1734-1140(13)71517-2
10.1016/S1097-2765(04)00029-2
10.1615/CritRevEukaryotGeneExpr.2020029202
10.1016/j.bpj.2018.05.023
10.1101/gad.277863.116
10.1093/bioinformatics/bts596
10.1074/jbc.M117.814699
10.1038/s41593-019-0490-4
10.1186/bcr3237
10.1016/j.yexcr.2007.05.018
10.1158/0008-5472.CAN-03-3498
10.1002/jcp.22096
10.1016/j.cels.2017.10.018
10.1002/jcb.22751
10.1101/gr.229102
10.1128/MCB.13.12.7612
10.1111/j.1582-4934.2008.00402.x
10.1093/nar/gkw785
10.1038/s41576-018-0060-8
10.1016/j.molcel.2014.12.006
10.1126/sciadv.1601898
10.1042/EBC20180069
10.1016/j.bpj.2017.04.018
10.1093/bioinformatics/bts635
10.1016/j.ceb.2018.12.005
10.1186/1471-2105-7-123
10.1158/1078-0432.CCR-09-0329
10.1016/j.cell.2013.05.028
10.1038/nature10442
10.1242/jcs.206854
10.1007/s11515-012-1198-y
10.1186/s13578-019-0347-2
10.1016/j.molcel.2009.04.001
10.1038/s41580-018-0068-0
10.1016/j.mrrev.2018.02.002
10.1101/gr.241547.118
10.1016/j.redox.2017.04.016
10.1023/A:1009525827514
10.1021/pr015504q
10.1073/pnas.1219280110
10.1242/dev.132456
10.1038/nature11247
10.1101/gad.1398206
10.1002/ijc.30091
10.15252/embj.201593235
10.1093/nar/gkt439
10.1158/0008-5472.CAN-06-1594
10.1073/pnas.1416674112
10.1038/ncb3477
10.3390/molecules24081583
10.1016/j.molcel.2010.05.004
10.1016/j.gde.2019.06.008
10.3389/fmolb.2018.00012
10.1007/s00109-008-0386-3
10.1038/s41589-019-0422-3
10.1016/j.molcel.2018.03.030
10.1038/s41467-020-17955-2
10.1186/s13059-014-0550-8
10.1093/nar/gkx759
10.1128/MCB.00827-09
10.1242/jcs.02890
10.1016/j.ydbio.2014.02.022
10.1016/j.cell.2017.05.004
10.1016/j.cub.2014.03.053
10.1016/j.semcdb.2018.07.021
10.1016/j.celrep.2013.04.024
10.1101/gad.236869.113
10.1016/j.celrep.2018.08.074
10.1038/35054579
10.7554/eLife.25776
10.1038/srep43530
10.1074/jbc.M111.286641
10.1371/journal.pone.0042424
10.1038/mp.2014.111
10.2144/000114133
10.1002/wrna.1233
10.1074/jbc.RA118.004882
10.1074/jbc.M109.094425
10.1002/cbin.10703
10.1186/s12915-015-0141-5
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Lehman et al 2021 Lehman et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Lehman et al 2021 Lehman et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISN
ISR
7X8
5PM
DOA
DOI 10.1371/journal.pgen.1009277
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef




Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Dynamic regulation of CTCF complexes by cellular stress
EISSN 1553-7404
ExternalDocumentID oai_doaj_org_article_885202f5c4b9446984f6463da2b4e510
PMC7790283
A650814639
33411704
10_1371_journal_pgen_1009277
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA014195
– fundername: NCI NIH HHS
  grantid: R01 CA159354
– fundername: ;
– fundername: ;
  grantid: postdoctoral fellowship
– fundername: ;
  grantid: R01 CA159354
– fundername: ;
  grantid: P30014195
– fundername: ;
  grantid: 7430320
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PV9
QF4
QN7
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
ADRAZ
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
M~E
NPM
RIG
WOQ
PMFND
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c670t-f4f439b82edcf04d7568b61a0899cced8df3b785522f2e42e2209f0b548b44d03
IEDL.DBID M48
ISSN 1553-7404
1553-7390
IngestDate Wed Aug 27 01:14:53 EDT 2025
Thu Aug 21 14:03:40 EDT 2025
Fri Jul 11 07:22:16 EDT 2025
Tue Jun 17 21:00:34 EDT 2025
Tue Jun 10 20:46:38 EDT 2025
Fri Jun 27 04:03:43 EDT 2025
Fri Jun 27 04:11:19 EDT 2025
Fri Jun 27 04:32:29 EDT 2025
Thu May 22 21:06:20 EDT 2025
Wed Feb 19 02:04:11 EST 2025
Thu Apr 24 22:55:16 EDT 2025
Tue Jul 01 01:21:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c670t-f4f439b82edcf04d7568b61a0899cced8df3b785522f2e42e2209f0b548b44d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors have declared that no competing interests exist.
Current address: Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
ORCID 0000-0003-4329-0952
0000-0002-9802-1955
0000-0002-8379-8657
0000-0002-8868-494X
0000-0001-6507-6282
0000-0003-2232-2601
0000-0003-3677-2793
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1009277
PMID 33411704
PQID 2476569209
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_885202f5c4b9446984f6463da2b4e510
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7790283
proquest_miscellaneous_2476569209
gale_infotracmisc_A650814639
gale_infotracacademiconefile_A650814639
gale_incontextgauss_ISR_A650814639
gale_incontextgauss_ISN_A650814639
gale_incontextgauss_IOV_A650814639
gale_healthsolutions_A650814639
pubmed_primary_33411704
crossref_citationtrail_10_1371_journal_pgen_1009277
crossref_primary_10_1371_journal_pgen_1009277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210107
PublicationDateYYYYMMDD 2021-01-07
PublicationDate_xml – month: 1
  year: 2021
  text: 20210107
  day: 7
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, CA USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References NP Gomes (pgen.1009277.ref104) 2006; 20
VS Nunes (pgen.1009277.ref033) 2017; 41
ENCODE Project Consortium (pgen.1009277.ref041) 2012; 489
AM Gorman (pgen.1009277.ref072) 2008; 12
R Saldaña-Meyer (pgen.1009277.ref022) 2014; 28
L Galganski (pgen.1009277.ref051) 2017; 45
EC Wheeler (pgen.1009277.ref061) 2018; 9
AS Hansen (pgen.1009277.ref048) 2020; 16
I Pavlaki (pgen.1009277.ref056) 2018; 1861
OG Lyublinskaya (pgen.1009277.ref071) 2017; 12
EC Dow (pgen.1009277.ref099) 2010; 224
LI Huschtscha (pgen.1009277.ref035) 1998; 58
N Khanna (pgen.1009277.ref101) 2014; 24
WJ Kent (pgen.1009277.ref112) 2002; 12
DJP Henderson (pgen.1009277.ref039) 2017; 8
R Ghirlando (pgen.1009277.ref008) 2016; 30
T Wada (pgen.1009277.ref077) 2018; 24
Y Shi (pgen.1009277.ref065) 2017; 6
CH Herrmann (pgen.1009277.ref098) 2001; 114
T Yamamoto (pgen.1009277.ref018) 2019; 58
A El-Kady (pgen.1009277.ref081) 2005; 579
A Dobin (pgen.1009277.ref108) 2013; 29
RG Arzate-Mejía (pgen.1009277.ref011) 2018
N Liu (pgen.1009277.ref066) 2017; 19
DC Wang (pgen.1009277.ref087) 2018
M Witcher (pgen.1009277.ref042) 2009; 34
J Wang (pgen.1009277.ref111) 2013; 41
J Wang (pgen.1009277.ref027) 2012; 287
SR Head (pgen.1009277.ref060) 2014; 56
CG Maki (pgen.1009277.ref040) 1996; 56
CP Wigington (pgen.1009277.ref059) 2014; 5
I Chepelev (pgen.1009277.ref095) 2013; 8
JC Long (pgen.1009277.ref034) 2009; 417
AR Roy (pgen.1009277.ref030) 2018; 293
Z Zheng (pgen.1009277.ref054) 2017; 6
F Docquier (pgen.1009277.ref079) 2005; 65
MM Marino (pgen.1009277.ref089) 2019; 294
FE Baralle (pgen.1009277.ref096) 2017; 18
LA Watson (pgen.1009277.ref093) 2014; 34
I Palmisano (pgen.1009277.ref075) 2019; 22
R Peña-Hernández (pgen.1009277.ref058) 2015; 112
I Martinez-Garay (pgen.1009277.ref062) 2016; 143
ME Oomen (pgen.1009277.ref047) 2019; 29
J-J Duan (pgen.1009277.ref037) 2016; 139
AS Hansen (pgen.1009277.ref044) 2017; 6
E Agirre (pgen.1009277.ref026) 2015; 13
VV Lobanenkov (pgen.1009277.ref015) 1990; 5
EP Nora (pgen.1009277.ref085) 2017; 169
S Cuddapah (pgen.1009277.ref086) 2009; 19
J Kim (pgen.1009277.ref102) 2019
HJ Motulsky (pgen.1009277.ref106) 2006; 7
S-X Peng (pgen.1009277.ref064) 2017; 351
JT Kung (pgen.1009277.ref020) 2015; 57
MW Miller (pgen.1009277.ref078) 2014; 19
AK Croker (pgen.1009277.ref038) 2017; 18
RM Leggett (pgen.1009277.ref107) 2013
H Nakahashi (pgen.1009277.ref043) 2013; 3
AS Hansen (pgen.1009277.ref019) 2018
Y Guo (pgen.1009277.ref023) 2012; 109
J Kim (pgen.1009277.ref097) 2019; 132
RJ Marina (pgen.1009277.ref052) 2016; 35
WJ Locke (pgen.1009277.ref004) 2012; 14
SH Paredes (pgen.1009277.ref025) 2013; 29
S Shukla (pgen.1009277.ref024) 2011; 479
AL Firth (pgen.1009277.ref103) 2014; 111
MJ Rowley (pgen.1009277.ref010) 2018; 19
E Fiorito (pgen.1009277.ref091) 2016; 44
DL Tabb (pgen.1009277.ref049) 2002; 1
W Stroberg (pgen.1009277.ref100) 2018; 115
A Singh (pgen.1009277.ref069) 2019; 24
LF Boyer (pgen.1009277.ref073) 2012
J Wang (pgen.1009277.ref076) 2020; 11
L Galluzzi (pgen.1009277.ref001) 2018; 19
M Merkenschlager (pgen.1009277.ref009) 2016; 17
M Krupp (pgen.1009277.ref063) 2006; 17
V Torrano (pgen.1009277.ref090) 2006; 119
AS Hansen (pgen.1009277.ref046) 2018; 9
Y Chen (pgen.1009277.ref050) 2019; 55
R Saldana-Meyer (pgen.1009277.ref017) 2019
TM Yusufzai (pgen.1009277.ref088) 2004; 13
T Li (pgen.1009277.ref028) 2007; 313
F Docquier (pgen.1009277.ref055) 2009; 15
NS Kitchen (pgen.1009277.ref082) 2010; 111
VS Tanwar (pgen.1009277.ref032) 2019; 780
D Han (pgen.1009277.ref083) 2017; 7
M Ruiz-Velasco (pgen.1009277.ref053) 2017; 5
M Siwek (pgen.1009277.ref068) 2013; 65
S Sun (pgen.1009277.ref021) 2013; 153
F Liu (pgen.1009277.ref013) 2019; 90
S Heinz (pgen.1009277.ref110) 2010; 38
N Kubo (pgen.1009277.ref084) 2017
G Ren (pgen.1009277.ref012) 2019; 9
L Braccioli (pgen.1009277.ref014) 2019; 63
CA Fordyce (pgen.1009277.ref005) 2012; 14
K Hilmi (pgen.1009277.ref031) 2017; 3
J Zhang (pgen.1009277.ref036) 2006; 66
RA Hinshelwood (pgen.1009277.ref007) 2008; 86
J Xiao (pgen.1009277.ref105) 2010
EM Klenova (pgen.1009277.ref016) 1993; 13
SR Romanov (pgen.1009277.ref006) 2001; 409
C-H Su (pgen.1009277.ref094) 2018; 5
L Lu (pgen.1009277.ref029) 2010; 285
J Fei (pgen.1009277.ref092) 2017; 130
MR Stampfer (pgen.1009277.ref002) 2000; 5
JL Myhre (pgen.1009277.ref067) 2014; 390
A Zirkel (pgen.1009277.ref057) 2018; 70
U Saleem (pgen.1009277.ref070) 2020; 30
V Pandey (pgen.1009277.ref003) 2018; 9
H Agarwal (pgen.1009277.ref045) 2017; 112
MI Love (pgen.1009277.ref109) 2014; 15
SK Balakrishnan (pgen.1009277.ref074) 2012; 7
D Farrar (pgen.1009277.ref080) 2010; 30
References_xml – volume: 8
  start-page: 64698
  year: 2017
  ident: pgen.1009277.ref039
  article-title: The β-NAD+ salvage pathway and PKC-mediated signaling influence localized PARP-1 activity and CTCF Poly(ADP)ribosylation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19841
– volume: 9
  start-page: 1147
  year: 2018
  ident: pgen.1009277.ref003
  article-title: Expression of two non-mutated genetic elements is sufficient to stimulate oncogenic transformation of human mammary epithelial cells
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-1177-6
– volume: 1861
  start-page: 718
  year: 2018
  ident: pgen.1009277.ref056
  article-title: Poly(ADP-ribosyl)ation associated changes in CTCF-chromatin binding and gene expression in breast cells
  publication-title: Biochim Biophys Acta Gene Regul Mech
  doi: 10.1016/j.bbagrm.2018.06.010
– volume: 18
  start-page: 437
  year: 2017
  ident: pgen.1009277.ref096
  article-title: Alternative splicing as a regulator of development and tissue identity
  publication-title: Nature Reviews Molecular Cell Biology
  doi: 10.1038/nrm.2017.27
– volume: 17
  start-page: 17
  year: 2016
  ident: pgen.1009277.ref009
  article-title: CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation
  publication-title: Annu Rev Genomics Hum Genet
  doi: 10.1146/annurev-genom-083115-022339
– volume: 579
  start-page: 1424
  year: 2005
  ident: pgen.1009277.ref081
  article-title: Regulation of the transcription factor, CTCF, by phosphorylation with protein kinase CK2
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2005.01.044
– volume: 19
  start-page: 24
  year: 2009
  ident: pgen.1009277.ref086
  article-title: Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains
  publication-title: Genome Res
  doi: 10.1101/gr.082800.108
– volume: 417
  start-page: 15
  year: 2009
  ident: pgen.1009277.ref034
  article-title: The SR protein family of splicing factors: master regulators of gene expression
  publication-title: Biochemical Journal
  doi: 10.1042/BJ20081501
– start-page: 118737
  year: 2017
  ident: pgen.1009277.ref084
  article-title: Preservation of Chromatin Organization after Acute Loss of CTCF in Mouse Embryonic Stem Cells
  publication-title: bioRxiv
– volume: 34
  start-page: 2860
  year: 2014
  ident: pgen.1009277.ref093
  article-title: Dual Effect of CTCF Loss on Neuroprogenitor Differentiation and Survival
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.3769-13.2014
– volume: 9
  start-page: 20
  year: 2018
  ident: pgen.1009277.ref046
  article-title: Recent evidence that TADs and chromatin loops are dynamic structures
  publication-title: Nucleus
  doi: 10.1080/19491034.2017.1389365
– start-page: 530014
  year: 2019
  ident: pgen.1009277.ref017
  article-title: RNA interactions with CTCF are essential for its proper function
  publication-title: bioRxiv
– volume: 351
  start-page: 36
  year: 2017
  ident: pgen.1009277.ref064
  article-title: Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.03.030
– volume: 9
  year: 2018
  ident: pgen.1009277.ref061
  article-title: Advances and challenges in the detection of transcriptome-wide protein-RNA interactions
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.1436
– volume: 5
  start-page: 1743
  year: 1990
  ident: pgen.1009277.ref015
  article-title: A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5’-flanking sequence of the chicken c-myc gene
  publication-title: Oncogene
– volume: 14
  start-page: R155
  year: 2012
  ident: pgen.1009277.ref005
  article-title: Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr3368
– volume: 18
  year: 2017
  ident: pgen.1009277.ref038
  article-title: Differential Functional Roles of ALDH1A1 and ALDH1A3 in Mediating Metastatic Behavior and Therapy Resistance of Human Breast Cancer Cells
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms18102039
– volume: 114
  start-page: 1491
  year: 2001
  ident: pgen.1009277.ref098
  article-title: The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing factor-rich nuclear speckle regions
  publication-title: J Cell Sci
  doi: 10.1242/jcs.114.8.1491
– volume: 111
  start-page: E1723
  year: 2014
  ident: pgen.1009277.ref103
  article-title: Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1403470111
– volume: 6
  year: 2017
  ident: pgen.1009277.ref054
  article-title: MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle.
  publication-title: Elife
  doi: 10.7554/eLife.25384
– volume: 65
  start-page: 1558
  year: 2013
  ident: pgen.1009277.ref068
  article-title: Oxidative stress markers in affective disorders
  publication-title: Pharmacol Rep
  doi: 10.1016/S1734-1140(13)71517-2
– volume: 13
  start-page: 291
  year: 2004
  ident: pgen.1009277.ref088
  article-title: CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(04)00029-2
– volume: 17
  start-page: 129
  year: 2006
  ident: pgen.1009277.ref063
  article-title: Actin binding LIM protein 3 (abLIM3)
  publication-title: Int J Mol Med
– volume: 30
  start-page: 311
  year: 2020
  ident: pgen.1009277.ref070
  article-title: Role of Oxidative Stress and Antioxidant Defense Biomarkers in Neurodegenerative Diseases
  publication-title: Crit Rev Eukaryot Gene Expr
  doi: 10.1615/CritRevEukaryotGeneExpr.2020029202
– volume: 115
  start-page: 3
  year: 2018
  ident: pgen.1009277.ref100
  article-title: Do Cellular Condensates Accelerate Biochemical Reactions? Lessons from Microdroplet Chemistry
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2018.05.023
– volume: 56
  start-page: 2649
  year: 1996
  ident: pgen.1009277.ref040
  article-title: In vivo ubiquitination and proteasome-mediated degradation of p53(1)
  publication-title: Cancer Res
– volume: 30
  start-page: 881
  year: 2016
  ident: pgen.1009277.ref008
  article-title: CTCF: making the right connections
  publication-title: Genes Dev
  doi: 10.1101/gad.277863.116
– volume: 29
  start-page: 1485
  year: 2013
  ident: pgen.1009277.ref025
  article-title: Promoter-proximal CCCTC-factor binding is associated with an increase in the transcriptional pausing index
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts596
– volume: 293
  start-page: 8449
  year: 2018
  ident: pgen.1009277.ref030
  article-title: The transcriptional regulator CCCTC-binding factor limits oxidative stress in endothelial cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M117.814699
– year: 2018
  ident: pgen.1009277.ref087
  article-title: A tour of 3D genome with a focus on CTCF
  publication-title: Semin Cell Dev Biol
– volume: 22
  start-page: 1913
  year: 2019
  ident: pgen.1009277.ref075
  article-title: Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-019-0490-4
– volume: 14
  start-page: 215
  year: 2012
  ident: pgen.1009277.ref004
  article-title: Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis
  publication-title: Breast Cancer Res
  doi: 10.1186/bcr3237
– volume: 313
  start-page: 3057
  year: 2007
  ident: pgen.1009277.ref028
  article-title: Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis
  publication-title: Exp Cell Res
  doi: 10.1016/j.yexcr.2007.05.018
– year: 2012
  ident: pgen.1009277.ref073
  article-title: Dopaminergic differentiation of human pluripotent cells
  publication-title: Curr Protoc Stem Cell Biol
– volume: 65
  start-page: 5112
  year: 2005
  ident: pgen.1009277.ref079
  article-title: Heightened expression of CTCF in breast cancer cells is associated with resistance to apoptosis
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-03-3498
– volume: 224
  start-page: 84
  year: 2010
  ident: pgen.1009277.ref099
  article-title: T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.22096
– volume: 5
  start-page: 628
  year: 2017
  ident: pgen.1009277.ref053
  article-title: CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2017.10.018
– volume: 111
  start-page: 665
  year: 2010
  ident: pgen.1009277.ref082
  article-title: Sumoylation modulates a domain in CTCF that activates transcription and decondenses chromatin
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.22751
– volume: 12
  start-page: 996
  year: 2002
  ident: pgen.1009277.ref112
  article-title: The human genome browser at UCSC
  publication-title: Genome Res
  doi: 10.1101/gr.229102
– volume: 13
  start-page: 7612
  year: 1993
  ident: pgen.1009277.ref016
  article-title: CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.13.12.7612
– volume: 12
  start-page: 2263
  year: 2008
  ident: pgen.1009277.ref072
  article-title: Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling
  publication-title: J Cell Mol Med
  doi: 10.1111/j.1582-4934.2008.00402.x
– volume: 44
  start-page: 10588
  year: 2016
  ident: pgen.1009277.ref091
  article-title: CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw785
– volume: 19
  start-page: 789
  year: 2018
  ident: pgen.1009277.ref010
  article-title: Organizational principles of 3D genome architecture
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-018-0060-8
– volume: 57
  start-page: 361
  year: 2015
  ident: pgen.1009277.ref020
  article-title: Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2014.12.006
– volume: 3
  start-page: e1601898
  year: 2017
  ident: pgen.1009277.ref031
  article-title: CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1601898
– volume: 63
  start-page: 157
  year: 2019
  ident: pgen.1009277.ref014
  article-title: CTCF: a Swiss-army knife for genome organization and transcription regulation
  publication-title: Essays Biochem
  doi: 10.1042/EBC20180069
– volume: 112
  start-page: 2051
  year: 2017
  ident: pgen.1009277.ref045
  article-title: Direct Observation of Cell-Cycle-Dependent Interactions between CTCF and Chromatin
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2017.04.018
– volume: 29
  start-page: 15
  year: 2013
  ident: pgen.1009277.ref108
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 58
  start-page: 26
  year: 2019
  ident: pgen.1009277.ref018
  article-title: Non-coding RNAs and chromatin domains
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2018.12.005
– volume: 7
  start-page: 123
  year: 2006
  ident: pgen.1009277.ref106
  article-title: Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-7-123
– volume: 15
  start-page: 5762
  year: 2009
  ident: pgen.1009277.ref055
  article-title: Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-09-0329
– start-page: 495432
  year: 2018
  ident: pgen.1009277.ref019
  article-title: An RNA-binding region regulates CTCF clustering and chromatin looping
  publication-title: bioRxiv
– volume: 153
  start-page: 1537
  year: 2013
  ident: pgen.1009277.ref021
  article-title: Jpx RNA activates Xist by evicting CTCF
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.028
– volume: 479
  start-page: 74
  year: 2011
  ident: pgen.1009277.ref024
  article-title: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
  publication-title: Nature
  doi: 10.1038/nature10442
– volume: 130
  start-page: 4180
  year: 2017
  ident: pgen.1009277.ref092
  article-title: Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution
  publication-title: J Cell Sci
  doi: 10.1242/jcs.206854
– volume: 8
  start-page: 50
  year: 2013
  ident: pgen.1009277.ref095
  article-title: Alternative splicing switching in stem cell lineages
  publication-title: Front Biol (Beijing)
  doi: 10.1007/s11515-012-1198-y
– volume: 9
  start-page: 83
  year: 2019
  ident: pgen.1009277.ref012
  article-title: CTCF and cellular heterogeneity
  publication-title: Cell Biosci
  doi: 10.1186/s13578-019-0347-2
– volume: 6
  year: 2017
  ident: pgen.1009277.ref065
  article-title: Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice
  publication-title: Elife
– volume: 34
  start-page: 271
  year: 2009
  ident: pgen.1009277.ref042
  article-title: Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.04.001
– volume: 19
  start-page: 731
  year: 2018
  ident: pgen.1009277.ref001
  article-title: Linking cellular stress responses to systemic homeostasis
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-018-0068-0
– volume: 780
  start-page: 61
  year: 2019
  ident: pgen.1009277.ref032
  article-title: Role of CTCF in DNA damage response
  publication-title: Mutat Res
  doi: 10.1016/j.mrrev.2018.02.002
– volume: 29
  start-page: 236
  year: 2019
  ident: pgen.1009277.ref047
  article-title: CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning
  publication-title: Genome Res
  doi: 10.1101/gr.241547.118
– volume: 12
  start-page: 758
  year: 2017
  ident: pgen.1009277.ref071
  article-title: Redox environment in stem and differentiated cells: A quantitative approach
  publication-title: Redox Biol
  doi: 10.1016/j.redox.2017.04.016
– volume: 5
  start-page: 365
  year: 2000
  ident: pgen.1009277.ref002
  article-title: Culture models of human mammary epithelial cell transformation
  publication-title: J Mammary Gland Biol Neoplasia
  doi: 10.1023/A:1009525827514
– volume: 1
  start-page: 21
  year: 2002
  ident: pgen.1009277.ref049
  article-title: DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics
  publication-title: J Proteome Res
  doi: 10.1021/pr015504q
– volume: 109
  start-page: 21081
  year: 2012
  ident: pgen.1009277.ref023
  article-title: CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1219280110
– volume: 143
  start-page: 2121
  year: 2016
  ident: pgen.1009277.ref062
  article-title: Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex
  publication-title: Development
  doi: 10.1242/dev.132456
– volume: 489
  start-page: 57
  year: 2012
  ident: pgen.1009277.ref041
  article-title: An integrated encyclopedia of DNA elements in the human genome
  publication-title: Nature
  doi: 10.1038/nature11247
– volume: 20
  start-page: 601
  year: 2006
  ident: pgen.1009277.ref104
  article-title: Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program
  publication-title: Genes Dev
  doi: 10.1101/gad.1398206
– start-page: 551
  volume-title: A Research of the Partition Clustering Algorithm. 2010 International Symposium on Intelligence Information Processing and Trusted Computing
  year: 2010
  ident: pgen.1009277.ref105
– volume: 139
  start-page: 965
  year: 2016
  ident: pgen.1009277.ref037
  article-title: ALDH1A3, a metabolic target for cancer diagnosis and therapy
  publication-title: Int J Cancer
  doi: 10.1002/ijc.30091
– volume: 35
  start-page: 335
  year: 2016
  ident: pgen.1009277.ref052
  article-title: TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing
  publication-title: The EMBO Journal
  doi: 10.15252/embj.201593235
– volume: 41
  start-page: W77
  year: 2013
  ident: pgen.1009277.ref111
  article-title: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkt439
– volume: 66
  start-page: 10325
  year: 2006
  ident: pgen.1009277.ref036
  article-title: p16INK4a modulates p53 in primary human mammary epithelial cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-1594
– volume: 112
  start-page: E677
  year: 2015
  ident: pgen.1009277.ref058
  article-title: Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1416674112
– volume: 19
  start-page: 202
  year: 2017
  ident: pgen.1009277.ref066
  article-title: A Twist2-dependent progenitor cell contributes to adult skeletal muscle
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3477
– volume: 24
  year: 2019
  ident: pgen.1009277.ref069
  article-title: Oxidative Stress: A Key Modulator in Neurodegenerative Diseases
  publication-title: Molecules
  doi: 10.3390/molecules24081583
– volume: 38
  start-page: 576
  year: 2010
  ident: pgen.1009277.ref110
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 55
  start-page: 91
  year: 2019
  ident: pgen.1009277.ref050
  article-title: Genome organization around nuclear speckles
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2019.06.008
– volume: 132
  year: 2019
  ident: pgen.1009277.ref097
  article-title: Nuclear speckle fusion via long-range directional motion regulates speckle morphology after transcriptional inhibition
  publication-title: J Cell Sci
– volume: 5
  start-page: 12
  year: 2018
  ident: pgen.1009277.ref094
  article-title: Alternative Splicing in Neurogenesis and Brain Development
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2018.00012
– volume: 86
  start-page: 1315
  year: 2008
  ident: pgen.1009277.ref007
  article-title: Breast cancer epigenetics: normal human mammary epithelial cells as a model system
  publication-title: J Mol Med
  doi: 10.1007/s00109-008-0386-3
– volume: 16
  start-page: 257
  year: 2020
  ident: pgen.1009277.ref048
  article-title: Guided nuclear exploration increases CTCF target search efficiency
  publication-title: Nat Chem Biol.
  doi: 10.1038/s41589-019-0422-3
– volume: 70
  start-page: 730
  year: 2018
  ident: pgen.1009277.ref057
  article-title: HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2018.03.030
– start-page: 4
  year: 2013
  ident: pgen.1009277.ref107
  article-title: Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics
  publication-title: Frontiers in Genetics
– volume: 11
  start-page: 4133
  year: 2020
  ident: pgen.1009277.ref076
  article-title: CTCF-mediated chromatin looping in EGR2 regulation and SUZ12 recruitment critical for peripheral myelination and repair
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-17955-2
– volume: 15
  start-page: 550
  year: 2014
  ident: pgen.1009277.ref109
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 45
  start-page: 10350
  year: 2017
  ident: pgen.1009277.ref051
  article-title: Nuclear speckles: molecular organization, biological function and role in disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx759
– volume: 30
  start-page: 1199
  year: 2010
  ident: pgen.1009277.ref080
  article-title: Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.00827-09
– volume: 119
  start-page: 1746
  year: 2006
  ident: pgen.1009277.ref090
  article-title: Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02890
– volume: 390
  start-page: 26
  year: 2014
  ident: pgen.1009277.ref067
  article-title: Unc45b is essential for early myofibrillogenesis and costamere formation in zebrafish
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2014.02.022
– volume: 169
  start-page: 930
  year: 2017
  ident: pgen.1009277.ref085
  article-title: Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.004
– volume: 24
  start-page: 1138
  year: 2014
  ident: pgen.1009277.ref101
  article-title: HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2014.03.053
– volume: 90
  start-page: 168
  year: 2019
  ident: pgen.1009277.ref013
  article-title: Roles of CTCF in conformation and functions of chromosome
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2018.07.021
– volume: 3
  start-page: 1678
  year: 2013
  ident: pgen.1009277.ref043
  article-title: A genome-wide map of CTCF multivalency redefines the CTCF code
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.04.024
– volume: 28
  start-page: 723
  year: 2014
  ident: pgen.1009277.ref022
  article-title: CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53
  publication-title: Genes Dev
  doi: 10.1101/gad.236869.113
– volume: 24
  start-page: 3503
  year: 2018
  ident: pgen.1009277.ref077
  article-title: Stochastic Gene Choice during Cellular Differentiation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.08.074
– volume: 409
  start-page: 633
  year: 2001
  ident: pgen.1009277.ref006
  article-title: Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes
  publication-title: Nature
  doi: 10.1038/35054579
– volume: 6
  year: 2017
  ident: pgen.1009277.ref044
  article-title: CTCF and cohesin regulate chromatin loop stability with distinct dynamics.
  publication-title: Elife
  doi: 10.7554/eLife.25776
– volume: 7
  start-page: 43530
  year: 2017
  ident: pgen.1009277.ref083
  article-title: CTCF participates in DNA damage response via poly(ADP-ribosyl)ation
  publication-title: Sci Rep
  doi: 10.1038/srep43530
– volume: 58
  start-page: 3508
  year: 1998
  ident: pgen.1009277.ref035
  article-title: Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells
  publication-title: Cancer Res
– volume: 287
  start-page: 12469
  year: 2012
  ident: pgen.1009277.ref027
  article-title: De-SUMOylation of CCCTC binding factor (CTCF) in hypoxic stress-induced human corneal epithelial cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.286641
– start-page: 145
  year: 2018
  ident: pgen.1009277.ref011
  article-title: Developing in 3D: the role of CTCF in cell differentiation
  publication-title: Development
– volume: 7
  start-page: e42424
  year: 2012
  ident: pgen.1009277.ref074
  article-title: Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0042424
– volume: 19
  start-page: 1156
  year: 2014
  ident: pgen.1009277.ref078
  article-title: Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2014.111
– volume: 56
  start-page: 61
  year: 2014
  ident: pgen.1009277.ref060
  article-title: Library construction for next-generation sequencing: overviews and challenges
  publication-title: BioTechniques
  doi: 10.2144/000114133
– volume: 5
  start-page: 601
  year: 2014
  ident: pgen.1009277.ref059
  article-title: Poly(A) RNA-binding proteins and polyadenosine RNA: new members and novel functions
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.1233
– volume: 294
  start-page: 861
  year: 2019
  ident: pgen.1009277.ref089
  article-title: Interactome mapping defines BRG1, a component of the SWI/SNF chromatin remodeling complex, as a new partner of the transcriptional regulator CTCF
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA118.004882
– year: 2019
  ident: pgen.1009277.ref102
  article-title: Transcription amplification by nuclear speckle association
  publication-title: Cell Biology
– volume: 285
  start-page: 9373
  year: 2010
  ident: pgen.1009277.ref029
  article-title: NF-kappaB subtypes regulate CCCTC binding factor affecting corneal epithelial cell fate
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M109.094425
– volume: 41
  start-page: 2
  year: 2017
  ident: pgen.1009277.ref033
  article-title: Nuclear subcompartments: an overview
  publication-title: Cell Biol Int
  doi: 10.1002/cbin.10703
– volume: 13
  start-page: 31
  year: 2015
  ident: pgen.1009277.ref026
  article-title: A chromatin code for alternative splicing involving a putative association between CTCF and HP1α proteins
  publication-title: BMC Biol
  doi: 10.1186/s12915-015-0141-5
SSID ssj0035897
Score 2.4242697
Snippet The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1009277
SubjectTerms Binding Sites
Biology and Life Sciences
CCCTC-Binding Factor - genetics
Cell Differentiation
Cell Line, Tumor
Cell nuclei
Chromatin
Chromosomes
Control
DNA-Binding Proteins - genetics
Epigenesis, Genetic - genetics
Gene Expression Regulation
Genetic aspects
Genetic regulation
Genomics
Humans
Mammary Glands, Human - cytology
Mammary Glands, Human - metabolism
Medicine and Health Sciences
Methods
Neoplasms - genetics
Neoplasms - pathology
Neurodegenerative Diseases - genetics
Neurodegenerative Diseases - pathology
Neurons - metabolism
Neurons - pathology
Oxidative Stress - genetics
Physiological aspects
Pluripotent Stem Cells - metabolism
Pluripotent Stem Cells - pathology
Protein Binding
RNA Processing, Post-Transcriptional - genetics
Serine-Arginine Splicing Factors - genetics
Stress (Physiology)
Stress, Physiological - genetics
Transcription factors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiG8CBQxC4mSaxHbsHMvCqiBRJGihN8t27FIJJdV-HPrvmYm9q404tAeu6xcpeTPxjDczbwh5y6suRMcD4-AdTLTaM6ttyWyra6dR4HuUL_563Bydii9n8mxn1BfWhCV54ETcgdYSzudReuFageMORWxEwztbOxFkaq6CmLc5TKU9mEudxqpIyZmCY31umuOqOsg2en8JBsIagbZWahKURu3-f3fonRA1LZ_ciUfze-RuTiTpYXqA--RW6B-Q22m05NVD8utjGjVPF2nYPNBPh0hnJ7M5hYRwLIm9orbv6HLtWI-qxnZBx8iWOzPpRQ8XjxW0ga4GmrpKHpHT-aeT2RHLQxSYb1S5YlFEyDmcruF-Yyk6JRvtmsri5z7vQ6e7yJ3SEvKwWAdRhxrojKWDk4wToiv5Y7LXD314SmhruQWk6yreiCr6FuW6vK9k0MB4DAXhGxaNzwrjOOjijxk_myk4aSRuDHJvMvcFYdurLpPCxjX4D2igLRb1sccfwGtM9hpzndcU5BWa16Rm0-1bbg4xYYXgwduCvBkRqJHRYxHOuV0vl-bzt583AP04vgno-wT0LoPiAJx5m7sjgHkU6Jog9ydI2A78ZPn1xmMNLmENXR-G9dLUQkHy3oJ5C_IkefCWRA7JTKVKURA18e0Jy9OV_uL3qEaOgpWQoz77H2Z5Tu7UWDOEf3GpfbK3WqzDC0j6Vu7l-H7_BXLFUfw
  priority: 102
  providerName: Directory of Open Access Journals
Title Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress
URI https://www.ncbi.nlm.nih.gov/pubmed/33411704
https://www.proquest.com/docview/2476569209
https://pubmed.ncbi.nlm.nih.gov/PMC7790283
https://doaj.org/article/885202f5c4b9446984f6463da2b4e510
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN8LjGIQEk-ZEtuJnQeEtrJqIK2gscLeLDuxx6QpGf2Q6H_PnZNWiwDR1_ocpT_f-c7x3e8IecPTynnLXcxBO2JRqDI2yiSxKRSzCgm-A33x6Tg_mYhPF9nFFln1bO0AnP31aIf9pCbT64NfP5fvweDfha4NMl1NOrgByPHWv2BSbpNd8E0STfVUrO8VeKbaditZxmMJx_2umO5fT-k5q8Dp_-fOfct19dMqb_mp0X1yrwsw6WGrEQ_Ilqsfkjtty8nlI_L9Q9uCnk7bJvSwLLTxdHg-HFEIFEOq7JKauqKzhY1rZDs2Uxo8XlexSa9qmBwyax2dN7StNnlMJqPj8-FJ3DVXiMtcJvPYCw-xiFUM3tcnopJZrmyeGrwGLEtXqcpzK1UG8ZlnTjDHWFL4xMIJxwpRJfwJ2amb2u0RWhhuQNJWKc9F6ssCabzKMs2cAsS9iwhfoajLjnkcG2Bc63CdJuEE0mKjEXvdYR-ReD3rpmXe-I_8ES7QWhZ5s8MPzfRSd2aolcpYwnxWClsIbJ4pfC5yXhlmhYPtKSIvcXl1W4S6tn59iIEsOBVeROR1kEDujBqTcy7NYjbTHz9_20Do63gTobOe0NtOyDeAWWm6qglAHom7epL7PUnYJsre8KuVxmocwty62jWLmWZCQlBfwPJG5GmrwWsQOQQ5qUxERGRPt3so90fqqx-BpRyJLCF2fbbJv3xO7jLMFcJPW3Kf7MynC_cCgr25HZBteSEHZPfoePzlbBA-mQyCTf8GxuZWIQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+regulation+of+CTCF+stability+and+sub-nuclear+localization+in+response+to+stress&rft.jtitle=PLoS+genetics&rft.au=Lehman%2C+Bettina+J&rft.au=Lopez-Diaz%2C+Fernando+J&rft.au=Santisakultarm%2C+Thom+P&rft.au=Fang%2C+Linjing&rft.date=2021-01-07&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pgen.1009277&rft.externalDBID=ISR&rft.externalDocID=A650814639
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon