Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress
The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this...
Saved in:
Published in | PLoS genetics Vol. 17; no. 1; p. e1009277 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
07.01.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed “variant” HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases. |
---|---|
AbstractList | The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases. The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases.The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed "variant" HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases. The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands of genomic sites and interacts with proteins, such as cohesin, or non-coding RNAs to facilitate specific transcriptional programming. In this study, we examined CTCF during the cellular stress response in human primary cells using immune-blotting, quantitative real time-PCR, chromatin immunoprecipitation-sequence (ChIP-seq) analysis, mass spectrometry, RNA immunoprecipitation-sequence analysis (RIP-seq), and Airyscan confocal microscopy. Unexpectedly, we found that CTCF is exquisitely sensitive to diverse forms of stress in normal patient-derived human mammary epithelial cells (HMECs). In HMECs, a subset of CTCF protein forms complexes that localize to Serine/arginine-rich splicing factor (SC-35)-containing nuclear speckles. Upon stress, this species of CTCF protein is rapidly downregulated by changes in protein stability, resulting in loss of CTCF from SC-35 nuclear speckles and changes in CTCF-RNA interactions. Our ChIP-seq analysis indicated that CTCF binding to genomic DNA is largely unchanged. Restoration of the stress-sensitive pool of CTCF protein abundance and re-localization to nuclear speckles can be achieved by inhibition of proteasome-mediated degradation. Surprisingly, we observed the same characteristics of the stress response during neuronal differentiation of human pluripotent stem cells (hPSCs). CTCF forms stress-sensitive complexes that localize to SC-35 nuclear speckles during a specific stage of neuronal commitment/development but not in differentiated neurons. We speculate that these particular CTCF complexes serve a role in RNA processing that may be intimately linked with specific genes in the vicinity of nuclear speckles, potentially to maintain cells in a certain differentiation state, that is dynamically regulated by environmental signals. The stress-regulated activity of CTCF is uncoupled in persistently stressed, epigenetically re-programmed “variant” HMECs and certain cancer cell lines. These results reveal new insights into CTCF function in cell differentiation and the stress-response with implications for oxidative damage-induced cancer initiation and neuro-degenerative diseases. Our tissues are subject to chronic physiological and environmental damage, yet little is known about how healthy human cells normally respond to stress. We examined the effect of damage on cells obtained from breast tissue of disease-free women. Unexpectedly, we identified a well-known protein regulator of chromosomal function, CTCF, as a robust target of stress signals. In normal mammary cells, a pool of CTCF is localized to large “depots” within the nucleus that regulate RNA processing. Upon cellular damage, CTCF rapidly disappears from nuclear “depots” by stress-inducible protein degradation while genome occupancy by CTCF is relatively unaffected. We observe the same phenomenon in neuronal progenitors differentiated from human pluripotent stem cells. We propose that in specific cell types, stress-sensitive forms of CTCF exist that have a unique function in RNA metabolism potentially by fine-tuning gene expression near nuclear speckles, which may maintain cells in a progenitor or adaptive state. Upon stress, this particular CTCF function is rapidly disabled, which may change the identity of cells most vulnerable to disease in order to safeguard them from becoming dysfunctional. Persistently stressed cells have lost this CTCF function, which may facilitate the genesis of damage-induced cancer initiation and neuro-degeneration. |
Audience | Academic |
Author | Lehman, Bettina J. Lopez-Diaz, Fernando J. Fang, Linjing Shokhirev, Maxim N. Manor, Uri Diffenderfer, Kenneth E. Santisakultarm, Thom P. Emerson, Beverly M. |
AuthorAffiliation | 4 Stem Cell Core, Salk Institute for Biological Studies, La Jolla, California, United States of America 2 Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America University of Cologne, GERMANY 3 Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, United States of America 1 Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America |
AuthorAffiliation_xml | – name: 4 Stem Cell Core, Salk Institute for Biological Studies, La Jolla, California, United States of America – name: 2 Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States of America – name: 1 Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America – name: University of Cologne, GERMANY – name: 3 Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, California, United States of America |
Author_xml | – sequence: 1 givenname: Bettina J. orcidid: 0000-0002-8868-494X surname: Lehman fullname: Lehman, Bettina J. – sequence: 2 givenname: Fernando J. orcidid: 0000-0003-4329-0952 surname: Lopez-Diaz fullname: Lopez-Diaz, Fernando J. – sequence: 3 givenname: Thom P. orcidid: 0000-0001-6507-6282 surname: Santisakultarm fullname: Santisakultarm, Thom P. – sequence: 4 givenname: Linjing orcidid: 0000-0003-2232-2601 surname: Fang fullname: Fang, Linjing – sequence: 5 givenname: Maxim N. orcidid: 0000-0002-8379-8657 surname: Shokhirev fullname: Shokhirev, Maxim N. – sequence: 6 givenname: Kenneth E. surname: Diffenderfer fullname: Diffenderfer, Kenneth E. – sequence: 7 givenname: Uri orcidid: 0000-0002-9802-1955 surname: Manor fullname: Manor, Uri – sequence: 8 givenname: Beverly M. orcidid: 0000-0003-3677-2793 surname: Emerson fullname: Emerson, Beverly M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33411704$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk12L1DAUhousuB_6D0QKgujFjGmaNOleCMvo6sDigq56GdI06WTIJGOSiuOvN93OylRElFzk63lfTk7OOc2OrLMyyx4XYF6UpHi5dr233My3nbTzAoAaEnIvOykwLmcEAXR0sD7OTkNYA1BiWpMH2XFZoqIgAJ1kX17vLN9okXvZ9YZH7WzuVL64WVzmIfJGGx13ObdtHvpmZnthJPe5cYIb_WPEtU3isHU2yDy6pEq78DC7r7gJ8tF-Pss-Xb65WbybXV2_XS4urmaiIiDOFFKorBsKZSsUQC3BFW2qggNa10LIlraqbAjFGEIFJYISQlAr0GBEG4RaUJ5ly9G3dXzNtl5vuN8xxzW7PXC-Y9xHncJmlGIIoMICNTVCVU2RqlBVthw2SOJi8Ho1em37ZpMCkjZ6biam0xurV6xz3xghNYC0TAbP9wbefe1liGyjg5DGcCtdHxhEpMJVnZ6Q0Kcj2vEUmrbKJUcx4OyiwoAWKbKBmv-BSqOV6c9SPSidzieCFxNBYqL8Hjveh8CWHz_8B_v-39nrz1P22QG7ktzEVXCmH4olTMEnh_n-lei76kzA-QgI70LwUjGh423RpTRowwrAhlZg-1ZgQyuwfSskMfpNfOf_V9lPJmgNLg |
CitedBy_id | crossref_primary_10_1080_19491034_2022_2034269 crossref_primary_10_3390_cancers14122866 crossref_primary_10_1016_j_tcb_2023_10_012 crossref_primary_10_3390_ijms251910705 crossref_primary_10_1016_j_isci_2023_107128 crossref_primary_10_1073_pnas_2025647118 crossref_primary_10_5483_BMBRep_2024_0101 crossref_primary_10_1016_j_arr_2024_102206 crossref_primary_10_1016_j_bbagen_2023_130500 crossref_primary_10_1016_j_cell_2023_09_009 crossref_primary_10_1093_nar_gkab520 crossref_primary_10_3390_genes13081383 crossref_primary_10_1242_jcs_259594 crossref_primary_10_3390_ijms242015497 |
Cites_doi | 10.18632/oncotarget.19841 10.1038/s41419-018-1177-6 10.1016/j.bbagrm.2018.06.010 10.1038/nrm.2017.27 10.1146/annurev-genom-083115-022339 10.1016/j.febslet.2005.01.044 10.1101/gr.082800.108 10.1042/BJ20081501 10.1523/JNEUROSCI.3769-13.2014 10.1080/19491034.2017.1389365 10.1016/j.neuroscience.2017.03.030 10.1002/wrna.1436 10.1186/bcr3368 10.3390/ijms18102039 10.1242/jcs.114.8.1491 10.1073/pnas.1403470111 10.7554/eLife.25384 10.1016/S1734-1140(13)71517-2 10.1016/S1097-2765(04)00029-2 10.1615/CritRevEukaryotGeneExpr.2020029202 10.1016/j.bpj.2018.05.023 10.1101/gad.277863.116 10.1093/bioinformatics/bts596 10.1074/jbc.M117.814699 10.1038/s41593-019-0490-4 10.1186/bcr3237 10.1016/j.yexcr.2007.05.018 10.1158/0008-5472.CAN-03-3498 10.1002/jcp.22096 10.1016/j.cels.2017.10.018 10.1002/jcb.22751 10.1101/gr.229102 10.1128/MCB.13.12.7612 10.1111/j.1582-4934.2008.00402.x 10.1093/nar/gkw785 10.1038/s41576-018-0060-8 10.1016/j.molcel.2014.12.006 10.1126/sciadv.1601898 10.1042/EBC20180069 10.1016/j.bpj.2017.04.018 10.1093/bioinformatics/bts635 10.1016/j.ceb.2018.12.005 10.1186/1471-2105-7-123 10.1158/1078-0432.CCR-09-0329 10.1016/j.cell.2013.05.028 10.1038/nature10442 10.1242/jcs.206854 10.1007/s11515-012-1198-y 10.1186/s13578-019-0347-2 10.1016/j.molcel.2009.04.001 10.1038/s41580-018-0068-0 10.1016/j.mrrev.2018.02.002 10.1101/gr.241547.118 10.1016/j.redox.2017.04.016 10.1023/A:1009525827514 10.1021/pr015504q 10.1073/pnas.1219280110 10.1242/dev.132456 10.1038/nature11247 10.1101/gad.1398206 10.1002/ijc.30091 10.15252/embj.201593235 10.1093/nar/gkt439 10.1158/0008-5472.CAN-06-1594 10.1073/pnas.1416674112 10.1038/ncb3477 10.3390/molecules24081583 10.1016/j.molcel.2010.05.004 10.1016/j.gde.2019.06.008 10.3389/fmolb.2018.00012 10.1007/s00109-008-0386-3 10.1038/s41589-019-0422-3 10.1016/j.molcel.2018.03.030 10.1038/s41467-020-17955-2 10.1186/s13059-014-0550-8 10.1093/nar/gkx759 10.1128/MCB.00827-09 10.1242/jcs.02890 10.1016/j.ydbio.2014.02.022 10.1016/j.cell.2017.05.004 10.1016/j.cub.2014.03.053 10.1016/j.semcdb.2018.07.021 10.1016/j.celrep.2013.04.024 10.1101/gad.236869.113 10.1016/j.celrep.2018.08.074 10.1038/35054579 10.7554/eLife.25776 10.1038/srep43530 10.1074/jbc.M111.286641 10.1371/journal.pone.0042424 10.1038/mp.2014.111 10.2144/000114133 10.1002/wrna.1233 10.1074/jbc.RA118.004882 10.1074/jbc.M109.094425 10.1002/cbin.10703 10.1186/s12915-015-0141-5 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Lehman et al 2021 Lehman et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Lehman et al 2021 Lehman et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISN ISR 7X8 5PM DOA |
DOI | 10.1371/journal.pgen.1009277 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Canada Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Dynamic regulation of CTCF complexes by cellular stress |
EISSN | 1553-7404 |
ExternalDocumentID | oai_doaj_org_article_885202f5c4b9446984f6463da2b4e510 PMC7790283 A650814639 33411704 10_1371_journal_pgen_1009277 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA014195 – fundername: NCI NIH HHS grantid: R01 CA159354 – fundername: ; – fundername: ; grantid: postdoctoral fellowship – fundername: ; grantid: R01 CA159354 – fundername: ; grantid: P30014195 – fundername: ; grantid: 7430320 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. ADRAZ C1A CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM RIG WOQ PMFND 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c670t-f4f439b82edcf04d7568b61a0899cced8df3b785522f2e42e2209f0b548b44d03 |
IEDL.DBID | M48 |
ISSN | 1553-7404 1553-7390 |
IngestDate | Wed Aug 27 01:14:53 EDT 2025 Thu Aug 21 14:03:40 EDT 2025 Fri Jul 11 07:22:16 EDT 2025 Tue Jun 17 21:00:34 EDT 2025 Tue Jun 10 20:46:38 EDT 2025 Fri Jun 27 04:03:43 EDT 2025 Fri Jun 27 04:11:19 EDT 2025 Fri Jun 27 04:32:29 EDT 2025 Thu May 22 21:06:20 EDT 2025 Wed Feb 19 02:04:11 EST 2025 Thu Apr 24 22:55:16 EDT 2025 Tue Jul 01 01:21:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c670t-f4f439b82edcf04d7568b61a0899cced8df3b785522f2e42e2209f0b548b44d03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors have declared that no competing interests exist. Current address: Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America |
ORCID | 0000-0003-4329-0952 0000-0002-9802-1955 0000-0002-8379-8657 0000-0002-8868-494X 0000-0001-6507-6282 0000-0003-2232-2601 0000-0003-3677-2793 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pgen.1009277 |
PMID | 33411704 |
PQID | 2476569209 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_885202f5c4b9446984f6463da2b4e510 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7790283 proquest_miscellaneous_2476569209 gale_infotracmisc_A650814639 gale_infotracacademiconefile_A650814639 gale_incontextgauss_ISR_A650814639 gale_incontextgauss_ISN_A650814639 gale_incontextgauss_IOV_A650814639 gale_healthsolutions_A650814639 pubmed_primary_33411704 crossref_citationtrail_10_1371_journal_pgen_1009277 crossref_primary_10_1371_journal_pgen_1009277 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210107 |
PublicationDateYYYYMMDD | 2021-01-07 |
PublicationDate_xml | – month: 1 year: 2021 text: 20210107 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | NP Gomes (pgen.1009277.ref104) 2006; 20 VS Nunes (pgen.1009277.ref033) 2017; 41 ENCODE Project Consortium (pgen.1009277.ref041) 2012; 489 AM Gorman (pgen.1009277.ref072) 2008; 12 R Saldaña-Meyer (pgen.1009277.ref022) 2014; 28 L Galganski (pgen.1009277.ref051) 2017; 45 EC Wheeler (pgen.1009277.ref061) 2018; 9 AS Hansen (pgen.1009277.ref048) 2020; 16 I Pavlaki (pgen.1009277.ref056) 2018; 1861 OG Lyublinskaya (pgen.1009277.ref071) 2017; 12 EC Dow (pgen.1009277.ref099) 2010; 224 LI Huschtscha (pgen.1009277.ref035) 1998; 58 N Khanna (pgen.1009277.ref101) 2014; 24 WJ Kent (pgen.1009277.ref112) 2002; 12 DJP Henderson (pgen.1009277.ref039) 2017; 8 R Ghirlando (pgen.1009277.ref008) 2016; 30 T Wada (pgen.1009277.ref077) 2018; 24 Y Shi (pgen.1009277.ref065) 2017; 6 CH Herrmann (pgen.1009277.ref098) 2001; 114 T Yamamoto (pgen.1009277.ref018) 2019; 58 A El-Kady (pgen.1009277.ref081) 2005; 579 A Dobin (pgen.1009277.ref108) 2013; 29 RG Arzate-Mejía (pgen.1009277.ref011) 2018 N Liu (pgen.1009277.ref066) 2017; 19 DC Wang (pgen.1009277.ref087) 2018 M Witcher (pgen.1009277.ref042) 2009; 34 J Wang (pgen.1009277.ref111) 2013; 41 J Wang (pgen.1009277.ref027) 2012; 287 SR Head (pgen.1009277.ref060) 2014; 56 CG Maki (pgen.1009277.ref040) 1996; 56 CP Wigington (pgen.1009277.ref059) 2014; 5 I Chepelev (pgen.1009277.ref095) 2013; 8 JC Long (pgen.1009277.ref034) 2009; 417 AR Roy (pgen.1009277.ref030) 2018; 293 Z Zheng (pgen.1009277.ref054) 2017; 6 F Docquier (pgen.1009277.ref079) 2005; 65 MM Marino (pgen.1009277.ref089) 2019; 294 FE Baralle (pgen.1009277.ref096) 2017; 18 LA Watson (pgen.1009277.ref093) 2014; 34 I Palmisano (pgen.1009277.ref075) 2019; 22 R Peña-Hernández (pgen.1009277.ref058) 2015; 112 I Martinez-Garay (pgen.1009277.ref062) 2016; 143 ME Oomen (pgen.1009277.ref047) 2019; 29 J-J Duan (pgen.1009277.ref037) 2016; 139 AS Hansen (pgen.1009277.ref044) 2017; 6 E Agirre (pgen.1009277.ref026) 2015; 13 VV Lobanenkov (pgen.1009277.ref015) 1990; 5 EP Nora (pgen.1009277.ref085) 2017; 169 S Cuddapah (pgen.1009277.ref086) 2009; 19 J Kim (pgen.1009277.ref102) 2019 HJ Motulsky (pgen.1009277.ref106) 2006; 7 S-X Peng (pgen.1009277.ref064) 2017; 351 JT Kung (pgen.1009277.ref020) 2015; 57 MW Miller (pgen.1009277.ref078) 2014; 19 AK Croker (pgen.1009277.ref038) 2017; 18 RM Leggett (pgen.1009277.ref107) 2013 H Nakahashi (pgen.1009277.ref043) 2013; 3 AS Hansen (pgen.1009277.ref019) 2018 Y Guo (pgen.1009277.ref023) 2012; 109 J Kim (pgen.1009277.ref097) 2019; 132 RJ Marina (pgen.1009277.ref052) 2016; 35 WJ Locke (pgen.1009277.ref004) 2012; 14 SH Paredes (pgen.1009277.ref025) 2013; 29 S Shukla (pgen.1009277.ref024) 2011; 479 AL Firth (pgen.1009277.ref103) 2014; 111 MJ Rowley (pgen.1009277.ref010) 2018; 19 E Fiorito (pgen.1009277.ref091) 2016; 44 DL Tabb (pgen.1009277.ref049) 2002; 1 W Stroberg (pgen.1009277.ref100) 2018; 115 A Singh (pgen.1009277.ref069) 2019; 24 LF Boyer (pgen.1009277.ref073) 2012 J Wang (pgen.1009277.ref076) 2020; 11 L Galluzzi (pgen.1009277.ref001) 2018; 19 M Merkenschlager (pgen.1009277.ref009) 2016; 17 M Krupp (pgen.1009277.ref063) 2006; 17 V Torrano (pgen.1009277.ref090) 2006; 119 AS Hansen (pgen.1009277.ref046) 2018; 9 Y Chen (pgen.1009277.ref050) 2019; 55 R Saldana-Meyer (pgen.1009277.ref017) 2019 TM Yusufzai (pgen.1009277.ref088) 2004; 13 T Li (pgen.1009277.ref028) 2007; 313 F Docquier (pgen.1009277.ref055) 2009; 15 NS Kitchen (pgen.1009277.ref082) 2010; 111 VS Tanwar (pgen.1009277.ref032) 2019; 780 D Han (pgen.1009277.ref083) 2017; 7 M Ruiz-Velasco (pgen.1009277.ref053) 2017; 5 M Siwek (pgen.1009277.ref068) 2013; 65 S Sun (pgen.1009277.ref021) 2013; 153 F Liu (pgen.1009277.ref013) 2019; 90 S Heinz (pgen.1009277.ref110) 2010; 38 N Kubo (pgen.1009277.ref084) 2017 G Ren (pgen.1009277.ref012) 2019; 9 L Braccioli (pgen.1009277.ref014) 2019; 63 CA Fordyce (pgen.1009277.ref005) 2012; 14 K Hilmi (pgen.1009277.ref031) 2017; 3 J Zhang (pgen.1009277.ref036) 2006; 66 RA Hinshelwood (pgen.1009277.ref007) 2008; 86 J Xiao (pgen.1009277.ref105) 2010 EM Klenova (pgen.1009277.ref016) 1993; 13 SR Romanov (pgen.1009277.ref006) 2001; 409 C-H Su (pgen.1009277.ref094) 2018; 5 L Lu (pgen.1009277.ref029) 2010; 285 J Fei (pgen.1009277.ref092) 2017; 130 MR Stampfer (pgen.1009277.ref002) 2000; 5 JL Myhre (pgen.1009277.ref067) 2014; 390 A Zirkel (pgen.1009277.ref057) 2018; 70 U Saleem (pgen.1009277.ref070) 2020; 30 V Pandey (pgen.1009277.ref003) 2018; 9 H Agarwal (pgen.1009277.ref045) 2017; 112 MI Love (pgen.1009277.ref109) 2014; 15 SK Balakrishnan (pgen.1009277.ref074) 2012; 7 D Farrar (pgen.1009277.ref080) 2010; 30 |
References_xml | – volume: 8 start-page: 64698 year: 2017 ident: pgen.1009277.ref039 article-title: The β-NAD+ salvage pathway and PKC-mediated signaling influence localized PARP-1 activity and CTCF Poly(ADP)ribosylation publication-title: Oncotarget doi: 10.18632/oncotarget.19841 – volume: 9 start-page: 1147 year: 2018 ident: pgen.1009277.ref003 article-title: Expression of two non-mutated genetic elements is sufficient to stimulate oncogenic transformation of human mammary epithelial cells publication-title: Cell Death Dis doi: 10.1038/s41419-018-1177-6 – volume: 1861 start-page: 718 year: 2018 ident: pgen.1009277.ref056 article-title: Poly(ADP-ribosyl)ation associated changes in CTCF-chromatin binding and gene expression in breast cells publication-title: Biochim Biophys Acta Gene Regul Mech doi: 10.1016/j.bbagrm.2018.06.010 – volume: 18 start-page: 437 year: 2017 ident: pgen.1009277.ref096 article-title: Alternative splicing as a regulator of development and tissue identity publication-title: Nature Reviews Molecular Cell Biology doi: 10.1038/nrm.2017.27 – volume: 17 start-page: 17 year: 2016 ident: pgen.1009277.ref009 article-title: CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation publication-title: Annu Rev Genomics Hum Genet doi: 10.1146/annurev-genom-083115-022339 – volume: 579 start-page: 1424 year: 2005 ident: pgen.1009277.ref081 article-title: Regulation of the transcription factor, CTCF, by phosphorylation with protein kinase CK2 publication-title: FEBS Lett doi: 10.1016/j.febslet.2005.01.044 – volume: 19 start-page: 24 year: 2009 ident: pgen.1009277.ref086 article-title: Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains publication-title: Genome Res doi: 10.1101/gr.082800.108 – volume: 417 start-page: 15 year: 2009 ident: pgen.1009277.ref034 article-title: The SR protein family of splicing factors: master regulators of gene expression publication-title: Biochemical Journal doi: 10.1042/BJ20081501 – start-page: 118737 year: 2017 ident: pgen.1009277.ref084 article-title: Preservation of Chromatin Organization after Acute Loss of CTCF in Mouse Embryonic Stem Cells publication-title: bioRxiv – volume: 34 start-page: 2860 year: 2014 ident: pgen.1009277.ref093 article-title: Dual Effect of CTCF Loss on Neuroprogenitor Differentiation and Survival publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.3769-13.2014 – volume: 9 start-page: 20 year: 2018 ident: pgen.1009277.ref046 article-title: Recent evidence that TADs and chromatin loops are dynamic structures publication-title: Nucleus doi: 10.1080/19491034.2017.1389365 – start-page: 530014 year: 2019 ident: pgen.1009277.ref017 article-title: RNA interactions with CTCF are essential for its proper function publication-title: bioRxiv – volume: 351 start-page: 36 year: 2017 ident: pgen.1009277.ref064 article-title: Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.03.030 – volume: 9 year: 2018 ident: pgen.1009277.ref061 article-title: Advances and challenges in the detection of transcriptome-wide protein-RNA interactions publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1436 – volume: 5 start-page: 1743 year: 1990 ident: pgen.1009277.ref015 article-title: A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5’-flanking sequence of the chicken c-myc gene publication-title: Oncogene – volume: 14 start-page: R155 year: 2012 ident: pgen.1009277.ref005 article-title: Cell-extrinsic consequences of epithelial stress: activation of protumorigenic tissue phenotypes publication-title: Breast Cancer Res doi: 10.1186/bcr3368 – volume: 18 year: 2017 ident: pgen.1009277.ref038 article-title: Differential Functional Roles of ALDH1A1 and ALDH1A3 in Mediating Metastatic Behavior and Therapy Resistance of Human Breast Cancer Cells publication-title: Int J Mol Sci doi: 10.3390/ijms18102039 – volume: 114 start-page: 1491 year: 2001 ident: pgen.1009277.ref098 article-title: The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing factor-rich nuclear speckle regions publication-title: J Cell Sci doi: 10.1242/jcs.114.8.1491 – volume: 111 start-page: E1723 year: 2014 ident: pgen.1009277.ref103 article-title: Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1403470111 – volume: 6 year: 2017 ident: pgen.1009277.ref054 article-title: MeCP2 regulates Tet1-catalyzed demethylation, CTCF binding, and learning-dependent alternative splicing of the BDNF gene in Turtle. publication-title: Elife doi: 10.7554/eLife.25384 – volume: 65 start-page: 1558 year: 2013 ident: pgen.1009277.ref068 article-title: Oxidative stress markers in affective disorders publication-title: Pharmacol Rep doi: 10.1016/S1734-1140(13)71517-2 – volume: 13 start-page: 291 year: 2004 ident: pgen.1009277.ref088 article-title: CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species publication-title: Mol Cell doi: 10.1016/S1097-2765(04)00029-2 – volume: 17 start-page: 129 year: 2006 ident: pgen.1009277.ref063 article-title: Actin binding LIM protein 3 (abLIM3) publication-title: Int J Mol Med – volume: 30 start-page: 311 year: 2020 ident: pgen.1009277.ref070 article-title: Role of Oxidative Stress and Antioxidant Defense Biomarkers in Neurodegenerative Diseases publication-title: Crit Rev Eukaryot Gene Expr doi: 10.1615/CritRevEukaryotGeneExpr.2020029202 – volume: 115 start-page: 3 year: 2018 ident: pgen.1009277.ref100 article-title: Do Cellular Condensates Accelerate Biochemical Reactions? Lessons from Microdroplet Chemistry publication-title: Biophys J doi: 10.1016/j.bpj.2018.05.023 – volume: 56 start-page: 2649 year: 1996 ident: pgen.1009277.ref040 article-title: In vivo ubiquitination and proteasome-mediated degradation of p53(1) publication-title: Cancer Res – volume: 30 start-page: 881 year: 2016 ident: pgen.1009277.ref008 article-title: CTCF: making the right connections publication-title: Genes Dev doi: 10.1101/gad.277863.116 – volume: 29 start-page: 1485 year: 2013 ident: pgen.1009277.ref025 article-title: Promoter-proximal CCCTC-factor binding is associated with an increase in the transcriptional pausing index publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts596 – volume: 293 start-page: 8449 year: 2018 ident: pgen.1009277.ref030 article-title: The transcriptional regulator CCCTC-binding factor limits oxidative stress in endothelial cells publication-title: J Biol Chem doi: 10.1074/jbc.M117.814699 – year: 2018 ident: pgen.1009277.ref087 article-title: A tour of 3D genome with a focus on CTCF publication-title: Semin Cell Dev Biol – volume: 22 start-page: 1913 year: 2019 ident: pgen.1009277.ref075 article-title: Epigenomic signatures underpin the axonal regenerative ability of dorsal root ganglia sensory neurons publication-title: Nat Neurosci doi: 10.1038/s41593-019-0490-4 – volume: 14 start-page: 215 year: 2012 ident: pgen.1009277.ref004 article-title: Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis publication-title: Breast Cancer Res doi: 10.1186/bcr3237 – volume: 313 start-page: 3057 year: 2007 ident: pgen.1009277.ref028 article-title: Functional role of CCCTC binding factor (CTCF) in stress-induced apoptosis publication-title: Exp Cell Res doi: 10.1016/j.yexcr.2007.05.018 – year: 2012 ident: pgen.1009277.ref073 article-title: Dopaminergic differentiation of human pluripotent cells publication-title: Curr Protoc Stem Cell Biol – volume: 65 start-page: 5112 year: 2005 ident: pgen.1009277.ref079 article-title: Heightened expression of CTCF in breast cancer cells is associated with resistance to apoptosis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-03-3498 – volume: 224 start-page: 84 year: 2010 ident: pgen.1009277.ref099 article-title: T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes publication-title: J Cell Physiol doi: 10.1002/jcp.22096 – volume: 5 start-page: 628 year: 2017 ident: pgen.1009277.ref053 article-title: CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals publication-title: Cell Syst doi: 10.1016/j.cels.2017.10.018 – volume: 111 start-page: 665 year: 2010 ident: pgen.1009277.ref082 article-title: Sumoylation modulates a domain in CTCF that activates transcription and decondenses chromatin publication-title: J Cell Biochem doi: 10.1002/jcb.22751 – volume: 12 start-page: 996 year: 2002 ident: pgen.1009277.ref112 article-title: The human genome browser at UCSC publication-title: Genome Res doi: 10.1101/gr.229102 – volume: 13 start-page: 7612 year: 1993 ident: pgen.1009277.ref016 article-title: CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms publication-title: Mol Cell Biol doi: 10.1128/MCB.13.12.7612 – volume: 12 start-page: 2263 year: 2008 ident: pgen.1009277.ref072 article-title: Neuronal cell death in neurodegenerative diseases: recurring themes around protein handling publication-title: J Cell Mol Med doi: 10.1111/j.1582-4934.2008.00402.x – volume: 44 start-page: 10588 year: 2016 ident: pgen.1009277.ref091 article-title: CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw785 – volume: 19 start-page: 789 year: 2018 ident: pgen.1009277.ref010 article-title: Organizational principles of 3D genome architecture publication-title: Nat Rev Genet doi: 10.1038/s41576-018-0060-8 – volume: 57 start-page: 361 year: 2015 ident: pgen.1009277.ref020 article-title: Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF publication-title: Mol Cell doi: 10.1016/j.molcel.2014.12.006 – volume: 3 start-page: e1601898 year: 2017 ident: pgen.1009277.ref031 article-title: CTCF facilitates DNA double-strand break repair by enhancing homologous recombination repair publication-title: Sci Adv doi: 10.1126/sciadv.1601898 – volume: 63 start-page: 157 year: 2019 ident: pgen.1009277.ref014 article-title: CTCF: a Swiss-army knife for genome organization and transcription regulation publication-title: Essays Biochem doi: 10.1042/EBC20180069 – volume: 112 start-page: 2051 year: 2017 ident: pgen.1009277.ref045 article-title: Direct Observation of Cell-Cycle-Dependent Interactions between CTCF and Chromatin publication-title: Biophys J doi: 10.1016/j.bpj.2017.04.018 – volume: 29 start-page: 15 year: 2013 ident: pgen.1009277.ref108 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 58 start-page: 26 year: 2019 ident: pgen.1009277.ref018 article-title: Non-coding RNAs and chromatin domains publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2018.12.005 – volume: 7 start-page: 123 year: 2006 ident: pgen.1009277.ref106 article-title: Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-123 – volume: 15 start-page: 5762 year: 2009 ident: pgen.1009277.ref055 article-title: Decreased poly(ADP-ribosyl)ation of CTCF, a transcription factor, is associated with breast cancer phenotype and cell proliferation publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-09-0329 – start-page: 495432 year: 2018 ident: pgen.1009277.ref019 article-title: An RNA-binding region regulates CTCF clustering and chromatin looping publication-title: bioRxiv – volume: 153 start-page: 1537 year: 2013 ident: pgen.1009277.ref021 article-title: Jpx RNA activates Xist by evicting CTCF publication-title: Cell doi: 10.1016/j.cell.2013.05.028 – volume: 479 start-page: 74 year: 2011 ident: pgen.1009277.ref024 article-title: CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing publication-title: Nature doi: 10.1038/nature10442 – volume: 130 start-page: 4180 year: 2017 ident: pgen.1009277.ref092 article-title: Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution publication-title: J Cell Sci doi: 10.1242/jcs.206854 – volume: 8 start-page: 50 year: 2013 ident: pgen.1009277.ref095 article-title: Alternative splicing switching in stem cell lineages publication-title: Front Biol (Beijing) doi: 10.1007/s11515-012-1198-y – volume: 9 start-page: 83 year: 2019 ident: pgen.1009277.ref012 article-title: CTCF and cellular heterogeneity publication-title: Cell Biosci doi: 10.1186/s13578-019-0347-2 – volume: 6 year: 2017 ident: pgen.1009277.ref065 article-title: Hedgehog signaling via Gli2 prevents obesity induced by high-fat diet in adult mice publication-title: Elife – volume: 34 start-page: 271 year: 2009 ident: pgen.1009277.ref042 article-title: Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary publication-title: Mol Cell doi: 10.1016/j.molcel.2009.04.001 – volume: 19 start-page: 731 year: 2018 ident: pgen.1009277.ref001 article-title: Linking cellular stress responses to systemic homeostasis publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-018-0068-0 – volume: 780 start-page: 61 year: 2019 ident: pgen.1009277.ref032 article-title: Role of CTCF in DNA damage response publication-title: Mutat Res doi: 10.1016/j.mrrev.2018.02.002 – volume: 29 start-page: 236 year: 2019 ident: pgen.1009277.ref047 article-title: CTCF sites display cell cycle-dependent dynamics in factor binding and nucleosome positioning publication-title: Genome Res doi: 10.1101/gr.241547.118 – volume: 12 start-page: 758 year: 2017 ident: pgen.1009277.ref071 article-title: Redox environment in stem and differentiated cells: A quantitative approach publication-title: Redox Biol doi: 10.1016/j.redox.2017.04.016 – volume: 5 start-page: 365 year: 2000 ident: pgen.1009277.ref002 article-title: Culture models of human mammary epithelial cell transformation publication-title: J Mammary Gland Biol Neoplasia doi: 10.1023/A:1009525827514 – volume: 1 start-page: 21 year: 2002 ident: pgen.1009277.ref049 article-title: DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics publication-title: J Proteome Res doi: 10.1021/pr015504q – volume: 109 start-page: 21081 year: 2012 ident: pgen.1009277.ref023 article-title: CTCF/cohesin-mediated DNA looping is required for protocadherin α promoter choice publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1219280110 – volume: 143 start-page: 2121 year: 2016 ident: pgen.1009277.ref062 article-title: Cadherin 2/4 signaling via PTP1B and catenins is crucial for nucleokinesis during radial neuronal migration in the neocortex publication-title: Development doi: 10.1242/dev.132456 – volume: 489 start-page: 57 year: 2012 ident: pgen.1009277.ref041 article-title: An integrated encyclopedia of DNA elements in the human genome publication-title: Nature doi: 10.1038/nature11247 – volume: 20 start-page: 601 year: 2006 ident: pgen.1009277.ref104 article-title: Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program publication-title: Genes Dev doi: 10.1101/gad.1398206 – start-page: 551 volume-title: A Research of the Partition Clustering Algorithm. 2010 International Symposium on Intelligence Information Processing and Trusted Computing year: 2010 ident: pgen.1009277.ref105 – volume: 139 start-page: 965 year: 2016 ident: pgen.1009277.ref037 article-title: ALDH1A3, a metabolic target for cancer diagnosis and therapy publication-title: Int J Cancer doi: 10.1002/ijc.30091 – volume: 35 start-page: 335 year: 2016 ident: pgen.1009277.ref052 article-title: TET-catalyzed oxidation of intragenic 5-methylcytosine regulates CTCF-dependent alternative splicing publication-title: The EMBO Journal doi: 10.15252/embj.201593235 – volume: 41 start-page: W77 year: 2013 ident: pgen.1009277.ref111 article-title: WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013 publication-title: Nucleic Acids Research doi: 10.1093/nar/gkt439 – volume: 66 start-page: 10325 year: 2006 ident: pgen.1009277.ref036 article-title: p16INK4a modulates p53 in primary human mammary epithelial cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-1594 – volume: 112 start-page: E677 year: 2015 ident: pgen.1009277.ref058 article-title: Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1416674112 – volume: 19 start-page: 202 year: 2017 ident: pgen.1009277.ref066 article-title: A Twist2-dependent progenitor cell contributes to adult skeletal muscle publication-title: Nat Cell Biol doi: 10.1038/ncb3477 – volume: 24 year: 2019 ident: pgen.1009277.ref069 article-title: Oxidative Stress: A Key Modulator in Neurodegenerative Diseases publication-title: Molecules doi: 10.3390/molecules24081583 – volume: 38 start-page: 576 year: 2010 ident: pgen.1009277.ref110 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities publication-title: Mol Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 55 start-page: 91 year: 2019 ident: pgen.1009277.ref050 article-title: Genome organization around nuclear speckles publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2019.06.008 – volume: 132 year: 2019 ident: pgen.1009277.ref097 article-title: Nuclear speckle fusion via long-range directional motion regulates speckle morphology after transcriptional inhibition publication-title: J Cell Sci – volume: 5 start-page: 12 year: 2018 ident: pgen.1009277.ref094 article-title: Alternative Splicing in Neurogenesis and Brain Development publication-title: Front Mol Biosci doi: 10.3389/fmolb.2018.00012 – volume: 86 start-page: 1315 year: 2008 ident: pgen.1009277.ref007 article-title: Breast cancer epigenetics: normal human mammary epithelial cells as a model system publication-title: J Mol Med doi: 10.1007/s00109-008-0386-3 – volume: 16 start-page: 257 year: 2020 ident: pgen.1009277.ref048 article-title: Guided nuclear exploration increases CTCF target search efficiency publication-title: Nat Chem Biol. doi: 10.1038/s41589-019-0422-3 – volume: 70 start-page: 730 year: 2018 ident: pgen.1009277.ref057 article-title: HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types publication-title: Mol Cell doi: 10.1016/j.molcel.2018.03.030 – start-page: 4 year: 2013 ident: pgen.1009277.ref107 article-title: Sequencing quality assessment tools to enable data-driven informatics for high throughput genomics publication-title: Frontiers in Genetics – volume: 11 start-page: 4133 year: 2020 ident: pgen.1009277.ref076 article-title: CTCF-mediated chromatin looping in EGR2 regulation and SUZ12 recruitment critical for peripheral myelination and repair publication-title: Nat Commun doi: 10.1038/s41467-020-17955-2 – volume: 15 start-page: 550 year: 2014 ident: pgen.1009277.ref109 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol doi: 10.1186/s13059-014-0550-8 – volume: 45 start-page: 10350 year: 2017 ident: pgen.1009277.ref051 article-title: Nuclear speckles: molecular organization, biological function and role in disease publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx759 – volume: 30 start-page: 1199 year: 2010 ident: pgen.1009277.ref080 article-title: Mutational analysis of the poly(ADP-ribosyl)ation sites of the transcription factor CTCF provides an insight into the mechanism of its regulation by poly(ADP-ribosyl)ation publication-title: Mol Cell Biol doi: 10.1128/MCB.00827-09 – volume: 119 start-page: 1746 year: 2006 ident: pgen.1009277.ref090 article-title: Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism publication-title: J Cell Sci doi: 10.1242/jcs.02890 – volume: 390 start-page: 26 year: 2014 ident: pgen.1009277.ref067 article-title: Unc45b is essential for early myofibrillogenesis and costamere formation in zebrafish publication-title: Dev Biol doi: 10.1016/j.ydbio.2014.02.022 – volume: 169 start-page: 930 year: 2017 ident: pgen.1009277.ref085 article-title: Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization publication-title: Cell doi: 10.1016/j.cell.2017.05.004 – volume: 24 start-page: 1138 year: 2014 ident: pgen.1009277.ref101 article-title: HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation publication-title: Curr Biol doi: 10.1016/j.cub.2014.03.053 – volume: 90 start-page: 168 year: 2019 ident: pgen.1009277.ref013 article-title: Roles of CTCF in conformation and functions of chromosome publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2018.07.021 – volume: 3 start-page: 1678 year: 2013 ident: pgen.1009277.ref043 article-title: A genome-wide map of CTCF multivalency redefines the CTCF code publication-title: Cell Rep doi: 10.1016/j.celrep.2013.04.024 – volume: 28 start-page: 723 year: 2014 ident: pgen.1009277.ref022 article-title: CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53 publication-title: Genes Dev doi: 10.1101/gad.236869.113 – volume: 24 start-page: 3503 year: 2018 ident: pgen.1009277.ref077 article-title: Stochastic Gene Choice during Cellular Differentiation publication-title: Cell Rep doi: 10.1016/j.celrep.2018.08.074 – volume: 409 start-page: 633 year: 2001 ident: pgen.1009277.ref006 article-title: Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes publication-title: Nature doi: 10.1038/35054579 – volume: 6 year: 2017 ident: pgen.1009277.ref044 article-title: CTCF and cohesin regulate chromatin loop stability with distinct dynamics. publication-title: Elife doi: 10.7554/eLife.25776 – volume: 7 start-page: 43530 year: 2017 ident: pgen.1009277.ref083 article-title: CTCF participates in DNA damage response via poly(ADP-ribosyl)ation publication-title: Sci Rep doi: 10.1038/srep43530 – volume: 58 start-page: 3508 year: 1998 ident: pgen.1009277.ref035 article-title: Loss of p16INK4 expression by methylation is associated with lifespan extension of human mammary epithelial cells publication-title: Cancer Res – volume: 287 start-page: 12469 year: 2012 ident: pgen.1009277.ref027 article-title: De-SUMOylation of CCCTC binding factor (CTCF) in hypoxic stress-induced human corneal epithelial cells publication-title: J Biol Chem doi: 10.1074/jbc.M111.286641 – start-page: 145 year: 2018 ident: pgen.1009277.ref011 article-title: Developing in 3D: the role of CTCF in cell differentiation publication-title: Development – volume: 7 start-page: e42424 year: 2012 ident: pgen.1009277.ref074 article-title: Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology publication-title: PLoS ONE doi: 10.1371/journal.pone.0042424 – volume: 19 start-page: 1156 year: 2014 ident: pgen.1009277.ref078 article-title: Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis publication-title: Mol Psychiatry doi: 10.1038/mp.2014.111 – volume: 56 start-page: 61 year: 2014 ident: pgen.1009277.ref060 article-title: Library construction for next-generation sequencing: overviews and challenges publication-title: BioTechniques doi: 10.2144/000114133 – volume: 5 start-page: 601 year: 2014 ident: pgen.1009277.ref059 article-title: Poly(A) RNA-binding proteins and polyadenosine RNA: new members and novel functions publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1233 – volume: 294 start-page: 861 year: 2019 ident: pgen.1009277.ref089 article-title: Interactome mapping defines BRG1, a component of the SWI/SNF chromatin remodeling complex, as a new partner of the transcriptional regulator CTCF publication-title: J Biol Chem doi: 10.1074/jbc.RA118.004882 – year: 2019 ident: pgen.1009277.ref102 article-title: Transcription amplification by nuclear speckle association publication-title: Cell Biology – volume: 285 start-page: 9373 year: 2010 ident: pgen.1009277.ref029 article-title: NF-kappaB subtypes regulate CCCTC binding factor affecting corneal epithelial cell fate publication-title: J Biol Chem doi: 10.1074/jbc.M109.094425 – volume: 41 start-page: 2 year: 2017 ident: pgen.1009277.ref033 article-title: Nuclear subcompartments: an overview publication-title: Cell Biol Int doi: 10.1002/cbin.10703 – volume: 13 start-page: 31 year: 2015 ident: pgen.1009277.ref026 article-title: A chromatin code for alternative splicing involving a putative association between CTCF and HP1α proteins publication-title: BMC Biol doi: 10.1186/s12915-015-0141-5 |
SSID | ssj0035897 |
Score | 2.4242697 |
Snippet | The nuclear protein CCCTC-binding factor (CTCF) has diverse roles in chromatin architecture and gene regulation. Functionally, CTCF associates with thousands... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1009277 |
SubjectTerms | Binding Sites Biology and Life Sciences CCCTC-Binding Factor - genetics Cell Differentiation Cell Line, Tumor Cell nuclei Chromatin Chromosomes Control DNA-Binding Proteins - genetics Epigenesis, Genetic - genetics Gene Expression Regulation Genetic aspects Genetic regulation Genomics Humans Mammary Glands, Human - cytology Mammary Glands, Human - metabolism Medicine and Health Sciences Methods Neoplasms - genetics Neoplasms - pathology Neurodegenerative Diseases - genetics Neurodegenerative Diseases - pathology Neurons - metabolism Neurons - pathology Oxidative Stress - genetics Physiological aspects Pluripotent Stem Cells - metabolism Pluripotent Stem Cells - pathology Protein Binding RNA Processing, Post-Transcriptional - genetics Serine-Arginine Splicing Factors - genetics Stress (Physiology) Stress, Physiological - genetics Transcription factors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJSQuiG8CBQxC4mSaxHbsHMvCqiBRJGihN8t27FIJJdV-HPrvmYm9q404tAeu6xcpeTPxjDczbwh5y6suRMcD4-AdTLTaM6ttyWyra6dR4HuUL_563Bydii9n8mxn1BfWhCV54ETcgdYSzudReuFageMORWxEwztbOxFkaq6CmLc5TKU9mEudxqpIyZmCY31umuOqOsg2en8JBsIagbZWahKURu3-f3fonRA1LZ_ciUfze-RuTiTpYXqA--RW6B-Q22m05NVD8utjGjVPF2nYPNBPh0hnJ7M5hYRwLIm9orbv6HLtWI-qxnZBx8iWOzPpRQ8XjxW0ga4GmrpKHpHT-aeT2RHLQxSYb1S5YlFEyDmcruF-Yyk6JRvtmsri5z7vQ6e7yJ3SEvKwWAdRhxrojKWDk4wToiv5Y7LXD314SmhruQWk6yreiCr6FuW6vK9k0MB4DAXhGxaNzwrjOOjijxk_myk4aSRuDHJvMvcFYdurLpPCxjX4D2igLRb1sccfwGtM9hpzndcU5BWa16Rm0-1bbg4xYYXgwduCvBkRqJHRYxHOuV0vl-bzt583AP04vgno-wT0LoPiAJx5m7sjgHkU6Jog9ydI2A78ZPn1xmMNLmENXR-G9dLUQkHy3oJ5C_IkefCWRA7JTKVKURA18e0Jy9OV_uL3qEaOgpWQoz77H2Z5Tu7UWDOEf3GpfbK3WqzDC0j6Vu7l-H7_BXLFUfw priority: 102 providerName: Directory of Open Access Journals |
Title | Dynamic regulation of CTCF stability and sub-nuclear localization in response to stress |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33411704 https://www.proquest.com/docview/2476569209 https://pubmed.ncbi.nlm.nih.gov/PMC7790283 https://doaj.org/article/885202f5c4b9446984f6463da2b4e510 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN8LjGIQEk-ZEtuJnQeEtrJqIK2gscLeLDuxx6QpGf2Q6H_PnZNWiwDR1_ocpT_f-c7x3e8IecPTynnLXcxBO2JRqDI2yiSxKRSzCgm-A33x6Tg_mYhPF9nFFln1bO0AnP31aIf9pCbT64NfP5fvweDfha4NMl1NOrgByPHWv2BSbpNd8E0STfVUrO8VeKbaditZxmMJx_2umO5fT-k5q8Dp_-fOfct19dMqb_mp0X1yrwsw6WGrEQ_Ilqsfkjtty8nlI_L9Q9uCnk7bJvSwLLTxdHg-HFEIFEOq7JKauqKzhY1rZDs2Uxo8XlexSa9qmBwyax2dN7StNnlMJqPj8-FJ3DVXiMtcJvPYCw-xiFUM3tcnopJZrmyeGrwGLEtXqcpzK1UG8ZlnTjDHWFL4xMIJxwpRJfwJ2amb2u0RWhhuQNJWKc9F6ssCabzKMs2cAsS9iwhfoajLjnkcG2Bc63CdJuEE0mKjEXvdYR-ReD3rpmXe-I_8ES7QWhZ5s8MPzfRSd2aolcpYwnxWClsIbJ4pfC5yXhlmhYPtKSIvcXl1W4S6tn59iIEsOBVeROR1kEDujBqTcy7NYjbTHz9_20Do63gTobOe0NtOyDeAWWm6qglAHom7epL7PUnYJsre8KuVxmocwty62jWLmWZCQlBfwPJG5GmrwWsQOQQ5qUxERGRPt3so90fqqx-BpRyJLCF2fbbJv3xO7jLMFcJPW3Kf7MynC_cCgr25HZBteSEHZPfoePzlbBA-mQyCTf8GxuZWIQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+regulation+of+CTCF+stability+and+sub-nuclear+localization+in+response+to+stress&rft.jtitle=PLoS+genetics&rft.au=Lehman%2C+Bettina+J&rft.au=Lopez-Diaz%2C+Fernando+J&rft.au=Santisakultarm%2C+Thom+P&rft.au=Fang%2C+Linjing&rft.date=2021-01-07&rft.pub=Public+Library+of+Science&rft.issn=1553-7390&rft.volume=17&rft.issue=1&rft_id=info:doi/10.1371%2Fjournal.pgen.1009277&rft.externalDBID=ISR&rft.externalDocID=A650814639 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |