Inferring ecosystem networks as information flows

The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 7094 - 22
Main Authors Li, Jie, Convertino, Matteo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.03.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and α -diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective α -diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
AbstractList The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and α -diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective α -diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and $$\alpha$$ α -diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective $$\alpha$$ α -diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} α -diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha$$\end{document} α -diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and [Formula: see text]-diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective [Formula: see text]-diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
Abstract The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and $$\alpha$$ α -diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective $$\alpha$$ α -diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and α-diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective α-diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and [Formula: see text]-diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective [Formula: see text]-diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research. Convergent cross mapping (CCM) based on nonlinear state-space reconstruction made substantial progress about network inference by measuring how well historical values of one variable can reliably estimate states of other variables. Here we investigate the ability of a developed optimal information flow (OIF) ecosystem model to infer bidirectional causality and compare that to CCM. Results from synthetic datasets generated by a simple predator-prey model, data of a real-world sardine-anchovy-temperature system and of a multispecies fish ecosystem highlight that the proposed OIF performs better than CCM to predict population and community patterns. Specifically, OIF provides a larger gradient of inferred interactions, higher point-value accuracy and smaller fluctuations of interactions and [Formula: see text]-diversity including their characteristic time delays. We propose an optimal threshold on inferred interactions that maximize accuracy in predicting fluctuations of effective [Formula: see text]-diversity, defined as the count of model-inferred interacting species. Overall OIF outperforms all other models in assessing predictive causality (also in terms of computational complexity) due to the explicit consideration of synchronization, divergence and diversity of events that define model sensitivity, uncertainty and complexity. Thus, OIF offers a broad ecological information by extracting predictive causal networks of complex ecosystems from time-series data in the space-time continuum. The accurate inference of species interactions at any biological scale of organization is highly valuable because it allows to predict biodiversity changes, for instance as a function of climate and other anthropogenic stressors. This has practical implications for defining optimal ecosystem management and design, such as fish stock prioritization and delineation of marine protected areas based on derived collective multispecies assembly. OIF can be applied to any complex system and used for model evaluation and design where causality should be considered as non-linear predictability of diverse events of populations or communities.
ArticleNumber 7094
Author Convertino, Matteo
Li, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: Nexus Group, Faculty and Graduate School of Information Science and Technology, Hokkaido University, GI-CORE Global Station for Big Data and Cybersecurity, Hokkaido University
– sequence: 2
  givenname: Matteo
  surname: Convertino
  fullname: Convertino, Matteo
  email: matteo@ist.hokudai.ac.jp
  organization: Nexus Group, Faculty and Graduate School of Information Science and Technology, Hokkaido University, GI-CORE Global Station for Big Data and Cybersecurity, Hokkaido University, Graduate School of Information Science and Technology, Hokkaido University, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33782461$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAOKxIVLwN-xL0io4mOlSlzgbDnO8-Ilay92tlX_Pc6mhbaHfT7YsmdG8_zmJTqJKQJCrwl-TzBTHwonQqsWU9IqyTvZ6mfojGIuWsooPXlwPkUXpWxwLUE1J_oFOmWsU5RLcobIKnrIOcR1Ay6V2zLBtokw3aT8uzS2NCH6lLd2Cik2fkw35RV67u1Y4OJuP0c_v3z-cfmtvfr-dXX56ap1ssNT62ldurOas57RjmDfSdsrcB4L3DEmLKe99HaAoccCahHuvaKODa53jrNztFp0h2Q3ZpfD1uZbk2wwh4uU18bmKbgRjMCYCkKYAME46XnfA3fKWUkpONzNWh8Xrd2-38LgIE7Zjo9EH7_E8Mus07VRGHeSzgLv7gRy-rOHMpltKA7G0UZI-2Jo7YlwSaWu0LdPoJu0z7F-VUUJKbgWkhxH4fqDWmlRUW8e-v5n-H5-FaAWgMuplAzeuDAdhlXbCKMh2MxpMUtaTE2LOaTFzD7pE-q9-lESW0hlN2cG8n_bR1h_Ac6N0I8
CitedBy_id crossref_primary_10_1016_j_ecolind_2022_109681
crossref_primary_10_1016_j_ecolind_2023_110297
crossref_primary_10_1016_j_ecolind_2024_112277
crossref_primary_10_3390_biom14121549
crossref_primary_10_1080_15481603_2024_2387385
crossref_primary_10_1016_j_ecolind_2024_112174
crossref_primary_10_1007_s10531_024_02779_z
crossref_primary_10_1371_journal_pcsy_0000024
crossref_primary_10_1016_j_ecolind_2022_109825
crossref_primary_10_1029_2022WR032008
crossref_primary_10_1038_s41598_021_88309_1
crossref_primary_10_1016_j_ecoinf_2022_101955
crossref_primary_10_3390_e26010013
crossref_primary_10_3390_w16030398
crossref_primary_10_1016_j_ecoinf_2023_102204
crossref_primary_10_1016_j_ecolind_2022_108917
crossref_primary_10_1073_pnas_2412220121
crossref_primary_10_1016_j_ecolind_2024_111704
crossref_primary_10_1016_j_ecolmodel_2024_110722
crossref_primary_10_1016_j_ecolind_2023_111523
crossref_primary_10_1016_j_ecolind_2024_112417
crossref_primary_10_1016_j_ecolind_2024_112218
crossref_primary_10_1016_j_ecolind_2024_112117
crossref_primary_10_3390_su16052101
crossref_primary_10_1098_rstb_2023_0170
crossref_primary_10_1093_femsec_fiab167
crossref_primary_10_1016_j_ecolind_2022_109536
crossref_primary_10_3389_fenvs_2024_1431645
crossref_primary_10_1016_j_ecoinf_2023_102319
crossref_primary_10_1186_s40168_022_01298_9
crossref_primary_10_3390_land11010106
crossref_primary_10_3390_e26010046
crossref_primary_10_1016_j_ecolmodel_2023_110450
crossref_primary_10_14489_vkit_2022_04_pp_033_041
crossref_primary_10_3390_e26080641
crossref_primary_10_3390_rs16132478
crossref_primary_10_1360_SSTe_2023_0005
crossref_primary_10_1016_j_ecolind_2024_112848
crossref_primary_10_1016_j_ecolmodel_2022_110254
crossref_primary_10_1029_2022JF006665
crossref_primary_10_1080_15481603_2023_2301275
crossref_primary_10_1007_s11430_023_1148_7
crossref_primary_10_1016_j_ecoinf_2023_102192
crossref_primary_10_1016_j_ecolind_2023_110326
crossref_primary_10_1016_j_ecolind_2023_110963
crossref_primary_10_1016_j_ecolmodel_2023_110433
Cites_doi 10.1109/TCST.2012.2233476
10.1371/journal.pone.0096732
10.1126/science.286.5439.509
10.1155/2016/8313272
10.1093/bioinformatics/bth463
10.1038/s41598-019-41614-2
10.1098/rspb.2013.2641
10.1080/01621459.1986.10478354
10.1890/14-1479.1
10.1016/j.paid.2006.09.018
10.1093/bib/4.3.228
10.1063/1.5025050
10.1371/journal.pone.0099462
10.1126/science.aag0863
10.1038/ncomms11180
10.1137/140956166
10.1038/srep14750
10.1098/rsif.2018.0695
10.1111/j.2006.0030-1299.14714.x
10.1140/epjb/e2010-00034-5
10.1038/srep12652
10.1103/PhysRevLett.103.238701
10.1038/nature25504
10.1029/2019WR024940
10.1007/s12080-015-0279-3
10.1038/s41593-018-0226-x
10.3390/e21050506
10.1038/nclimate3382
10.1371/journal.pone.0157945
10.1890/ES12-00048.1
10.1126/sciadv.aau4996
10.1371/journal.pone.0109462
10.1016/j.physrep.2006.12.004
10.1016/j.ecolind.2019.105510
10.1214/aos/1176344064
10.1073/pnas.0903682106
10.1139/f95-057
10.3389/frobt.2014.00011
10.1038/s41396-019-0407-y
10.1103/PhysRevLett.85.461
10.1145/1882471.1882476
10.1126/sciadv.1701088
10.1126/sciadv.aao6652
10.1126/science.1227079
10.1073/pnas.1215506110
10.1073/pnas.0702059104
10.1007/s00382-014-2182-9
10.1111/1440-1703.12164
10.1242/jcs.02714
10.1007/s11284-017-1469-9
10.1137/S003614450342480
10.1007/s00382-011-1135-9
10.1109/CBMS.2007.60
10.1162/netn_a_00092
10.1007/978-1-4614-2299-0_4
10.1126/science.aac6284
10.1007/BFb0091924
10.1007/978-3-030-05411-3_34
10.1007/978-94-017-9514-2_7
10.1017/CBO9780511617799
10.2307/1912791
10.1007/11795131_58
10.1038/s41598-018-37186-2
ContentType Journal Article
Copyright The Author(s) 2021. corrected publication 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2021, corrected publication 2021
Copyright_xml – notice: The Author(s) 2021. corrected publication 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2021, corrected publication 2021
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-86476-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed

Publicly Available Content Database
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 22
ExternalDocumentID oai_doaj_org_article_500251135e5341b4bbe4c8ca622ec074
PMC8007624
33782461
10_1038_s41598_021_86476_9
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c670t-f2f2f97a943b32710f76ab8ecf0507335a42b6fadedb05eeee14ff82c3dcbcc43
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:47 EDT 2025
Thu Aug 21 14:06:46 EDT 2025
Fri Jul 11 15:11:03 EDT 2025
Wed Aug 13 05:30:04 EDT 2025
Wed Aug 13 07:37:12 EDT 2025
Thu Jan 02 22:57:24 EST 2025
Tue Jul 01 01:07:49 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Fri Feb 21 02:39:31 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c670t-f2f2f97a943b32710f76ab8ecf0507335a42b6fadedb05eeee14ff82c3dcbcc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-86476-9
PMID 33782461
PQID 2506709895
PQPubID 2041939
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_500251135e5341b4bbe4c8ca622ec074
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8007624
proquest_miscellaneous_2507146269
proquest_journals_2556549561
proquest_journals_2506709895
pubmed_primary_33782461
crossref_citationtrail_10_1038_s41598_021_86476_9
crossref_primary_10_1038_s41598_021_86476_9
springer_journals_10_1038_s41598_021_86476_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-29
PublicationDateYYYYMMDD 2021-03-29
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Runge (CR48) 2018; 28
Villaverde, Ross, Morán, Banga (CR31) 2014; 9
Batushansky, Toubiana, Fait (CR13) 2016
Lizier (CR42) 2014; 1
Ye, Sugihara (CR63) 2016; 353
Mamet (CR28) 2019
Rubin (CR15) 1978; 6
Ye, Deyle, Gilarranz, Sugihara (CR38) 2015; 5
CR36
CR35
CR33
CR30
Hlavackova-Schindler, Palus, Vejmelka, Bhattacharya (CR44) 2007; 441
Dai, Hu, Tian, Xie, Hu (CR6) 2016; 11
Holland (CR11) 1986; 81
Newman (CR2) 2003; 45
CR72
CR70
Baumgartner (CR61) 1992; 33
Montalto, Faes, Marinazzo (CR43) 2014; 9
Chang, Ushio, Hsieh (CR64) 2017; 32
Albert (CR8) 2005; 118
Jost (CR50) 2006; 113
CR7
CR9
Lizier, Prokopenko (CR41) 2010; 73
Barnett, Barrett, Seth (CR45) 2009; 103
Comte, Olden (CR67) 2017; 7
Feldhoff (CR5) 2015; 44
Li, Convertino (CR39) 2019; 21
Sugihara (CR29) 2012; 338
Abdul Razak, Jensen (CR46) 2014; 9
Servadio, Convertino (CR49) 2018
Hein, Öhlund, Englund (CR66) 2014; 281
Gellner, McCann (CR56) 2016; 7
Convertino, Valverde (CR12) 2019; 107
Ruelle, Takens (CR69) 1971; 12
Ushio (CR37) 2018; 554
Nakazawa (CR51) 2020; 35
Hooper, Mullen, Coughlan (CR25) 2008; 6
Schreiber (CR40) 2000; 85
Brander (CR65) 2007; 104
Wootton, Stouffer (CR57) 2016; 9
CR19
Steinhaeuser, Chawla, Ganguly (CR3) 2010; 12
Kadoya, McCann (CR55) 2015; 5
CR17
CR59
Goodwell, Jiang, Ruddell, Kumar (CR10) 2020; 56
CR14
Cenci, Saavedra (CR68) 2018; 15
Duan, Yang, Chen, Shah (CR47) 2013; 21
Deyle (CR53) 2013; 110
Grace (CR26) 2012
Runge, Nowack, Kretschmer, Flaxman, Sejdinovic (CR34) 2019; 5
Jacobson, MacCall (CR62) 1995; 52
Sun, Taylor, Bollt (CR32) 2014
Barrett (CR24) 2007; 42
Tu, Suweis, Grilli, Formentin, Maritan (CR52) 2019; 9
Kim, Imoto, Miyano (CR16) 2003; 4
Yang, Yang, Zhang, Connor, Liu (CR27) 2018
Barabási, Albert (CR1) 1999; 286
Mongillo, Rumpel, Loewenstein (CR58) 2018; 21
CR23
CR22
CR21
CR20
Steinhaeuser, Ganguly, Chawla (CR4) 2012; 39
O’Gorman, Emmerson (CR54) 2009; 106
CR60
Zou, Conzen (CR18) 2004; 21
Clark (CR71) 2015; 96
JL Servadio (86476_CR49) 2018
86476_CR72
86476_CR30
A-L Barabási (86476_CR1) 1999; 286
86476_CR7
86476_CR70
JB Grace (86476_CR26) 2012
86476_CR36
C-W Chang (86476_CR64) 2017; 32
H Yang (86476_CR27) 2018
86476_CR33
S Cenci (86476_CR68) 2018; 15
JT Lizier (86476_CR41) 2010; 73
86476_CR35
J Sun (86476_CR32) 2014
ER Deyle (86476_CR53) 2013; 110
C Tu (86476_CR52) 2019; 9
M Newman (86476_CR2) 2003; 45
M Ushio (86476_CR37) 2018; 554
L Comte (86476_CR67) 2017; 7
G Sugihara (86476_CR29) 2012; 338
86476_CR20
P Duan (86476_CR47) 2013; 21
86476_CR60
CL Hein (86476_CR66) 2014; 281
86476_CR21
J Li (86476_CR39) 2019; 21
86476_CR22
SD Mamet (86476_CR28) 2019
A Batushansky (86476_CR13) 2016
86476_CR23
H Ye (86476_CR38) 2015; 5
SY Kim (86476_CR16) 2003; 4
AF Villaverde (86476_CR31) 2014; 9
JH Feldhoff (86476_CR5) 2015; 44
AE Goodwell (86476_CR10) 2020; 56
T Nakazawa (86476_CR51) 2020; 35
X Dai (86476_CR6) 2016; 11
86476_CR19
EJ O’Gorman (86476_CR54) 2009; 106
AT Clark (86476_CR71) 2015; 96
JT Lizier (86476_CR42) 2014; 1
86476_CR14
86476_CR59
86476_CR17
F Abdul Razak (86476_CR46) 2014; 9
G Gellner (86476_CR56) 2016; 7
PW Holland (86476_CR11) 1986; 81
K Wootton (86476_CR57) 2016; 9
R Albert (86476_CR8) 2005; 118
T Schreiber (86476_CR40) 2000; 85
G Mongillo (86476_CR58) 2018; 21
M Zou (86476_CR18) 2004; 21
K Hlavackova-Schindler (86476_CR44) 2007; 441
LD Jacobson (86476_CR62) 1995; 52
T Kadoya (86476_CR55) 2015; 5
DB Rubin (86476_CR15) 1978; 6
K Steinhaeuser (86476_CR3) 2010; 12
P Barrett (86476_CR24) 2007; 42
J Runge (86476_CR34) 2019; 5
T Baumgartner (86476_CR61) 1992; 33
A Montalto (86476_CR43) 2014; 9
K Steinhaeuser (86476_CR4) 2012; 39
L Jost (86476_CR50) 2006; 113
D Hooper (86476_CR25) 2008; 6
H Ye (86476_CR63) 2016; 353
KM Brander (86476_CR65) 2007; 104
L Barnett (86476_CR45) 2009; 103
M Convertino (86476_CR12) 2019; 107
D Ruelle (86476_CR69) 1971; 12
86476_CR9
J Runge (86476_CR48) 2018; 28
References_xml – ident: CR70
– ident: CR22
– volume: 21
  start-page: 2052
  year: 2013
  end-page: 2066
  ident: CR47
  article-title: Direct causality detection via the transfer entropy approach
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2233476
– volume: 9
  start-page: 1
  year: 2014
  end-page: 15
  ident: CR31
  article-title: Mider: Network inference with mutual information distance and entropy reduction
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0096732
– volume: 286
  start-page: 509
  year: 1999
  end-page: 512
  ident: CR1
  article-title: Emergence of scaling in random networks
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– year: 2016
  ident: CR13
  article-title: Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: A case study in cancer cell metabolism
  publication-title: BioMed Res. Int.
  doi: 10.1155/2016/8313272
– volume: 21
  start-page: 71
  year: 2004
  end-page: 79
  ident: CR18
  article-title: A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth463
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR52
  article-title: Reconciling cooperation, biodiversity and stability in complex ecological communities
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-41614-2
– volume: 281
  start-page: 20132641
  year: 2014
  ident: CR66
  article-title: Fish introductions reveal the temperature dependence of species interactions
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2013.2641
– volume: 81
  start-page: 945
  year: 1986
  end-page: 960
  ident: CR11
  article-title: Statistics and causal inference
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1986.10478354
– volume: 96
  start-page: 1174
  year: 2015
  end-page: 1181
  ident: CR71
  article-title: Spatial convergent cross mapping to detect causal relationships from short time series
  publication-title: Ecology
  doi: 10.1890/14-1479.1
– ident: CR35
– volume: 42
  start-page: 815
  year: 2007
  end-page: 824
  ident: CR24
  article-title: Structural equation modelling: Adjudging model fit
  publication-title: Person. Individ. Differ.
  doi: 10.1016/j.paid.2006.09.018
– volume: 4
  start-page: 228
  year: 2003
  end-page: 235
  ident: CR16
  article-title: Inferring gene networks from time series microarray data using dynamic Bayesian networks
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/4.3.228
– volume: 28
  start-page: 075310
  year: 2018
  ident: CR48
  article-title: Causal network reconstruction from time series: From theoretical assumptions to practical estimation
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5025050
– volume: 9
  start-page: 1
  year: 2014
  end-page: 14
  ident: CR46
  article-title: Quantifying causality in complex systems: Understanding transfer entropy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099462
– volume: 353
  start-page: 922
  year: 2016
  end-page: 925
  ident: CR63
  article-title: Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality
  publication-title: Science
  doi: 10.1126/science.aag0863
– ident: CR21
– ident: CR19
– volume: 7
  start-page: 1
  year: 2016
  end-page: 7
  ident: CR56
  article-title: Consistent role of weak and strong interactions in high-and low-diversity trophic food webs
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11180
– year: 2014
  ident: CR32
  article-title: Causal network inference by optimal causation entropy
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/140956166
– volume: 5
  start-page: 14750
  year: 2015
  ident: CR38
  article-title: Distinguishing time-delayed causal interactions using convergent cross mapping
  publication-title: Sci. Rep.
  doi: 10.1038/srep14750
– volume: 15
  start-page: 20180695
  year: 2018
  ident: CR68
  article-title: Uncertainty quantification of the effects of biotic interactions on community dynamics from nonlinear time-series data
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2018.0695
– volume: 113
  start-page: 363
  year: 2006
  end-page: 375
  ident: CR50
  article-title: Entropy and diversity
  publication-title: Oikos
  doi: 10.1111/j.2006.0030-1299.14714.x
– ident: CR9
– volume: 73
  start-page: 605
  year: 2010
  end-page: 615
  ident: CR41
  article-title: Differentiating information transfer and causal effect
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2010-00034-5
– ident: CR60
– ident: CR36
– volume: 5
  start-page: 1
  year: 2015
  end-page: 7
  ident: CR55
  article-title: Weak interactions and instability cascades
  publication-title: Sci. Rep.
  doi: 10.1038/srep12652
– volume: 12
  start-page: 1
  year: 1971
  end-page: 44
  ident: CR69
  article-title: On the nature of turbulence
  publication-title: Les R Phys. Math. Strasbourg-RCP25
– volume: 6
  start-page: 53
  year: 2008
  end-page: 60
  ident: CR25
  article-title: Structural equation modelling: Guidelines for determining model fit
  publication-title: Electron. J. Bus. Res. Methods
– volume: 103
  start-page: 238701
  year: 2009
  ident: CR45
  article-title: Granger causality and transfer entropy are equivalent for gaussian variables
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.238701
– volume: 554
  start-page: 360
  year: 2018
  end-page: 363
  ident: CR37
  article-title: Fluctuating interaction network and time-varying stability of a natural fish community
  publication-title: Nature
  doi: 10.1038/nature25504
– volume: 33
  start-page: 24
  year: 1992
  end-page: 40
  ident: CR61
  article-title: Reconstruction of the history of the pacific sardine and northern anchovy populations over the past two Millenia from sediments of the Santa Barbara Basin, California
  publication-title: CalCOFI Rep
– volume: 56
  start-page: e2019WR024940
  year: 2020
  ident: CR10
  article-title: Debates? Does information theory provide a new paradigm for earth science? Causality, interaction, and feedback
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR024940
– volume: 9
  start-page: 185
  year: 2016
  end-page: 195
  ident: CR57
  article-title: Many weak interactions and few strong; food-web feasibility depends on the combination of the strength of species? interactions and their correct arrangement
  publication-title: Theor. Ecol.
  doi: 10.1007/s12080-015-0279-3
– ident: CR72
– volume: 21
  start-page: 1463
  year: 2018
  end-page: 1470
  ident: CR58
  article-title: Inhibitory connectivity defines the realm of excitatory plasticity
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0226-x
– ident: CR14
– ident: CR30
– volume: 21
  start-page: 506
  year: 2019
  ident: CR39
  article-title: Optimal microbiome networks: Macroecology and criticality
  publication-title: Entropy
  doi: 10.3390/e21050506
– volume: 7
  start-page: 718
  year: 2017
  end-page: 722
  ident: CR67
  article-title: Climatic vulnerability of the world’s freshwater and marine fishes
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3382
– ident: CR33
– volume: 11
  start-page: 1
  year: 2016
  end-page: 11
  ident: CR6
  article-title: Application of epidemiology model on complex networks in propagation dynamics of airspace congestion
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157945
– year: 2012
  ident: CR26
  article-title: Guidelines for a graph-theoretic implementation of structural equation modeling
  publication-title: Ecosphere
  doi: 10.1890/ES12-00048.1
– volume: 5
  start-page: eaau4996
  year: 2019
  ident: CR34
  article-title: Detecting and quantifying causal associations in large nonlinear time series datasets
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau4996
– volume: 9
  start-page: 1
  year: 2014
  end-page: 13
  ident: CR43
  article-title: Mute: A matlab toolbox to compare established and novel estimators of the multivariate transfer entropy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0109462
– volume: 441
  start-page: 1
  year: 2007
  end-page: 46
  ident: CR44
  article-title: Causality detection based on information-theoretic approaches in time series analysis
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.12.004
– volume: 107
  start-page: 105510
  year: 2019
  ident: CR12
  article-title: Toward a pluralistic conception of resilience
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.105510
– ident: CR23
– volume: 6
  start-page: 34
  year: 1978
  end-page: 58
  ident: CR15
  article-title: Bayesian inference for causal effects: The role of randomization
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344064
– volume: 106
  start-page: 13393
  year: 2009
  end-page: 13398
  ident: CR54
  article-title: Perturbations to trophic interactions and the stability of complex food webs
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0903682106
– volume: 52
  start-page: 566
  year: 1995
  end-page: 577
  ident: CR62
  article-title: Stock-recruitment models for pacific sardine (sardinops sagax)
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f95-057
– volume: 1
  start-page: 11
  year: 2014
  ident: CR42
  article-title: Jidt: An information-theoretic toolkit for studying the dynamics of complex systems
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2014.00011
– year: 2019
  ident: CR28
  article-title: Structural equation modeling of a winnowed soil microbiome identifies how invasive plants re-structure microbial networks
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0407-y
– volume: 85
  start-page: 461
  year: 2000
  ident: CR40
  article-title: Measuring information transfer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.461
– volume: 12
  start-page: 25
  year: 2010
  end-page: 32
  ident: CR3
  article-title: An exploration of climate data using complex networks
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1882471.1882476
– year: 2018
  ident: CR49
  article-title: Optimal information networks: Application for data-driven integrated health in populations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701088
– year: 2018
  ident: CR27
  article-title: Revealing pathways from payments for ecosystem services to socioeconomic outcomes
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao6652
– ident: CR17
– volume: 338
  start-page: 496
  year: 2012
  end-page: 500
  ident: CR29
  article-title: Detecting causality in complex ecosystems
  publication-title: Science
  doi: 10.1126/science.1227079
– volume: 110
  start-page: 6430
  year: 2013
  end-page: 6435
  ident: CR53
  article-title: Predicting climate effects on pacific sardine
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1215506110
– volume: 104
  start-page: 19709
  year: 2007
  end-page: 19714
  ident: CR65
  article-title: Global fish production and climate change
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0702059104
– volume: 44
  start-page: 1567
  year: 2015
  end-page: 1581
  ident: CR5
  article-title: Complex networks for climate model evaluation with application to statistical versus dynamical modeling of south american climate
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-014-2182-9
– volume: 35
  start-page: 1106
  year: 2020
  end-page: 1113
  ident: CR51
  article-title: Species interaction: Revisiting its terminology and concept
  publication-title: Ecol. Res.
  doi: 10.1111/1440-1703.12164
– ident: CR7
– ident: CR59
– volume: 118
  start-page: 4947
  year: 2005
  end-page: 4957
  ident: CR8
  article-title: Scale-free networks in cell biology
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02714
– volume: 32
  start-page: 785
  year: 2017
  end-page: 796
  ident: CR64
  article-title: Empirical dynamic modeling for beginners
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-017-1469-9
– volume: 45
  start-page: 167
  year: 2003
  end-page: 256
  ident: CR2
  article-title: The structure and function of complex networks
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450342480
– ident: CR20
– volume: 39
  start-page: 889
  year: 2012
  end-page: 895
  ident: CR4
  article-title: Multivariate and multiscale dependence in the global climate system revealed through complex networks
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-011-1135-9
– volume: 7
  start-page: 1
  year: 2016
  ident: 86476_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11180
– ident: 86476_CR35
– ident: 86476_CR60
– volume: 110
  start-page: 6430
  year: 2013
  ident: 86476_CR53
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1215506110
– volume: 1
  start-page: 11
  year: 2014
  ident: 86476_CR42
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2014.00011
– volume: 85
  start-page: 461
  year: 2000
  ident: 86476_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.461
– volume: 12
  start-page: 25
  year: 2010
  ident: 86476_CR3
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1882471.1882476
– volume: 21
  start-page: 2052
  year: 2013
  ident: 86476_CR47
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2012.2233476
– volume: 554
  start-page: 360
  year: 2018
  ident: 86476_CR37
  publication-title: Nature
  doi: 10.1038/nature25504
– volume: 33
  start-page: 24
  year: 1992
  ident: 86476_CR61
  publication-title: CalCOFI Rep
– volume: 5
  start-page: eaau4996
  year: 2019
  ident: 86476_CR34
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau4996
– ident: 86476_CR21
– volume: 103
  start-page: 238701
  year: 2009
  ident: 86476_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.238701
– volume: 338
  start-page: 496
  year: 2012
  ident: 86476_CR29
  publication-title: Science
  doi: 10.1126/science.1227079
– ident: 86476_CR30
  doi: 10.1109/CBMS.2007.60
– ident: 86476_CR33
  doi: 10.1162/netn_a_00092
– volume: 281
  start-page: 20132641
  year: 2014
  ident: 86476_CR66
  publication-title: Proc. R. Soc. B Biol. Sci.
  doi: 10.1098/rspb.2013.2641
– volume: 12
  start-page: 1
  year: 1971
  ident: 86476_CR69
  publication-title: Les R Phys. Math. Strasbourg-RCP25
– volume: 11
  start-page: 1
  year: 2016
  ident: 86476_CR6
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0157945
– volume: 96
  start-page: 1174
  year: 2015
  ident: 86476_CR71
  publication-title: Ecology
  doi: 10.1890/14-1479.1
– volume: 6
  start-page: 34
  year: 1978
  ident: 86476_CR15
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344064
– volume: 81
  start-page: 945
  year: 1986
  ident: 86476_CR11
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1986.10478354
– volume: 4
  start-page: 228
  year: 2003
  ident: 86476_CR16
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/4.3.228
– ident: 86476_CR20
  doi: 10.1007/978-1-4614-2299-0_4
– ident: 86476_CR72
  doi: 10.1126/science.aac6284
– year: 2019
  ident: 86476_CR28
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0407-y
– volume: 9
  start-page: 185
  year: 2016
  ident: 86476_CR57
  publication-title: Theor. Ecol.
  doi: 10.1007/s12080-015-0279-3
– volume: 42
  start-page: 815
  year: 2007
  ident: 86476_CR24
  publication-title: Person. Individ. Differ.
  doi: 10.1016/j.paid.2006.09.018
– year: 2014
  ident: 86476_CR32
  publication-title: SIAM J. Appl. Dyn. Syst.
  doi: 10.1137/140956166
– ident: 86476_CR70
  doi: 10.1007/BFb0091924
– volume: 6
  start-page: 53
  year: 2008
  ident: 86476_CR25
  publication-title: Electron. J. Bus. Res. Methods
– year: 2018
  ident: 86476_CR49
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701088
– volume: 107
  start-page: 105510
  year: 2019
  ident: 86476_CR12
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.105510
– year: 2012
  ident: 86476_CR26
  publication-title: Ecosphere
  doi: 10.1890/ES12-00048.1
– ident: 86476_CR17
– volume: 113
  start-page: 363
  year: 2006
  ident: 86476_CR50
  publication-title: Oikos
  doi: 10.1111/j.2006.0030-1299.14714.x
– ident: 86476_CR59
– volume: 7
  start-page: 718
  year: 2017
  ident: 86476_CR67
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3382
– ident: 86476_CR7
  doi: 10.1007/978-3-030-05411-3_34
– ident: 86476_CR14
– volume: 32
  start-page: 785
  year: 2017
  ident: 86476_CR64
  publication-title: Ecol. Res.
  doi: 10.1007/s11284-017-1469-9
– volume: 104
  start-page: 19709
  year: 2007
  ident: 86476_CR65
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0702059104
– volume: 44
  start-page: 1567
  year: 2015
  ident: 86476_CR5
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-014-2182-9
– volume: 21
  start-page: 71
  year: 2004
  ident: 86476_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth463
– volume: 441
  start-page: 1
  year: 2007
  ident: 86476_CR44
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2006.12.004
– ident: 86476_CR9
  doi: 10.1007/978-94-017-9514-2_7
– volume: 73
  start-page: 605
  year: 2010
  ident: 86476_CR41
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2010-00034-5
– ident: 86476_CR23
  doi: 10.1017/CBO9780511617799
– ident: 86476_CR22
  doi: 10.2307/1912791
– ident: 86476_CR19
  doi: 10.1007/11795131_58
– volume: 21
  start-page: 1463
  year: 2018
  ident: 86476_CR58
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0226-x
– volume: 52
  start-page: 566
  year: 1995
  ident: 86476_CR62
  publication-title: Can. J. Fish. Aquat. Sci.
  doi: 10.1139/f95-057
– volume: 45
  start-page: 167
  year: 2003
  ident: 86476_CR2
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450342480
– volume: 118
  start-page: 4947
  year: 2005
  ident: 86476_CR8
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02714
– volume: 39
  start-page: 889
  year: 2012
  ident: 86476_CR4
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-011-1135-9
– volume: 15
  start-page: 20180695
  year: 2018
  ident: 86476_CR68
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2018.0695
– volume: 35
  start-page: 1106
  year: 2020
  ident: 86476_CR51
  publication-title: Ecol. Res.
  doi: 10.1111/1440-1703.12164
– volume: 28
  start-page: 075310
  year: 2018
  ident: 86476_CR48
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.5025050
– volume: 106
  start-page: 13393
  year: 2009
  ident: 86476_CR54
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0903682106
– volume: 9
  start-page: 1
  year: 2014
  ident: 86476_CR46
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0099462
– ident: 86476_CR36
– volume: 5
  start-page: 14750
  year: 2015
  ident: 86476_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep14750
– volume: 9
  start-page: 1
  year: 2014
  ident: 86476_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0096732
– volume: 56
  start-page: e2019WR024940
  year: 2020
  ident: 86476_CR10
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR024940
– volume: 286
  start-page: 509
  year: 1999
  ident: 86476_CR1
  publication-title: Science
  doi: 10.1126/science.286.5439.509
– volume: 9
  start-page: 1
  year: 2019
  ident: 86476_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– volume: 5
  start-page: 1
  year: 2015
  ident: 86476_CR55
  publication-title: Sci. Rep.
  doi: 10.1038/srep12652
– year: 2016
  ident: 86476_CR13
  publication-title: BioMed Res. Int.
  doi: 10.1155/2016/8313272
– volume: 21
  start-page: 506
  year: 2019
  ident: 86476_CR39
  publication-title: Entropy
  doi: 10.3390/e21050506
– volume: 353
  start-page: 922
  year: 2016
  ident: 86476_CR63
  publication-title: Science
  doi: 10.1126/science.aag0863
– volume: 9
  start-page: 1
  year: 2014
  ident: 86476_CR43
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0109462
– year: 2018
  ident: 86476_CR27
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao6652
SSID ssj0000529419
Score 2.5537791
Snippet The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied research....
Abstract The detection of causal interactions is of great importance when inferring complex ecosystem functional and structural networks for basic and applied...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7094
SubjectTerms 631/57/2266
639/705/1042
704/158/1144
704/158/1745
704/158/2445
704/158/2446/1491
704/158/2451
704/158/2463
704/158/851
704/158/853
Anthropogenic factors
Biodiversity
Causality
Computer applications
Divergence
Ecological function
Ecosystem management
Ecosystem models
Ecosystems
Fluctuations
Humanities and Social Sciences
Marine protected areas
multidisciplinary
Prey
Protected areas
Science
Science (multidisciplinary)
Structure-function relationships
Synchronization
Timing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCF7Et-uLCt602CZpmh5VFBX05IK3kKQJCtIVuyL-e2eS7rrr82J7a5oy_TLJfCHJN4Tsa6DFFsa91HqqU66tSCtqWUqpN5oaxmlo6esbcdHnV3fF3USqL9wTFuWBI3BHRWTBrHAFDLiGG-O4lVYLSp2F-IejL8S8iclUVPWmFc-r7pRMxuRRC5EKT5PRPJWCl2DSVCQKgv3fscyvmyU_rZiGQHS-SBY6BpkcR8uXyIxrlslczCn5tkLySzzCh1UTmFlGoeakiZu920S3SSeVig2S-MfBa7tK-udnt6cXaZcXIbWizIapp3BXpa44M4wCRfCl0EY667MCczAWmlMjvK5dbbLCwZVz7yU0QW2NtZytkdlm0LgNksja5aUXUhpecWuAjcAUsM4ZwOsgcIkeyUcYKduJhmPuikcVFq-ZVBFXBbiqgKuqeuRgXOcpSmb8-vYJQj9-E-WuwwNwAtU5gfrLCXpke9RwquuDrQJyh-J0sip-KAYui9PDvEf2xsXQuXDFRDdu8BI-UUIooQLMXI9uMDaUMSBXHGuXUw4y9SfTJc3DfRDwlrj-ScHqw5ErfZj1M1Kb_4HUFpmn2AcyzOC3TWaHzy9uB2jV0OyGHvQOi2IbKA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYoqFIviEeBLQ-lEjew2NiO45yqgkCA1J6KtDfLdmyKhBIgixD_vjOON2ihsHtbx6vJzNjz2WN_Q8i-AVjsYN6jLjBDhXGSVsxxyliwhlkuWLT0r9_y_EpcTopJ2nDr0rHK2ZwYJ-q6dbhHfgShGqnGVFX8uLunWDUKs6uphMYnsoTUZejV5aQc9lgwiyXyKt2VGXN11EG8wjtlLKdKihIEm4tHkbb_f1jz7ZHJV3nTGI7OVshywpHZz97wq2TBN2vkc19Z8nmd5Bd4kQ-7ZrC-7Omas6Y_8t1lpssSYSqaJQu37VP3lVydnf45OaepOgJ1oIgpDQy-VWkqwS1nABRCKY1V3oVxgZUYCyOYlcHUvrbjwsMnFyEoMETtrHOCb5DFpm38FslU7fMySKWsqISzgElgIVjn3EjmIXzJEclnOtIuUYdjBYtbHVPYXOlerxr0qqNedTUiB0Ofu54448Onj1H1w5NIeh1_aB-udRpDuugXRLzwBcReK6z1wikHUjLvAAqNyM7McDqNxE6_-M07zYBocZGYj8j3oRmGGOZNTOPbx_gXJQQUJkHMzd4NBkE5B4glsHc55yBzbzLf0tz8jTTeCrOgDKQ-nLnSi1jva-rbxy-5Tb4w9O4xVujbIYvTh0e_C7Bpavfi2PgHlEITnA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71IaReEIVSFtoqSNzaiMR2HOe4IFbtSnCBSnuzbMeGSlW2arZC_HtmnAfasotEcovtaDIeez5n7G8A3hmExQ7nvdQFZlJhnEwr5njKWLCGWS5Y7OnPX-TltZgvisUOsOEsTNy0Hykt4zQ97A5736KjocNgLE-VFCW-cRf2iaodbXt_Op1_nY9_Vih2JfKqPyGTcbWh8ZoXimT9mxDm3xslH0VLoxOaPYOnPXpMpp28h7Djm-fwpMsn-esF5Fd0fI-aJriq7Eiak6bb6N0mpk16mlTqjCTcLn-2R3A9-_Tt42Xa50RInSyzVRoY3lVpKsEtZwgPQimNVd6FrKD8i4URzMpgal_brPB45SIEheqvnXVO8Jew1ywb_woSVfu8DFIpKyrhLCIRXP7VOTeSeXRacgL5oCPtesJwyltxq2Pgmivd6VWjXnXUq64mcD62uevoMv5Z-wOpfqxJVNfxwfL-u-67XhfdMogXvkCPa4W1XjjlUErmHQKgCZwMHaf78ddqBHZETKeqYksx4lhaGuYTeDsW48CiaIlp_PIhvqJEN8IkinncmcEoKOcIrAS1LtcMZO1L1kuamx-RvFtR7JOh1BeDKf0Ra7umXv9f9TdwwMjaM8rTdwJ7q_sHf4rgaWXP-tHyG3cGEtE
  priority: 102
  providerName: Springer Nature
Title Inferring ecosystem networks as information flows
URI https://link.springer.com/article/10.1038/s41598-021-86476-9
https://www.ncbi.nlm.nih.gov/pubmed/33782461
https://www.proquest.com/docview/2506709895
https://www.proquest.com/docview/2556549561
https://www.proquest.com/docview/2507146269
https://pubmed.ncbi.nlm.nih.gov/PMC8007624
https://doaj.org/article/500251135e5341b4bbe4c8ca622ec074
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fixMxEB7uB4Iv4m-rZ1nBN13tJtkk-yDSK3echTtELfQtJNlEhbLVbg-9_95Jslup9sT2obDZbKeTyc43zeb7AJ5rhMUW73u59UTnTFueV8TSnBBvNDGUkTjS5xf8bMam83K-B73cUefAdmdpF_SkZqvFq5_fr97ihH-TtozL1y0mobBRjBS55Ezgt-3DIWYmERQNzju4n7i-ScWi1kcgYc8RTJBuH83uy2zlqkjpvwuH_v045R9rqjFVnd6GWx3GzMYpKO7Anmvuwo2kOnl1D4p3YZNf6Jph7ZmonLMmPQ7eZrrNOjLVMGSZXyx_tPdhdnryaXKWd8oJueVitM49wXcldMWooQRBhBdcG-msH5VBpbHUjBjude1qMyodvgrmvcRBqq2xltEHcNAsG_cIMlm7QngupWEVswbxChaJdUE1Jw5TGx9A0ftI2Y5WPKhbLFRc3qZSJb8q9KuKflXVAF5s-nxLpBr_PPs4uH5zZiDEjgeWq8-qm1-qTMUSLV2JedkwYxyz0qKVxFmESQM46gdO9UGmEP4F-jpZldc0I9oNBWQxgGebZpx-YU1FN255GS8hMNkQjmY-TGGwMZRShF8s9BZbAbL1S7Zbmq9fIsW3DCukBK1-2YfSb7Ou99Tj_zDzCdwkIcRHQcLvCA7Wq0v3FHHV2gxhX8zFEA7H4-nHKX4en1y8_4BHJ3wyjP9VDON0-gWMgSCA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJuFAkGCE0RNbCdxDqgqj2qXPk6ttDdjOzatVCWl2arqn-I3MuM8qgXaWze3dWyNxzP-ZjL2DMA7jWaxxX0vtp7pWGibxyWzPGbMG80MFyys9O5ePj0Q3-fZfAV-D3dh6FjlsCeGjbpqLH0jX0eoplRjssw2Tn7FVDWKoqtDCY1OLLbdxTm6bO2n2Vdc3_eMbX3b_zKN-6oCscUBFrFn-JSFLgU3nCHA-iLXRjrrk4wqGGZaMJN7XbnKJJnDXyq8lziByhprBcdxb8FtBN6EnL1iXozfdChqJtKyv5uTcLneIj7SHTaWxjIXBTJiCf9CmYD_2bb_HtH8K04b4G_rAdzv7dZosxO0h7Di6kdwp6tkefEY0hldHKSuEfqzXXroqO6OmLeRbqM-QSuJQeSPm_P2CRzcCN-ewmrd1O45RLJyaeFzKY0ohTVoA6HjWaVc58whXOYTSAceKdunKqeKGccqhMy5VB1fFfJVBb6qcgIfxj4nXaKOa9_-TKwf36Qk2-GP5vSn6nVWZZ0DxjOXIdYbYYwTVlqkkjmLptcE1oaFU73mt-pSTq9oRguanNJ0Am_HZlRpitPo2jVnYYgCAYzlSOazTgxGQjlHk05Q72JJQJZmstxSHx2GtOGSoq4Mqf44iNIlWVdz6sX1k3wDd6f7uztqZ7a3_RLuMZL0hKoDrsHq4vTMvUKTbWFeBz2J4MdNK-Yfsi5SyQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9QwzBo3gXhBfHMwoEjwBNFdk7RNHxBibKcdg9OEmLS3kKQJIE3tWG-a9tf4ddj9mg7Y3ta-NU3kOHZsx7EN8NKgWuxw32MucMOkcSnLuROM82ANt0LyZqU_L9KdffnxIDlYg999LAxdq-z3xGajLipHZ-QTFNWUakzlySR01yL2tmbvjn4xqiBFnta-nEZLIrv-7BTNt_rtfAvX-hXns-2vH3ZYV2GAORxsyQLHN89MLoUVHIVtyFJjlXdhmlA1w8RIbtNgCl_YaeLxiWUICidTOOucFDjuNVjPyCoawfrm9mLvy3DCQz40GeddpM5UqEmN0pIi2njMVCozRMuKNGyKBvxP0_33wuZfXttGGM5uw61Oi43et2R3B9Z8eReut3Utz-5BPKcwQuoaoXXbJouOyvbCeR2ZOurStRJRROGwOq3vw_6VYO4BjMqq9I8gUoWPs5AqZWUunUWNCM3QIhYm5R6FZzqGuMeRdl3icqqfcagbB7pQusWrRrzqBq86H8Proc9Rm7bj0r83CfXDn5Ryu_lQHX_XHQfrpDXHROITlPxWWuulUw6h5N6hIjaGjX7hdLcP1Pqcai9oRn2aTNR4DC-GZmRw8tqY0lcnzRAZijOeIpgPWzIYABUCFTxJvbMVAlmZyWpL-fNHk0RckQ-WI9RvelI6B-tiTD2-fJLP4QYypf40X-w-gZucCH1KpQI3YLQ8PvFPUX9b2mcdo0Tw7ap58w9Mf1hk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+ecosystem+networks+as+information+flows&rft.jtitle=Scientific+reports&rft.au=Li%2C+Jie&rft.au=Convertino%2C+Matteo&rft.date=2021-03-29&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=7094&rft_id=info:doi/10.1038%2Fs41598-021-86476-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon