Fatigue resistance of CAD/CAM resin composite molar crowns
•Monolithic Lava Ultimate crowns tolerate fatigue loads 3–4 times higher than IPS Empress CAD.•Lava Ultimate crowns may offer an esthetic alternative for ceramic posterior crowns.•This nanohybrid indirect resin composite has a potential to be used in high stress-bearing applications. To demonstrate...
Saved in:
Published in | Dental materials Vol. 32; no. 4; pp. 499 - 509 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0109-5641 1879-0097 1879-0097 |
DOI | 10.1016/j.dental.2015.12.005 |
Cover
Loading…
Abstract | •Monolithic Lava Ultimate crowns tolerate fatigue loads 3–4 times higher than IPS Empress CAD.•Lava Ultimate crowns may offer an esthetic alternative for ceramic posterior crowns.•This nanohybrid indirect resin composite has a potential to be used in high stress-bearing applications.
To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference.
Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures.
The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N.
Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3–4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. |
---|---|
AbstractList | Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Methods Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n =24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n =24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. Results The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N. Significance Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3-4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N. Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3-4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. •Monolithic Lava Ultimate crowns tolerate fatigue loads 3–4 times higher than IPS Empress CAD.•Lava Ultimate crowns may offer an esthetic alternative for ceramic posterior crowns.•This nanohybrid indirect resin composite has a potential to be used in high stress-bearing applications. To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N. Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3–4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. Highlights • Monolithic Lava Ultimate crowns tolerate fatigue loads 3–4 times higher than IPS Empress CAD. • Lava Ultimate crowns may offer an esthetic alternative for ceramic posterior crowns. • This nanohybrid indirect resin composite has a potential to be used in high stress-bearing applications. To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference.OBJECTIVETo demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference.Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures.METHODSFully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures.The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N.RESULTSThe resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N.Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3-4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns.SIGNIFICANCEMonolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3-4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. |
Author | Shembish, Fatma A. Opdam, Niek J. Zhang, Yu Tong, Hui Janal, Malvin N. Thompson, Van P. Kaizer, Marina |
AuthorAffiliation | 2 School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, P.R. China 1 Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA 3 Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil 4 Department of Epidemiology and Health Promotion, New York University College of Dentistry 5 Biomaterials, Biomimetics and Biophotonics, King’s College London Dental Institute 6 Radboud University Nijmegen Medical Centre, College of Dental Sciences, Preventive and Restorative Dentistry, Ph van Leydenlaan 25, PO Box 9101 6500HB Nijmegen, The Netherlands |
AuthorAffiliation_xml | – name: 6 Radboud University Nijmegen Medical Centre, College of Dental Sciences, Preventive and Restorative Dentistry, Ph van Leydenlaan 25, PO Box 9101 6500HB Nijmegen, The Netherlands – name: 5 Biomaterials, Biomimetics and Biophotonics, King’s College London Dental Institute – name: 4 Department of Epidemiology and Health Promotion, New York University College of Dentistry – name: 2 School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, P.R. China – name: 1 Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA – name: 3 Graduate Program in Dentistry, Federal University of Pelotas, Pelotas, Brazil |
Author_xml | – sequence: 1 givenname: Fatma A. surname: Shembish fullname: Shembish, Fatma A. organization: Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA – sequence: 2 givenname: Hui surname: Tong fullname: Tong, Hui organization: Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA – sequence: 3 givenname: Marina surname: Kaizer fullname: Kaizer, Marina organization: Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA – sequence: 4 givenname: Malvin N. surname: Janal fullname: Janal, Malvin N. organization: Department of Epidemiology and Health Promotion, New York University College of Dentistry, 380 Second Avenue Suite 301, New York, NY 10010, USA – sequence: 5 givenname: Van P. surname: Thompson fullname: Thompson, Van P. organization: Tissue Engineering and Biophotonics, King's College London Dental Institute, United Kingdom – sequence: 6 givenname: Niek J. surname: Opdam fullname: Opdam, Niek J. organization: Radboud University Nijmegen Medical Centre, College of Dental Sciences, Preventive and Restorative Dentistry, Ph van Leydenlaan 25, PO Box 9101, 6500HB Nijmegen, The Netherlands – sequence: 7 givenname: Yu surname: Zhang fullname: Zhang, Yu email: yz21@nyu.edu organization: Department of Biomaterials and Biomimetics, New York University College of Dentistry, 433 First Avenue, New York, NY 10010, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26777092$$D View this record in MEDLINE/PubMed |
BookMark | eNqVUsFu1DAUtFAR3Rb-AKEcuSR9TmI7rhDSaqGAVMQBOFuO81K8JPZiJ0X9exx2iwAJrThZsmfmjWfeGTlx3iEhTykUFCi_2BYdukkPRQmUFbQsANgDsqKNkDmAFCdkBRRkznhNT8lZjFsAqEtJH5HTkgshQJYrcnmlJ3szYxYw2jhpZzDzfbZZv7rYrN__vHWZ8ePORzthNvpBh8wE_93Fx-Rhr4eITw7nOfl89frT5m1-_eHNu836OjdcwJQjMt5CLztjuopxXrV1WcvWUGR1L1krRG_qilei0w1w3aDmHXScNVT2xkhRnZOXe93d3I7YmfTroAe1C3bU4U55bdWfL85-UTf-VtUNUCHKJPD8IBD8txnjpEYbDQ6DdujnqGgDaTKvGByHCsEol4zRBH32u61ffu6zTYDLPSDFFWPAXhk7pbT94tIOioJailRbtS9SLUUqWqpUZCLXf5Hv9Y_QDllhKuTWYlDRWEyldjagmVTn7f8KmME6a_TwFe8wbv0cXCpbURUTQX1cVmzZMMoSG5o6Cbz4t8Dx-T8A-BniHg |
CitedBy_id | crossref_primary_10_4012_dmj_2016_095 crossref_primary_10_2186_jpr_JPR_D_20_00287 crossref_primary_10_1007_s10856_023_06729_z crossref_primary_10_1016_j_dental_2019_04_007 crossref_primary_10_1016_j_dental_2017_07_019 crossref_primary_10_54139_odousuc_v22i2_93 crossref_primary_10_1016_j_jdent_2023_104623 crossref_primary_10_3390_ma14113115 crossref_primary_10_1016_j_dental_2016_09_024 crossref_primary_10_1007_s00784_019_03099_1 crossref_primary_10_3390_medicina59010128 crossref_primary_10_1016_j_dental_2016_08_216 crossref_primary_10_47416_apjod_18_0252 crossref_primary_10_1186_s12903_022_02529_z crossref_primary_10_3389_fdmed_2024_1390600 crossref_primary_10_1016_j_jmbbm_2018_06_025 crossref_primary_10_1016_j_dental_2021_02_026 crossref_primary_10_1016_j_jdent_2023_104450 crossref_primary_10_3390_biomedicines10092186 crossref_primary_10_2186_jpr_JPOR_2019_466 crossref_primary_10_4012_dmj_2020_160 crossref_primary_10_1016_j_jmbbm_2020_104091 crossref_primary_10_1080_10255842_2017_1293664 crossref_primary_10_1016_j_ceramint_2021_04_142 crossref_primary_10_1016_j_dental_2018_07_002 crossref_primary_10_1016_j_dental_2020_01_015 crossref_primary_10_1016_j_prosdent_2017_05_003 crossref_primary_10_3390_ma15176004 crossref_primary_10_12688_f1000research_19712_1 crossref_primary_10_1016_j_dental_2020_03_004 crossref_primary_10_3390_polym15071637 crossref_primary_10_1007_s10856_019_6347_2 crossref_primary_10_2320_materia_63_628 crossref_primary_10_1016_j_jmbbm_2020_103769 crossref_primary_10_3390_biomimetics9050267 crossref_primary_10_1007_s00784_018_2717_2 crossref_primary_10_1007_s00784_016_1898_9 crossref_primary_10_1177_0022034516662022 crossref_primary_10_1016_j_dental_2021_12_006 crossref_primary_10_1016_j_dental_2024_06_010 crossref_primary_10_1016_j_dental_2019_01_013 crossref_primary_10_1080_17436753_2018_1477567 crossref_primary_10_1016_j_jpor_2018_09_001 crossref_primary_10_4012_dmj_2019_247 crossref_primary_10_1016_j_prosdent_2017_10_010 crossref_primary_10_1016_j_jpor_2018_08_005 crossref_primary_10_1038_s41415_020_2170_x crossref_primary_10_5005_jp_journals_10024_3619 crossref_primary_10_2341_18_013_L crossref_primary_10_1111_jopr_13820 crossref_primary_10_1016_j_dental_2019_02_022 crossref_primary_10_1016_j_jpor_2017_08_006 crossref_primary_10_1177_0022034518820918 crossref_primary_10_1016_j_dental_2022_06_009 crossref_primary_10_1590_1678_7757_2018_0297 crossref_primary_10_1007_s40496_016_0097_8 crossref_primary_10_1016_j_jdsr_2020_10_002 crossref_primary_10_3390_dj12030075 crossref_primary_10_3390_jcm12216744 crossref_primary_10_1016_j_prosdent_2019_11_026 crossref_primary_10_4012_dmj_2017_084 crossref_primary_10_1016_j_jmbbm_2020_103957 crossref_primary_10_4012_dmj_2021_268 crossref_primary_10_1016_j_prosdent_2020_11_002 crossref_primary_10_1111_jerd_12566 crossref_primary_10_2209_tdcpublication_2020_0028 crossref_primary_10_1016_j_prosdent_2024_10_024 crossref_primary_10_1007_s00784_017_2057_7 crossref_primary_10_1016_j_dental_2017_01_003 crossref_primary_10_1016_j_dental_2024_01_002 crossref_primary_10_1016_j_dental_2020_11_002 crossref_primary_10_2186_jpr_JPR_D_20_00051 crossref_primary_10_1371_journal_pone_0285760 crossref_primary_10_4047_jap_2018_10_1_32 crossref_primary_10_2209_tdcpublication_2018_0022 crossref_primary_10_1016_j_prosdent_2020_08_051 crossref_primary_10_2341_20_081_L crossref_primary_10_1016_j_jpor_2019_02_003 crossref_primary_10_1016_j_dental_2024_08_004 crossref_primary_10_1016_j_jdent_2019_05_015 crossref_primary_10_1016_j_prosdent_2018_05_003 crossref_primary_10_1016_j_dental_2016_08_222 crossref_primary_10_1016_j_jpor_2019_09_004 crossref_primary_10_1016_j_jmbbm_2022_105607 crossref_primary_10_1177_0022034519867641 crossref_primary_10_2209_tdcpublication_2020_0017 crossref_primary_10_3390_jfb14030152 |
Cites_doi | 10.1177/0022034513490734 10.1111/j.1532-849X.2011.00773.x 10.1016/j.dental.2013.04.004 10.1557/jmr.2009.0081 10.1016/S0022-3913(11)60035-8 10.1016/j.dental.2013.11.001 10.1111/j.1600-0501.2007.01467.x 10.1557/JMR.2005.0276 10.1016/S0022-3913(10)60111-4 10.1177/0022034510375289 10.1016/j.jdent.2014.01.009 10.1021/acs.biomac.5b01069 10.1016/j.dental.2010.10.021 10.1016/j.dental.2009.03.009 10.1177/0022034509333968 10.1016/j.jdent.2013.10.007 10.1016/j.jdent.2011.04.006 10.1016/j.dental.2014.01.001 10.1177/154411130301400103 10.1177/154405910708601105 10.1002/jbm.b.31100 10.1016/j.dental.2010.10.020 10.14219/jada.archive.1999.0211 10.1557/JMR.2005.0335 10.1016/j.cden.2011.02.011 10.1016/j.dental.2011.09.005 10.1177/00220345830620010801 10.1016/j.dental.2013.05.009 10.1177/154405910208100615 10.1016/j.dental.2012.04.007 10.1016/j.dental.2008.02.019 10.1557/jmr.2006.0056 10.2341/07-101 10.1016/j.dental.2005.12.003 10.1111/j.1551-2916.2007.02009.x 10.1016/j.jpor.2014.01.001 10.1177/0022034510375826 10.1177/154405910708600207 10.1016/j.jdent.2013.10.003 10.1016/j.dental.2014.01.003 10.1177/0022034513510946 10.1016/j.jmbbm.2015.01.019 10.1016/j.dental.2012.06.013 10.1177/0022034514544217 10.1016/S0300-5712(00)00010-5 10.1177/154405910808700802 10.1002/jbm.b.30195 10.1177/154405910808701210 10.1016/j.dental.2015.07.003 10.1016/j.actbio.2014.03.004 10.1016/j.dental.2013.03.019 10.1177/154405910808700706 |
ContentType | Journal Article |
Copyright | 2015 Academy of Dental Materials Academy of Dental Materials Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Academy of Dental Materials – notice: Academy of Dental Materials – notice: Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QQ 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 5PM |
DOI | 10.1016/j.dental.2015.12.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Ceramic Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Ceramic Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Dentistry |
EISSN | 1879-0097 |
EndPage | 509 |
ExternalDocumentID | PMC4801772 26777092 10_1016_j_dental_2015_12_005 S0109564115005084 1_s2_0_S0109564115005084 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE017925 – fundername: NIDCR NIH HHS grantid: 2R01 DE017925 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAGKA AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ABXRA ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AEZYN AFJKZ AFPUW AFRAH AFRHN AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDX HMK HMO HVGLF HZ~ IHE J1W KOM LH1 M24 M29 M41 MAGPM MO0 N9A O-L O9- OAUVE OB- OM. OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SAE SCC SDF SDG SEL SES SEW SMS SPC SPCBC SSH SSM SSZ T5K WUQ YRY Z5R ZGI ~G- AACTN AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 7QQ 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M 5PM |
ID | FETCH-LOGICAL-c670t-ee56b0f9dccd35663b4249bc1e54f95b77fc43637da806a8ea6d0d65819fcc973 |
IEDL.DBID | .~1 |
ISSN | 0109-5641 1879-0097 |
IngestDate | Thu Aug 21 18:32:35 EDT 2025 Fri Jul 11 03:30:32 EDT 2025 Fri Jul 11 01:25:12 EDT 2025 Thu Apr 03 07:11:15 EDT 2025 Thu Jul 03 08:29:16 EDT 2025 Thu Apr 24 23:01:11 EDT 2025 Fri Feb 23 02:29:06 EST 2024 Tue Feb 25 20:06:04 EST 2025 Tue Aug 26 17:21:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Fatigue Resin composite Glass-ceramic Fracture CAD/CAM crowns Weibull analysis |
Language | English |
License | Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c670t-ee56b0f9dccd35663b4249bc1e54f95b77fc43637da806a8ea6d0d65819fcc973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4801772 |
PMID | 26777092 |
PQID | 1775169551 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4801772 proquest_miscellaneous_1808066350 proquest_miscellaneous_1775169551 pubmed_primary_26777092 crossref_citationtrail_10_1016_j_dental_2015_12_005 crossref_primary_10_1016_j_dental_2015_12_005 elsevier_sciencedirect_doi_10_1016_j_dental_2015_12_005 elsevier_clinicalkeyesjournals_1_s2_0_S0109564115005084 elsevier_clinicalkey_doi_10_1016_j_dental_2015_12_005 |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Dental materials |
PublicationTitleAlternate | Dent Mater |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Rekow, Zhang, Thompson (bib0565) 2007; 28 Pang, Chughtai, Sailer, Zhang (bib0645) 2015; 31 Magne, Knezevic (bib0605) 2009; 40 Zhang, Lawn (bib0495) 2004; 69 Coelho, Silva, Bonfante, Guess, Rekow, Thompson (bib0640) 2009; 25 Du, Niu, Soboyejo (bib0500) 2015; 46 Heintze, Rousson (bib0330) 2012; 14 Zhang, Kim, Bhowmick, Thompson, Rekow (bib0460) 2009; 88 Kim, Zhang, Pines, Thompson (bib0515) 2007; 86 Borba, Cesar, Griggs, Della Bona (bib0635) 2013; 29 Wittneben, Wright, Weber, Gallucci (bib0350) 2009; 22 Heintze, Cavalleri, Zellweger, Buchler, Zappini (bib0520) 2008; 24 Zhang, Kim (bib0575) 2010; 89 Zhang, Kim, Kim, Lawn (bib0480) 2008; 91 Magne, Knezevic (bib0435) 2009; 40 Kim, Kim, Myoung, Pines, Zhang (bib0505) 2008; 87 Jongsma, Kleverlaan, Feilzer (bib0355) 2012; 28 Stansbury (bib0420) 2012; 28 Silva, Bonfante, Zavanelli, Thompson, Ferencz, Coelho (bib0650) 2010; 89 Kinney, Marshall, Marshall (bib0465) 2003; 14 DeLong, Douglas (bib0585) 1983; 62 Krejci, Lutz (bib0590) 1990; 100 Coelho, Bonfante, Silva, Rekow, Thompson (bib0485) 2009; 88 Fennis, Kuijs, Roeters, Creugers, Kreulen (bib0365) 2014; 93 Ma, Guess, Zhang (bib0475) 2013; 29 Gonzalez-Bonet, Kaufman, Yang, Wong, Jackson, Huyang (bib0620) 2015; 16 Opdam, van de Sande, Bronkhorst, Cenci, Bottenberg, Pallesen (bib0340) 2014; 93 Zhang, Lawn (bib0570) 2005; 17 Pjetursson, Sailer, Zwahlen, Hammerle (bib0345) 2007; 18 Kim, Thompson, Rekow, Jung, Zhang (bib0580) 2009; 24 Kim, Kim, Thompson, Zhang (bib0455) 2007; 86 Zhang, Bhowmick, Lawn (bib0540) 2005; 20 Bhowmick, Zhang, Lawn (bib0555) 2005; 20 Hamburger, Opdam, Bronkhorst, Huysmans (bib0610) 2014; 42 Lynch, Opdam, Hickel, Brunton, Gurgan, Kakaboura (bib0335) 2014; 42 Schlichting, Maia, Baratieri, Magne (bib0430) 2011; 105 Lohbauer, Belli, Ferracane (bib0625) 2013; 92 Kaizer, de Oliveira-Ogliari, Cenci, Opdam, Moraes (bib0400) 2014; 30 Zhang, Sailer, Lawn (bib0550) 2013; 41 Drummond (bib0615) 2008; 87 van Dijken (bib0360) 2000; 28 Kunzelmann, Jelen, Mehl, Hickel (bib0380) 2001; 4 Kim, Kim, Janal, Zhang (bib0510) 2008; 87 Gary Davidowitz (bib0390) 2011; 55 Mormann, Lutz, Barbakow (bib0395) 1989; 20 Hermann, Bhowmick, Zhang, Lawn (bib0560) 2006; 21 Belli, Geinzer, Muschweck, Petschelt, Lohbauer (bib0445) 2014; 30 Beun, Glorieux, Devaux, Vreven, Leloup (bib0600) 2007; 23 Heintze, Rousson (bib0595) 2010; 23 Magne, Schlichting, Maia, Baratieri (bib0425) 2010; 104 Giordano (bib0385) 2006; 137 Zhang, Song, Lawn (bib0545) 2005; 73 Trajtenberg, Caram, Kiat-amnuay (bib0375) 2008; 33 Rueggeberg (bib0415) 2011; 27 Guess, Zavanelli, Silva, Bonfante, Coelho, Thompson (bib0490) 2010; 23 Lawn, Deng, Lloyd, Janal, Rekow, Thompson (bib0470) 2002; 81 Christensen (bib0370) 1999; 130 Johnson, Versluis, Tantbirojn, Ahuja (bib0450) 2014; 58 Ren, Zhang (bib0535) 2014; 10 Zhao, Wei, Pan, Zhang, Swain, Guess (bib0530) 2014; 30 Baldassarri, Zhang, Thompson, Rekow, Stappert (bib0630) 2011; 39 Ferracane (bib0410) 2013; 29 Ferracane (bib0405) 2011; 27 Skouridou, Pollington, Rosentritt, Tsitrou (bib0525) 2013; 29 Kassem, Atta, El-Mowafy (bib0440) 2012; 21 Magne (10.1016/j.dental.2015.12.005_bib0435) 2009; 40 Kim (10.1016/j.dental.2015.12.005_bib0505) 2008; 87 Christensen (10.1016/j.dental.2015.12.005_bib0370) 1999; 130 Bhowmick (10.1016/j.dental.2015.12.005_bib0555) 2005; 20 Hermann (10.1016/j.dental.2015.12.005_bib0560) 2006; 21 Zhang (10.1016/j.dental.2015.12.005_bib0575) 2010; 89 Kunzelmann (10.1016/j.dental.2015.12.005_bib0380) 2001; 4 Magne (10.1016/j.dental.2015.12.005_bib0605) 2009; 40 Gonzalez-Bonet (10.1016/j.dental.2015.12.005_bib0620) 2015; 16 Ma (10.1016/j.dental.2015.12.005_bib0475) 2013; 29 Zhang (10.1016/j.dental.2015.12.005_bib0495) 2004; 69 Skouridou (10.1016/j.dental.2015.12.005_bib0525) 2013; 29 Wittneben (10.1016/j.dental.2015.12.005_bib0350) 2009; 22 Mormann (10.1016/j.dental.2015.12.005_bib0395) 1989; 20 Kim (10.1016/j.dental.2015.12.005_bib0455) 2007; 86 DeLong (10.1016/j.dental.2015.12.005_bib0585) 1983; 62 Stansbury (10.1016/j.dental.2015.12.005_bib0420) 2012; 28 Kassem (10.1016/j.dental.2015.12.005_bib0440) 2012; 21 Kaizer (10.1016/j.dental.2015.12.005_bib0400) 2014; 30 Rekow (10.1016/j.dental.2015.12.005_bib0565) 2007; 28 Lawn (10.1016/j.dental.2015.12.005_bib0470) 2002; 81 Zhao (10.1016/j.dental.2015.12.005_bib0530) 2014; 30 Lynch (10.1016/j.dental.2015.12.005_bib0335) 2014; 42 van Dijken (10.1016/j.dental.2015.12.005_bib0360) 2000; 28 Ren (10.1016/j.dental.2015.12.005_bib0535) 2014; 10 Krejci (10.1016/j.dental.2015.12.005_bib0590) 1990; 100 Drummond (10.1016/j.dental.2015.12.005_bib0615) 2008; 87 Heintze (10.1016/j.dental.2015.12.005_bib0520) 2008; 24 Heintze (10.1016/j.dental.2015.12.005_bib0595) 2010; 23 Hamburger (10.1016/j.dental.2015.12.005_bib0610) 2014; 42 Pjetursson (10.1016/j.dental.2015.12.005_bib0345) 2007; 18 Kim (10.1016/j.dental.2015.12.005_bib0510) 2008; 87 Trajtenberg (10.1016/j.dental.2015.12.005_bib0375) 2008; 33 Opdam (10.1016/j.dental.2015.12.005_bib0340) 2014; 93 Zhang (10.1016/j.dental.2015.12.005_bib0540) 2005; 20 Coelho (10.1016/j.dental.2015.12.005_bib0485) 2009; 88 Johnson (10.1016/j.dental.2015.12.005_bib0450) 2014; 58 Jongsma (10.1016/j.dental.2015.12.005_bib0355) 2012; 28 Kinney (10.1016/j.dental.2015.12.005_bib0465) 2003; 14 Gary Davidowitz (10.1016/j.dental.2015.12.005_bib0390) 2011; 55 Borba (10.1016/j.dental.2015.12.005_bib0635) 2013; 29 Kim (10.1016/j.dental.2015.12.005_bib0515) 2007; 86 Pang (10.1016/j.dental.2015.12.005_bib0645) 2015; 31 Zhang (10.1016/j.dental.2015.12.005_bib0550) 2013; 41 Schlichting (10.1016/j.dental.2015.12.005_bib0430) 2011; 105 Zhang (10.1016/j.dental.2015.12.005_bib0570) 2005; 17 Zhang (10.1016/j.dental.2015.12.005_bib0545) 2005; 73 Guess (10.1016/j.dental.2015.12.005_bib0490) 2010; 23 Heintze (10.1016/j.dental.2015.12.005_bib0330) 2012; 14 Zhang (10.1016/j.dental.2015.12.005_bib0460) 2009; 88 Baldassarri (10.1016/j.dental.2015.12.005_bib0630) 2011; 39 Giordano (10.1016/j.dental.2015.12.005_bib0385) 2006; 137 Du (10.1016/j.dental.2015.12.005_bib0500) 2015; 46 Beun (10.1016/j.dental.2015.12.005_bib0600) 2007; 23 Ferracane (10.1016/j.dental.2015.12.005_bib0405) 2011; 27 Fennis (10.1016/j.dental.2015.12.005_bib0365) 2014; 93 Silva (10.1016/j.dental.2015.12.005_bib0650) 2010; 89 Zhang (10.1016/j.dental.2015.12.005_bib0480) 2008; 91 Magne (10.1016/j.dental.2015.12.005_bib0425) 2010; 104 Ferracane (10.1016/j.dental.2015.12.005_bib0410) 2013; 29 Belli (10.1016/j.dental.2015.12.005_bib0445) 2014; 30 Rueggeberg (10.1016/j.dental.2015.12.005_bib0415) 2011; 27 Lohbauer (10.1016/j.dental.2015.12.005_bib0625) 2013; 92 Kim (10.1016/j.dental.2015.12.005_bib0580) 2009; 24 Coelho (10.1016/j.dental.2015.12.005_bib0640) 2009; 25 18478533 - J Biomed Mater Res B Appl Biomater. 2009 Feb;88(2):402-11 19169444 - Quintessence Int. 2009 Feb;40(2):125-33 16950933 - J Am Dent Assoc. 2006 Sep;137 Suppl:14S-21S 6571851 - J Dent Res. 1983 Jan;62(1):32-6 20305850 - Int J Prosthodont. 2010 Mar-Apr;23(2):129-33 19862399 - Quintessence Int. 2009 Oct;40(9):729-37 18666496 - Oper Dent. 2008 Jul-Aug;33(4):392-9 19395078 - Dent Mater. 2009 Sep;25(9):1122-7 24632538 - Acta Biomater. 2014 Jul;10(7):3243-53 19029080 - J Dent Res. 2008 Dec;87(12):1127-32 24529799 - Dent Mater. 2014 Apr;30(4):e41-78 24462699 - J Dent. 2014 Apr;42(4):377-83 24120523 - J Dent. 2014 Apr;42(4):413-8 15672403 - J Biomed Mater Res B Appl Biomater. 2005 Apr;73(1):186-93 23694927 - J Dent Res. 2013 Jul;92(7):584-91 19407162 - J Dent Res. 2009 Apr;88(4):382-6 11862884 - Int J Comput Dent. 2001 Jul;4(3):171-84 2277977 - Schweiz Monatsschr Zahnmed. 1990;100(12):1445-9 24331550 - Dent Mater. 2014 Feb;30(2):164-71 20660796 - J Dent Res. 2010 Oct;89(10):1051-6 26233469 - Dent Mater. 2015 Oct;31(10):1198-206 20859559 - Int J Prosthodont. 2010 Sep-Oct;23(5):434-42 23827018 - Dent Mater. 2013 Aug;29(8):913-8 21458646 - J Prosthet Dent. 2011 Apr;105(4):217-26 20651092 - J Dent Res. 2010 Oct;89(10):1057-62 22008462 - J Prosthodont. 2012 Jan;21(1):28-32 24553249 - Dent Mater. 2014 Apr;30(4):424-32 22192248 - Dent Mater. 2012 Jan;28(1):13-22 21557985 - J Dent. 2011 Jul;39(7):489-98 12097438 - J Dent Res. 2002 Jun;81(6):433-8 23683531 - Dent Mater. 2013 Jul;29(7):742-51 26028811 - J Mater Res. 2009 Mar 1;24(3):1075-1081 25771255 - J Mech Behav Biomed Mater. 2015 Jun;46:41-8 18433859 - Dent Mater. 2008 Oct;24(10):1352-61 10085664 - J Am Dent Assoc. 1999 Mar;130(3):409-11 24155264 - J Dent Res. 2014 Jan;93(1):36-41 26358180 - Biomacromolecules. 2015 Oct 12;16(10):3381-8 21122903 - Dent Mater. 2011 Jan;27(1):39-52 21093034 - Dent Mater. 2011 Jan;27(1):29-38 24636368 - J Prosthodont Res. 2014 Apr;58(2):107-14 17687898 - Compend Contin Educ Dent. 2007 Jul;28(7):362-8; quiz 369, 386 16423384 - Dent Mater. 2007 Jan;23(1):51-9 23082310 - J Adhes Dent. 2012 Aug;14(5):407-31 24135295 - J Dent. 2013 Dec;41(12):1135-47 23618556 - Dent Mater. 2013 Jun;29(6):e70-7 22809582 - Dent Mater. 2013 Jan;29(1):51-8 20095195 - Int J Prosthodont. 2009 Sep-Oct;22(5):466-71 18573989 - J Dent Res. 2008 Jul;87(7):671-5 2756089 - Quintessence Int. 1989 May;20(5):329-39 17594372 - Clin Oral Implants Res. 2007 Jun;18 Suppl 3:73-85 21726690 - Dent Clin North Am. 2011 Jul;55(3):559-70, ix 12764017 - Crit Rev Oral Biol Med. 2003;14(1):13-29 10785294 - J Dent. 2000 Jul;28(5):299-306 15116406 - J Biomed Mater Res B Appl Biomater. 2004 May 15;69(2):166-72 25048250 - J Dent Res. 2014 Oct;93(10):943-9 18650540 - J Dent Res. 2008 Aug;87(8):710-9 20813228 - J Prosthet Dent. 2010 Sep;104(3):149-57 22608959 - Dent Mater. 2012 Sep;28(9):952-60 17959894 - J Dent Res. 2007 Nov;86(11):1046-50 17251513 - J Dent Res. 2007 Feb;86(2):142-6 |
References_xml | – volume: 14 start-page: 407 year: 2012 end-page: 431 ident: bib0330 article-title: Clinical effectiveness of direct class ii restorations – a meta-analysis publication-title: J Adhes Dent – volume: 58 start-page: 107 year: 2014 end-page: 114 ident: bib0450 article-title: Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers publication-title: J Prosthodont Res – volume: 20 start-page: 2021 year: 2005 end-page: 2029 ident: bib0540 article-title: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: monoliths publication-title: J Mater Res – volume: 21 start-page: 512 year: 2006 end-page: 521 ident: bib0560 article-title: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: trilayer structures publication-title: J Mater Res – volume: 28 start-page: 299 year: 2000 end-page: 306 ident: bib0360 article-title: Direct resin composite inlays/onlays: an 11 year follow-up publication-title: J Dent – volume: 29 start-page: 913 year: 2013 end-page: 918 ident: bib0635 article-title: Step-stress analysis for predicting dental ceramic reliability publication-title: Dent Mater – volume: 40 start-page: 729 year: 2009 end-page: 737 ident: bib0605 article-title: Influence of overlay restorative materials and load cusps on the fatigue resistance of endodontically treated molars publication-title: Quintessence Int – volume: 46 start-page: 41 year: 2015 end-page: 48 ident: bib0500 article-title: Creep-assisted slow crack growth in bio-inspired dental multilayers publication-title: J Mech Behav Biomed Mater – volume: 10 start-page: 3243 year: 2014 end-page: 3253 ident: bib0535 article-title: Sliding contact fracture of dental ceramics: principles and validation publication-title: Acta Biomater – volume: 30 start-page: E41 year: 2014 end-page: E78 ident: bib0400 article-title: Do nanofill or submicron composites show improved smoothness and gloss? A systematic review of in vitro studies publication-title: Dent Mater – volume: 21 start-page: 28 year: 2012 end-page: 32 ident: bib0440 article-title: Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns publication-title: J Prosthodont – volume: 27 start-page: 39 year: 2011 end-page: 52 ident: bib0415 article-title: State-of-the-art. Dental photocuring – a review publication-title: Dent Mater – volume: 93 start-page: 36 year: 2014 end-page: 41 ident: bib0365 article-title: Randomized control trial of composite cuspal restorations: five-year results publication-title: J Dent Res – volume: 81 start-page: 433 year: 2002 end-page: 438 ident: bib0470 article-title: Materials design of ceramic-based layer structures for crowns publication-title: J Dent Res – volume: 22 start-page: 466 year: 2009 end-page: 471 ident: bib0350 article-title: A systematic review of the clinical performance of CAD/CAM single-tooth restorations publication-title: Int J Prosthodont – volume: 130 start-page: 409 year: 1999 end-page: 411 ident: bib0370 article-title: Porcelain-fused-to-metal vs. nonmetal crowns publication-title: J Am Dent Assoc – volume: 105 start-page: 217 year: 2011 end-page: 226 ident: bib0430 article-title: Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion publication-title: J Prosthet Dent – volume: 29 start-page: e70 year: 2013 end-page: e77 ident: bib0525 article-title: Fracture strength of minimally prepared all-ceramic CEREC crowns after simulating 5 years of service publication-title: Dent Mater – volume: 73 start-page: 186 year: 2005 end-page: 193 ident: bib0545 article-title: Deep-penetrating conical cracks in brittle layers from hydraulic cyclic contact publication-title: J Biomed Mater Res B: Appl Biomater – volume: 42 start-page: 413 year: 2014 end-page: 418 ident: bib0610 article-title: Indirect restorations for severe tooth wear: fracture risk and layer thickness publication-title: J Dent – volume: 92 start-page: 584 year: 2013 end-page: 591 ident: bib0625 article-title: Factors involved in mechanical fatigue degradation of dental resin composites publication-title: J Dent Res – volume: 29 start-page: 742 year: 2013 end-page: 751 ident: bib0475 article-title: Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses publication-title: Dent Mater – volume: 25 start-page: 1122 year: 2009 end-page: 1127 ident: bib0640 article-title: Fatigue testing of two porcelain–zirconia all-ceramic crown systems publication-title: Dent Mater – volume: 24 start-page: 1075 year: 2009 end-page: 1081 ident: bib0580 article-title: Fracture modes in curved brittle layers subject to concentrated cyclic loading in liquid environments publication-title: J Mater Res – volume: 31 start-page: 1198 year: 2015 end-page: 1206 ident: bib0645 article-title: A fractographic study of clinically retrieved zirconia-ceramic and metal-ceramic fixed dental prostheses publication-title: Dent Mater – volume: 87 start-page: 710 year: 2008 end-page: 719 ident: bib0615 article-title: Degradation, fatigue, and failure of resin dental composite materials publication-title: J Dent Res – volume: 16 start-page: 3381 year: 2015 end-page: 3388 ident: bib0620 article-title: Preparation of dental resins resistant to enzymatic and hydrolytic degradation in oral environments publication-title: Biomacromolecules – volume: 69 start-page: 166 year: 2004 end-page: 172 ident: bib0495 article-title: Long-term strength of ceramics for biomedical applications publication-title: J Biomed Mater Res B: Appl Biomater – volume: 23 start-page: 129 year: 2010 end-page: 133 ident: bib0595 article-title: Fracture rates of ips empress all-ceramic crowns – a systematic review publication-title: Int J Prosthodont – volume: 33 start-page: 392 year: 2008 end-page: 399 ident: bib0375 article-title: Microleakage of all-ceramic crowns using self-etching resin luting agents publication-title: Oper Dent – volume: 41 start-page: 1135 year: 2013 end-page: 1147 ident: bib0550 article-title: Fatigue of dental ceramics publication-title: J Dent – volume: 4 start-page: 171 year: 2001 end-page: 184 ident: bib0380 article-title: Wear evaluation of MZ100 compared to ceramic CAD/CAM materials publication-title: Int J Comput Dent – volume: 86 start-page: 1046 year: 2007 end-page: 1050 ident: bib0455 article-title: Sliding contact fatigue damage in layered ceramic structures publication-title: J Dent Res – volume: 62 start-page: 32 year: 1983 end-page: 36 ident: bib0585 article-title: Development of an artificial oral environment for the testing of dental restoratives: bi-axial force and movement control publication-title: J Dent Res – volume: 28 start-page: 13 year: 2012 end-page: 22 ident: bib0420 article-title: Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions publication-title: Dent Mater – volume: 88 start-page: 402 year: 2009 end-page: 411 ident: bib0460 article-title: Competition of fracture mechanisms in monolithic dental ceramics: flat model systems publication-title: J Biomed Mater Res B: Appl Biomater – volume: 91 start-page: 198 year: 2008 end-page: 202 ident: bib0480 article-title: Fatigue damage in ceramic coatings from cyclic contact loading with a tangential component publication-title: J Am Ceram Soc – volume: 23 start-page: 434 year: 2010 end-page: 442 ident: bib0490 article-title: Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue publication-title: Int J Prosthodont – volume: 27 start-page: 29 year: 2011 end-page: 38 ident: bib0405 article-title: Resin composite – state of the art publication-title: Dent Mater – volume: 30 start-page: 164 year: 2014 end-page: 171 ident: bib0530 article-title: Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns publication-title: Dent Mater – volume: 28 start-page: 362 year: 2007 end-page: 368 ident: bib0565 article-title: Can material properties predict survival of all-ceramic posterior crowns? publication-title: Compend Contin Educ Dent – volume: 88 start-page: 382 year: 2009 end-page: 386 ident: bib0485 article-title: Laboratory simulation of Y-TZP all-ceramic crown clinical failures publication-title: J Dent Res – volume: 17 start-page: 697 year: 2005 end-page: 700 ident: bib0570 article-title: Competing damage modes in all-ceramic crowns: fatigue and lifetime publication-title: Bioceramics – volume: 89 start-page: 1057 year: 2010 end-page: 1062 ident: bib0575 article-title: Graded zirconia glass for resistance to veneer fracture publication-title: J Dent Res – volume: 29 start-page: 51 year: 2013 end-page: 58 ident: bib0410 article-title: Resin-based composite performance: are there some things we can’t predict publication-title: Dent Mater – volume: 89 start-page: 1051 year: 2010 end-page: 1056 ident: bib0650 article-title: Reliability of metalloceramic and zirconia-based ceramic crowns publication-title: J Dent Res – volume: 30 start-page: 424 year: 2014 end-page: 432 ident: bib0445 article-title: Mechanical fatigue degradation of ceramics versus resin composites for dental restorations publication-title: Dent Mater – volume: 20 start-page: 2792 year: 2005 end-page: 2800 ident: bib0555 article-title: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: bilayer structures publication-title: J Mater Res – volume: 28 start-page: 952 year: 2012 end-page: 960 ident: bib0355 article-title: Clinical success and survival of indirect resin composite crowns: results of a 3-year prospective study publication-title: Dent Mater – volume: 87 start-page: 1127 year: 2008 end-page: 1132 ident: bib0510 article-title: Damage maps of veneered zirconia under simulated mastication publication-title: J Dent Res – volume: 93 start-page: 943 year: 2014 end-page: 949 ident: bib0340 article-title: Longevity of posterior composite restorations: a systematic review and meta-analysis publication-title: J Dent Res – volume: 42 start-page: 377 year: 2014 end-page: 383 ident: bib0335 article-title: Guidance on posterior resin composites: Academy of Operative Dentistry – European Section publication-title: J Dent – volume: 39 start-page: 489 year: 2011 end-page: 498 ident: bib0630 article-title: Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques publication-title: J Dent – volume: 55 start-page: 559 year: 2011 end-page: 570 ident: bib0390 article-title: The use of CAD/CAM in dentistry publication-title: Dent Clin North Am – volume: 104 start-page: 149 year: 2010 end-page: 157 ident: bib0425 article-title: In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers publication-title: J Prosthet Dent – volume: 87 start-page: 671 year: 2008 end-page: 675 ident: bib0505 article-title: Damage maps for layered ceramics under simulated mastication publication-title: J Dent Res – volume: 86 start-page: 142 year: 2007 end-page: 146 ident: bib0515 article-title: Fracture of porcelain-veneered structures in fatigue publication-title: J Dent Res – volume: 100 start-page: 1445 year: 1990 end-page: 1449 ident: bib0590 article-title: [in-vitro test results of the evaluation of dental restoration systems. Correlation with in-vivo results] publication-title: Schweiz Monatsschr Zahnmed – volume: 20 start-page: 329 year: 1989 end-page: 339 ident: bib0395 article-title: Chairside computer-aided direct ceramic inlays publication-title: Quintessence Int – volume: 24 start-page: 1352 year: 2008 end-page: 1361 ident: bib0520 article-title: Fracture frequency of all-ceramic crowns during dynamic loading in a chewing simulator using different loading and luting protocols publication-title: Dent Mater – volume: 23 start-page: 51 year: 2007 end-page: 59 ident: bib0600 article-title: Characterization of nanofilled compared to universal and microfilled composites publication-title: Dent Mater – volume: 40 start-page: 125 year: 2009 end-page: 133 ident: bib0435 article-title: Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars publication-title: Quintessence Int – volume: 137 start-page: 14S year: 2006 end-page: 21S ident: bib0385 article-title: Materials for chairside CAD/CAM-produced restorations publication-title: JADA – volume: 14 start-page: 13 year: 2003 end-page: 29 ident: bib0465 article-title: The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature publication-title: Crit Rev Oral Biol Med – volume: 18 start-page: 73 year: 2007 end-page: 85 ident: bib0345 article-title: A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns publication-title: Clin Oral Implants Res – volume: 92 start-page: 584 year: 2013 ident: 10.1016/j.dental.2015.12.005_bib0625 article-title: Factors involved in mechanical fatigue degradation of dental resin composites publication-title: J Dent Res doi: 10.1177/0022034513490734 – volume: 21 start-page: 28 year: 2012 ident: 10.1016/j.dental.2015.12.005_bib0440 article-title: Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns publication-title: J Prosthodont doi: 10.1111/j.1532-849X.2011.00773.x – volume: 23 start-page: 129 year: 2010 ident: 10.1016/j.dental.2015.12.005_bib0595 article-title: Fracture rates of ips empress all-ceramic crowns – a systematic review publication-title: Int J Prosthodont – volume: 29 start-page: 742 year: 2013 ident: 10.1016/j.dental.2015.12.005_bib0475 article-title: Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses publication-title: Dent Mater doi: 10.1016/j.dental.2013.04.004 – volume: 24 start-page: 1075 year: 2009 ident: 10.1016/j.dental.2015.12.005_bib0580 article-title: Fracture modes in curved brittle layers subject to concentrated cyclic loading in liquid environments publication-title: J Mater Res doi: 10.1557/jmr.2009.0081 – volume: 105 start-page: 217 year: 2011 ident: 10.1016/j.dental.2015.12.005_bib0430 article-title: Novel-design ultra-thin CAD/CAM composite resin and ceramic occlusal veneers for the treatment of severe dental erosion publication-title: J Prosthet Dent doi: 10.1016/S0022-3913(11)60035-8 – volume: 30 start-page: 164 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0530 article-title: Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns publication-title: Dent Mater doi: 10.1016/j.dental.2013.11.001 – volume: 18 start-page: 73 issue: Suppl 3 year: 2007 ident: 10.1016/j.dental.2015.12.005_bib0345 article-title: A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part I: Single crowns publication-title: Clin Oral Implants Res doi: 10.1111/j.1600-0501.2007.01467.x – volume: 20 start-page: 2021 year: 2005 ident: 10.1016/j.dental.2015.12.005_bib0540 article-title: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: monoliths publication-title: J Mater Res doi: 10.1557/JMR.2005.0276 – volume: 104 start-page: 149 year: 2010 ident: 10.1016/j.dental.2015.12.005_bib0425 article-title: In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers publication-title: J Prosthet Dent doi: 10.1016/S0022-3913(10)60111-4 – volume: 40 start-page: 729 year: 2009 ident: 10.1016/j.dental.2015.12.005_bib0605 article-title: Influence of overlay restorative materials and load cusps on the fatigue resistance of endodontically treated molars publication-title: Quintessence Int – volume: 89 start-page: 1057 year: 2010 ident: 10.1016/j.dental.2015.12.005_bib0575 article-title: Graded zirconia glass for resistance to veneer fracture publication-title: J Dent Res doi: 10.1177/0022034510375289 – volume: 42 start-page: 377 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0335 article-title: Guidance on posterior resin composites: Academy of Operative Dentistry – European Section publication-title: J Dent doi: 10.1016/j.jdent.2014.01.009 – volume: 23 start-page: 434 year: 2010 ident: 10.1016/j.dental.2015.12.005_bib0490 article-title: Monolithic CAD/CAM lithium disilicate versus veneered Y-TZP crowns: comparison of failure modes and reliability after fatigue publication-title: Int J Prosthodont – volume: 22 start-page: 466 year: 2009 ident: 10.1016/j.dental.2015.12.005_bib0350 article-title: A systematic review of the clinical performance of CAD/CAM single-tooth restorations publication-title: Int J Prosthodont – volume: 16 start-page: 3381 year: 2015 ident: 10.1016/j.dental.2015.12.005_bib0620 article-title: Preparation of dental resins resistant to enzymatic and hydrolytic degradation in oral environments publication-title: Biomacromolecules doi: 10.1021/acs.biomac.5b01069 – volume: 27 start-page: 39 year: 2011 ident: 10.1016/j.dental.2015.12.005_bib0415 article-title: State-of-the-art. Dental photocuring – a review publication-title: Dent Mater doi: 10.1016/j.dental.2010.10.021 – volume: 25 start-page: 1122 year: 2009 ident: 10.1016/j.dental.2015.12.005_bib0640 article-title: Fatigue testing of two porcelain–zirconia all-ceramic crown systems publication-title: Dent Mater doi: 10.1016/j.dental.2009.03.009 – volume: 88 start-page: 382 year: 2009 ident: 10.1016/j.dental.2015.12.005_bib0485 article-title: Laboratory simulation of Y-TZP all-ceramic crown clinical failures publication-title: J Dent Res doi: 10.1177/0022034509333968 – volume: 41 start-page: 1135 year: 2013 ident: 10.1016/j.dental.2015.12.005_bib0550 article-title: Fatigue of dental ceramics publication-title: J Dent doi: 10.1016/j.jdent.2013.10.007 – volume: 39 start-page: 489 year: 2011 ident: 10.1016/j.dental.2015.12.005_bib0630 article-title: Reliability and failure modes of implant-supported zirconium-oxide fixed dental prostheses related to veneering techniques publication-title: J Dent doi: 10.1016/j.jdent.2011.04.006 – volume: 30 start-page: E41 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0400 article-title: Do nanofill or submicron composites show improved smoothness and gloss? A systematic review of in vitro studies publication-title: Dent Mater doi: 10.1016/j.dental.2014.01.001 – volume: 14 start-page: 13 year: 2003 ident: 10.1016/j.dental.2015.12.005_bib0465 article-title: The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature publication-title: Crit Rev Oral Biol Med doi: 10.1177/154411130301400103 – volume: 86 start-page: 1046 year: 2007 ident: 10.1016/j.dental.2015.12.005_bib0455 article-title: Sliding contact fatigue damage in layered ceramic structures publication-title: J Dent Res doi: 10.1177/154405910708601105 – volume: 88 start-page: 402 year: 2009 ident: 10.1016/j.dental.2015.12.005_bib0460 article-title: Competition of fracture mechanisms in monolithic dental ceramics: flat model systems publication-title: J Biomed Mater Res B: Appl Biomater doi: 10.1002/jbm.b.31100 – volume: 27 start-page: 29 year: 2011 ident: 10.1016/j.dental.2015.12.005_bib0405 article-title: Resin composite – state of the art publication-title: Dent Mater doi: 10.1016/j.dental.2010.10.020 – volume: 20 start-page: 329 year: 1989 ident: 10.1016/j.dental.2015.12.005_bib0395 article-title: Chairside computer-aided direct ceramic inlays publication-title: Quintessence Int – volume: 69 start-page: 166 year: 2004 ident: 10.1016/j.dental.2015.12.005_bib0495 article-title: Long-term strength of ceramics for biomedical applications publication-title: J Biomed Mater Res B: Appl Biomater – volume: 130 start-page: 409 year: 1999 ident: 10.1016/j.dental.2015.12.005_bib0370 article-title: Porcelain-fused-to-metal vs. nonmetal crowns publication-title: J Am Dent Assoc doi: 10.14219/jada.archive.1999.0211 – volume: 20 start-page: 2792 year: 2005 ident: 10.1016/j.dental.2015.12.005_bib0555 article-title: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: bilayer structures publication-title: J Mater Res doi: 10.1557/JMR.2005.0335 – volume: 55 start-page: 559 year: 2011 ident: 10.1016/j.dental.2015.12.005_bib0390 article-title: The use of CAD/CAM in dentistry publication-title: Dent Clin North Am doi: 10.1016/j.cden.2011.02.011 – volume: 28 start-page: 13 year: 2012 ident: 10.1016/j.dental.2015.12.005_bib0420 article-title: Dimethacrylate network formation and polymer property evolution as determined by the selection of monomers and curing conditions publication-title: Dent Mater doi: 10.1016/j.dental.2011.09.005 – volume: 62 start-page: 32 year: 1983 ident: 10.1016/j.dental.2015.12.005_bib0585 article-title: Development of an artificial oral environment for the testing of dental restoratives: bi-axial force and movement control publication-title: J Dent Res doi: 10.1177/00220345830620010801 – volume: 29 start-page: 913 year: 2013 ident: 10.1016/j.dental.2015.12.005_bib0635 article-title: Step-stress analysis for predicting dental ceramic reliability publication-title: Dent Mater doi: 10.1016/j.dental.2013.05.009 – volume: 81 start-page: 433 year: 2002 ident: 10.1016/j.dental.2015.12.005_bib0470 article-title: Materials design of ceramic-based layer structures for crowns publication-title: J Dent Res doi: 10.1177/154405910208100615 – volume: 28 start-page: 952 year: 2012 ident: 10.1016/j.dental.2015.12.005_bib0355 article-title: Clinical success and survival of indirect resin composite crowns: results of a 3-year prospective study publication-title: Dent Mater doi: 10.1016/j.dental.2012.04.007 – volume: 24 start-page: 1352 year: 2008 ident: 10.1016/j.dental.2015.12.005_bib0520 article-title: Fracture frequency of all-ceramic crowns during dynamic loading in a chewing simulator using different loading and luting protocols publication-title: Dent Mater doi: 10.1016/j.dental.2008.02.019 – volume: 21 start-page: 512 year: 2006 ident: 10.1016/j.dental.2015.12.005_bib0560 article-title: Competing fracture modes in brittle materials subject to concentrated cyclic loading in liquid environments: trilayer structures publication-title: J Mater Res doi: 10.1557/jmr.2006.0056 – volume: 33 start-page: 392 year: 2008 ident: 10.1016/j.dental.2015.12.005_bib0375 article-title: Microleakage of all-ceramic crowns using self-etching resin luting agents publication-title: Oper Dent doi: 10.2341/07-101 – volume: 40 start-page: 125 year: 2009 ident: 10.1016/j.dental.2015.12.005_bib0435 article-title: Simulated fatigue resistance of composite resin versus porcelain CAD/CAM overlay restorations on endodontically treated molars publication-title: Quintessence Int – volume: 23 start-page: 51 year: 2007 ident: 10.1016/j.dental.2015.12.005_bib0600 article-title: Characterization of nanofilled compared to universal and microfilled composites publication-title: Dent Mater doi: 10.1016/j.dental.2005.12.003 – volume: 91 start-page: 198 year: 2008 ident: 10.1016/j.dental.2015.12.005_bib0480 article-title: Fatigue damage in ceramic coatings from cyclic contact loading with a tangential component publication-title: J Am Ceram Soc doi: 10.1111/j.1551-2916.2007.02009.x – volume: 58 start-page: 107 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0450 article-title: Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers publication-title: J Prosthodont Res doi: 10.1016/j.jpor.2014.01.001 – volume: 89 start-page: 1051 year: 2010 ident: 10.1016/j.dental.2015.12.005_bib0650 article-title: Reliability of metalloceramic and zirconia-based ceramic crowns publication-title: J Dent Res doi: 10.1177/0022034510375826 – volume: 137 start-page: 14S issue: 9 Suppl year: 2006 ident: 10.1016/j.dental.2015.12.005_bib0385 article-title: Materials for chairside CAD/CAM-produced restorations publication-title: JADA – volume: 86 start-page: 142 year: 2007 ident: 10.1016/j.dental.2015.12.005_bib0515 article-title: Fracture of porcelain-veneered structures in fatigue publication-title: J Dent Res doi: 10.1177/154405910708600207 – volume: 100 start-page: 1445 year: 1990 ident: 10.1016/j.dental.2015.12.005_bib0590 article-title: [in-vitro test results of the evaluation of dental restoration systems. Correlation with in-vivo results] publication-title: Schweiz Monatsschr Zahnmed – volume: 42 start-page: 413 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0610 article-title: Indirect restorations for severe tooth wear: fracture risk and layer thickness publication-title: J Dent doi: 10.1016/j.jdent.2013.10.003 – volume: 30 start-page: 424 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0445 article-title: Mechanical fatigue degradation of ceramics versus resin composites for dental restorations publication-title: Dent Mater doi: 10.1016/j.dental.2014.01.003 – volume: 28 start-page: 362 year: 2007 ident: 10.1016/j.dental.2015.12.005_bib0565 article-title: Can material properties predict survival of all-ceramic posterior crowns? publication-title: Compend Contin Educ Dent – volume: 93 start-page: 36 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0365 article-title: Randomized control trial of composite cuspal restorations: five-year results publication-title: J Dent Res doi: 10.1177/0022034513510946 – volume: 46 start-page: 41 year: 2015 ident: 10.1016/j.dental.2015.12.005_bib0500 article-title: Creep-assisted slow crack growth in bio-inspired dental multilayers publication-title: J Mech Behav Biomed Mater doi: 10.1016/j.jmbbm.2015.01.019 – volume: 29 start-page: 51 year: 2013 ident: 10.1016/j.dental.2015.12.005_bib0410 article-title: Resin-based composite performance: are there some things we can’t predict publication-title: Dent Mater doi: 10.1016/j.dental.2012.06.013 – volume: 93 start-page: 943 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0340 article-title: Longevity of posterior composite restorations: a systematic review and meta-analysis publication-title: J Dent Res doi: 10.1177/0022034514544217 – volume: 28 start-page: 299 year: 2000 ident: 10.1016/j.dental.2015.12.005_bib0360 article-title: Direct resin composite inlays/onlays: an 11 year follow-up publication-title: J Dent doi: 10.1016/S0300-5712(00)00010-5 – volume: 87 start-page: 710 year: 2008 ident: 10.1016/j.dental.2015.12.005_bib0615 article-title: Degradation, fatigue, and failure of resin dental composite materials publication-title: J Dent Res doi: 10.1177/154405910808700802 – volume: 73 start-page: 186 year: 2005 ident: 10.1016/j.dental.2015.12.005_bib0545 article-title: Deep-penetrating conical cracks in brittle layers from hydraulic cyclic contact publication-title: J Biomed Mater Res B: Appl Biomater doi: 10.1002/jbm.b.30195 – volume: 17 start-page: 697 year: 2005 ident: 10.1016/j.dental.2015.12.005_bib0570 article-title: Competing damage modes in all-ceramic crowns: fatigue and lifetime publication-title: Bioceramics – volume: 87 start-page: 1127 year: 2008 ident: 10.1016/j.dental.2015.12.005_bib0510 article-title: Damage maps of veneered zirconia under simulated mastication publication-title: J Dent Res doi: 10.1177/154405910808701210 – volume: 31 start-page: 1198 year: 2015 ident: 10.1016/j.dental.2015.12.005_bib0645 article-title: A fractographic study of clinically retrieved zirconia-ceramic and metal-ceramic fixed dental prostheses publication-title: Dent Mater doi: 10.1016/j.dental.2015.07.003 – volume: 14 start-page: 407 year: 2012 ident: 10.1016/j.dental.2015.12.005_bib0330 article-title: Clinical effectiveness of direct class ii restorations – a meta-analysis publication-title: J Adhes Dent – volume: 10 start-page: 3243 year: 2014 ident: 10.1016/j.dental.2015.12.005_bib0535 article-title: Sliding contact fracture of dental ceramics: principles and validation publication-title: Acta Biomater doi: 10.1016/j.actbio.2014.03.004 – volume: 29 start-page: e70 year: 2013 ident: 10.1016/j.dental.2015.12.005_bib0525 article-title: Fracture strength of minimally prepared all-ceramic CEREC crowns after simulating 5 years of service publication-title: Dent Mater doi: 10.1016/j.dental.2013.03.019 – volume: 4 start-page: 171 year: 2001 ident: 10.1016/j.dental.2015.12.005_bib0380 article-title: Wear evaluation of MZ100 compared to ceramic CAD/CAM materials publication-title: Int J Comput Dent – volume: 87 start-page: 671 year: 2008 ident: 10.1016/j.dental.2015.12.005_bib0505 article-title: Damage maps for layered ceramics under simulated mastication publication-title: J Dent Res doi: 10.1177/154405910808700706 – reference: 23827018 - Dent Mater. 2013 Aug;29(8):913-8 – reference: 22008462 - J Prosthodont. 2012 Jan;21(1):28-32 – reference: 20813228 - J Prosthet Dent. 2010 Sep;104(3):149-57 – reference: 26358180 - Biomacromolecules. 2015 Oct 12;16(10):3381-8 – reference: 15672403 - J Biomed Mater Res B Appl Biomater. 2005 Apr;73(1):186-93 – reference: 25048250 - J Dent Res. 2014 Oct;93(10):943-9 – reference: 20660796 - J Dent Res. 2010 Oct;89(10):1051-6 – reference: 22809582 - Dent Mater. 2013 Jan;29(1):51-8 – reference: 23694927 - J Dent Res. 2013 Jul;92(7):584-91 – reference: 19029080 - J Dent Res. 2008 Dec;87(12):1127-32 – reference: 20859559 - Int J Prosthodont. 2010 Sep-Oct;23(5):434-42 – reference: 26028811 - J Mater Res. 2009 Mar 1;24(3):1075-1081 – reference: 19395078 - Dent Mater. 2009 Sep;25(9):1122-7 – reference: 23683531 - Dent Mater. 2013 Jul;29(7):742-51 – reference: 18478533 - J Biomed Mater Res B Appl Biomater. 2009 Feb;88(2):402-11 – reference: 24529799 - Dent Mater. 2014 Apr;30(4):e41-78 – reference: 24636368 - J Prosthodont Res. 2014 Apr;58(2):107-14 – reference: 19407162 - J Dent Res. 2009 Apr;88(4):382-6 – reference: 16423384 - Dent Mater. 2007 Jan;23(1):51-9 – reference: 21726690 - Dent Clin North Am. 2011 Jul;55(3):559-70, ix – reference: 24135295 - J Dent. 2013 Dec;41(12):1135-47 – reference: 19862399 - Quintessence Int. 2009 Oct;40(9):729-37 – reference: 21557985 - J Dent. 2011 Jul;39(7):489-98 – reference: 26233469 - Dent Mater. 2015 Oct;31(10):1198-206 – reference: 24632538 - Acta Biomater. 2014 Jul;10(7):3243-53 – reference: 21093034 - Dent Mater. 2011 Jan;27(1):29-38 – reference: 2277977 - Schweiz Monatsschr Zahnmed. 1990;100(12):1445-9 – reference: 18666496 - Oper Dent. 2008 Jul-Aug;33(4):392-9 – reference: 10785294 - J Dent. 2000 Jul;28(5):299-306 – reference: 17594372 - Clin Oral Implants Res. 2007 Jun;18 Suppl 3:73-85 – reference: 16950933 - J Am Dent Assoc. 2006 Sep;137 Suppl:14S-21S – reference: 24553249 - Dent Mater. 2014 Apr;30(4):424-32 – reference: 23618556 - Dent Mater. 2013 Jun;29(6):e70-7 – reference: 22608959 - Dent Mater. 2012 Sep;28(9):952-60 – reference: 15116406 - J Biomed Mater Res B Appl Biomater. 2004 May 15;69(2):166-72 – reference: 23082310 - J Adhes Dent. 2012 Aug;14(5):407-31 – reference: 20095195 - Int J Prosthodont. 2009 Sep-Oct;22(5):466-71 – reference: 11862884 - Int J Comput Dent. 2001 Jul;4(3):171-84 – reference: 17687898 - Compend Contin Educ Dent. 2007 Jul;28(7):362-8; quiz 369, 386 – reference: 18650540 - J Dent Res. 2008 Aug;87(8):710-9 – reference: 18433859 - Dent Mater. 2008 Oct;24(10):1352-61 – reference: 6571851 - J Dent Res. 1983 Jan;62(1):32-6 – reference: 22192248 - Dent Mater. 2012 Jan;28(1):13-22 – reference: 10085664 - J Am Dent Assoc. 1999 Mar;130(3):409-11 – reference: 20305850 - Int J Prosthodont. 2010 Mar-Apr;23(2):129-33 – reference: 17959894 - J Dent Res. 2007 Nov;86(11):1046-50 – reference: 17251513 - J Dent Res. 2007 Feb;86(2):142-6 – reference: 2756089 - Quintessence Int. 1989 May;20(5):329-39 – reference: 24155264 - J Dent Res. 2014 Jan;93(1):36-41 – reference: 12097438 - J Dent Res. 2002 Jun;81(6):433-8 – reference: 21458646 - J Prosthet Dent. 2011 Apr;105(4):217-26 – reference: 21122903 - Dent Mater. 2011 Jan;27(1):39-52 – reference: 19169444 - Quintessence Int. 2009 Feb;40(2):125-33 – reference: 12764017 - Crit Rev Oral Biol Med. 2003;14(1):13-29 – reference: 18573989 - J Dent Res. 2008 Jul;87(7):671-5 – reference: 24120523 - J Dent. 2014 Apr;42(4):413-8 – reference: 20651092 - J Dent Res. 2010 Oct;89(10):1057-62 – reference: 24331550 - Dent Mater. 2014 Feb;30(2):164-71 – reference: 25771255 - J Mech Behav Biomed Mater. 2015 Jun;46:41-8 – reference: 24462699 - J Dent. 2014 Apr;42(4):377-83 |
SSID | ssj0004291 |
Score | 2.477885 |
Snippet | •Monolithic Lava Ultimate crowns tolerate fatigue loads 3–4 times higher than IPS Empress CAD.•Lava Ultimate crowns may offer an esthetic alternative for... Highlights • Monolithic Lava Ultimate crowns tolerate fatigue loads 3–4 times higher than IPS Empress CAD. • Lava Ultimate crowns may offer an esthetic... To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced... Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 499 |
SubjectTerms | Acrylic Resins - chemistry Advanced Basic Science Aluminum Silicates - chemistry CAD/CAM crowns Ceramics - chemistry Composite Resins - chemistry Computer-Aided Design Crowns Damage Dental Porcelain - chemistry Dental Prosthesis Design Dental Restoration Failure Dental Stress Analysis Dentistry Fatigue Fatigue cracks Fatigue failure Fracture Fracture mechanics Glass - chemistry Glass ceramics Glass-ceramic Humans In Vitro Techniques Materials Testing Molar Polymer matrix composites Polymers Polyurethanes - chemistry Resin Cements - chemistry Resin composite Resins Surface Properties Weibull analysis |
Title | Fatigue resistance of CAD/CAM resin composite molar crowns |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0109564115005084 https://www.clinicalkey.es/playcontent/1-s2.0-S0109564115005084 https://dx.doi.org/10.1016/j.dental.2015.12.005 https://www.ncbi.nlm.nih.gov/pubmed/26777092 https://www.proquest.com/docview/1775169551 https://www.proquest.com/docview/1808066350 https://pubmed.ncbi.nlm.nih.gov/PMC4801772 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqcqAXVKCFbaEKEld3ncSPurfVwmoBtReo1Js1fgQWQbZid6_97Z3JY-nSiiKOccZKPB5Pvok_zzD2VoO1lU7AVZLApQbBAU2DR2UxHIJCl5ECxbNzPb2QHy_V5RYb92dhiFbZ-f7WpzfeumsZdtocXs1mw8-0qaO0JEgjEGZQTlApDVn58fVvmgf627YmobCcpPvjcw3HKzZHDongpZqfglTE7v7P0134-SeL8tZnabLLnnR4Mhu1r_yUbaX6GXv8jjhAVMbtOTudoO6_rlKGcTVhRRxgNq8ynIHheHTWtNYZEcuJvZWynxTqZoGC88Ueu5i8_zKe8q5gAg_aiCVPSWkvKhtDiCXitNJLjK58yJOSlVXemCrIUpcmwonQcJJARxERg-S2CsGacp9t1_M6vWSZ8goH5i2Ar2RhFBQQffIAQeYgox2wsteTC102cSpq8cP1tLHvrtWuI-26vHCo3QHj615XbTaNB-RVPwWuPymKvs2hu3-gn7mvX1p0C3ThcrdASXfHiG733LDDf3jmm95GHC5R2neBOs1X-CxjaDcSselfZCi_J6E_MWAvWrtaa6jQxhhhC3y3DYtbC1CK8M079exbkyqckgNh_HTw36M6ZDt4pVuu0iu2vfy1Sq8Rhi39UbPOjtij0YdP0_MbcA8zDA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9FAuiPJqCoVF4mplH37U3KJAlNImF1qpN8uvhaCyqZrk_zOzj9DQiiKu3hntejwef7OeB8AHabUuZbRMRG4ZlzZlFlWDBaHRHbK5LAI5itOZnFzwL5ficgdGXS4MhVW2tr-x6bW1bkcGrTQH1_P54Ctd6gjJCdKkCDP4I9il6lSiB7vDk9PJ7Hd6ZN40zkN6RgxdBl0d5hXqrEOK8RL1f0HqY3f_CXUXgf4ZSHnrZBo_hSctpEyGzVfvw06snsHeJwoDok5uz-HjGMX_bR0TdK0JLuIck0WZ4CIMRsNpPVolFFtOAVwx-UnebuLJP1--gIvx5_PRhLU9E5iXKl2xGIV0aamD96FAqFY4jg6W81kUvNTCKVV6XshCBXucSnscrQxpQBiS6dJ7rYqX0KsWVTyARDiBE3PaWlfyXAmb2-Cis9bzzPKg-1B0cjK-LShOfS2uTBc59sM00jUkXZPlBqXbB7bhum4KajxAL7olMF2yKJo3gxb_AT51H19ctnt0aTKzREpzR49uc26p4j-8832nIwZ3KV292Cou1vgupehCEuHpX2ioxCcBwLQPrxq92kgol0qpVOf4bVsatyGgKuHbT6r597paONUHQhfq8L9n9Q72JufTM3N2Mjt9DY_xiWxCl95Ab3WzjkeIylbubbvrfgHVGzW9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatigue+resistance+of+CAD%2FCAM+resin+composite+molar+crowns&rft.jtitle=Dental+materials&rft.au=Shembish%2C+Fatma+A.&rft.au=Tong%2C+Hui&rft.au=Kaizer%2C+Marina&rft.au=Janal%2C+Malvin+N.&rft.date=2016-04-01&rft.issn=0109-5641&rft.volume=32&rft.issue=4&rft.spage=499&rft.epage=509&rft_id=info:doi/10.1016%2Fj.dental.2015.12.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dental_2015_12_005 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01095641%2FS0109564116X00048%2Fcov150h.gif |