Comprehensive analysis of dynamics of histone H4 acetylation in mitotic barley [Hordeum vulgare] cells
Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immu...
Saved in:
Published in | Genes & Genetic Systems Vol. 80; no. 4; pp. 269 - 276 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Japan
The Genetics Society of Japan
2005
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1341-7568 1880-5779 |
DOI | 10.1266/ggs.80.269 |
Cover
Loading…
Abstract | Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle. |
---|---|
AbstractList | Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle. INTRODUCTION Higher-order chromatin structure consists of nucleosomes, which are fundamental units made up of DNA and a histone octamer (two heterodimers of H2A/H2B and a tetramer of H3/H4). Each histone has a protruding N-terminal tail that is subject to various post-translational modifications, including acetylation, phosphorylation, and methylation, at specific amino acid residues. Histone acetylation is a well-documented modification that occurs at N-terminal lysine residues of core histones and plays an important role in various cellular functions (Spencer and Davie, 1999, Strahl and Allis, 2000). Histone acetylation participates in transcription activation and is regulated by histone acetyltransferases (HATs), which are subunits of transcription factors (Marmorstein and Roth, 2001). The reverse reaction, histone deacetylation, leads to transcription silencing and is mediated by histone deacetylases (HDACs), which are found in transcription repressors (Marks et al., 2004). Specific acetylation occurs on the newly synthesized histones in the cyloplasm (Sobel et al., 1995) and is required for DNA double-strand break repair (Bird et al., 2002). Replication-related histone acetylation is also reported in flow-sorted nuclei from field bean, barley, and Arabidopsis (Jasencakova et al., 2000, 2001, 2003). Distinct combinations of covalent modifications of histone tails are thought to work as epigenetic code, referred to as a “histone code”. These combinations of modifications regulate the interactions of histones with DNA strands, chromatin-associated proteins, or protein complexes, which, in turn, control chromatin function (Strahl and Allis, 2000, Jenuwein and Allis, 2001). For example, there is evidence that methylation of histone H3 works in concert with other modifications to mediate transcription silencing (Jenuwein and Allis, 2001). Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle. Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle.Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle. |
Author | Fukui, K Wako, T.(National Inst. of Agrobiological Sciences, Tsukuba, Ibaraki (Japan)) Murakami, Y |
Author_xml | – sequence: 1 fullname: Wako, T.(National Inst. of Agrobiological Sciences, Tsukuba, Ibaraki (Japan)) – sequence: 2 fullname: Murakami, Y – sequence: 3 fullname: Fukui, K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16284420$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkduL1DAUxousuBd98V0JCD4IMyZtmsuTyKA7yoI-6JNISNN0JkOazCbtQv97z0x3XFgEH5IcyO9837lcFmchBlsULwlekpKx95tNXgq8LJl8UlwQIfCi5lyeQVxRsuA1E-fFZc47jEssRfWsOCesFJSW-KLoVrHfJ7u1Ibs7i3TQfsouo9ihdgq6d-YYb10ewBStKdLGDpPXg4sBuYB6N8TBGdTo5O2Efq1jau3Yo7vRb3Syv5Gx3ufnxdNO-2xf3L9Xxc_Pn36s1oubb9dfVh9vFoZxPCxaK2TDOa2tli03THBCmKxIy6mUVphGY9nSrm1sQ00jm1pCp1ibWlOBm6arroq3s-4-xdvR5kH1Lh8q0MHGMStQlIxL_F-wxCXMk5YAvnkE7uKYYExZEcpoRWnNCVCv76mx6W2r9sn1Ok3qNGgA3s2ASTHnZLsHBKvDFhVsUQmswBVg_Ag2bjhOfEja-X-nXM8p4O6M9jF4F-xDrWZbAT0dGsO1wlhgTNXxQDZcnBHMueAMlD7MSrs86I39W6dOsGZvT6Z0vg7Zpx-z1UnZAAqvZoVOR6U3yWX19Tv4MvADn-oP81DWCQ |
CitedBy_id | crossref_primary_10_1007_s13258_011_0046_9 crossref_primary_10_1080_07352680701612820 crossref_primary_10_1111_tpj_16355 crossref_primary_10_1021_acs_jproteome_5b01097 crossref_primary_10_1093_jxb_erz457 crossref_primary_10_1186_1471_2229_10_178 |
Cites_doi | 10.1007/s004120100132 10.1101/gad.12.5.599 10.1016/S0003-2670(97)00619-3 10.1093/genetics/154.1.397 10.1023/A:1011632111845 10.1016/S0092-8674(00)81326-4 10.1016/S0959-437X(00)00173-8 10.1002/(SICI)1520-6408(1998)22:1<65::AID-DVG7>3.3.CO;2-W 10.1126/science.1063127 10.1074/jbc.M100501200 10.1139/g90-067 10.1111/j.1432-1033.1989.tb14530.x 10.1038/nature01035 10.1073/pnas.92.4.1237 10.1038/35055010 10.1038/ng1289 10.1016/S0092-8674(00)81325-2 10.1016/S0014-5793(98)00752-2 10.1016/0092-8674(88)90494-1 10.1046/j.1365-313X.1998.00341.x 10.1006/meth.1999.0878 10.1021/bi982702v 10.1016/S0092-8674(00)80492-4 10.1007/s004120050239 10.1101/gr.1191603 10.1023/A:1009252429277 10.1007/BF02254958 10.1073/pnas.94.18.9665 10.1046/j.1365-313X.2003.01638.x 10.1016/S0014-5793(97)01544-5 10.1016/S1471-4892(03)00084-5 10.1105/tpc.12.11.2087 10.1083/jcb.133.2.235 10.1023/B:CHRO.0000038766.53836.c3 10.1126/science.288.5470.1422 10.1242/jcs.00493 10.1023/A:1022375017938 10.1038/33952 10.1038/47412 10.1023/A:1005822504690 10.1046/j.1365-313x.1999.00496.x 10.1016/S0378-1119(99)00405-9 |
ContentType | Journal Article |
Copyright | 2005 by The Genetics Society of Japan Copyright Japan Science and Technology Agency 2005 |
Copyright_xml | – notice: 2005 by The Genetics Society of Japan – notice: Copyright Japan Science and Technology Agency 2005 |
CorporateAuthor | Osaka University Department of Biochemistry Graduate School of Engineering National Institute of Agrobiological Sciences Department of Biotechnology |
CorporateAuthor_xml | – name: Graduate School of Engineering – name: Department of Biotechnology – name: Osaka University – name: National Institute of Agrobiological Sciences – name: Department of Biochemistry |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TK 8FD FR3 K9. NAPCQ P64 RC3 7TM 7X8 |
DOI | 10.1266/ggs.80.269 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic Entomology Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1880-5779 |
EndPage | 276 |
ExternalDocumentID | 3143892181 16284420 10_1266_ggs_80_269 ch3ggsys_2005_008004_004_0269_02761077876 article_ggs_80_4_80_4_269_article_char_en JP2006004761 |
Genre | Journal Article |
GroupedDBID | --- -~X .55 29H 2WC 36B 3O- 53G 5GY ACGFO ACPRK ADBBV AENEX AEQTP AHMBA ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBD EBS EJD EMB EMOBN F20 F5P FBQ GROUPED_DOAJ GX1 JMI JSF JSH KQ8 L7B MOJWN M~E OK1 PQQKQ RJT RNS RZJ SV3 TKC TR2 W2D X7M XSB OVT AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7TK 8FD FR3 K9. NAPCQ P64 RC3 7TM 7X8 |
ID | FETCH-LOGICAL-c670t-de89b7745ea9d7c687116931d7499e8cba09d4fdbeb4cb9b595770ac5a480bbf3 |
ISSN | 1341-7568 |
IngestDate | Thu Jul 10 23:29:48 EDT 2025 Fri Jul 11 00:40:54 EDT 2025 Mon Jun 30 10:06:28 EDT 2025 Thu Jan 02 21:59:51 EST 2025 Tue Jul 01 04:33:18 EDT 2025 Thu Apr 24 23:08:06 EDT 2025 Thu Jul 10 16:24:57 EDT 2025 Wed Sep 03 05:59:08 EDT 2025 Wed Dec 27 19:17:38 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c670t-de89b7745ea9d7c687116931d7499e8cba09d4fdbeb4cb9b595770ac5a480bbf3 |
Notes | 2006004761 F30 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ggs/80/4/80_4_269/_article/-char/en |
PMID | 16284420 |
PQID | 1464344571 |
PQPubID | 1996350 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_68796790 proquest_miscellaneous_20226942 proquest_journals_1464344571 pubmed_primary_16284420 crossref_primary_10_1266_ggs_80_269 crossref_citationtrail_10_1266_ggs_80_269 medicalonline_journals_ch3ggsys_2005_008004_004_0269_02761077876 jstage_primary_article_ggs_80_4_80_4_269_article_char_en fao_agris_JP2006004761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-00-00 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 2005-00-00 |
PublicationDecade | 2000 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Mishima |
PublicationTitle | Genes & Genetic Systems |
PublicationTitleAlternate | Genes Genet. Syst. |
PublicationYear | 2005 |
Publisher | The Genetics Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Genetics Society of Japan – name: Japan Science and Technology Agency |
References | Jacobson, R. H., Ladurner, A. G., King, D.S. and Tjian, R. (2000) Structure and function of a human TAF(II)250 double bromodomain module. Science 288, 1422–1425. Wako, T., Fukuda, M., Furushima-Shimogawara, R., Belyaev, N. D., Turner, B. M. and Fukui, K. (1998) Comparative analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a deconvolution system. Anal. Chim. Acta 365, 9–17. Kato, S. and Fukui, K. (1998) Condensation pattern analysis using a newly developed chromosome image analyzing system (CHIAS III). Chromosome Res. 6, 473–479. Wang, X., Cheng, H., Moore, S. C. and Ausio, J. (2001) Effects of histone acetylation on the solubility and folding of the chromatin fiber. J. Biol. Chem. 276, 12764–12768. Jasencakova, Z., Meister, A. and Schubert, I. (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110, 83–92. Rundlett, S. E., Carmen, A. A., Suka, N., Turner, B. M. and Grunstein, M. (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392, 831–835. Künzel, G., Korzun, L. and Meister, A. (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412. Ohmido, N., Kijima, K., Ashikawa, I., de Jong, J. H. and Fukui, K. (2001) Visualization of the terminal structure of rice chromosomes 6 and 12 using multicolor FISH to chromosomes and extended DNA fibers. Plant Mol. Biol. 47, 413–421. Bowne, N. J., Jordan, I. K., Epstein, J. A., Wood, V. and Levin, H. L. (2003) Retrotransposons and their recognition of pol II promoters: A comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res. 13, 1984–1987. Spencer, V. A. and Davie, J. R. (1999) Role of covalent modifications of histones in regulating gene expression. Gene 240, 1–12. Belyaev, N.D., Houben, A., Baranczewski, P. and Schubert, I. (1997) Histone H4 acetylation in plant heterochromatin is altered during the cell cycle. Chromosoma 106, 193–197. Parthun, M. R., Widom, J. and Gottschling, D. E. (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85–94. Turner, B. M. and Fellows, G. (1989) Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179, 131–139. Roussel, P., André, C., Comai, L. and Hernandez-Verdun, D. (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell. Biol. 133, 235–246. Richards, E. J. and Ausubel, F. M. (1988) Isolation of a higher eukaryotic telomere from Arabidpsis thaliana. Cell 53, 127–136. Jasencakova, Z., Meister, A., Walter, J., Turner, B. M. and Schubert, I. (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12, 2087–2100. Marmorstein, R. and Roth, S. Y. (2001) Histone acetyltransferases: function, structure, and catalysis. Curr. Opin. Genet. Dev. 11, 155–161. Iwano, M., Fukui, K., Takaichi, S. and Isogai, A. (1997) Globular and fibrous structure in barley chromosomes revealing high-resolution scanning electoron microscopy. Chromosome Res. 5, 341–349. Marks, P. A., Miller, T. and Richon, V. M (2003) Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351. Nagaki, K., Cheng, Z., Ouyang, S., Talber, P. B., Kim, M., Jones, K. M., Henikoff, S., Buell, C. R. and Jiang, J. (2004) Sequencing of a rice centromere uncovers active genes. Nature Genet. 36, 138–145. Houben, A., Belyaev, N. D., Turner, B. M. and Schubert, I. (1996) Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Res. 4, 191–194. Kimura, A. and Horikoshi, M. (1998) How do histone acetyltransferases select lysine residues in core histones? FEBS Lett. 431, 131–133. Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074–1080. Fukui, K. and Kakeda, K. (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33, 450–458. Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. and Allis, C. D. (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. USA 92, 1237–1241. Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41–45. Kölle, D., Brosch, G., Lechner, T., Pipal, A., Helliger, W., Taplick, J. and Loidl, P. (1999) Different types of maize histone deacetylases are distuinguished by a highly complex substrate and site specificity. Biochem. 38, 6769–6773. Verreault, A., Kaufman, P. D., Kobayashi, R. and Stillman, B. (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104. Wakefield, M. J., Keohane, A. M., Turner, B. M. and Marchall-Graves, J. A. (1997) Histone underacetylation is an ancient component of mammalian X chromosome inactivation. Proc. Natl. Acad. Sci. USA 94, 9665–9668. Jasencakova, Z., Soppe, W. J. J., Meister, A., Gernand, D., Turner, B. M. and Schubert, I. (2003) Histone modifications in Arabidopsis – high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J. 33, 471–480. Wako, T., Houben, A., Furushima-Shimogawara, R., Belyaev, N. D. and Fukui, K. (2003) Centromere-specific acetylation of histone H4 in barley detected through three-dimensional microscopy. Plant Mol. Biol. 51, 533–541. Houben, A., Wako, T., Furushima-Shimogawara, R., Presting, G., Künzel, G., Schubert, I. and Fukui, K. (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J. 18, 675–679. Struhl, K. (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606. Taddei, A., Maison, C., Roche, D. and Almouzni, G. (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol. 3, 114–120. White, D. A., Belyaev, N. D. and Turner, B. M. (1999) Preparation of site-specific antibodies to acetylated histones. Methods 19, 417–421. Lachner, M., O’Sullivan, R. J. and Jenuwein, T. (2003) An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124. Presting, G., Malysheva, L., Fuchs, J. and Schubert, I. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721–728. Fukui, K. (1996) Plant Chromosomes at Mitosis. In: Plant Chromosomes: Laboratory Methods (eds Fukui, K. and Nakayama, S.), pp. 1–18. CRC press, Boca Raton, CRC press, Inc. Bird, A. W., Yu, D. Y., Pray-Grant, M. G., Qiu, Q. F., Harmon, K. E., Megee, P. C., Grant, P. A., Smith, M. M. and Christman, M. F. (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415. Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. and Allshire, R. C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032. Keohane, A. M., Lavender, J. S., O’Neill, L. P. and Turner, B. M. (1998) Histone acetylation and X inactivation. Dev. Genet. 22, 65–73. Ohmido, N. and Fukui, K. (1997) Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol. Biol. 35, 963–968. Wako, T., Furushima-Shimogawara, R., Fukuda, M., Belyaev, N. D. and Fukui, K. (2002) Cell cycle dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol. Biol. 49, 645–653. Kölle, D., Sarg, B., Linder, H. and Loidl, P. (1998) Substrate and sequential site specifity of cytoplasmic histone acetyltransferases of maize and rat liver. FEBS Lett. 421, 109–114. (32) 1995; 92 24 (5) 1996 25 26 (20) 2000; 154 27 (37) 1989; 179 (12) 2001; 110 28 29 (44) 1999; 19 (36) 2001; 3 (23) 2001; 11 (19) 1999; 38 (3) 2003; 13 (13) 2003; 33 (41) 2002; 49 30 31 10 11 33 (8) 1999; 18 35 14 15 16 38 17 39 18 1 2 (22) 2003; 3 4 (7) 1996; 4 (6) 1990; 33 9 40 (34) 1998; 12 42 21 43 |
References_xml | – reference: Kimura, A. and Horikoshi, M. (1998) How do histone acetyltransferases select lysine residues in core histones? FEBS Lett. 431, 131–133. – reference: Künzel, G., Korzun, L. and Meister, A. (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412. – reference: Jacobson, R. H., Ladurner, A. G., King, D.S. and Tjian, R. (2000) Structure and function of a human TAF(II)250 double bromodomain module. Science 288, 1422–1425. – reference: Presting, G., Malysheva, L., Fuchs, J. and Schubert, I. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721–728. – reference: Jasencakova, Z., Soppe, W. J. J., Meister, A., Gernand, D., Turner, B. M. and Schubert, I. (2003) Histone modifications in Arabidopsis – high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J. 33, 471–480. – reference: Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. and Allis, C. D. (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. USA 92, 1237–1241. – reference: Kato, S. and Fukui, K. (1998) Condensation pattern analysis using a newly developed chromosome image analyzing system (CHIAS III). Chromosome Res. 6, 473–479. – reference: Marmorstein, R. and Roth, S. Y. (2001) Histone acetyltransferases: function, structure, and catalysis. Curr. Opin. Genet. Dev. 11, 155–161. – reference: Turner, B. M. and Fellows, G. (1989) Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179, 131–139. – reference: Iwano, M., Fukui, K., Takaichi, S. and Isogai, A. (1997) Globular and fibrous structure in barley chromosomes revealing high-resolution scanning electoron microscopy. Chromosome Res. 5, 341–349. – reference: Keohane, A. M., Lavender, J. S., O’Neill, L. P. and Turner, B. M. (1998) Histone acetylation and X inactivation. Dev. Genet. 22, 65–73. – reference: Verreault, A., Kaufman, P. D., Kobayashi, R. and Stillman, B. (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104. – reference: Bird, A. W., Yu, D. Y., Pray-Grant, M. G., Qiu, Q. F., Harmon, K. E., Megee, P. C., Grant, P. A., Smith, M. M. and Christman, M. F. (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415. – reference: Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. and Allshire, R. C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032. – reference: Wako, T., Fukuda, M., Furushima-Shimogawara, R., Belyaev, N. D., Turner, B. M. and Fukui, K. (1998) Comparative analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a deconvolution system. Anal. Chim. Acta 365, 9–17. – reference: Spencer, V. A. and Davie, J. R. (1999) Role of covalent modifications of histones in regulating gene expression. Gene 240, 1–12. – reference: Wakefield, M. J., Keohane, A. M., Turner, B. M. and Marchall-Graves, J. A. (1997) Histone underacetylation is an ancient component of mammalian X chromosome inactivation. Proc. Natl. Acad. Sci. USA 94, 9665–9668. – reference: Roussel, P., André, C., Comai, L. and Hernandez-Verdun, D. (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell. Biol. 133, 235–246. – reference: Kölle, D., Brosch, G., Lechner, T., Pipal, A., Helliger, W., Taplick, J. and Loidl, P. (1999) Different types of maize histone deacetylases are distuinguished by a highly complex substrate and site specificity. Biochem. 38, 6769–6773. – reference: Jasencakova, Z., Meister, A., Walter, J., Turner, B. M. and Schubert, I. (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12, 2087–2100. – reference: Struhl, K. (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606. – reference: Houben, A., Belyaev, N. D., Turner, B. M. and Schubert, I. (1996) Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Res. 4, 191–194. – reference: Taddei, A., Maison, C., Roche, D. and Almouzni, G. (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol. 3, 114–120. – reference: Ohmido, N., Kijima, K., Ashikawa, I., de Jong, J. H. and Fukui, K. (2001) Visualization of the terminal structure of rice chromosomes 6 and 12 using multicolor FISH to chromosomes and extended DNA fibers. Plant Mol. Biol. 47, 413–421. – reference: Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41–45. – reference: Bowne, N. J., Jordan, I. K., Epstein, J. A., Wood, V. and Levin, H. L. (2003) Retrotransposons and their recognition of pol II promoters: A comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res. 13, 1984–1987. – reference: Houben, A., Wako, T., Furushima-Shimogawara, R., Presting, G., Künzel, G., Schubert, I. and Fukui, K. (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J. 18, 675–679. – reference: Wang, X., Cheng, H., Moore, S. C. and Ausio, J. (2001) Effects of histone acetylation on the solubility and folding of the chromatin fiber. J. Biol. Chem. 276, 12764–12768. – reference: White, D. A., Belyaev, N. D. and Turner, B. M. (1999) Preparation of site-specific antibodies to acetylated histones. Methods 19, 417–421. – reference: Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074–1080. – reference: Lachner, M., O’Sullivan, R. J. and Jenuwein, T. (2003) An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124. – reference: Wako, T., Furushima-Shimogawara, R., Fukuda, M., Belyaev, N. D. and Fukui, K. (2002) Cell cycle dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol. Biol. 49, 645–653. – reference: Ohmido, N. and Fukui, K. (1997) Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol. Biol. 35, 963–968. – reference: Kölle, D., Sarg, B., Linder, H. and Loidl, P. (1998) Substrate and sequential site specifity of cytoplasmic histone acetyltransferases of maize and rat liver. FEBS Lett. 421, 109–114. – reference: Parthun, M. R., Widom, J. and Gottschling, D. E. (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85–94. – reference: Rundlett, S. E., Carmen, A. A., Suka, N., Turner, B. M. and Grunstein, M. (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392, 831–835. – reference: Belyaev, N.D., Houben, A., Baranczewski, P. and Schubert, I. (1997) Histone H4 acetylation in plant heterochromatin is altered during the cell cycle. Chromosoma 106, 193–197. – reference: Fukui, K. and Kakeda, K. (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33, 450–458. – reference: Jasencakova, Z., Meister, A. and Schubert, I. (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110, 83–92. – reference: Marks, P. A., Miller, T. and Richon, V. M (2003) Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351. – reference: Wako, T., Houben, A., Furushima-Shimogawara, R., Belyaev, N. D. and Fukui, K. (2003) Centromere-specific acetylation of histone H4 in barley detected through three-dimensional microscopy. Plant Mol. Biol. 51, 533–541. – reference: Nagaki, K., Cheng, Z., Ouyang, S., Talber, P. B., Kim, M., Jones, K. M., Henikoff, S., Buell, C. R. and Jiang, J. (2004) Sequencing of a rice centromere uncovers active genes. Nature Genet. 36, 138–145. – reference: Richards, E. J. and Ausubel, F. M. (1988) Isolation of a higher eukaryotic telomere from Arabidpsis thaliana. Cell 53, 127–136. – reference: Fukui, K. (1996) Plant Chromosomes at Mitosis. In: Plant Chromosomes: Laboratory Methods (eds Fukui, K. and Nakayama, S.), pp. 1–18. CRC press, Boca Raton, CRC press, Inc. – volume: 49 start-page: 645 year: 2002 ident: 41 publication-title: Plant Mol. Biol. – volume: 110 start-page: 83 issn: 0009-5915 year: 2001 ident: 12 publication-title: Chromosoma doi: 10.1007/s004120100132 – volume: 12 start-page: 599 issn: 0890-9369 issue: 5 year: 1998 ident: 34 publication-title: Genes Dev. doi: 10.1101/gad.12.5.599 – ident: 40 doi: 10.1016/S0003-2670(97)00619-3 – volume: 154 start-page: 397 issn: 0016-6731 year: 2000 ident: 20 publication-title: Genetics doi: 10.1093/genetics/154.1.397 – ident: 26 doi: 10.1023/A:1011632111845 – ident: 38 doi: 10.1016/S0092-8674(00)81326-4 – volume: 11 start-page: 155 issn: 0959-437X year: 2001 ident: 23 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/S0959-437X(00)00173-8 – ident: 16 doi: 10.1002/(SICI)1520-6408(1998)22:1<65::AID-DVG7>3.3.CO;2-W – ident: 14 doi: 10.1126/science.1063127 – ident: 43 doi: 10.1074/jbc.M100501200 – volume: 33 start-page: 450 issn: 0831-2796 year: 1990 ident: 6 publication-title: Genome doi: 10.1139/g90-067 – volume: 179 start-page: 131 issn: 0014-2956 issue: 1 year: 1989 ident: 37 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1989.tb14530.x – ident: 2 doi: 10.1038/nature01035 – volume: 92 start-page: 1237 issn: 0027-8424 issue: 4 year: 1995 ident: 32 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.4.1237 – volume: 3 start-page: 114 issn: 1465-7392 year: 2001 ident: 36 publication-title: Nature Cell Biol. doi: 10.1038/35055010 – ident: 24 doi: 10.1038/ng1289 – ident: 27 doi: 10.1016/S0092-8674(00)81325-2 – ident: 17 doi: 10.1016/S0014-5793(98)00752-2 – ident: 29 doi: 10.1016/0092-8674(88)90494-1 – ident: 28 doi: 10.1046/j.1365-313X.1998.00341.x – volume: 19 start-page: 417 issn: 1046-2023 year: 1999 ident: 44 publication-title: Methods doi: 10.1006/meth.1999.0878 – volume: 38 start-page: 6769 issn: 0003-2697 year: 1999 ident: 19 publication-title: Biochem. doi: 10.1021/bi982702v – ident: 4 doi: 10.1016/S0092-8674(00)80492-4 – ident: 1 doi: 10.1007/s004120050239 – volume: 13 start-page: 1984 issn: 1088-9051 year: 2003 ident: 3 publication-title: Genome Res. doi: 10.1101/gr.1191603 – ident: 15 doi: 10.1023/A:1009252429277 – start-page: 1 issn: 1046-2023 year: 1996 ident: 5 publication-title: Plant Chromosomes: Laboratory Methods – volume: 4 start-page: 191 issn: 0967-3849 year: 1996 ident: 7 publication-title: Chromosome Res. doi: 10.1007/BF02254958 – ident: 39 doi: 10.1073/pnas.94.18.9665 – volume: 33 start-page: 471 issn: 0960-7412 year: 2003 ident: 13 publication-title: Plant J. doi: 10.1046/j.1365-313X.2003.01638.x – ident: 18 doi: 10.1016/S0014-5793(97)01544-5 – volume: 3 start-page: 344 issn: 1471-4892 year: 2003 ident: 22 publication-title: Curr. Opin. Pharmacol. doi: 10.1016/S1471-4892(03)00084-5 – ident: 11 doi: 10.1105/tpc.12.11.2087 – ident: 30 doi: 10.1083/jcb.133.2.235 – ident: 9 doi: 10.1023/B:CHRO.0000038766.53836.c3 – ident: 10 doi: 10.1126/science.288.5470.1422 – ident: 21 doi: 10.1242/jcs.00493 – ident: 42 doi: 10.1023/A:1022375017938 – ident: 31 doi: 10.1038/33952 – ident: 35 doi: 10.1038/47412 – ident: 25 doi: 10.1023/A:1005822504690 – volume: 18 start-page: 675 issn: 0960-7412 year: 1999 ident: 8 publication-title: Plant J. doi: 10.1046/j.1365-313x.1999.00496.x – ident: 33 doi: 10.1016/S0378-1119(99)00405-9 |
SSID | ssj0020983 ssib058492816 ssib044737543 |
Score | 1.7009174 |
Snippet | Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In... |
SourceID | proquest pubmed crossref medicalonline jstage fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 269 |
SubjectTerms | ACETILACION ACETYLATION barley Centromere - metabolism CHROMOSOME CHROMOSOMES Chromosomes, Plant - metabolism CITOGENETICA CROMOSOMAS CYTOGENETICS CYTOGENETIQUE HISTONAS HISTONE histone H4 acetylation HISTONES Histones - metabolism Hordeum - cytology Hordeum - physiology HORDEUM VULGARE Lysine - metabolism MITOSE MITOSIS mitotic chromosome nucleolar organizing region (NOR) Nucleolus Organizer Region - metabolism Nucleosomes - metabolism Prophase - physiology Protein Processing, Post-Translational - physiology Telophase - physiology |
Title | Comprehensive analysis of dynamics of histone H4 acetylation in mitotic barley [Hordeum vulgare] cells |
URI | https://www.jstage.jst.go.jp/article/ggs/80/4/80_4_269/_article/-char/en http://mol.medicalonline.jp/library/journal/download?GoodsID=ch3ggsys/2005/008004/004&name=0269-0276e https://www.ncbi.nlm.nih.gov/pubmed/16284420 https://www.proquest.com/docview/1464344571 https://www.proquest.com/docview/20226942 https://www.proquest.com/docview/68796790 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Genes & Genetic Systems, 2005, Vol.80(4), pp.269-276 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA51RRBEvK1WVw3oPkiZ7nSadGbevK3WguJDFwsiQzKXuta2sm2FKvjb_U6SmU5lC-pDwzBNQma-b07OOUnOYexxoDpZBKZ4Ku7Ensh87SmRhl4nKiQtdHVQgXZbvOv1T8RgJEeNxs_66ZKlbqc_zj1X8j-o4h5wpVOy_4Bs1Slu4Br4ogTCKP8KY_qYz_LPbg-6qsUXyWyieXNtQgpDl-yLlkrz5drufiNHxxSfMwVs1bTkvm4dyud9CsW5mra-r-iIR34oX7bItb-o67AUqXphKIOB0RlIFw660s4_qIlxwA7blOqn9DbStoS2UXzHZewnQxAnXex2pcVqstJGn31DyyCTU9KAB5jQyX1R81qAH2qCJ9zMIMRBNK4l1y59GbImeDGbeqG0KXbaub0H2eLJ0CabKaW1zfvkWCnOnQSgcwC58XjRjvx2YDPB_BFUe_CeXCkUKpNM54sBbAyS6q9H1f6gwI9NDNdqYC62LTo_2nS9pc1cKNQciswXqPUUr-HK1C612ZAnuy0Yo8kMr7GrzgThzyyfrrNGPrvBLtmkpOubrNhiFS9ZxecFL1lF145VvC94jVX8dMYdq7hlFf_oOMUdpz5xw6hb7OTV8fBF33PZOLy0F_pLL8ujWMNYkLmKszDtwdKmQD6dLITRnEepVn6ciSLTuRapjrWMAZ2vUqlE5GtddPfZ3gzjusO4LlI_LWQnS7uZCFWoA9mllFl-oaJuIXpN9qR8q0nqQtVTxpSvCZmsQCABAknkJ0CgyR5Vdb_ZAC3n1toHOIkaY-ZM6uA3WWTxqhq7r7lsLGyBPqp_6DwkxE-TPd1COHGSYYEKXbReLyjHq0yMUSYS86NuIAJhs4SYKfGgByUpNq2hu4iuEDLE4B5Wf0PqEzpqls9X1HFAR9CD3TWAT9wLY7_Jbluybd5ODyqpCPy7u97JPXbZBCg2jsYDtrc8W-X3oXov9QPziaB8--v4N8Dg2Oo |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+analysis+of+dynamics+of+histone+H4+acetylation+in+mitotic+barley+%5BHordeum+vulgare%5D+cells&rft.jtitle=Genes+%26+genetic+systems&rft.au=Wako%2C+T.%28National+Inst.+of+Agrobiological+Sciences%2C+Tsukuba%2C+Ibaraki+%28Japan%29%29&rft.au=Murakami%2C+Y&rft.au=Fukui%2C+K&rft.date=2005&rft.issn=1341-7568&rft.eissn=1880-5779&rft.volume=80&rft.issue=4&rft_id=info:doi/10.1266%2Fggs.80.269&rft.externalDocID=JP2006004761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-7568&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-7568&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-7568&client=summon |