Comprehensive analysis of dynamics of histone H4 acetylation in mitotic barley [Hordeum vulgare] cells

Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immu...

Full description

Saved in:
Bibliographic Details
Published inGenes & Genetic Systems Vol. 80; no. 4; pp. 269 - 276
Main Authors Wako, T.(National Inst. of Agrobiological Sciences, Tsukuba, Ibaraki (Japan)), Murakami, Y, Fukui, K
Format Journal Article
LanguageEnglish
Published Japan The Genetics Society of Japan 2005
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1341-7568
1880-5779
DOI10.1266/ggs.80.269

Cover

Loading…
Abstract Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle.
AbstractList Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle. INTRODUCTION Higher-order chromatin structure consists of nucleosomes, which are fundamental units made up of DNA and a histone octamer (two heterodimers of H2A/H2B and a tetramer of H3/H4). Each histone has a protruding N-terminal tail that is subject to various post-translational modifications, including acetylation, phosphorylation, and methylation, at specific amino acid residues. Histone acetylation is a well-documented modification that occurs at N-terminal lysine residues of core histones and plays an important role in various cellular functions (Spencer and Davie, 1999, Strahl and Allis, 2000). Histone acetylation participates in transcription activation and is regulated by histone acetyltransferases (HATs), which are subunits of transcription factors (Marmorstein and Roth, 2001). The reverse reaction, histone deacetylation, leads to transcription silencing and is mediated by histone deacetylases (HDACs), which are found in transcription repressors (Marks et al., 2004). Specific acetylation occurs on the newly synthesized histones in the cyloplasm (Sobel et al., 1995) and is required for DNA double-strand break repair (Bird et al., 2002). Replication-related histone acetylation is also reported in flow-sorted nuclei from field bean, barley, and Arabidopsis (Jasencakova et al., 2000, 2001, 2003). Distinct combinations of covalent modifications of histone tails are thought to work as epigenetic code, referred to as a “histone code”. These combinations of modifications regulate the interactions of histones with DNA strands, chromatin-associated proteins, or protein complexes, which, in turn, control chromatin function (Strahl and Allis, 2000, Jenuwein and Allis, 2001). For example, there is evidence that methylation of histone H3 works in concert with other modifications to mediate transcription silencing (Jenuwein and Allis, 2001).
Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle.
Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle.Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In the current studies, we examined the dynamics of histone H4 acetylation at K8 and K12 in mitotic barley cells using a three-dimensional immunofluorescent method. Based on the results and previous studies on the dynamics of K5 and K16 acetylation, we provide a comprehensive view of the dynamics of H4 acetylation. Interphase nuclei exhibit strong acetylation in the centromeric region at K5, K8 and K12. In the case of K12, strong acetylation at nucleolar organizing regions was observed from prophase to anaphase. The dynamics of K12 were closely related to those of K5. On the other hand, K8 exhibited a pattern of almost uniform acetylation from prophase to telophase and strong acetylation in distal regions of chromosomes at both metaphase and anaphase, which is very similar to the dynamics of K16 acetylation. Thus, it appears that there is pair-wise acetylation of K12 and K5 in the nucleolar organizing regions and of K8 and K16 in the gene-rich regions. Together, these results suggest that pair-wise dynamics of H4 acetylation regulate chromosomal structure and function during the cell cycle.
Author Fukui, K
Wako, T.(National Inst. of Agrobiological Sciences, Tsukuba, Ibaraki (Japan))
Murakami, Y
Author_xml – sequence: 1
  fullname: Wako, T.(National Inst. of Agrobiological Sciences, Tsukuba, Ibaraki (Japan))
– sequence: 2
  fullname: Murakami, Y
– sequence: 3
  fullname: Fukui, K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16284420$$D View this record in MEDLINE/PubMed
BookMark eNqFkduL1DAUxousuBd98V0JCD4IMyZtmsuTyKA7yoI-6JNISNN0JkOazCbtQv97z0x3XFgEH5IcyO9837lcFmchBlsULwlekpKx95tNXgq8LJl8UlwQIfCi5lyeQVxRsuA1E-fFZc47jEssRfWsOCesFJSW-KLoVrHfJ7u1Ibs7i3TQfsouo9ihdgq6d-YYb10ewBStKdLGDpPXg4sBuYB6N8TBGdTo5O2Efq1jau3Yo7vRb3Syv5Gx3ufnxdNO-2xf3L9Xxc_Pn36s1oubb9dfVh9vFoZxPCxaK2TDOa2tli03THBCmKxIy6mUVphGY9nSrm1sQ00jm1pCp1ibWlOBm6arroq3s-4-xdvR5kH1Lh8q0MHGMStQlIxL_F-wxCXMk5YAvnkE7uKYYExZEcpoRWnNCVCv76mx6W2r9sn1Ok3qNGgA3s2ASTHnZLsHBKvDFhVsUQmswBVg_Ag2bjhOfEja-X-nXM8p4O6M9jF4F-xDrWZbAT0dGsO1wlhgTNXxQDZcnBHMueAMlD7MSrs86I39W6dOsGZvT6Z0vg7Zpx-z1UnZAAqvZoVOR6U3yWX19Tv4MvADn-oP81DWCQ
CitedBy_id crossref_primary_10_1007_s13258_011_0046_9
crossref_primary_10_1080_07352680701612820
crossref_primary_10_1111_tpj_16355
crossref_primary_10_1021_acs_jproteome_5b01097
crossref_primary_10_1093_jxb_erz457
crossref_primary_10_1186_1471_2229_10_178
Cites_doi 10.1007/s004120100132
10.1101/gad.12.5.599
10.1016/S0003-2670(97)00619-3
10.1093/genetics/154.1.397
10.1023/A:1011632111845
10.1016/S0092-8674(00)81326-4
10.1016/S0959-437X(00)00173-8
10.1002/(SICI)1520-6408(1998)22:1<65::AID-DVG7>3.3.CO;2-W
10.1126/science.1063127
10.1074/jbc.M100501200
10.1139/g90-067
10.1111/j.1432-1033.1989.tb14530.x
10.1038/nature01035
10.1073/pnas.92.4.1237
10.1038/35055010
10.1038/ng1289
10.1016/S0092-8674(00)81325-2
10.1016/S0014-5793(98)00752-2
10.1016/0092-8674(88)90494-1
10.1046/j.1365-313X.1998.00341.x
10.1006/meth.1999.0878
10.1021/bi982702v
10.1016/S0092-8674(00)80492-4
10.1007/s004120050239
10.1101/gr.1191603
10.1023/A:1009252429277
10.1007/BF02254958
10.1073/pnas.94.18.9665
10.1046/j.1365-313X.2003.01638.x
10.1016/S0014-5793(97)01544-5
10.1016/S1471-4892(03)00084-5
10.1105/tpc.12.11.2087
10.1083/jcb.133.2.235
10.1023/B:CHRO.0000038766.53836.c3
10.1126/science.288.5470.1422
10.1242/jcs.00493
10.1023/A:1022375017938
10.1038/33952
10.1038/47412
10.1023/A:1005822504690
10.1046/j.1365-313x.1999.00496.x
10.1016/S0378-1119(99)00405-9
ContentType Journal Article
Copyright 2005 by The Genetics Society of Japan
Copyright Japan Science and Technology Agency 2005
Copyright_xml – notice: 2005 by The Genetics Society of Japan
– notice: Copyright Japan Science and Technology Agency 2005
CorporateAuthor Osaka University
Department of Biochemistry
Graduate School of Engineering
National Institute of Agrobiological Sciences
Department of Biotechnology
CorporateAuthor_xml – name: Graduate School of Engineering
– name: Department of Biotechnology
– name: Osaka University
– name: National Institute of Agrobiological Sciences
– name: Department of Biochemistry
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7TM
7X8
DOI 10.1266/ggs.80.269
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
MEDLINE
MEDLINE - Academic
Entomology Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1880-5779
EndPage 276
ExternalDocumentID 3143892181
16284420
10_1266_ggs_80_269
ch3ggsys_2005_008004_004_0269_02761077876
article_ggs_80_4_80_4_269_article_char_en
JP2006004761
Genre Journal Article
GroupedDBID ---
-~X
.55
29H
2WC
36B
3O-
53G
5GY
ACGFO
ACPRK
ADBBV
AENEX
AEQTP
AHMBA
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
CS3
DIK
DU5
E3Z
EBD
EBS
EJD
EMB
EMOBN
F20
F5P
FBQ
GROUPED_DOAJ
GX1
JMI
JSF
JSH
KQ8
L7B
MOJWN
M~E
OK1
PQQKQ
RJT
RNS
RZJ
SV3
TKC
TR2
W2D
X7M
XSB
OVT
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7TM
7X8
ID FETCH-LOGICAL-c670t-de89b7745ea9d7c687116931d7499e8cba09d4fdbeb4cb9b595770ac5a480bbf3
ISSN 1341-7568
IngestDate Thu Jul 10 23:29:48 EDT 2025
Fri Jul 11 00:40:54 EDT 2025
Mon Jun 30 10:06:28 EDT 2025
Thu Jan 02 21:59:51 EST 2025
Tue Jul 01 04:33:18 EDT 2025
Thu Apr 24 23:08:06 EDT 2025
Thu Jul 10 16:24:57 EDT 2025
Wed Sep 03 05:59:08 EDT 2025
Wed Dec 27 19:17:38 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c670t-de89b7745ea9d7c687116931d7499e8cba09d4fdbeb4cb9b595770ac5a480bbf3
Notes 2006004761
F30
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/ggs/80/4/80_4_269/_article/-char/en
PMID 16284420
PQID 1464344571
PQPubID 1996350
PageCount 8
ParticipantIDs proquest_miscellaneous_68796790
proquest_miscellaneous_20226942
proquest_journals_1464344571
pubmed_primary_16284420
crossref_primary_10_1266_ggs_80_269
crossref_citationtrail_10_1266_ggs_80_269
medicalonline_journals_ch3ggsys_2005_008004_004_0269_02761077876
jstage_primary_article_ggs_80_4_80_4_269_article_char_en
fao_agris_JP2006004761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-00-00
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005-00-00
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Mishima
PublicationTitle Genes & Genetic Systems
PublicationTitleAlternate Genes Genet. Syst.
PublicationYear 2005
Publisher The Genetics Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: The Genetics Society of Japan
– name: Japan Science and Technology Agency
References Jacobson, R. H., Ladurner, A. G., King, D.S. and Tjian, R. (2000) Structure and function of a human TAF(II)250 double bromodomain module. Science 288, 1422–1425.
Wako, T., Fukuda, M., Furushima-Shimogawara, R., Belyaev, N. D., Turner, B. M. and Fukui, K. (1998) Comparative analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a deconvolution system. Anal. Chim. Acta 365, 9–17.
Kato, S. and Fukui, K. (1998) Condensation pattern analysis using a newly developed chromosome image analyzing system (CHIAS III). Chromosome Res. 6, 473–479.
Wang, X., Cheng, H., Moore, S. C. and Ausio, J. (2001) Effects of histone acetylation on the solubility and folding of the chromatin fiber. J. Biol. Chem. 276, 12764–12768.
Jasencakova, Z., Meister, A. and Schubert, I. (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110, 83–92.
Rundlett, S. E., Carmen, A. A., Suka, N., Turner, B. M. and Grunstein, M. (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392, 831–835.
Künzel, G., Korzun, L. and Meister, A. (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412.
Ohmido, N., Kijima, K., Ashikawa, I., de Jong, J. H. and Fukui, K. (2001) Visualization of the terminal structure of rice chromosomes 6 and 12 using multicolor FISH to chromosomes and extended DNA fibers. Plant Mol. Biol. 47, 413–421.
Bowne, N. J., Jordan, I. K., Epstein, J. A., Wood, V. and Levin, H. L. (2003) Retrotransposons and their recognition of pol II promoters: A comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res. 13, 1984–1987.
Spencer, V. A. and Davie, J. R. (1999) Role of covalent modifications of histones in regulating gene expression. Gene 240, 1–12.
Belyaev, N.D., Houben, A., Baranczewski, P. and Schubert, I. (1997) Histone H4 acetylation in plant heterochromatin is altered during the cell cycle. Chromosoma 106, 193–197.
Parthun, M. R., Widom, J. and Gottschling, D. E. (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85–94.
Turner, B. M. and Fellows, G. (1989) Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179, 131–139.
Roussel, P., André, C., Comai, L. and Hernandez-Verdun, D. (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell. Biol. 133, 235–246.
Richards, E. J. and Ausubel, F. M. (1988) Isolation of a higher eukaryotic telomere from Arabidpsis thaliana. Cell 53, 127–136.
Jasencakova, Z., Meister, A., Walter, J., Turner, B. M. and Schubert, I. (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12, 2087–2100.
Marmorstein, R. and Roth, S. Y. (2001) Histone acetyltransferases: function, structure, and catalysis. Curr. Opin. Genet. Dev. 11, 155–161.
Iwano, M., Fukui, K., Takaichi, S. and Isogai, A. (1997) Globular and fibrous structure in barley chromosomes revealing high-resolution scanning electoron microscopy. Chromosome Res. 5, 341–349.
Marks, P. A., Miller, T. and Richon, V. M (2003) Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351.
Nagaki, K., Cheng, Z., Ouyang, S., Talber, P. B., Kim, M., Jones, K. M., Henikoff, S., Buell, C. R. and Jiang, J. (2004) Sequencing of a rice centromere uncovers active genes. Nature Genet. 36, 138–145.
Houben, A., Belyaev, N. D., Turner, B. M. and Schubert, I. (1996) Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Res. 4, 191–194.
Kimura, A. and Horikoshi, M. (1998) How do histone acetyltransferases select lysine residues in core histones? FEBS Lett. 431, 131–133.
Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074–1080.
Fukui, K. and Kakeda, K. (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33, 450–458.
Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. and Allis, C. D. (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. USA 92, 1237–1241.
Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41–45.
Kölle, D., Brosch, G., Lechner, T., Pipal, A., Helliger, W., Taplick, J. and Loidl, P. (1999) Different types of maize histone deacetylases are distuinguished by a highly complex substrate and site specificity. Biochem. 38, 6769–6773.
Verreault, A., Kaufman, P. D., Kobayashi, R. and Stillman, B. (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104.
Wakefield, M. J., Keohane, A. M., Turner, B. M. and Marchall-Graves, J. A. (1997) Histone underacetylation is an ancient component of mammalian X chromosome inactivation. Proc. Natl. Acad. Sci. USA 94, 9665–9668.
Jasencakova, Z., Soppe, W. J. J., Meister, A., Gernand, D., Turner, B. M. and Schubert, I. (2003) Histone modifications in Arabidopsis – high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J. 33, 471–480.
Wako, T., Houben, A., Furushima-Shimogawara, R., Belyaev, N. D. and Fukui, K. (2003) Centromere-specific acetylation of histone H4 in barley detected through three-dimensional microscopy. Plant Mol. Biol. 51, 533–541.
Houben, A., Wako, T., Furushima-Shimogawara, R., Presting, G., Künzel, G., Schubert, I. and Fukui, K. (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J. 18, 675–679.
Struhl, K. (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606.
Taddei, A., Maison, C., Roche, D. and Almouzni, G. (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol. 3, 114–120.
White, D. A., Belyaev, N. D. and Turner, B. M. (1999) Preparation of site-specific antibodies to acetylated histones. Methods 19, 417–421.
Lachner, M., O’Sullivan, R. J. and Jenuwein, T. (2003) An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124.
Presting, G., Malysheva, L., Fuchs, J. and Schubert, I. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721–728.
Fukui, K. (1996) Plant Chromosomes at Mitosis. In: Plant Chromosomes: Laboratory Methods (eds Fukui, K. and Nakayama, S.), pp. 1–18. CRC press, Boca Raton, CRC press, Inc.
Bird, A. W., Yu, D. Y., Pray-Grant, M. G., Qiu, Q. F., Harmon, K. E., Megee, P. C., Grant, P. A., Smith, M. M. and Christman, M. F. (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415.
Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. and Allshire, R. C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032.
Keohane, A. M., Lavender, J. S., O’Neill, L. P. and Turner, B. M. (1998) Histone acetylation and X inactivation. Dev. Genet. 22, 65–73.
Ohmido, N. and Fukui, K. (1997) Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol. Biol. 35, 963–968.
Wako, T., Furushima-Shimogawara, R., Fukuda, M., Belyaev, N. D. and Fukui, K. (2002) Cell cycle dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol. Biol. 49, 645–653.
Kölle, D., Sarg, B., Linder, H. and Loidl, P. (1998) Substrate and sequential site specifity of cytoplasmic histone acetyltransferases of maize and rat liver. FEBS Lett. 421, 109–114.
(32) 1995; 92
24
(5) 1996
25
26
(20) 2000; 154
27
(37) 1989; 179
(12) 2001; 110
28
29
(44) 1999; 19
(36) 2001; 3
(23) 2001; 11
(19) 1999; 38
(3) 2003; 13
(13) 2003; 33
(41) 2002; 49
30
31
10
11
33
(8) 1999; 18
35
14
15
16
38
17
39
18
1
2
(22) 2003; 3
4
(7) 1996; 4
(6) 1990; 33
9
40
(34) 1998; 12
42
21
43
References_xml – reference: Kimura, A. and Horikoshi, M. (1998) How do histone acetyltransferases select lysine residues in core histones? FEBS Lett. 431, 131–133.
– reference: Künzel, G., Korzun, L. and Meister, A. (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154, 397–412.
– reference: Jacobson, R. H., Ladurner, A. G., King, D.S. and Tjian, R. (2000) Structure and function of a human TAF(II)250 double bromodomain module. Science 288, 1422–1425.
– reference: Presting, G., Malysheva, L., Fuchs, J. and Schubert, I. (1998) A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 16, 721–728.
– reference: Jasencakova, Z., Soppe, W. J. J., Meister, A., Gernand, D., Turner, B. M. and Schubert, I. (2003) Histone modifications in Arabidopsis – high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin. Plant J. 33, 471–480.
– reference: Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. and Allis, C. D. (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. USA 92, 1237–1241.
– reference: Kato, S. and Fukui, K. (1998) Condensation pattern analysis using a newly developed chromosome image analyzing system (CHIAS III). Chromosome Res. 6, 473–479.
– reference: Marmorstein, R. and Roth, S. Y. (2001) Histone acetyltransferases: function, structure, and catalysis. Curr. Opin. Genet. Dev. 11, 155–161.
– reference: Turner, B. M. and Fellows, G. (1989) Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179, 131–139.
– reference: Iwano, M., Fukui, K., Takaichi, S. and Isogai, A. (1997) Globular and fibrous structure in barley chromosomes revealing high-resolution scanning electoron microscopy. Chromosome Res. 5, 341–349.
– reference: Keohane, A. M., Lavender, J. S., O’Neill, L. P. and Turner, B. M. (1998) Histone acetylation and X inactivation. Dev. Genet. 22, 65–73.
– reference: Verreault, A., Kaufman, P. D., Kobayashi, R. and Stillman, B. (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104.
– reference: Bird, A. W., Yu, D. Y., Pray-Grant, M. G., Qiu, Q. F., Harmon, K. E., Megee, P. C., Grant, P. A., Smith, M. M. and Christman, M. F. (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415.
– reference: Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. and Allshire, R. C. (1997) Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032.
– reference: Wako, T., Fukuda, M., Furushima-Shimogawara, R., Belyaev, N. D., Turner, B. M. and Fukui, K. (1998) Comparative analysis of topographic distribution of acetylated histone H4 by using confocal microscopy and a deconvolution system. Anal. Chim. Acta 365, 9–17.
– reference: Spencer, V. A. and Davie, J. R. (1999) Role of covalent modifications of histones in regulating gene expression. Gene 240, 1–12.
– reference: Wakefield, M. J., Keohane, A. M., Turner, B. M. and Marchall-Graves, J. A. (1997) Histone underacetylation is an ancient component of mammalian X chromosome inactivation. Proc. Natl. Acad. Sci. USA 94, 9665–9668.
– reference: Roussel, P., André, C., Comai, L. and Hernandez-Verdun, D. (1996) The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell. Biol. 133, 235–246.
– reference: Kölle, D., Brosch, G., Lechner, T., Pipal, A., Helliger, W., Taplick, J. and Loidl, P. (1999) Different types of maize histone deacetylases are distuinguished by a highly complex substrate and site specificity. Biochem. 38, 6769–6773.
– reference: Jasencakova, Z., Meister, A., Walter, J., Turner, B. M. and Schubert, I. (2000) Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12, 2087–2100.
– reference: Struhl, K. (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12, 599–606.
– reference: Houben, A., Belyaev, N. D., Turner, B. M. and Schubert, I. (1996) Differential immunostaining of plant chromosomes by antibodies recognizing acetylated histone H4 variants. Chromosome Res. 4, 191–194.
– reference: Taddei, A., Maison, C., Roche, D. and Almouzni, G. (2001) Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol. 3, 114–120.
– reference: Ohmido, N., Kijima, K., Ashikawa, I., de Jong, J. H. and Fukui, K. (2001) Visualization of the terminal structure of rice chromosomes 6 and 12 using multicolor FISH to chromosomes and extended DNA fibers. Plant Mol. Biol. 47, 413–421.
– reference: Strahl, B. D. and Allis, C. D. (2000) The language of covalent histone modifications. Nature 403, 41–45.
– reference: Bowne, N. J., Jordan, I. K., Epstein, J. A., Wood, V. and Levin, H. L. (2003) Retrotransposons and their recognition of pol II promoters: A comprehensive survey of the transposable elements from the complete genome sequence of Schizosaccharomyces pombe. Genome Res. 13, 1984–1987.
– reference: Houben, A., Wako, T., Furushima-Shimogawara, R., Presting, G., Künzel, G., Schubert, I. and Fukui, K. (1999) The cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J. 18, 675–679.
– reference: Wang, X., Cheng, H., Moore, S. C. and Ausio, J. (2001) Effects of histone acetylation on the solubility and folding of the chromatin fiber. J. Biol. Chem. 276, 12764–12768.
– reference: White, D. A., Belyaev, N. D. and Turner, B. M. (1999) Preparation of site-specific antibodies to acetylated histones. Methods 19, 417–421.
– reference: Jenuwein, T. and Allis, C. D. (2001) Translating the histone code. Science 293, 1074–1080.
– reference: Lachner, M., O’Sullivan, R. J. and Jenuwein, T. (2003) An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124.
– reference: Wako, T., Furushima-Shimogawara, R., Fukuda, M., Belyaev, N. D. and Fukui, K. (2002) Cell cycle dependent and lysine residue-specific dynamic changes of histone H4 acetylation in barley. Plant Mol. Biol. 49, 645–653.
– reference: Ohmido, N. and Fukui, K. (1997) Visual verification of close disposition between a rice A genome-specific DNA sequence (TrsA) and the telomere sequence. Plant Mol. Biol. 35, 963–968.
– reference: Kölle, D., Sarg, B., Linder, H. and Loidl, P. (1998) Substrate and sequential site specifity of cytoplasmic histone acetyltransferases of maize and rat liver. FEBS Lett. 421, 109–114.
– reference: Parthun, M. R., Widom, J. and Gottschling, D. E. (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87, 85–94.
– reference: Rundlett, S. E., Carmen, A. A., Suka, N., Turner, B. M. and Grunstein, M. (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392, 831–835.
– reference: Belyaev, N.D., Houben, A., Baranczewski, P. and Schubert, I. (1997) Histone H4 acetylation in plant heterochromatin is altered during the cell cycle. Chromosoma 106, 193–197.
– reference: Fukui, K. and Kakeda, K. (1990) Quantitative karyotyping of barley chromosomes by image analysis methods. Genome 33, 450–458.
– reference: Jasencakova, Z., Meister, A. and Schubert, I. (2001) Chromatin organization and its relation to replication and histone acetylation during the cell cycle in barley. Chromosoma 110, 83–92.
– reference: Marks, P. A., Miller, T. and Richon, V. M (2003) Histone deacetylases. Curr. Opin. Pharmacol. 3, 344–351.
– reference: Wako, T., Houben, A., Furushima-Shimogawara, R., Belyaev, N. D. and Fukui, K. (2003) Centromere-specific acetylation of histone H4 in barley detected through three-dimensional microscopy. Plant Mol. Biol. 51, 533–541.
– reference: Nagaki, K., Cheng, Z., Ouyang, S., Talber, P. B., Kim, M., Jones, K. M., Henikoff, S., Buell, C. R. and Jiang, J. (2004) Sequencing of a rice centromere uncovers active genes. Nature Genet. 36, 138–145.
– reference: Richards, E. J. and Ausubel, F. M. (1988) Isolation of a higher eukaryotic telomere from Arabidpsis thaliana. Cell 53, 127–136.
– reference: Fukui, K. (1996) Plant Chromosomes at Mitosis. In: Plant Chromosomes: Laboratory Methods (eds Fukui, K. and Nakayama, S.), pp. 1–18. CRC press, Boca Raton, CRC press, Inc.
– volume: 49
  start-page: 645
  year: 2002
  ident: 41
  publication-title: Plant Mol. Biol.
– volume: 110
  start-page: 83
  issn: 0009-5915
  year: 2001
  ident: 12
  publication-title: Chromosoma
  doi: 10.1007/s004120100132
– volume: 12
  start-page: 599
  issn: 0890-9369
  issue: 5
  year: 1998
  ident: 34
  publication-title: Genes Dev.
  doi: 10.1101/gad.12.5.599
– ident: 40
  doi: 10.1016/S0003-2670(97)00619-3
– volume: 154
  start-page: 397
  issn: 0016-6731
  year: 2000
  ident: 20
  publication-title: Genetics
  doi: 10.1093/genetics/154.1.397
– ident: 26
  doi: 10.1023/A:1011632111845
– ident: 38
  doi: 10.1016/S0092-8674(00)81326-4
– volume: 11
  start-page: 155
  issn: 0959-437X
  year: 2001
  ident: 23
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/S0959-437X(00)00173-8
– ident: 16
  doi: 10.1002/(SICI)1520-6408(1998)22:1<65::AID-DVG7>3.3.CO;2-W
– ident: 14
  doi: 10.1126/science.1063127
– ident: 43
  doi: 10.1074/jbc.M100501200
– volume: 33
  start-page: 450
  issn: 0831-2796
  year: 1990
  ident: 6
  publication-title: Genome
  doi: 10.1139/g90-067
– volume: 179
  start-page: 131
  issn: 0014-2956
  issue: 1
  year: 1989
  ident: 37
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1989.tb14530.x
– ident: 2
  doi: 10.1038/nature01035
– volume: 92
  start-page: 1237
  issn: 0027-8424
  issue: 4
  year: 1995
  ident: 32
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.4.1237
– volume: 3
  start-page: 114
  issn: 1465-7392
  year: 2001
  ident: 36
  publication-title: Nature Cell Biol.
  doi: 10.1038/35055010
– ident: 24
  doi: 10.1038/ng1289
– ident: 27
  doi: 10.1016/S0092-8674(00)81325-2
– ident: 17
  doi: 10.1016/S0014-5793(98)00752-2
– ident: 29
  doi: 10.1016/0092-8674(88)90494-1
– ident: 28
  doi: 10.1046/j.1365-313X.1998.00341.x
– volume: 19
  start-page: 417
  issn: 1046-2023
  year: 1999
  ident: 44
  publication-title: Methods
  doi: 10.1006/meth.1999.0878
– volume: 38
  start-page: 6769
  issn: 0003-2697
  year: 1999
  ident: 19
  publication-title: Biochem.
  doi: 10.1021/bi982702v
– ident: 4
  doi: 10.1016/S0092-8674(00)80492-4
– ident: 1
  doi: 10.1007/s004120050239
– volume: 13
  start-page: 1984
  issn: 1088-9051
  year: 2003
  ident: 3
  publication-title: Genome Res.
  doi: 10.1101/gr.1191603
– ident: 15
  doi: 10.1023/A:1009252429277
– start-page: 1
  issn: 1046-2023
  year: 1996
  ident: 5
  publication-title: Plant Chromosomes: Laboratory Methods
– volume: 4
  start-page: 191
  issn: 0967-3849
  year: 1996
  ident: 7
  publication-title: Chromosome Res.
  doi: 10.1007/BF02254958
– ident: 39
  doi: 10.1073/pnas.94.18.9665
– volume: 33
  start-page: 471
  issn: 0960-7412
  year: 2003
  ident: 13
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.2003.01638.x
– ident: 18
  doi: 10.1016/S0014-5793(97)01544-5
– volume: 3
  start-page: 344
  issn: 1471-4892
  year: 2003
  ident: 22
  publication-title: Curr. Opin. Pharmacol.
  doi: 10.1016/S1471-4892(03)00084-5
– ident: 11
  doi: 10.1105/tpc.12.11.2087
– ident: 30
  doi: 10.1083/jcb.133.2.235
– ident: 9
  doi: 10.1023/B:CHRO.0000038766.53836.c3
– ident: 10
  doi: 10.1126/science.288.5470.1422
– ident: 21
  doi: 10.1242/jcs.00493
– ident: 42
  doi: 10.1023/A:1022375017938
– ident: 31
  doi: 10.1038/33952
– ident: 35
  doi: 10.1038/47412
– ident: 25
  doi: 10.1023/A:1005822504690
– volume: 18
  start-page: 675
  issn: 0960-7412
  year: 1999
  ident: 8
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1999.00496.x
– ident: 33
  doi: 10.1016/S0378-1119(99)00405-9
SSID ssj0020983
ssib058492816
ssib044737543
Score 1.7009174
Snippet Nucleosomal histones are covalently modified at specific amino acid residues. In the case of histone H4, four lysines (K5, K8, K12, and K16) are acetylated. In...
SourceID proquest
pubmed
crossref
medicalonline
jstage
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 269
SubjectTerms ACETILACION
ACETYLATION
barley
Centromere - metabolism
CHROMOSOME
CHROMOSOMES
Chromosomes, Plant - metabolism
CITOGENETICA
CROMOSOMAS
CYTOGENETICS
CYTOGENETIQUE
HISTONAS
HISTONE
histone H4 acetylation
HISTONES
Histones - metabolism
Hordeum - cytology
Hordeum - physiology
HORDEUM VULGARE
Lysine - metabolism
MITOSE
MITOSIS
mitotic chromosome
nucleolar organizing region (NOR)
Nucleolus Organizer Region - metabolism
Nucleosomes - metabolism
Prophase - physiology
Protein Processing, Post-Translational - physiology
Telophase - physiology
Title Comprehensive analysis of dynamics of histone H4 acetylation in mitotic barley [Hordeum vulgare] cells
URI https://www.jstage.jst.go.jp/article/ggs/80/4/80_4_269/_article/-char/en
http://mol.medicalonline.jp/library/journal/download?GoodsID=ch3ggsys/2005/008004/004&name=0269-0276e
https://www.ncbi.nlm.nih.gov/pubmed/16284420
https://www.proquest.com/docview/1464344571
https://www.proquest.com/docview/20226942
https://www.proquest.com/docview/68796790
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Genes & Genetic Systems, 2005, Vol.80(4), pp.269-276
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bixMxFA51RRBEvK1WVw3oPkiZ7nSadGbevK3WguJDFwsiQzKXuta2sm2FKvjb_U6SmU5lC-pDwzBNQma-b07OOUnOYexxoDpZBKZ4Ku7Ensh87SmRhl4nKiQtdHVQgXZbvOv1T8RgJEeNxs_66ZKlbqc_zj1X8j-o4h5wpVOy_4Bs1Slu4Br4ogTCKP8KY_qYz_LPbg-6qsUXyWyieXNtQgpDl-yLlkrz5drufiNHxxSfMwVs1bTkvm4dyud9CsW5mra-r-iIR34oX7bItb-o67AUqXphKIOB0RlIFw660s4_qIlxwA7blOqn9DbStoS2UXzHZewnQxAnXex2pcVqstJGn31DyyCTU9KAB5jQyX1R81qAH2qCJ9zMIMRBNK4l1y59GbImeDGbeqG0KXbaub0H2eLJ0CabKaW1zfvkWCnOnQSgcwC58XjRjvx2YDPB_BFUe_CeXCkUKpNM54sBbAyS6q9H1f6gwI9NDNdqYC62LTo_2nS9pc1cKNQciswXqPUUr-HK1C612ZAnuy0Yo8kMr7GrzgThzyyfrrNGPrvBLtmkpOubrNhiFS9ZxecFL1lF145VvC94jVX8dMYdq7hlFf_oOMUdpz5xw6hb7OTV8fBF33PZOLy0F_pLL8ujWMNYkLmKszDtwdKmQD6dLITRnEepVn6ciSLTuRapjrWMAZ2vUqlE5GtddPfZ3gzjusO4LlI_LWQnS7uZCFWoA9mllFl-oaJuIXpN9qR8q0nqQtVTxpSvCZmsQCABAknkJ0CgyR5Vdb_ZAC3n1toHOIkaY-ZM6uA3WWTxqhq7r7lsLGyBPqp_6DwkxE-TPd1COHGSYYEKXbReLyjHq0yMUSYS86NuIAJhs4SYKfGgByUpNq2hu4iuEDLE4B5Wf0PqEzpqls9X1HFAR9CD3TWAT9wLY7_Jbluybd5ODyqpCPy7u97JPXbZBCg2jsYDtrc8W-X3oXov9QPziaB8--v4N8Dg2Oo
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+analysis+of+dynamics+of+histone+H4+acetylation+in+mitotic+barley+%5BHordeum+vulgare%5D+cells&rft.jtitle=Genes+%26+genetic+systems&rft.au=Wako%2C+T.%28National+Inst.+of+Agrobiological+Sciences%2C+Tsukuba%2C+Ibaraki+%28Japan%29%29&rft.au=Murakami%2C+Y&rft.au=Fukui%2C+K&rft.date=2005&rft.issn=1341-7568&rft.eissn=1880-5779&rft.volume=80&rft.issue=4&rft_id=info:doi/10.1266%2Fggs.80.269&rft.externalDocID=JP2006004761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-7568&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-7568&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-7568&client=summon