A large peptidome dataset improves HLA class I epitope prediction across most of the human population

Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 38; no. 2; pp. 199 - 209
Main Authors Sarkizova, Siranush, Klaeger, Susan, Le, Phuong M., Li, Letitia W., Oliveira, Giacomo, Keshishian, Hasmik, Hartigan, Christina R., Zhang, Wandi, Braun, David A., Ligon, Keith L., Bachireddy, Pavan, Zervantonakis, Ioannis K., Rosenbluth, Jennifer M., Ouspenskaia, Tamara, Law, Travis, Justesen, Sune, Stevens, Jonathan, Lane, William J., Eisenhaure, Thomas, Lan Zhang, Guang, Clauser, Karl R., Hacohen, Nir, Carr, Steven A., Wu, Catherine J., Keskin, Derin B.
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.02.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines. Prediction of HLA class I epitopes is improved in accuracy and breath with peptidomes from 95 mono-allelic cell lines.
AbstractList Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.Prediction of HLA class I epitopes is improved in accuracy and breath with peptidomes from 95 mono-allelic cell lines.
Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.
Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I-associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, -B, -C and -G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena, providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I-associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines. Prediction of HLA class I epitopes is improved in accuracy and breath with peptidomes from 95 mono-allelic cell lines.
Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited predictive power, in part because they were not trained on high-quality epitope datasets covering a broad range of HLA alleles. To enable prediction of endogenous HLA class I–associated peptides across a large fraction of the human population, we used mass spectrometry to profile >185,000 peptides eluted from 95 HLA-A, B, C and G mono-allelic cell lines. We identified canonical peptide motifs per HLA allele, unique and shared binding submotifs across alleles, and distinct motifs associated with different peptide lengths. By integrating these data with transcript abundance and peptide processing, we developed HLAthena , providing allele-and-length-specific and pan-allele-pan-length prediction models for endogenous peptide presentation. These models predicted endogenous HLA class I–associated ligands with 1.5-fold improvement in positive predictive value compared with existing tools and correctly identified >75% of HLA-bound peptides that were observed experimentally in 11 patient-derived tumor cell lines.
Audience Academic
Author Oliveira, Giacomo
Rosenbluth, Jennifer M.
Hartigan, Christina R.
Keskin, Derin B.
Bachireddy, Pavan
Clauser, Karl R.
Lan Zhang, Guang
Carr, Steven A.
Le, Phuong M.
Zhang, Wandi
Zervantonakis, Ioannis K.
Ligon, Keith L.
Hacohen, Nir
Klaeger, Susan
Keshishian, Hasmik
Eisenhaure, Thomas
Lane, William J.
Sarkizova, Siranush
Braun, David A.
Wu, Catherine J.
Stevens, Jonathan
Ouspenskaia, Tamara
Li, Letitia W.
Justesen, Sune
Law, Travis
AuthorAffiliation 8 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
12 Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
9 Immunitrack, Copenhagen E, Denmark
1 Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
2 Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
3 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
5 Harvard Medical School, Boston, Massachusetts, USA
11 Department of Computer Science, Metropolitan College, Boston University, Boston, Massachusetts, USA
4 Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
6 Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
7 Division of Neuropathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
10 Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
AuthorAffiliation_xml – name: 4 Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
– name: 3 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
– name: 9 Immunitrack, Copenhagen E, Denmark
– name: 5 Harvard Medical School, Boston, Massachusetts, USA
– name: 10 Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
– name: 6 Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
– name: 11 Department of Computer Science, Metropolitan College, Boston University, Boston, Massachusetts, USA
– name: 8 Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
– name: 12 Center for Cancer Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
– name: 1 Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
– name: 2 Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
– name: 7 Division of Neuropathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
Author_xml – sequence: 1
  givenname: Siranush
  surname: Sarkizova
  fullname: Sarkizova, Siranush
  organization: Department of Biomedical Informatics, Harvard Medical School, Broad Institute of MIT and Harvard
– sequence: 2
  givenname: Susan
  orcidid: 0000-0002-0074-5163
  surname: Klaeger
  fullname: Klaeger, Susan
  organization: Broad Institute of MIT and Harvard
– sequence: 3
  givenname: Phuong M.
  surname: Le
  fullname: Le, Phuong M.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute
– sequence: 4
  givenname: Letitia W.
  surname: Li
  fullname: Li, Letitia W.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute
– sequence: 5
  givenname: Giacomo
  surname: Oliveira
  fullname: Oliveira, Giacomo
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute
– sequence: 6
  givenname: Hasmik
  surname: Keshishian
  fullname: Keshishian, Hasmik
  organization: Broad Institute of MIT and Harvard
– sequence: 7
  givenname: Christina R.
  surname: Hartigan
  fullname: Hartigan, Christina R.
  organization: Broad Institute of MIT and Harvard
– sequence: 8
  givenname: Wandi
  surname: Zhang
  fullname: Zhang, Wandi
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute
– sequence: 9
  givenname: David A.
  surname: Braun
  fullname: Braun, David A.
  organization: Broad Institute of MIT and Harvard, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Department of Medicine, Brigham and Women’s Hospital
– sequence: 10
  givenname: Keith L.
  surname: Ligon
  fullname: Ligon, Keith L.
  organization: Broad Institute of MIT and Harvard, Harvard Medical School, Center for Patient Derived Models, Dana-Farber Cancer Institute, Division of Neuropathology, Brigham and Women’s Hospital
– sequence: 11
  givenname: Pavan
  surname: Bachireddy
  fullname: Bachireddy, Pavan
  organization: Broad Institute of MIT and Harvard, Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women’s Hospital
– sequence: 12
  givenname: Ioannis K.
  orcidid: 0000-0003-2386-9553
  surname: Zervantonakis
  fullname: Zervantonakis, Ioannis K.
  organization: Department of Cell Biology, Harvard Medical School
– sequence: 13
  givenname: Jennifer M.
  orcidid: 0000-0003-1314-6976
  surname: Rosenbluth
  fullname: Rosenbluth, Jennifer M.
  organization: Department of Cell Biology, Harvard Medical School
– sequence: 14
  givenname: Tamara
  surname: Ouspenskaia
  fullname: Ouspenskaia, Tamara
  organization: Broad Institute of MIT and Harvard
– sequence: 15
  givenname: Travis
  orcidid: 0000-0002-7399-3299
  surname: Law
  fullname: Law, Travis
  organization: Broad Institute of MIT and Harvard
– sequence: 16
  givenname: Sune
  surname: Justesen
  fullname: Justesen, Sune
  organization: Immunitrack
– sequence: 17
  givenname: Jonathan
  surname: Stevens
  fullname: Stevens, Jonathan
  organization: Department of Pathology, Brigham and Women’s Hospital
– sequence: 18
  givenname: William J.
  orcidid: 0000-0002-1097-5229
  surname: Lane
  fullname: Lane, William J.
  organization: Harvard Medical School, Department of Pathology, Brigham and Women’s Hospital
– sequence: 19
  givenname: Thomas
  surname: Eisenhaure
  fullname: Eisenhaure, Thomas
  organization: Broad Institute of MIT and Harvard
– sequence: 20
  givenname: Guang
  surname: Lan Zhang
  fullname: Lan Zhang, Guang
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Department of Computer Science, Metropolitan College, Boston University
– sequence: 21
  givenname: Karl R.
  surname: Clauser
  fullname: Clauser, Karl R.
  organization: Broad Institute of MIT and Harvard
– sequence: 22
  givenname: Nir
  orcidid: 0000-0002-2349-2656
  surname: Hacohen
  fullname: Hacohen, Nir
  email: nhacohen@mgh.harvard.edu
  organization: Broad Institute of MIT and Harvard, Department of Medical Oncology, Dana-Farber Cancer Institute, Center for Cancer Immunology, Massachusetts General Hospital
– sequence: 23
  givenname: Steven A.
  orcidid: 0000-0002-7203-4299
  surname: Carr
  fullname: Carr, Steven A.
  email: scarr@broadinstitute.org
  organization: Broad Institute of MIT and Harvard
– sequence: 24
  givenname: Catherine J.
  orcidid: 0000-0002-3348-5054
  surname: Wu
  fullname: Wu, Catherine J.
  email: cwu@partners.org
  organization: Broad Institute of MIT and Harvard, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Department of Medicine, Brigham and Women’s Hospital
– sequence: 25
  givenname: Derin B.
  orcidid: 0000-0002-8496-6181
  surname: Keskin
  fullname: Keskin, Derin B.
  email: derin_keskin@dfci.harvard.edu
  organization: Broad Institute of MIT and Harvard, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Department of Medicine, Brigham and Women’s Hospital, Department of Computer Science, Metropolitan College, Boston University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31844290$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhousuB_6A7yRgDcKds1HJ2luhGFRd2Bgwa_bkKannSxtUpN00X9vZmddZ0RFAknT87xvk573tDhy3kFRPCX4nGBWv44VWdSixESWmFFaygfFCVlUvCRc8qP8jG-rC35cnMZ4jTHmFeePimNG6qqiEp8UsESDDj2gCaZkWz8CanXSERKy4xT8DUR0uV4iM-gY0QrBZJOfMh6gtSZZ75A2wefa6GNCvkNpA2gzj9qhyU_zoLfM4-Jhp4cIT-7Ws-Lzu7efLi7L9dX71cVyXRoucCo5kaKVRJBa1FXDGlMTyQjRsmlrSYwhglKjddXljeY1b0llaNOAbgiVTb1gZ8Wbne80NyO0BlwKelBTsKMO35XXVh1WnN2o3t8ogXGNJc4GL-4Mgv86Q0xqtNHAMGgHfo6KMiokExVlGX3-G3rt5-Dy9RStBBeckpr8k2KLbMcw3qN6PYCyrvP5dGb7abXkhFW5j0Jk6vwPVB4tjNbkaHQ2vz8QvDwQZCbBt9TrOUa1-vjh_9mrL4fsqz22maN1EPMUbb9JcSc5wMkOvw1KgO6-IQSrbZDVLsgqB1ltg6xk1jzb7-S94mdyM0B3QMwl10P49WP_7voDMC773A
CitedBy_id crossref_primary_10_1016_j_coi_2022_102172
crossref_primary_10_3390_antib9040065
crossref_primary_10_3389_fimmu_2022_812393
crossref_primary_10_1002_imed_1021
crossref_primary_10_1016_j_isci_2023_108613
crossref_primary_10_1038_s41586_022_04682_5
crossref_primary_10_1073_pnas_2007246117
crossref_primary_10_1093_pnasnexus_pgad400
crossref_primary_10_1093_bib_bbab493
crossref_primary_10_1007_s10811_021_02383_6
crossref_primary_10_1093_bioinformatics_btad468
crossref_primary_10_3389_fimmu_2020_01181
crossref_primary_10_3389_fimmu_2021_634441
crossref_primary_10_1002_jmv_28860
crossref_primary_10_1016_j_cels_2022_12_002
crossref_primary_10_1038_s41571_020_00460_2
crossref_primary_10_1038_s41467_024_48322_0
crossref_primary_10_1371_journal_ppat_1010337
crossref_primary_10_1016_j_celrep_2023_113596
crossref_primary_10_1038_s41587_022_01424_w
crossref_primary_10_1038_s41573_023_00809_z
crossref_primary_10_1038_s41467_021_24562_2
crossref_primary_10_3390_ijms23031913
crossref_primary_10_3389_fimmu_2023_1108303
crossref_primary_10_1038_s41586_023_06706_0
crossref_primary_10_1038_s41467_022_34904_3
crossref_primary_10_1016_j_mcpro_2023_100631
crossref_primary_10_1016_j_vaccine_2022_06_062
crossref_primary_10_1158_2326_6066_CIR_22_0621
crossref_primary_10_1158_2159_8290_CD_23_1199
crossref_primary_10_1016_j_xcrm_2021_100194
crossref_primary_10_1093_bib_bbae302
crossref_primary_10_1093_bioinformatics_btab628
crossref_primary_10_1016_j_tig_2020_10_001
crossref_primary_10_1021_acscentsci_3c01544
crossref_primary_10_1016_j_mcpro_2022_100228
crossref_primary_10_1002_cti2_1226
crossref_primary_10_1136_jitc_2023_008306
crossref_primary_10_1093_database_baae014
crossref_primary_10_1073_pnas_2204078119
crossref_primary_10_3389_fimmu_2021_782152
crossref_primary_10_1186_s12882_022_02779_7
crossref_primary_10_3390_pharmaceutics15020622
crossref_primary_10_1038_s41416_021_01353_6
crossref_primary_10_1158_2159_8290_CD_21_0502
crossref_primary_10_1074_mcp_RA120_002201
crossref_primary_10_7554_eLife_75670
crossref_primary_10_1080_2162402X_2021_1955545
crossref_primary_10_3389_fonc_2023_1147590
crossref_primary_10_1002_cai2_26
crossref_primary_10_1038_s41587_021_01021_3
crossref_primary_10_1016_j_mcpro_2021_100178
crossref_primary_10_1016_j_celrep_2021_109305
crossref_primary_10_1038_s41467_021_23713_9
crossref_primary_10_1038_s43018_021_00210_y
crossref_primary_10_3389_fgene_2021_602196
crossref_primary_10_7554_eLife_65365
crossref_primary_10_1021_acs_jproteome_3c00229
crossref_primary_10_1172_JCI150535
crossref_primary_10_3389_fimmu_2023_1265044
crossref_primary_10_1126_sciimmunol_adh1781
crossref_primary_10_1111_nyas_14526
crossref_primary_10_1016_j_crmeth_2021_100084
crossref_primary_10_3389_fimmu_2022_944872
crossref_primary_10_1073_pnas_2216697120
crossref_primary_10_3389_fonc_2021_790004
crossref_primary_10_1038_s41598_024_58777_2
crossref_primary_10_1016_j_smim_2023_101727
crossref_primary_10_1038_s41591_022_01786_3
crossref_primary_10_1016_j_ijbiomac_2024_131356
crossref_primary_10_3390_vaccines11071174
crossref_primary_10_1021_acs_jcim_3c01667
crossref_primary_10_3389_fimmu_2023_1210044
crossref_primary_10_1136_jitc_2023_007073
crossref_primary_10_1107_S2052252524002768
crossref_primary_10_3390_biomedicines10040822
crossref_primary_10_1093_bib_bbad504
crossref_primary_10_1038_s41467_022_30867_7
crossref_primary_10_1016_j_smim_2023_101733
crossref_primary_10_3389_fimmu_2021_674021
crossref_primary_10_2174_0113816128286593240226060318
crossref_primary_10_1016_j_cels_2024_03_001
crossref_primary_10_1111_tan_14574
crossref_primary_10_1093_bib_bbae154
crossref_primary_10_3389_fcimb_2021_642583
crossref_primary_10_1038_s41586_022_04839_2
crossref_primary_10_1038_s42003_021_02716_8
crossref_primary_10_1021_acs_jproteome_1c00590
crossref_primary_10_1093_nar_gkad1068
crossref_primary_10_37349_ei_2023_00091
crossref_primary_10_1016_j_iotech_2021_100052
crossref_primary_10_1167_iovs_62_14_3
crossref_primary_10_3389_fimmu_2022_878762
crossref_primary_10_1038_s41587_021_01038_8
crossref_primary_10_1016_j_clim_2022_109219
crossref_primary_10_2139_ssrn_3902781
crossref_primary_10_1021_acsomega_0c01278
crossref_primary_10_26508_lsa_202302255
crossref_primary_10_1016_j_lfs_2023_121374
crossref_primary_10_4049_jimmunol_2001409
crossref_primary_10_1002_pmic_202000143
crossref_primary_10_3390_cancers13040743
crossref_primary_10_1128_mSystems_00310_21
crossref_primary_10_1093_nar_gkac965
crossref_primary_10_1093_narcan_zcae002
crossref_primary_10_3389_fimmu_2023_1142573
crossref_primary_10_1111_cas_16118
crossref_primary_10_7554_eLife_79144
crossref_primary_10_1016_j_ctrv_2022_102429
crossref_primary_10_1158_0008_5472_CAN_21_0301
crossref_primary_10_3389_fimmu_2023_1269335
crossref_primary_10_1172_jci_insight_163040
crossref_primary_10_3389_fimmu_2021_644637
crossref_primary_10_1016_j_mcpro_2023_100506
crossref_primary_10_1016_j_xcrm_2024_101516
crossref_primary_10_1186_s12967_023_04821_0
crossref_primary_10_1016_j_cels_2020_11_005
crossref_primary_10_1016_j_crmeth_2022_100293
crossref_primary_10_1111_cas_14602
crossref_primary_10_1016_j_smim_2023_101758
crossref_primary_10_3390_ijms22115940
crossref_primary_10_1016_j_crmeth_2023_100479
crossref_primary_10_1016_j_jep_2020_113382
crossref_primary_10_1016_j_mcpro_2021_100133
crossref_primary_10_1016_j_celrep_2022_110916
crossref_primary_10_1016_j_mcpro_2022_100432
crossref_primary_10_1080_14760584_2021_1935248
crossref_primary_10_1172_JCI151666
crossref_primary_10_1016_j_smim_2023_101766
crossref_primary_10_1158_2159_8290_CD_23_1536
crossref_primary_10_1038_s41577_023_00934_1
crossref_primary_10_3390_vaccines11030548
crossref_primary_10_1681_ASN_2022060644
crossref_primary_10_1093_bib_bbad150
crossref_primary_10_3389_fimmu_2022_1067463
crossref_primary_10_1002_pmic_201900335
crossref_primary_10_1002_pmic_202100171
crossref_primary_10_3389_fimmu_2022_833017
crossref_primary_10_1002_pmic_201900334
crossref_primary_10_1016_j_annonc_2021_08_2153
crossref_primary_10_3390_vaccines12050498
crossref_primary_10_1016_j_cels_2020_06_010
crossref_primary_10_1080_14760584_2022_2012456
crossref_primary_10_1038_s43018_021_00226_4
crossref_primary_10_3389_fimmu_2021_658372
crossref_primary_10_1186_s40364_023_00478_5
crossref_primary_10_1371_journal_pone_0252198
crossref_primary_10_1016_j_cell_2021_05_046
crossref_primary_10_1038_s41598_020_77466_4
crossref_primary_10_1186_s12943_023_01844_5
crossref_primary_10_1016_j_cbi_2022_110220
crossref_primary_10_1016_j_celrep_2024_114325
crossref_primary_10_3390_cells10092379
crossref_primary_10_1158_2767_9764_CRC_23_0121
crossref_primary_10_1021_acs_jproteome_0c00457
crossref_primary_10_1038_s41587_022_01464_2
crossref_primary_10_1093_nar_gkaa379
crossref_primary_10_1186_s12859_020_03946_z
crossref_primary_10_1016_j_mcpro_2021_100116
crossref_primary_10_1038_s42256_023_00694_6
crossref_primary_10_3389_fimmu_2023_1212136
crossref_primary_10_1016_j_mcpro_2021_100111
crossref_primary_10_1186_s12859_023_05606_4
crossref_primary_10_1007_s00281_022_00980_2
crossref_primary_10_1038_s41586_021_03520_4
crossref_primary_10_1016_j_jaut_2023_103070
crossref_primary_10_1172_jci_insight_146356
crossref_primary_10_1016_j_ccell_2023_08_013
crossref_primary_10_1016_j_jhepr_2022_100576
crossref_primary_10_1136_jitc_2023_006889
crossref_primary_10_1146_annurev_cancerbio_060820_111701
crossref_primary_10_3389_fgene_2023_1082168
crossref_primary_10_1038_s41541_023_00795_8
crossref_primary_10_3389_fimmu_2023_1105420
crossref_primary_10_1016_j_immuno_2023_100030
crossref_primary_10_3389_fimmu_2021_682103
crossref_primary_10_1002_eji_202350449
crossref_primary_10_1038_s41586_020_03054_1
crossref_primary_10_1038_s41467_022_34033_x
crossref_primary_10_1186_s13073_020_00767_w
crossref_primary_10_1016_j_xcrm_2021_100221
crossref_primary_10_3389_fimmu_2022_847756
crossref_primary_10_1016_j_jconrel_2022_05_005
crossref_primary_10_12688_f1000research_132538_1
crossref_primary_10_1093_bioinformatics_btab479
crossref_primary_10_1038_s41577_023_00937_y
crossref_primary_10_1093_bib_bbae133
crossref_primary_10_1093_nar_gkac776
crossref_primary_10_1128_JVI_00081_21
crossref_primary_10_1038_s41571_023_00789_4
crossref_primary_10_1146_annurev_chembioeng_101420_125021
crossref_primary_10_1038_s41573_021_00387_y
crossref_primary_10_1038_s41598_023_40000_3
crossref_primary_10_1038_s43018_023_00552_9
crossref_primary_10_1093_intimm_dxac046
crossref_primary_10_3390_cancers14163972
crossref_primary_10_1042_BST20220782
crossref_primary_10_1016_j_mcpro_2024_100798
crossref_primary_10_1038_s42256_020_00260_4
crossref_primary_10_1093_bioinformatics_btad780
crossref_primary_10_12688_f1000research_26935_1
crossref_primary_10_1126_science_adk0777
crossref_primary_10_1038_s41467_023_37547_0
crossref_primary_10_1111_biom_13717
crossref_primary_10_1126_science_abc8697
crossref_primary_10_3389_fimmu_2021_705772
crossref_primary_10_1016_j_cellimm_2023_104707
crossref_primary_10_3389_fimmu_2024_1386160
crossref_primary_10_3389_fimmu_2020_599558
crossref_primary_10_3389_fimmu_2021_662443
crossref_primary_10_1016_j_mcpro_2023_100563
crossref_primary_10_1016_j_tips_2021_01_006
crossref_primary_10_1038_s41588_024_01785_9
crossref_primary_10_4049_jimmunol_2300232
crossref_primary_10_1038_s43018_023_00591_2
crossref_primary_10_1042_BCJ20200910
crossref_primary_10_1111_imr_13233
crossref_primary_10_1016_j_contre_2022_100015
crossref_primary_10_1158_2326_6066_CIR_21_0727
crossref_primary_10_3390_cancers14051243
crossref_primary_10_1093_bioinformatics_btab131
crossref_primary_10_1182_blood_2021012882
crossref_primary_10_1093_pnasnexus_pgac124
crossref_primary_10_1016_j_isci_2021_103107
crossref_primary_10_1021_acsomega_2c02425
crossref_primary_10_1038_s41587_022_01566_x
crossref_primary_10_1038_s41467_020_18204_2
crossref_primary_10_1016_j_semcancer_2023_02_007
crossref_primary_10_25208_vdv1269
crossref_primary_10_1073_pnas_2100542118
crossref_primary_10_1016_j_isci_2022_104975
crossref_primary_10_3390_biomedicines11071937
crossref_primary_10_3389_fimmu_2022_835454
crossref_primary_10_1016_j_immuni_2021_03_001
crossref_primary_10_1021_jasms_1c00076
crossref_primary_10_1016_j_cell_2023_12_013
crossref_primary_10_1136_jitc_2023_008104
crossref_primary_10_1007_s11427_020_1888_1
crossref_primary_10_1016_j_mcpro_2022_100266
crossref_primary_10_1038_s41571_020_00455_z
crossref_primary_10_1158_2326_6066_CIR_20_0526
crossref_primary_10_3389_fimmu_2021_656451
crossref_primary_10_1016_j_isci_2022_103850
crossref_primary_10_3389_fimmu_2021_735609
crossref_primary_10_1016_j_coi_2023_102342
crossref_primary_10_3389_fimmu_2024_1394003
crossref_primary_10_1142_S2424913020500095
crossref_primary_10_3389_fimmu_2020_585385
crossref_primary_10_1021_acs_jproteome_1c00842
crossref_primary_10_1038_s43018_021_00197_6
crossref_primary_10_1038_s41586_021_03704_y
crossref_primary_10_1038_s41586_021_04061_6
crossref_primary_10_1038_s41467_023_40129_9
crossref_primary_10_3389_fimmu_2021_635521
crossref_primary_10_3390_molecules25225409
crossref_primary_10_1074_mcp_TIR120_002048
crossref_primary_10_3389_fimmu_2023_1288105
crossref_primary_10_1038_s41587_020_0577_1
crossref_primary_10_1016_j_coi_2022_102176
Cites_doi 10.3389/fimmu.2019.00141
10.18632/oncotarget.22487
10.1186/s13073-016-0288-x
10.1038/s41586-018-0792-9
10.1126/sciimmunol.aar3947
10.1182/blood-2014-04-567933
10.1074/mcp.TIR117.000383
10.1074/mcp.RA118.000877
10.1073/pnas.1707658114
10.1016/S0952-7915(98)80124-6
10.1126/science.aaf4384
10.1007/s002510050595
10.1038/nbt.4313
10.1038/nri3370
10.1007/BF01025492
10.1016/j.immuni.2017.02.007
10.4049/jimmunol.1800914
10.1172/JCI88590
10.4049/jimmunol.165.6.3260
10.1038/ncomms13404
10.1016/j.humimm.2013.06.025
10.1126/science.1546328
10.1093/nar/gku1161
10.4049/jimmunol.1300292
10.1034/j.1399-0039.2000.550314.x
10.1016/S0171-2985(11)80548-6
10.1177/1087057108329453
10.4049/jimmunol.1002629
10.1093/nar/gku1056
10.1002/1098-2272(200101)20:1<87::AID-GEPI8>3.0.CO;2-R
10.1038/nature22991
10.1093/nar/gku938
10.4049/jimmunol.1700893
10.1016/j.humimm.2008.05.001
10.1126/sciimmunol.aaw1622
10.1007/BF00172063
10.1016/j.cels.2018.05.014
10.4049/jimmunol.1700938
10.1007/s00251-018-1058-2
10.1371/journal.pone.0000796
10.21105/joss.00861
10.1074/mcp.M114.042812
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
COPYRIGHT 2020 Nature Publishing Group
2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: COPYRIGHT 2020 Nature Publishing Group
– notice: 2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2019.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
N95
XI7
IOV
ISR
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41587-019-0322-9
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale_Business Insights: Global
Business Insights: Essentials
Opposing Viewpoints Resource Center
Science In Context
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest research library
ProQuest Science Journals
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
Research Library Prep



MEDLINE - Academic

MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 209
ExternalDocumentID A613408777
10_1038_s41587_019_0322_9
31844290
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Massachusetts
GeographicLocations_xml – name: Massachusetts
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Human Genome Research Institute (NHGRI)
  grantid: T32HG002295
  funderid: https://doi.org/10.13039/100000051
– fundername: NCI NIH HHS
  grantid: U01 CA214125
– fundername: NCI NIH HHS
  grantid: P01 CA206978
– fundername: NCI NIH HHS
  grantid: P01 CA229092
– fundername: NCI NIH HHS
  grantid: P50 CA240243
– fundername: NCI NIH HHS
  grantid: K08 CA248458
– fundername: NCI NIH HHS
  grantid: R21 CA216772
– fundername: NCI NIH HHS
  grantid: R01 CA155010
– fundername: NCI NIH HHS
  grantid: P50 CA101942
– fundername: NCI NIH HHS
  grantid: U24 CA224331
– fundername: NCI NIH HHS
  grantid: T32 CA009172
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5M7
5RE
5S5
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAZLF
ABAWZ
ABDBF
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ABVXF
ACBTR
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
AENEX
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGEZK
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKOMP
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESTFP
ESX
EXGXG
F5P
FA8
FEDTE
FQGFK
FSGXE
FYUFA
G8K
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NADUK
NEJ
NNMJJ
NXXTH
O9-
ODYON
P2P
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RVV
RXW
SHXYY
SIXXV
SJN
SNYQT
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYZH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
AADEA
AAEXX
ABEEJ
ADZGE
AADWK
AAJMP
AAYJO
ABGIJ
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
AEDAW
AEFTE
AGGBP
AGPPL
AHGBK
AJDOV
NYICJ
XFK
ZA5
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PQEST
PQUKI
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c670t-6197d91718784b3bc819311a9bd891cc1722caa4f91ca686d14c2bbeab129b853
IEDL.DBID BENPR
ISSN 1087-0156
IngestDate Tue Sep 17 21:19:17 EDT 2024
Sat Oct 26 05:19:33 EDT 2024
Thu Oct 10 20:58:44 EDT 2024
Thu Oct 10 20:52:29 EDT 2024
Thu Feb 22 23:27:49 EST 2024
Fri Feb 02 04:11:11 EST 2024
Thu Aug 01 20:20:49 EDT 2024
Thu Aug 01 20:12:27 EDT 2024
Tue Oct 08 13:40:18 EDT 2024
Thu Sep 12 19:38:31 EDT 2024
Thu Oct 24 10:04:43 EDT 2024
Fri Oct 11 20:46:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
Reprints and permissions information is available at www.nature.com/reprints.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c670t-6197d91718784b3bc819311a9bd891cc1722caa4f91ca686d14c2bbeab129b853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
D.B.K., C.J.W., N.H. and S.C. directed the overall study design. S.S. performed computational analyses and developed predictive models. S.K., C.R.H., H.K. and K.R.C. generated the MS data and performed data analysis. D.B.K. and G.L.Z. selected the HLA alleles for analysis; D.B.K., P.M.L. and L.W.L. generated the single HLA-allele cell lines and performed data generation. D.B.K., G.O., K.L., D.B., P.M.L. and L.W.L. developed the patient-derived tumor cell lines; I.K.Z. and J.M.R. generated and provided cells from an ovarian cancer PDX model; P.B. provided CLL samples for analysis. W.Z. provided expert technical assistance. T.E. generated RNA-seq data for mono-allelic cell lines; T.O. and T.L. generated and quantified Ribo-seq data. J.S. and W.L. performed HLA typing and validation of all cell lines. S.J. performed HLA-binding validation assays. S.S., S.K., N.H., C.J.W. and D.B.K. wrote the manuscript, with contributions from all co-authors.
Lead Contact: cwu@partners.org
Denotes equal contribution
Author Contributions
ORCID 0000-0002-0074-5163
0000-0002-7399-3299
0000-0003-1314-6976
0000-0003-2386-9553
0000-0002-1097-5229
0000-0002-3348-5054
0000-0002-8496-6181
0000-0002-2349-2656
0000-0002-7203-4299
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7008090
PMID 31844290
PQID 2352323001
PQPubID 47191
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008090
proquest_miscellaneous_2327937423
proquest_journals_2476762181
proquest_journals_2352323001
gale_infotracmisc_A613408777
gale_infotracacademiconefile_A613408777
gale_incontextgauss_ISR_A613408777
gale_incontextgauss_IOV_A613408777
gale_businessinsightsgauss_A613408777
crossref_primary_10_1038_s41587_019_0322_9
pubmed_primary_31844290
springer_journals_10_1038_s41587_019_0322_9
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2020
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Kaur (CR24) 2017; 8
Rammensee, Bachmann, Emmerich, Bachor, Stevanović (CR45) 1999; 50
Zhang (CR11) 2017; 8
Rammensee, Friede, Stevanoviíc (CR44) 1995; 41
Jurtz (CR3) 2017; 199
Di Marco (CR28) 2017; 199
Solberg (CR14) 2008; 69
Chong (CR37) 2018; 17
Liepe (CR29) 2016; 354
Gragert, Madbouly, Freeman, Maiers (CR13) 2013; 74
Nielsen (CR21) 2007; 2
Parham, Moffett (CR20) 2013; 13
Keskin (CR26) 2019; 565
Rolfs, Solntsev, Shortreed, Frey, Smith (CR32) 2018; 18
Bulik-Sullivan (CR7) 2018; 37
Sette, Sidney (CR18) 1998; 10
Bremel, Homan (CR39) 2010; 6
Gfeller (CR6) 2018; 201
Bassani-Sternberg (CR34) 2016; 7
de Kruijf (CR10) 2010; 185
O’Donnell (CR5) 2018; 7
Rolfs, Müller, Shortreed, Smith, Bassani-Sternberg (CR33) 2019; 4
Lefranc (CR1) 2015; 43
Pearson (CR16) 2016; 126
Vita (CR17) 2015; 43
Harndahl (CR41) 2009; 14
Rist (CR22) 2013; 191
Faridi (CR30) 2018; 3
Abelin (CR4) 2017; 46
Maenaka (CR23) 2000; 165
Kidera, Konishi, Oka, Ooi, Scheraga (CR38) 1985; 4
Dawson, Ozgur, Sari, Ghanayem, Kostyu (CR12) 2001; 20
Robinson, Malik, Parham, Bodmer, Marsh (CR19) 2000; 55
Schuster (CR35) 2017; 114
Girdlestone (CR36) 1995; 193
Kim, Sidney, Pinilla, Sette, Peters (CR46) 2009; 10
CR40
Nielsen, Andreatta (CR8) 2016; 8
Ott (CR15) 2017; 547
Hunt (CR43) 1992; 255
Celik, Simper, Hiemisch, Blasczyk, Bade-Döding (CR25) 2018; 70
Mylonas (CR31) 2018; 17
Robinson (CR2) 2015; 43
Rajasagi (CR9) 2014; 124
Javitt (CR27) 2019; 10
Bassani-Sternberg, Pletscher-Frankild, Jensen, Mann (CR42) 2015; 14
H Rammensee (322_CR45) 1999; 50
R-L Zhang (322_CR11) 2017; 8
P Parham (322_CR20) 2013; 13
J Girdlestone (322_CR36) 1995; 193
MJ Rist (322_CR22) 2013; 191
M Nielsen (322_CR8) 2016; 8
HG Rammensee (322_CR44) 1995; 41
M Nielsen (322_CR21) 2007; 2
V Jurtz (322_CR3) 2017; 199
L Gragert (322_CR13) 2013; 74
A Javitt (322_CR27) 2019; 10
K Maenaka (322_CR23) 2000; 165
EM de Kruijf (322_CR10) 2010; 185
DV Dawson (322_CR12) 2001; 20
C Chong (322_CR37) 2018; 17
H Pearson (322_CR16) 2016; 126
B Bulik-Sullivan (322_CR7) 2018; 37
Z Rolfs (322_CR32) 2018; 18
M Rajasagi (322_CR9) 2014; 124
Y Kim (322_CR46) 2009; 10
R Vita (322_CR17) 2015; 43
A Sette (322_CR18) 1998; 10
JG Abelin (322_CR4) 2017; 46
DB Keskin (322_CR26) 2019; 565
J Liepe (322_CR29) 2016; 354
TJ O’Donnell (322_CR5) 2018; 7
PA Ott (322_CR15) 2017; 547
RD Bremel (322_CR39) 2010; 6
P Faridi (322_CR30) 2018; 3
M Di Marco (322_CR28) 2017; 199
R Mylonas (322_CR31) 2018; 17
G Kaur (322_CR24) 2017; 8
AA Celik (322_CR25) 2018; 70
M-P Lefranc (322_CR1) 2015; 43
M Bassani-Sternberg (322_CR34) 2016; 7
D Gfeller (322_CR6) 2018; 201
322_CR40
J Robinson (322_CR19) 2000; 55
J Robinson (322_CR2) 2015; 43
M Harndahl (322_CR41) 2009; 14
OD Solberg (322_CR14) 2008; 69
Z Rolfs (322_CR33) 2019; 4
M Bassani-Sternberg (322_CR42) 2015; 14
H Schuster (322_CR35) 2017; 114
A Kidera (322_CR38) 1985; 4
DF Hunt (322_CR43) 1992; 255
References_xml – volume: 43
  start-page: D405
  year: 2015
  end-page: D412
  ident: CR17
  article-title: The immune epitope database (IEDB) 3.0
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Vita
– volume: 255
  start-page: 1261
  year: 1992
  end-page: 1263
  ident: CR43
  article-title: Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry
  publication-title: Science
  contributor:
    fullname: Hunt
– volume: 17
  start-page: 2347
  year: 2018
  end-page: 2357
  ident: CR31
  article-title: Estimating the contribution of proteasomal spliced peptides to the HLA-I ligandome
  publication-title: Mol. Cell. Proteom.
  contributor:
    fullname: Mylonas
– volume: 10
  start-page: 141
  year: 2019
  ident: CR27
  article-title: Pro-inflammatory cytokines alter the immunopeptidome landscape by modulation of HLA-B expression
  publication-title: Front. Immunol.
  contributor:
    fullname: Javitt
– volume: 10
  start-page: 478
  year: 1998
  end-page: 482
  ident: CR18
  article-title: HLA supertypes and supermotifs: a functional perspective on HLA polymorphism
  publication-title: Curr. Opin. Immunol.
  contributor:
    fullname: Sidney
– volume: 124
  start-page: 453
  year: 2014
  end-page: 462
  ident: CR9
  article-title: Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia
  publication-title: Blood
  contributor:
    fullname: Rajasagi
– volume: 46
  start-page: 315
  year: 2017
  end-page: 326
  ident: CR4
  article-title: Mass spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more accurate epitope prediction
  publication-title: Immunity
  contributor:
    fullname: Abelin
– volume: 74
  start-page: 1313
  year: 2013
  end-page: 1320
  ident: CR13
  article-title: Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry
  publication-title: Hum. Immunol.
  contributor:
    fullname: Maiers
– volume: 7
  start-page: 129
  year: 2018
  end-page: 132.e4
  ident: CR5
  article-title: MHCflurry: open-source class I MHC binding affinity prediction
  publication-title: Cell Syst.
  contributor:
    fullname: O’Donnell
– volume: 13
  start-page: 133
  year: 2013
  end-page: 144
  ident: CR20
  article-title: Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution
  publication-title: Nat. Rev. Immunol.
  contributor:
    fullname: Moffett
– volume: 185
  start-page: 7452
  year: 2010
  end-page: 7459
  ident: CR10
  article-title: HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients
  publication-title: J. Immunol.
  contributor:
    fullname: de Kruijf
– volume: 8
  year: 2017
  ident: CR24
  article-title: Structural and regulatory diversity shape HLA-C protein expression levels
  publication-title: Nat. Commun.
  contributor:
    fullname: Kaur
– volume: 126
  start-page: 4690
  year: 2016
  end-page: 4701
  ident: CR16
  article-title: MHC class I-associated peptides derive from selective regions of the human genome
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Pearson
– volume: 4
  start-page: eaaw1622
  year: 2019
  ident: CR33
  article-title: Comment on ‘A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands’.
  publication-title: Sci. Immunol.
  contributor:
    fullname: Bassani-Sternberg
– ident: CR40
– volume: 14
  start-page: 173
  year: 2009
  end-page: 180
  ident: CR41
  article-title: Peptide binding to HLA class I molecules: homogenous, high-throughput screening, and affinity assays
  publication-title: J. Biomol. Screen.
  contributor:
    fullname: Harndahl
– volume: 191
  start-page: 561
  year: 2013
  end-page: 571
  ident: CR22
  article-title: HLA peptide length preferences control CD8 T cell responses
  publication-title: J. Immunol.
  contributor:
    fullname: Rist
– volume: 199
  start-page: 2639
  year: 2017
  end-page: 2651
  ident: CR28
  article-title: Unveiling the peptide motifs of HLA-C and HLA-G from naturally presented peptides and generation of binding prediction matrices
  publication-title: J. Immunol.
  contributor:
    fullname: Di Marco
– volume: 6
  year: 2010
  ident: CR39
  article-title: An integrated approach to epitope analysis I: dimensional reduction, visualization and prediction of MHC binding using amino acid principal components and regression approaches
  publication-title: Immunome Res.
  contributor:
    fullname: Homan
– volume: 41
  start-page: 178
  year: 1995
  end-page: 228
  ident: CR44
  article-title: MHC ligands and peptide motifs: first listing
  publication-title: Immunogenetics
  contributor:
    fullname: Stevanoviíc
– volume: 114
  start-page: E9942
  year: 2017
  end-page: E9951
  ident: CR35
  article-title: The immunopeptidomic landscape of ovarian carcinomas
  publication-title: Proc. Natl Acad. Sci. USA
  contributor:
    fullname: Schuster
– volume: 2
  start-page: e796
  year: 2007
  ident: CR21
  article-title: NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence
  publication-title: PLoS ONE
  contributor:
    fullname: Nielsen
– volume: 193
  start-page: 229
  year: 1995
  end-page: 237
  ident: CR36
  article-title: Regulation of HLA class I loci by interferons
  publication-title: Immunobiology
  contributor:
    fullname: Girdlestone
– volume: 37
  start-page: 55
  year: 2018
  end-page: 63
  ident: CR7
  article-title: Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Bulik-Sullivan
– volume: 3
  start-page: eaar3947
  year: 2018
  ident: CR30
  article-title: A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands
  publication-title: Sci. Immunol.
  contributor:
    fullname: Faridi
– volume: 69
  start-page: 443
  year: 2008
  end-page: 464
  ident: CR14
  article-title: Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies
  publication-title: Hum. Immunol.
  contributor:
    fullname: Solberg
– volume: 165
  start-page: 3260
  year: 2000
  end-page: 3267
  ident: CR23
  article-title: Nonstandard peptide binding revealed by crystal structures of HLA-B*5101 complexed with HIV immunodominant epitopes
  publication-title: J. Immunol.
  contributor:
    fullname: Maenaka
– volume: 70
  start-page: 485
  year: 2018
  end-page: 494
  ident: CR25
  article-title: HLA-G peptide preferences change in transformed cells: impact on the binding motif
  publication-title: Immunogenetics
  contributor:
    fullname: Bade-Döding
– volume: 10
  year: 2009
  ident: CR46
  article-title: Derivation of an amino acid similarity matrix for peptide:MHC binding and its application as a Bayesian prior
  publication-title: BMC Bioinformatics
  contributor:
    fullname: Peters
– volume: 4
  start-page: 23
  year: 1985
  end-page: 55
  ident: CR38
  article-title: Statistical analysis of the physical properties of the 20 naturally occurring amino acids
  publication-title: J. Protein Chem.
  contributor:
    fullname: Scheraga
– volume: 43
  start-page: D413
  year: 2015
  end-page: D422
  ident: CR1
  article-title: IMGT®, the international ImMunoGeneTics information system® 25 years on
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Lefranc
– volume: 18
  start-page: 349
  year: 2018
  end-page: 358
  ident: CR32
  article-title: Global identification of post-translationally spliced peptides with neo-fusion
  publication-title: J. Proteome Res.
  contributor:
    fullname: Smith
– volume: 201
  start-page: 3705
  year: 2018
  end-page: 3716
  ident: CR6
  article-title: The length distribution and multiple specificity of naturally presented HLA-I ligands
  publication-title: J. Immunol.
  contributor:
    fullname: Gfeller
– volume: 565
  start-page: 234
  year: 2019
  end-page: 239
  ident: CR26
  article-title: Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial
  publication-title: Nature
  contributor:
    fullname: Keskin
– volume: 8
  year: 2016
  ident: CR8
  article-title: NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets
  publication-title: Genome Med.
  contributor:
    fullname: Andreatta
– volume: 547
  start-page: 217
  year: 2017
  end-page: 221
  ident: CR15
  article-title: An immunogenic personal neoantigen vaccine for patients with melanoma
  publication-title: Nature
  contributor:
    fullname: Ott
– volume: 8
  start-page: 107441
  year: 2017
  end-page: 107451
  ident: CR11
  article-title: Predictive value of different proportion of lesion HLA-G expression in colorectal cancer
  publication-title: Oncotarget
  contributor:
    fullname: Zhang
– volume: 17
  start-page: 533
  year: 2018
  end-page: 548
  ident: CR37
  article-title: High-throughput and sensitive immunopeptidomics platform reveals profound interferonγ-mediated remodeling of the human leukocyte antigen (HLA) ligandome
  publication-title: Mol. Cell. Proteom.
  contributor:
    fullname: Chong
– volume: 14
  start-page: 658
  year: 2015
  end-page: 673
  ident: CR42
  article-title: Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation
  publication-title: Mol. Cell. Proteom.
  contributor:
    fullname: Mann
– volume: 20
  start-page: 87
  year: 2001
  end-page: 106
  ident: CR12
  article-title: Ramifications of HLA class I polymorphism and population genetics for vaccine development
  publication-title: Genet. Epidemiol.
  contributor:
    fullname: Kostyu
– volume: 55
  start-page: 280
  year: 2000
  end-page: 287
  ident: CR19
  article-title: IMGT/HLA database—a sequence database for the human major histocompatibility complex
  publication-title: Tissue Antigens
  contributor:
    fullname: Marsh
– volume: 43
  start-page: D423
  year: 2015
  end-page: D431
  ident: CR2
  article-title: The IPD and IMGT/HLA database: allele variant databases
  publication-title: Nucleic Acids Res.
  contributor:
    fullname: Robinson
– volume: 199
  start-page: 3360
  year: 2017
  end-page: 3368
  ident: CR3
  article-title: NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data
  publication-title: J. Immunol.
  contributor:
    fullname: Jurtz
– volume: 354
  start-page: 354
  year: 2016
  end-page: 358
  ident: CR29
  article-title: A large fraction of HLA class I ligands are proteasome-generated spliced peptides
  publication-title: Science
  contributor:
    fullname: Liepe
– volume: 50
  start-page: 213
  year: 1999
  end-page: 219
  ident: CR45
  article-title: SYFPEITHI: database for MHC ligands and peptide motifs
  publication-title: Immunogenetics
  contributor:
    fullname: Stevanović
– volume: 7
  year: 2016
  ident: CR34
  article-title: Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry
  publication-title: Nat. Commun.
  contributor:
    fullname: Bassani-Sternberg
– volume: 10
  start-page: 141
  year: 2019
  ident: 322_CR27
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00141
  contributor:
    fullname: A Javitt
– volume: 8
  start-page: 107441
  year: 2017
  ident: 322_CR11
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.22487
  contributor:
    fullname: R-L Zhang
– volume: 8
  year: 2016
  ident: 322_CR8
  publication-title: Genome Med.
  doi: 10.1186/s13073-016-0288-x
  contributor:
    fullname: M Nielsen
– volume: 565
  start-page: 234
  year: 2019
  ident: 322_CR26
  publication-title: Nature
  doi: 10.1038/s41586-018-0792-9
  contributor:
    fullname: DB Keskin
– volume: 3
  start-page: eaar3947
  year: 2018
  ident: 322_CR30
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aar3947
  contributor:
    fullname: P Faridi
– volume: 124
  start-page: 453
  year: 2014
  ident: 322_CR9
  publication-title: Blood
  doi: 10.1182/blood-2014-04-567933
  contributor:
    fullname: M Rajasagi
– volume: 17
  start-page: 533
  year: 2018
  ident: 322_CR37
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.TIR117.000383
  contributor:
    fullname: C Chong
– volume: 17
  start-page: 2347
  year: 2018
  ident: 322_CR31
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.RA118.000877
  contributor:
    fullname: R Mylonas
– volume: 114
  start-page: E9942
  year: 2017
  ident: 322_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1707658114
  contributor:
    fullname: H Schuster
– volume: 8
  year: 2017
  ident: 322_CR24
  publication-title: Nat. Commun.
  contributor:
    fullname: G Kaur
– volume: 10
  start-page: 478
  year: 1998
  ident: 322_CR18
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/S0952-7915(98)80124-6
  contributor:
    fullname: A Sette
– volume: 354
  start-page: 354
  year: 2016
  ident: 322_CR29
  publication-title: Science
  doi: 10.1126/science.aaf4384
  contributor:
    fullname: J Liepe
– volume: 50
  start-page: 213
  year: 1999
  ident: 322_CR45
  publication-title: Immunogenetics
  doi: 10.1007/s002510050595
  contributor:
    fullname: H Rammensee
– volume: 37
  start-page: 55
  year: 2018
  ident: 322_CR7
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4313
  contributor:
    fullname: B Bulik-Sullivan
– volume: 6
  year: 2010
  ident: 322_CR39
  publication-title: Immunome Res.
  contributor:
    fullname: RD Bremel
– volume: 13
  start-page: 133
  year: 2013
  ident: 322_CR20
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3370
  contributor:
    fullname: P Parham
– volume: 4
  start-page: 23
  year: 1985
  ident: 322_CR38
  publication-title: J. Protein Chem.
  doi: 10.1007/BF01025492
  contributor:
    fullname: A Kidera
– volume: 46
  start-page: 315
  year: 2017
  ident: 322_CR4
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.02.007
  contributor:
    fullname: JG Abelin
– volume: 201
  start-page: 3705
  year: 2018
  ident: 322_CR6
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1800914
  contributor:
    fullname: D Gfeller
– volume: 126
  start-page: 4690
  year: 2016
  ident: 322_CR16
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI88590
  contributor:
    fullname: H Pearson
– volume: 165
  start-page: 3260
  year: 2000
  ident: 322_CR23
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.165.6.3260
  contributor:
    fullname: K Maenaka
– volume: 7
  year: 2016
  ident: 322_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13404
  contributor:
    fullname: M Bassani-Sternberg
– volume: 74
  start-page: 1313
  year: 2013
  ident: 322_CR13
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2013.06.025
  contributor:
    fullname: L Gragert
– volume: 255
  start-page: 1261
  year: 1992
  ident: 322_CR43
  publication-title: Science
  doi: 10.1126/science.1546328
  contributor:
    fullname: DF Hunt
– volume: 43
  start-page: D423
  year: 2015
  ident: 322_CR2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1161
  contributor:
    fullname: J Robinson
– volume: 191
  start-page: 561
  year: 2013
  ident: 322_CR22
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1300292
  contributor:
    fullname: MJ Rist
– volume: 55
  start-page: 280
  year: 2000
  ident: 322_CR19
  publication-title: Tissue Antigens
  doi: 10.1034/j.1399-0039.2000.550314.x
  contributor:
    fullname: J Robinson
– volume: 193
  start-page: 229
  year: 1995
  ident: 322_CR36
  publication-title: Immunobiology
  doi: 10.1016/S0171-2985(11)80548-6
  contributor:
    fullname: J Girdlestone
– volume: 14
  start-page: 173
  year: 2009
  ident: 322_CR41
  publication-title: J. Biomol. Screen.
  doi: 10.1177/1087057108329453
  contributor:
    fullname: M Harndahl
– volume: 185
  start-page: 7452
  year: 2010
  ident: 322_CR10
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002629
  contributor:
    fullname: EM de Kruijf
– volume: 43
  start-page: D413
  year: 2015
  ident: 322_CR1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1056
  contributor:
    fullname: M-P Lefranc
– volume: 20
  start-page: 87
  year: 2001
  ident: 322_CR12
  publication-title: Genet. Epidemiol.
  doi: 10.1002/1098-2272(200101)20:1<87::AID-GEPI8>3.0.CO;2-R
  contributor:
    fullname: DV Dawson
– volume: 547
  start-page: 217
  year: 2017
  ident: 322_CR15
  publication-title: Nature
  doi: 10.1038/nature22991
  contributor:
    fullname: PA Ott
– volume: 43
  start-page: D405
  year: 2015
  ident: 322_CR17
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku938
  contributor:
    fullname: R Vita
– volume: 199
  start-page: 3360
  year: 2017
  ident: 322_CR3
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700893
  contributor:
    fullname: V Jurtz
– volume: 10
  year: 2009
  ident: 322_CR46
  publication-title: BMC Bioinformatics
  contributor:
    fullname: Y Kim
– volume: 69
  start-page: 443
  year: 2008
  ident: 322_CR14
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2008.05.001
  contributor:
    fullname: OD Solberg
– volume: 4
  start-page: eaaw1622
  year: 2019
  ident: 322_CR33
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aaw1622
  contributor:
    fullname: Z Rolfs
– volume: 41
  start-page: 178
  year: 1995
  ident: 322_CR44
  publication-title: Immunogenetics
  doi: 10.1007/BF00172063
  contributor:
    fullname: HG Rammensee
– volume: 7
  start-page: 129
  year: 2018
  ident: 322_CR5
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2018.05.014
  contributor:
    fullname: TJ O’Donnell
– volume: 199
  start-page: 2639
  year: 2017
  ident: 322_CR28
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1700938
  contributor:
    fullname: M Di Marco
– volume: 70
  start-page: 485
  year: 2018
  ident: 322_CR25
  publication-title: Immunogenetics
  doi: 10.1007/s00251-018-1058-2
  contributor:
    fullname: AA Celik
– volume: 2
  start-page: e796
  year: 2007
  ident: 322_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0000796
  contributor:
    fullname: M Nielsen
– ident: 322_CR40
  doi: 10.21105/joss.00861
– volume: 18
  start-page: 349
  year: 2018
  ident: 322_CR32
  publication-title: J. Proteome Res.
  contributor:
    fullname: Z Rolfs
– volume: 14
  start-page: 658
  year: 2015
  ident: 322_CR42
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M114.042812
  contributor:
    fullname: M Bassani-Sternberg
SSID ssj0006466
Score 2.7163389
Snippet Prediction of HLA epitopes is important for the development of cancer immunotherapies and vaccines. However, current prediction algorithms have limited...
SourceID pubmedcentral
proquest
gale
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 199
SubjectTerms 631/114/2397
631/250/21
631/250/580
631/45/611
692/308/575
Agriculture
Algorithms
Alleles
Amino Acid Motifs
Analysis
Antigenic determinants
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cancer immunotherapy
Cancer vaccines
Cell Line
Databases, Protein
Datasets
Epitopes
Epitopes - metabolism
Genetic Loci
Histocompatibility antigen HLA
Histocompatibility antigens
Histocompatibility Antigens Class I - metabolism
HLA histocompatibility antigens
Human populations
Humans
Immunotherapy
Life Sciences
Ligands
Mass spectrometry
Mass spectroscopy
Peptide Hydrolases - metabolism
Peptides
Peptides - chemistry
Peptides - metabolism
Prediction models
Predictions
Proteasome Endopeptidase Complex - metabolism
Proteome - metabolism
Transcription
Tumor cell lines
Vaccines
Title A large peptidome dataset improves HLA class I epitope prediction across most of the human population
URI https://link.springer.com/article/10.1038/s41587-019-0322-9
https://www.ncbi.nlm.nih.gov/pubmed/31844290
https://www.proquest.com/docview/2352323001
https://www.proquest.com/docview/2476762181
https://www.proquest.com/docview/2327937423
https://pubmed.ncbi.nlm.nih.gov/PMC7008090
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xViB4QFC-AqMyCIQEiuZ8LHGeUItWOgQFDTb1LbIdZ5vEkrC0D_z33DlpWCpAvERVfLHi3Pnud77rHcCLIOeJ5Fq7mTSJG2qRuSrHfSVFpqVRSRjmNkF2Ec2Pww_L_WV74Fa3aZUbnWgVdVZqOiPf88M4wo2LBult9cOlrlEUXW1baOzA0KfKTQMYTg8WX446XRw10UqPC0qw3I82cc1A7NVouuzdxOXkkSU9y7Stn68YqO3kya0IqjVMsztwu0WUbNKIwF24ZooRXG96TP4cwa0rFQdHcONTG0u_B2bCvlMaOKsosSUrLwyjdNHarNi5PWkwNZt_nDBN-JodMlPh5q-Q_JKmIH4yaVfCLsp6xcqcIZZktucfq7q2YPfheHbw7d3cbZsuuDqK-QpdySTO0IfzRCxCFSiNkCHwPJmoTCSe1gh4fC0lstDTMhJR5oXaV8pIhchBofF_AIOiLMwjYIHkPFOKyzgToY-aIs65Nvgr0b7UMnDg9eaDp1VTWyO1MfFApA13UuROStxJEwdeEkvStjcnXmo6vahP5bqu0wmiktDWNnTguaWj2hYFJc80BIefT_6D6OtRj-hVS5SXyGkt2z8s4OKoZlaPcrdHiTtU94c3YpS2GqJOfUS-Afp_3PvzcCfuDjzrhmliSoorTLmmKXyqboiA2IGHjVB23xFVdYhQgzsQ98S1I6Cy4v2R4vzMlhePyYugJ99sBPv3a_2VPY__vYgncNOngwqb7r4Lg9Xl2jxFNLdSY9iJlzFexez9GIaT2XS6GLfb-BcDk0mP
link.rule.ids 230,315,786,790,891,12077,12786,21409,27946,27947,31743,31744,33397,33398,33768,33769,43334,43624,43829,74091,74381,74648
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BEF8PCMZXYIBBICRQNCf28vGEKsTUQjck2FDfLNtxYBJLwtI-8N9z56RhqQDxUlX11apz57vfffQO4Lkoea65tWGhXR5KmxWhKfFe6ayw2plcytIXyB4m02P5frG36ANubV9WudaJXlEXtaUY-W4s0wQvLhqkN82PkKZGUXa1H6FxES5JIQT1zk8Xg8OF1tbnKiOeUXnlXrLOaopst0XD5T_NQ07-WD6yS5va-Zx52iyd3MiferO0fxNu9HiSTToBuAUXXLUNl7sJkz-34fq5foPbcOWgz6TfBjdh36kInDVU1lLUp45RsWjrluzExxlcy6bzCbOErtmMuQavfoPkZ7QFcZNpfxJ2WrdLVpcMkSTzE_9YMwwFuwPH---O3k7DfuRCaJOUL9GRzNMCPbgoSzNphLEIGEQU6dwUWR5Zi3AntlojAyOrkywpImljY5w2iBsMmv67sFXVlbsPTGjOC2O4TotMxqgn0pJbh-9yG2urRQCv1g9cNV1nDeUz4iJTHXcUckcRd1QewAtiieonc-JLS7GL9qteta2aICaRvrNhAM88HXW2qKh0piOYffzyH0SfP42IXvZEZY2ctrr_uwIejjpmjSh3RpR4P-14eS1GqtcPrYoR9wr0_nj05-VB2AN4OizTxlQSV7l6RVvE1NsQ4XAA9zqhHJ4jKmqJQIMHkI7EdSCgpuLjlerkm28unpIPQd98vRbs3z_rr-x58O9DPIGr06ODuZrPDj88hGsxhSx84fsObC3PVu4R4rqleewv7y9goUfL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BERUcECyvQAGDQEigaJ1H8zihFbDsQikIWtSbZTsOVKJJaLIH_j0zjjc0K0BcVtF6YsWZ8fiz58sMwOOo5LnkWvuFNLkf66zwVYnzSmaFlkblcVxagux-sjiM3x7tHjn-U-tolWufaB11UWs6I5-GcZrgxMUFaVo6WsTHV_MXzQ-fKkhRpNWV0zgPF1LKW0Vfjc_fDF456eOWAc-IarmbrCOcUTZtcRGz_-Y-p71ZPlqjNj31maVqk0a5EUu1S9T8Klxx2JLNemO4BudMNYGLfbXJnxO4fCb34AS237uo-nUwM_adCOGsIYpLUZ8YRsTR1nTs2J45mJYt9mZME9JmS2YadAMNip9SF6RZJu1I2EnddqwuGaJKZqv_sWYoEHYDDuevD14ufFd-wddJyjvcVOZpgbu5IEuzWEVKI3iIgkDmqsjyQGuEPqGWEpUZaJlkSRHEOlTKSIUYQiEMuAlbVV2Z28AiyXmhFJdpkcUh-oy05NrgVa5DqWXkwbP1CxdNn2VD2Oh4lIleOwK1I0g7IvfgCalEuCqd-NPSOUb7Va7aVswQn8Q2y6EHj6wcZbmoyF56geWHL_8h9PnTSOipEypr1LSW7tMFHBxlzxpJ7owkca7qcfPajITzFa0IEQNHuBPkwZ-bB8P34OHQTB0TPa4y9Yq6CCnPIUJjD271Rjm8R3TaMYIO7kE6MtdBgBKMj1uq42820XhK-wm68_nasH8_1l_Vc-ffg3gA2zhvxd5y_91duBTS6YXlwO_AVne6MvcQ4nXqvp27vwAynkwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+large+peptidome+dataset+improves+HLA+class+I+epitope+prediction+across+most+of+the+human+population&rft.jtitle=Nature+biotechnology&rft.au=Sarkizova%2C+Siranush&rft.au=Klaeger%2C+Susan&rft.au=Le%2C+Phuong+M&rft.au=Li%2C+Letitia+W&rft.date=2020-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1087-0156&rft.eissn=1546-1696&rft.volume=38&rft.issue=2&rft.spage=199&rft_id=info:doi/10.1038%2Fs41587-019-0322-9&rft.externalDBID=ISR&rft.externalDocID=A613408777
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon