A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion

To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 87; no. 3; pp. 562 - 569
Main Authors Jani, Shyam S., Robinson, Clifford G., Dahlbom, Magnus, White, Benjamin M., Thomas, David H., Gaudio, Sergio, Low, Daniel A., Lamb, James M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating.
AbstractList To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating.
Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). Methods and Materials: List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Results: Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Conclusions: Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating.
To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET).PURPOSETo quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET).List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated.METHODS AND MATERIALSList-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated.Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001).RESULTSTumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001).Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating.CONCLUSIONSTarget volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating.
Author Dahlbom, Magnus
Thomas, David H.
Low, Daniel A.
Lamb, James M.
Robinson, Clifford G.
Gaudio, Sergio
Jani, Shyam S.
White, Benjamin M.
AuthorAffiliation Department of Radiation Oncology, Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri
Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
AuthorAffiliation_xml – name: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
– name: Department of Radiation Oncology, Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri
– name: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
Author_xml – sequence: 1
  givenname: Shyam S.
  surname: Jani
  fullname: Jani, Shyam S.
  email: sjani@mednet.ucla.edu
  organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
– sequence: 2
  givenname: Clifford G.
  surname: Robinson
  fullname: Robinson, Clifford G.
  organization: Department of Radiation Oncology, Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri
– sequence: 3
  givenname: Magnus
  surname: Dahlbom
  fullname: Dahlbom, Magnus
  organization: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
– sequence: 4
  givenname: Benjamin M.
  surname: White
  fullname: White, Benjamin M.
  organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
– sequence: 5
  givenname: David H.
  surname: Thomas
  fullname: Thomas, David H.
  organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
– sequence: 6
  givenname: Sergio
  surname: Gaudio
  fullname: Gaudio, Sergio
  organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
– sequence: 7
  givenname: Daniel A.
  surname: Low
  fullname: Low, Daniel A.
  organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
– sequence: 8
  givenname: James M.
  surname: Lamb
  fullname: Lamb, James M.
  organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24074930$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22267920$$D View this record in Osti.gov
BookMark eNqNUttu1DAQjVAR3RY-AWSJF16y2HGuQhQtq1IqFVGxC-LNcpxJ1iGxg-1U2t_iC3HIUkElVJ481pw5M2fmnARHSisIgqcELwkm6ct2KVujy2EZYUKXOPVvHD0IFiTPipAmydejYIFpikPq0cfBibUtxpiQLH4UHEcxzuKC4kXwY4XWuh-4kVYrpGu06odOurGC8C23UCGuKnS98-Hhf62tdMZjz3tprfTBVve6MXzY7dEFd1I1aNU12ki36y2qtUEbaHpQzufmFpfKgVG8Q1tuGnDoi-7GHuyU2o69NhZtxrIF4ZDT6BPYQRrutNmjD3qieBw8rHln4cnhPQ0-vzvfrt-HVx8vLterq1CkGXYhgaSqUk4J1JSIpMhxWeQxr7MSkxiIKAEKXKUFrnNcEZHXNa3LpKY0F0mSliU9Dc5m3mEse6iEl2B4xwYje272THPJ_s4ouWONvmE0K5KYEk_wfCbQ1klmhXQgdkIr5aWxKIrSrIiwR704tDH6-wjWMb9YAV3HFejRMhLTPMlIEWce-uzPiW5H-X1OD0hmgDDaWgP1LYRgNtmGtWy2DZtsw3DKJtv4uld36vywv-7lhcnu3uo3czX4a9xIMJNWUAIqaSaplZb3MpzdYRCdVFLw7hvswbZ6nPzid8FsxDDbTMaefE0ojrzyadWv_03wHwP8BAEvDyc
CitedBy_id crossref_primary_10_1053_j_semnuclmed_2022_04_006
crossref_primary_10_1007_s12149_014_0914_x
crossref_primary_10_1016_j_clon_2018_01_005
crossref_primary_10_1007_s12350_018_1392_7
crossref_primary_10_1002_acm2_12533
crossref_primary_10_1002_mp_13676
crossref_primary_10_1007_s00330_014_3362_z
crossref_primary_10_1002_mp_17749
crossref_primary_10_1088_1361_6560_ac43fc
crossref_primary_10_6009_jjrt_2014_JSRT_70_11_1344
crossref_primary_10_2174_1874471013666200317144629
crossref_primary_10_1007_s12149_014_0870_5
crossref_primary_10_1088_1361_6560_aaa16d
Cites_doi 10.1016/j.ijrobp.2010.12.055
10.1118/1.3633896
10.1007/s00259-006-0363-4
10.1088/0031-9155/50/7/017
10.1118/1.1809778
10.1118/1.3480508
10.1118/1.3679015
10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F
10.1007/s00259-010-1423-3
10.1118/1.3112422
10.1016/S0167-8140(00)00138-9
10.1118/1.2748104
10.1118/1.3254431
10.1016/S0360-3016(01)01824-7
10.1016/j.ijrobp.2003.10.044
10.1118/1.2348764
10.1118/1.2219772
10.1016/j.radonc.2010.10.006
10.1016/j.radonc.2004.07.033
10.1016/j.ijrobp.2008.10.054
10.1016/S0167-8140(01)00470-4
10.1120/jacmp.2027.25373
10.1088/0031-9155/52/12/012
10.1016/j.ijrobp.2010.08.028
10.1016/S0360-3016(99)00061-9
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Elsevier Inc.
Copyright © 2013 Elsevier Inc. All rights reserved.
2013 Elsevier Inc. All rights reserved. 2013
Copyright_xml – notice: 2013 Elsevier Inc.
– notice: Elsevier Inc.
– notice: Copyright © 2013 Elsevier Inc. All rights reserved.
– notice: 2013 Elsevier Inc. All rights reserved. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1016/j.ijrobp.2013.06.2042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-355X
EndPage 569
ExternalDocumentID PMC3795431
22267920
24074930
10_1016_j_ijrobp_2013_06_2042
S0360301613027491
1_s2_0_S0360301613027491
Genre Journal Article
Comparative Study
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01CA096679; R01CA116712
– fundername: NCI NIH HHS
  grantid: R01 CA096679
– fundername: NCI NIH HHS
  grantid: R01 CA116712
– fundername: NCI NIH HHS
  grantid: R01CA116712
– fundername: NCI NIH HHS
  grantid: R01CA096679
– fundername: National Cancer Institute : NCI
  grantid: R01 CA116712 || CA
– fundername: National Cancer Institute : NCI
  grantid: R01 CA096679 || CA
GroupedDBID ---
--K
.1-
.FO
0R~
1B1
1P~
1RT
1~5
4.4
457
4G.
53G
5RE
5VS
7-5
AAEDT
AAEDW
AAQFI
AAQQT
AAWTL
AAXUO
ABJNI
ABLJU
ABNEU
ABOCM
ABUDA
ACGFS
ACIUM
ACVFH
ADBBV
ADCNI
ADVLN
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AGCQF
AHHHB
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BELOY
DU5
EBS
EFKBS
EJD
F5P
FDB
GBLVA
HED
HMO
IHE
J1W
KOM
LX3
M41
MO0
O9-
OC~
OO-
RNS
ROL
RPZ
SDG
SEL
SES
SSZ
UV1
XH2
Z5R
~S-
.55
.GJ
29J
AALRI
AAQXK
ABEFU
ABWVN
ACRPL
ADMUD
ADNMO
ADPAM
AFCTW
AFFNX
AFJKZ
AGRDE
ASPBG
AVWKF
AZFZN
EFJIC
FEDTE
FGOYB
FIRID
G-2
HMK
HVGLF
HX~
HZ~
NQ-
R2-
RIG
SAE
SEW
UDS
X7M
XPP
ZGI
AAIAV
AGZHU
ALXNB
ZA5
AAYWO
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ABPTK
OTOTI
5PM
ID FETCH-LOGICAL-c670t-1e5dd6a31ef31c5980b984af7b014e1cbee90d690f80d1c8ff3fb5f338c556bb3
ISSN 0360-3016
1879-355X
IngestDate Thu Aug 21 18:06:38 EDT 2025
Thu May 18 22:22:42 EDT 2023
Fri Jul 11 15:47:56 EDT 2025
Mon Jul 21 06:04:49 EDT 2025
Tue Jul 01 01:49:09 EDT 2025
Thu Apr 24 22:50:26 EDT 2025
Fri Feb 23 02:32:35 EST 2024
Sun Feb 23 10:19:37 EST 2025
Tue Aug 26 16:37:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2013 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c670t-1e5dd6a31ef31c5980b984af7b014e1cbee90d690f80d1c8ff3fb5f338c556bb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://doi.org/10.1016/j.ijrobp.2013.06.2042
PMID 24074930
PQID 1438571947
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3795431
osti_scitechconnect_22267920
proquest_miscellaneous_1438571947
pubmed_primary_24074930
crossref_primary_10_1016_j_ijrobp_2013_06_2042
crossref_citationtrail_10_1016_j_ijrobp_2013_06_2042
elsevier_sciencedirect_doi_10_1016_j_ijrobp_2013_06_2042
elsevier_clinicalkeyesjournals_1_s2_0_S0360301613027491
elsevier_clinicalkey_doi_10_1016_j_ijrobp_2013_06_2042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle International journal of radiation oncology, biology, physics
PublicationTitleAlternate Int J Radiat Oncol Biol Phys
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Noel, Garcia-Ramirez (bib29) 2012; 39
Geets, Lee, Bol (bib23) 2007; 34
Nehmeh, Erdi, Ling (bib7) 2002; 43
Werner-Wasik, Nelson, Choi (bib18) 2012; 82
Aristophanous, Yap, Killoran (bib12) 2011; 80
Vanuytsel, Vansteenkiste, Stroobants (bib2) 2000; 55
Lamb, Robinson, Bradley (bib11) 2011; 38
Zaidi, El Naqa (bib24) 2010; 37
Lu, Nystrom, Parikh (bib17) 2006; 33
Bradley, Thorstad, Mutic (bib4) 2004; 59
Dawood, Buther, Stegger (bib15) 2009; 36
Boucher, Rodrigue, Lecomte (bib8) 2004; 45
Erdi, Rosenzweig, Erdi (bib19) 2002; 62
Feng, Kong, Gross (bib5) 2008; 73
Lu, Parikh, Hubenschmidt (bib27) 2006; 33
Holloway, Robinson, Murray (bib6) 2004; 73
Wanet, Lee, Weynand (bib22) 2011; 98
Nestle, Walter, Schmidt (bib1) 1999; 44
Mah, Caldwell, Ung (bib3) 2002; 52
Wolthaus, van Herk, Muller (bib10) 2005; 50
Bettinardi, Rapisarda, Gilardi (bib25) 2009; 36
van Elmpt, Hamill, Jones (bib13) 2011
Dawood, Büther, Lang (bib16) 2007; 34
Teo, Seo, Bacharach (bib21) 2007; 48
Erdi, Mawlawi, Larson (bib20) 1997; 80
Liu, Alessio, Pierce (bib14) 2010; 37
Wink, Panknin, Solberg (bib26) 2006; 7
Nehmeh, Erdi, Pevsner (bib9) 2004; 31
Abdelnour, Nehmeh, Pan (bib28) 2007; 52
van Elmpt (10.1016/j.ijrobp.2013.06.2042_bib13) 2011
Vanuytsel (10.1016/j.ijrobp.2013.06.2042_bib2) 2000; 55
Dawood (10.1016/j.ijrobp.2013.06.2042_bib16) 2007; 34
Zaidi (10.1016/j.ijrobp.2013.06.2042_bib24) 2010; 37
Holloway (10.1016/j.ijrobp.2013.06.2042_bib6) 2004; 73
Dawood (10.1016/j.ijrobp.2013.06.2042_bib15) 2009; 36
Li (10.1016/j.ijrobp.2013.06.2042_bib29) 2012; 39
Bradley (10.1016/j.ijrobp.2013.06.2042_bib4) 2004; 59
Abdelnour (10.1016/j.ijrobp.2013.06.2042_bib28) 2007; 52
Mah (10.1016/j.ijrobp.2013.06.2042_bib3) 2002; 52
Nehmeh (10.1016/j.ijrobp.2013.06.2042_bib7) 2002; 43
Nehmeh (10.1016/j.ijrobp.2013.06.2042_bib9) 2004; 31
Werner-Wasik (10.1016/j.ijrobp.2013.06.2042_bib18) 2012; 82
Boucher (10.1016/j.ijrobp.2013.06.2042_bib8) 2004; 45
Wanet (10.1016/j.ijrobp.2013.06.2042_bib22) 2011; 98
Wolthaus (10.1016/j.ijrobp.2013.06.2042_bib10) 2005; 50
Erdi (10.1016/j.ijrobp.2013.06.2042_bib20) 1997; 80
Aristophanous (10.1016/j.ijrobp.2013.06.2042_bib12) 2011; 80
Nestle (10.1016/j.ijrobp.2013.06.2042_bib1) 1999; 44
Geets (10.1016/j.ijrobp.2013.06.2042_bib23) 2007; 34
Wink (10.1016/j.ijrobp.2013.06.2042_bib26) 2006; 7
Lu (10.1016/j.ijrobp.2013.06.2042_bib17) 2006; 33
Feng (10.1016/j.ijrobp.2013.06.2042_bib5) 2008; 73
Erdi (10.1016/j.ijrobp.2013.06.2042_bib19) 2002; 62
Teo (10.1016/j.ijrobp.2013.06.2042_bib21) 2007; 48
Bettinardi (10.1016/j.ijrobp.2013.06.2042_bib25) 2009; 36
Lamb (10.1016/j.ijrobp.2013.06.2042_bib11) 2011; 38
Liu (10.1016/j.ijrobp.2013.06.2042_bib14) 2010; 37
Lu (10.1016/j.ijrobp.2013.06.2042_bib27) 2006; 33
15651600 - Med Phys. 2004 Dec;31(12):3179-86
15798344 - Phys Med Biol. 2005 Apr 7;50(7):1569-83
21531085 - Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1164-71
20950956 - Int J Radiat Oncol Biol Phys. 2011 Jul 1;80(3):900-8
15588872 - Radiother Oncol. 2004 Dec;73(3):285-7
16964875 - Med Phys. 2006 Aug;33(8):2964-74
12097456 - J Nucl Med. 2002 Jul;43(7):876-81
10869746 - Radiother Oncol. 2000 Jun;55(3):317-24
11830312 - Radiother Oncol. 2002 Jan;62(1):51-60
20095267 - Med Phys. 2009 Dec;36(12):5547-58
21074882 - Radiother Oncol. 2011 Jan;98(1):117-25
16518319 - J Appl Clin Med Phys. 2006 Winter;7(1):77-85
21992387 - Med Phys. 2011 Oct;38(10):5732-7
17089828 - Med Phys. 2006 Oct;33(10):3634-6
17822014 - Med Phys. 2007 Jul;34(7):3067-76
21222120 - Eur J Nucl Med Mol Imaging. 2011 May;38(5):843-55
15093902 - Int J Radiat Oncol Biol Phys. 2004 May 1;59(1):78-86
20336455 - Eur J Nucl Med Mol Imaging. 2010 Nov;37(11):2165-87
14960638 - J Nucl Med. 2004 Feb;45(2):214-9
17475970 - J Nucl Med. 2007 May;48(5):802-10
9406703 - Cancer. 1997 Dec 15;80(12 Suppl):2505-9
19544796 - Med Phys. 2009 May;36(5):1775-84
11872279 - Int J Radiat Oncol Biol Phys. 2002 Feb 1;52(2):339-50
17431616 - Eur J Nucl Med Mol Imaging. 2007 Sep;34(9):1427-38
22320802 - Med Phys. 2012 Feb;39(2):922-32
10348289 - Int J Radiat Oncol Biol Phys. 1999 Jun 1;44(3):593-7
19251094 - Int J Radiat Oncol Biol Phys. 2009 Mar 15;73(4):1228-34
17664557 - Phys Med Biol. 2007 Jun 21;52(12):3515-29
20964223 - Med Phys. 2010 Sep;37(9):5037-43
References_xml – volume: 73
  start-page: 285
  year: 2004
  end-page: 287
  ident: bib6
  article-title: Results of a phase I study to dose escalate using intensity modulated radiotherapy guided by combined PET/CT imaging with induction chemotherapy for patients with non-small cell lung cancer
  publication-title: Radiother Oncol
– start-page: 1
  year: 2011
  end-page: 13
  ident: bib13
  article-title: Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 36
  start-page: 5547
  year: 2009
  end-page: 5558
  ident: bib25
  article-title: Number of partitions (gates) needed to obtain motion-free images in a respiratory gated 4D-PET/CT study as a function of the lesion size and motion displacement
  publication-title: Med Phys
– volume: 44
  start-page: 593
  year: 1999
  end-page: 597
  ident: bib1
  article-title: 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 33
  start-page: 2964
  year: 2006
  end-page: 2974
  ident: bib27
  article-title: A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT
  publication-title: Med Phys
– volume: 45
  start-page: 214
  year: 2004
  end-page: 219
  ident: bib8
  article-title: Respiratory gating for 3-dimensional PET of the thorax: Feasibility and initial results
  publication-title: J Nucl Med
– volume: 39
  start-page: 922
  year: 2012
  end-page: 932
  ident: bib29
  article-title: Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy
  publication-title: Med Phys
– volume: 38
  start-page: 5732
  year: 2011
  end-page: 5737
  ident: bib11
  article-title: Generating lung tumor internal target volumes from 4D-PET maximum intensity projections
  publication-title: Med Phys
– volume: 31
  start-page: 3179
  year: 2004
  end-page: 3186
  ident: bib9
  article-title: Four-dimensional (4D) PET/CT imaging of the thorax
  publication-title: Med Phys
– volume: 48
  start-page: 802
  year: 2007
  end-page: 810
  ident: bib21
  article-title: Partial-volume correction in PET: Validation of an iterative postreconstruction method with phantom and patient data
  publication-title: J Nucl Med
– volume: 55
  start-page: 317
  year: 2000
  end-page: 324
  ident: bib2
  article-title: The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer
  publication-title: Radiother Oncol
– volume: 80
  start-page: 2505
  year: 1997
  end-page: 2509
  ident: bib20
  article-title: Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding
  publication-title: Cancer
– volume: 34
  start-page: 3067
  year: 2007
  ident: bib16
  article-title: Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes
  publication-title: Med Phys
– volume: 52
  start-page: 339
  year: 2002
  end-page: 350
  ident: bib3
  article-title: The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: A prospective study
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 82
  start-page: 1164
  year: 2012
  end-page: 1171
  ident: bib18
  article-title: What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 37
  start-page: 2165
  year: 2010
  end-page: 2187
  ident: bib24
  article-title: PET-guided delineation of radiation therapy treatment volumes: A survey of image segmentation techniques
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 62
  start-page: 51
  year: 2002
  end-page: 60
  ident: bib19
  article-title: Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET)
  publication-title: Radiother Oncol
– volume: 59
  start-page: 78
  year: 2004
  end-page: 86
  ident: bib4
  article-title: Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 80
  start-page: 900
  year: 2011
  end-page: 908
  ident: bib12
  article-title: Four-dimensional positron emission tomography: Implications for dose painting of high-uptake regions
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 7
  start-page: 77
  year: 2006
  end-page: 85
  ident: bib26
  article-title: Phase versus amplitude sorting of 4D-CT data
  publication-title: J Appl Clin Med Phys
– volume: 98
  start-page: 117
  year: 2011
  end-page: 125
  ident: bib22
  article-title: Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens
  publication-title: Radiother Oncol
– volume: 52
  start-page: 3515
  year: 2007
  end-page: 3529
  ident: bib28
  article-title: Phase and amplitude binning for 4D-CT imaging
  publication-title: Phys Med Biol
– volume: 43
  start-page: 876
  year: 2002
  end-page: 881
  ident: bib7
  article-title: Effect of respiratory gating on quantifying PET images of lung cancer
  publication-title: J Nucl Med
– volume: 34
  start-page: 1427
  year: 2007
  end-page: 1438
  ident: bib23
  article-title: A gradient-based method for segmenting FDG-PET images: Methodology and validation
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 73
  start-page: 1228
  year: 2008
  end-page: 1234
  ident: bib5
  article-title: Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non–small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 36
  start-page: 1775
  year: 2009
  end-page: 1784
  ident: bib15
  article-title: Optimal number of respiratory gates in positron emission tomography: a cardiac patient study
  publication-title: Med Phys
– volume: 33
  start-page: 3634
  year: 2006
  end-page: 3636
  ident: bib17
  article-title: A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms
  publication-title: Med Phys
– volume: 50
  start-page: 1569
  year: 2005
  end-page: 1583
  ident: bib10
  article-title: Fusion of respiration-correlated PET and CT scans: Correlated lung tumour motion in anatomical and functional scans
  publication-title: Phys Med Biol
– volume: 37
  start-page: 5037
  year: 2010
  end-page: 5043
  ident: bib14
  article-title: Quiescent period respiratory gating for PET/CT
  publication-title: Med Phys
– volume: 48
  start-page: 802
  year: 2007
  ident: 10.1016/j.ijrobp.2013.06.2042_bib21
  article-title: Partial-volume correction in PET: Validation of an iterative postreconstruction method with phantom and patient data
  publication-title: J Nucl Med
– volume: 82
  start-page: 1164
  year: 2012
  ident: 10.1016/j.ijrobp.2013.06.2042_bib18
  article-title: What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.12.055
– volume: 38
  start-page: 5732
  year: 2011
  ident: 10.1016/j.ijrobp.2013.06.2042_bib11
  article-title: Generating lung tumor internal target volumes from 4D-PET maximum intensity projections
  publication-title: Med Phys
  doi: 10.1118/1.3633896
– volume: 34
  start-page: 1427
  year: 2007
  ident: 10.1016/j.ijrobp.2013.06.2042_bib23
  article-title: A gradient-based method for segmenting FDG-PET images: Methodology and validation
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-006-0363-4
– volume: 50
  start-page: 1569
  year: 2005
  ident: 10.1016/j.ijrobp.2013.06.2042_bib10
  article-title: Fusion of respiration-correlated PET and CT scans: Correlated lung tumour motion in anatomical and functional scans
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/50/7/017
– volume: 31
  start-page: 3179
  year: 2004
  ident: 10.1016/j.ijrobp.2013.06.2042_bib9
  article-title: Four-dimensional (4D) PET/CT imaging of the thorax
  publication-title: Med Phys
  doi: 10.1118/1.1809778
– volume: 37
  start-page: 5037
  year: 2010
  ident: 10.1016/j.ijrobp.2013.06.2042_bib14
  article-title: Quiescent period respiratory gating for PET/CT
  publication-title: Med Phys
  doi: 10.1118/1.3480508
– volume: 39
  start-page: 922
  year: 2012
  ident: 10.1016/j.ijrobp.2013.06.2042_bib29
  article-title: Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy
  publication-title: Med Phys
  doi: 10.1118/1.3679015
– volume: 80
  start-page: 2505
  issue: suppl 12
  year: 1997
  ident: 10.1016/j.ijrobp.2013.06.2042_bib20
  article-title: Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding
  publication-title: Cancer
  doi: 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F
– volume: 37
  start-page: 2165
  year: 2010
  ident: 10.1016/j.ijrobp.2013.06.2042_bib24
  article-title: PET-guided delineation of radiation therapy treatment volumes: A survey of image segmentation techniques
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-010-1423-3
– volume: 36
  start-page: 1775
  year: 2009
  ident: 10.1016/j.ijrobp.2013.06.2042_bib15
  article-title: Optimal number of respiratory gates in positron emission tomography: a cardiac patient study
  publication-title: Med Phys
  doi: 10.1118/1.3112422
– volume: 55
  start-page: 317
  year: 2000
  ident: 10.1016/j.ijrobp.2013.06.2042_bib2
  article-title: The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer
  publication-title: Radiother Oncol
  doi: 10.1016/S0167-8140(00)00138-9
– volume: 34
  start-page: 3067
  year: 2007
  ident: 10.1016/j.ijrobp.2013.06.2042_bib16
  article-title: Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes
  publication-title: Med Phys
  doi: 10.1118/1.2748104
– volume: 36
  start-page: 5547
  year: 2009
  ident: 10.1016/j.ijrobp.2013.06.2042_bib25
  article-title: Number of partitions (gates) needed to obtain motion-free images in a respiratory gated 4D-PET/CT study as a function of the lesion size and motion displacement
  publication-title: Med Phys
  doi: 10.1118/1.3254431
– volume: 52
  start-page: 339
  year: 2002
  ident: 10.1016/j.ijrobp.2013.06.2042_bib3
  article-title: The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: A prospective study
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(01)01824-7
– volume: 59
  start-page: 78
  year: 2004
  ident: 10.1016/j.ijrobp.2013.06.2042_bib4
  article-title: Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2003.10.044
– volume: 45
  start-page: 214
  year: 2004
  ident: 10.1016/j.ijrobp.2013.06.2042_bib8
  article-title: Respiratory gating for 3-dimensional PET of the thorax: Feasibility and initial results
  publication-title: J Nucl Med
– volume: 33
  start-page: 3634
  year: 2006
  ident: 10.1016/j.ijrobp.2013.06.2042_bib17
  article-title: A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms
  publication-title: Med Phys
  doi: 10.1118/1.2348764
– volume: 33
  start-page: 2964
  year: 2006
  ident: 10.1016/j.ijrobp.2013.06.2042_bib27
  article-title: A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT
  publication-title: Med Phys
  doi: 10.1118/1.2219772
– start-page: 1
  year: 2011
  ident: 10.1016/j.ijrobp.2013.06.2042_bib13
  article-title: Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 98
  start-page: 117
  year: 2011
  ident: 10.1016/j.ijrobp.2013.06.2042_bib22
  article-title: Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2010.10.006
– volume: 73
  start-page: 285
  year: 2004
  ident: 10.1016/j.ijrobp.2013.06.2042_bib6
  article-title: Results of a phase I study to dose escalate using intensity modulated radiotherapy guided by combined PET/CT imaging with induction chemotherapy for patients with non-small cell lung cancer
  publication-title: Radiother Oncol
  doi: 10.1016/j.radonc.2004.07.033
– volume: 73
  start-page: 1228
  year: 2008
  ident: 10.1016/j.ijrobp.2013.06.2042_bib5
  article-title: Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non–small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2008.10.054
– volume: 62
  start-page: 51
  year: 2002
  ident: 10.1016/j.ijrobp.2013.06.2042_bib19
  article-title: Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET)
  publication-title: Radiother Oncol
  doi: 10.1016/S0167-8140(01)00470-4
– volume: 7
  start-page: 77
  year: 2006
  ident: 10.1016/j.ijrobp.2013.06.2042_bib26
  article-title: Phase versus amplitude sorting of 4D-CT data
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.2027.25373
– volume: 52
  start-page: 3515
  year: 2007
  ident: 10.1016/j.ijrobp.2013.06.2042_bib28
  article-title: Phase and amplitude binning for 4D-CT imaging
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/52/12/012
– volume: 80
  start-page: 900
  year: 2011
  ident: 10.1016/j.ijrobp.2013.06.2042_bib12
  article-title: Four-dimensional positron emission tomography: Implications for dose painting of high-uptake regions
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/j.ijrobp.2010.08.028
– volume: 44
  start-page: 593
  year: 1999
  ident: 10.1016/j.ijrobp.2013.06.2042_bib1
  article-title: 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(99)00061-9
– volume: 43
  start-page: 876
  year: 2002
  ident: 10.1016/j.ijrobp.2013.06.2042_bib7
  article-title: Effect of respiratory gating on quantifying PET images of lung cancer
  publication-title: J Nucl Med
– reference: 20095267 - Med Phys. 2009 Dec;36(12):5547-58
– reference: 10869746 - Radiother Oncol. 2000 Jun;55(3):317-24
– reference: 17664557 - Phys Med Biol. 2007 Jun 21;52(12):3515-29
– reference: 19544796 - Med Phys. 2009 May;36(5):1775-84
– reference: 14960638 - J Nucl Med. 2004 Feb;45(2):214-9
– reference: 17822014 - Med Phys. 2007 Jul;34(7):3067-76
– reference: 20336455 - Eur J Nucl Med Mol Imaging. 2010 Nov;37(11):2165-87
– reference: 11872279 - Int J Radiat Oncol Biol Phys. 2002 Feb 1;52(2):339-50
– reference: 15588872 - Radiother Oncol. 2004 Dec;73(3):285-7
– reference: 17475970 - J Nucl Med. 2007 May;48(5):802-10
– reference: 21531085 - Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1164-71
– reference: 16518319 - J Appl Clin Med Phys. 2006 Winter;7(1):77-85
– reference: 17089828 - Med Phys. 2006 Oct;33(10):3634-6
– reference: 20964223 - Med Phys. 2010 Sep;37(9):5037-43
– reference: 15093902 - Int J Radiat Oncol Biol Phys. 2004 May 1;59(1):78-86
– reference: 11830312 - Radiother Oncol. 2002 Jan;62(1):51-60
– reference: 17431616 - Eur J Nucl Med Mol Imaging. 2007 Sep;34(9):1427-38
– reference: 20950956 - Int J Radiat Oncol Biol Phys. 2011 Jul 1;80(3):900-8
– reference: 21074882 - Radiother Oncol. 2011 Jan;98(1):117-25
– reference: 15798344 - Phys Med Biol. 2005 Apr 7;50(7):1569-83
– reference: 16964875 - Med Phys. 2006 Aug;33(8):2964-74
– reference: 21992387 - Med Phys. 2011 Oct;38(10):5732-7
– reference: 10348289 - Int J Radiat Oncol Biol Phys. 1999 Jun 1;44(3):593-7
– reference: 21222120 - Eur J Nucl Med Mol Imaging. 2011 May;38(5):843-55
– reference: 19251094 - Int J Radiat Oncol Biol Phys. 2009 Mar 15;73(4):1228-34
– reference: 9406703 - Cancer. 1997 Dec 15;80(12 Suppl):2505-9
– reference: 15651600 - Med Phys. 2004 Dec;31(12):3179-86
– reference: 22320802 - Med Phys. 2012 Feb;39(2):922-32
– reference: 12097456 - J Nucl Med. 2002 Jul;43(7):876-81
SSID ssj0001174
Score 2.1656983
Snippet To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated...
Purpose To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in...
Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 562
SubjectTerms ACCURACY
Algorithms
AMPLITUDES
Analysis of Variance
FLUORODEOXYGLUCOSE
Fluorodeoxyglucose F18 - pharmacokinetics
Hematology, Oncology and Palliative Medicine
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Lymph Nodes - diagnostic imaging
Lymph Nodes - metabolism
Lymph Nodes - pathology
Mediastinum
Movement
Multimodal Imaging - instrumentation
Multimodal Imaging - methods
NEOPLASMS
PATIENTS
PHANTOMS
Phantoms, Imaging
POSITRON COMPUTED TOMOGRAPHY
Positron-Emission Tomography - methods
Radiology
RADIOLOGY AND NUCLEAR MEDICINE
Radiopharmaceuticals - pharmacokinetics
RESPIRATION
Statistics, Nonparametric
Tomography, X-Ray Computed
Tumor Burden
Title A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0360301613027491
https://www.clinicalkey.es/playcontent/1-s2.0-S0360301613027491
https://dx.doi.org/10.1016/j.ijrobp.2013.06.2042
https://www.ncbi.nlm.nih.gov/pubmed/24074930
https://www.proquest.com/docview/1438571947
https://www.osti.gov/biblio/22267920
https://pubmed.ncbi.nlm.nih.gov/PMC3795431
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVEJcEG8CBS0SNyvB9vp5TEtpaRWo2hR6s7wbbx5K7CqPA_wsfg6_hhnv2uuWQAsXy7E9Xjvz7c7seOZbQt5GnPlS-DAt8VyYoISh3-G253QyKe0siF1fBlg73P8UHJ57Rxf-xdbWz0bW0nrFu-L7xrqS_9EqHAO9YpXsP2i2vikcgH3QL2xBw7C9lY57qjtXywhaPUwPR7LKzi4Yp6GqBBjDrv59ghlaC7h2H7SLYTJrUMw1Z7V1kJYZ0L3ZqFhMVmNF1ABjyWiuy5Pyquyk9GAHZQq59aUc3cp8kMF6jiv3wFCEsR10ak8b3_H7RQ2BqcmeN8HIBoXFAvkSVIO5qKtpuCmsUeEYk_yo1qWyzsbf0rl11jUfkUxt295sIsvSyIP69Pt0POOFCgmno3y9NAZKLxq4m-XTdD7JrX63GR1xmC4TNIMoC8DO2I6m21aDfBTGHfCzLppWQJv9iQkS_GZcVJzjqPvx6PTz7gmmBTLkfnVtxQ92jbcbHK8gjF37Dtl2YQrjtsh27_j063HtJziaI7x6QlNf9m5jG3_ynFoFGINNE6Treb4Nx2nwgNzXMx7aU_B9SLay_BG529c5HY_Jjx41KKaFpNdQTAHFtIFiWqGYViimBsVUoZgaFFPQOm2iGJuoUEwViqlGMZ5SKKYaxXRV0AaKqULxE3L-YX-wd9jRK4l0RBDaq46T-cNhkDInk8wRfhzZPI68VIbcdrzMETzLYnsYxLaM7KEjIimZ5L5kLBK-H3DOnpJWXuTZc0IFzPBlGEghhPRiN0wZRgDAFKZwS5c7beJVWkqEptnH1V5mSZVPOU0m00XBLxNUbmIHCSq3Tbq12KXimblJIKggkFRF1GD2EwDrTYLhJsFsqfv5MnGSpZvYyRkiE4FZ5jZ4MbxaVEtq_1z53bdpdAdRimLITS0wiQ_kqj7SJm8q9CYAHfxmmeZZsYZn8Vjkh07shW3yTKG5_n8wGOXFDKTDKzivL0Dq_Ktn8sm4pNBnYYwkIC_-_lgvyT0zpuyQ1mqxzl7BHGTFX-vO_AtLvTrO
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Amplitude-Based+and+Phase-Based+Positron+Emission+Tomography+Gating+Algorithms+for+Segmentation+of+Internal+Target+Volumes+of+Tumors+Subject+to+Respiratory+Motion&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Jani%2C+Shyam+S.&rft.au=Robinson%2C+Clifford+G.&rft.au=Dahlbom%2C+Magnus&rft.au=White%2C+Benjamin+M.&rft.date=2013-11-01&rft.issn=0360-3016&rft.eissn=1879-355X&rft.volume=87&rft.issue=3&rft_id=info:doi/10.1016%2FJ.IJROBP.2013.06.2042&rft.externalDocID=22267920
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03603016%2FS0360301613X00136%2Fcov150h.gif