A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion
To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-...
Saved in:
Published in | International journal of radiation oncology, biology, physics Vol. 87; no. 3; pp. 562 - 569 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET).
List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated.
Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001).
Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating. |
---|---|
AbstractList | To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET).
List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated.
Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001).
Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating. Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET). Methods and Materials: List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated. Results: Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001). Conclusions: Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating. To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET).PURPOSETo quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated positron emission tomography (PET).List-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated.METHODS AND MATERIALSList-mode fluorodeoxyglucose-PET data was acquired for 10 patients with a total of 12 fluorodeoxyglucose-avid tumors and 9 lymph nodes. Additionally, a phantom experiment was performed in which 4 plastic butyrate spheres with inner diameters ranging from 1 to 4 cm were imaged as they underwent 1-dimensional motion based on 2 measured patient breathing trajectories. PET list-mode data were gated into 8 bins using 2 amplitude-based (equal amplitude bins [A1] and equal counts per bin [A2]) and 2 temporal phase-based gating algorithms. Gated images were segmented using a commercially available gradient-based technique and a fixed 40% threshold of maximum uptake. Internal target volumes (ITVs) were generated by taking the union of all 8 contours per gated image. Segmented phantom ITVs were compared with their respective ground-truth ITVs, defined as the volume subtended by the tumor model positions covering 99% of breathing amplitude. Superior-inferior distances between sphere centroids in the end-inhale and end-exhale phases were also calculated.Tumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001).RESULTSTumor ITVs from amplitude-based methods were significantly larger than those from temporal-based techniques (P=.002). For lymph nodes, A2 resulted in ITVs that were significantly larger than either of the temporal-based techniques (P<.0323). A1 produced the largest and most accurate ITVs for spheres with diameters of ≥2 cm (P=.002). No significant difference was shown between algorithms in the 1-cm sphere data set. For phantom spheres, amplitude-based methods recovered an average of 9.5% more motion displacement than temporal-based methods under regular breathing conditions and an average of 45.7% more in the presence of baseline drift (P<.001).Target volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating.CONCLUSIONSTarget volumes in images generated from amplitude-based gating are larger and more accurate, at levels that are potentially clinically significant, compared with those from temporal phase-based gating. |
Author | Dahlbom, Magnus Thomas, David H. Low, Daniel A. Lamb, James M. Robinson, Clifford G. Gaudio, Sergio Jani, Shyam S. White, Benjamin M. |
AuthorAffiliation | Department of Radiation Oncology, Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California |
AuthorAffiliation_xml | – name: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California – name: Department of Radiation Oncology, Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri – name: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California |
Author_xml | – sequence: 1 givenname: Shyam S. surname: Jani fullname: Jani, Shyam S. email: sjani@mednet.ucla.edu organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California – sequence: 2 givenname: Clifford G. surname: Robinson fullname: Robinson, Clifford G. organization: Department of Radiation Oncology, Siteman Cancer Center, Washington University in St Louis, St Louis, Missouri – sequence: 3 givenname: Magnus surname: Dahlbom fullname: Dahlbom, Magnus organization: Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California – sequence: 4 givenname: Benjamin M. surname: White fullname: White, Benjamin M. organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California – sequence: 5 givenname: David H. surname: Thomas fullname: Thomas, David H. organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California – sequence: 6 givenname: Sergio surname: Gaudio fullname: Gaudio, Sergio organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California – sequence: 7 givenname: Daniel A. surname: Low fullname: Low, Daniel A. organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California – sequence: 8 givenname: James M. surname: Lamb fullname: Lamb, James M. organization: Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24074930$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/22267920$$D View this record in Osti.gov |
BookMark | eNqNUttu1DAQjVAR3RY-AWSJF16y2HGuQhQtq1IqFVGxC-LNcpxJ1iGxg-1U2t_iC3HIUkElVJ481pw5M2fmnARHSisIgqcELwkm6ct2KVujy2EZYUKXOPVvHD0IFiTPipAmydejYIFpikPq0cfBibUtxpiQLH4UHEcxzuKC4kXwY4XWuh-4kVYrpGu06odOurGC8C23UCGuKnS98-Hhf62tdMZjz3tprfTBVve6MXzY7dEFd1I1aNU12ki36y2qtUEbaHpQzufmFpfKgVG8Q1tuGnDoi-7GHuyU2o69NhZtxrIF4ZDT6BPYQRrutNmjD3qieBw8rHln4cnhPQ0-vzvfrt-HVx8vLterq1CkGXYhgaSqUk4J1JSIpMhxWeQxr7MSkxiIKAEKXKUFrnNcEZHXNa3LpKY0F0mSliU9Dc5m3mEse6iEl2B4xwYje272THPJ_s4ouWONvmE0K5KYEk_wfCbQ1klmhXQgdkIr5aWxKIrSrIiwR704tDH6-wjWMb9YAV3HFejRMhLTPMlIEWce-uzPiW5H-X1OD0hmgDDaWgP1LYRgNtmGtWy2DZtsw3DKJtv4uld36vywv-7lhcnu3uo3czX4a9xIMJNWUAIqaSaplZb3MpzdYRCdVFLw7hvswbZ6nPzid8FsxDDbTMaefE0ojrzyadWv_03wHwP8BAEvDyc |
CitedBy_id | crossref_primary_10_1053_j_semnuclmed_2022_04_006 crossref_primary_10_1007_s12149_014_0914_x crossref_primary_10_1016_j_clon_2018_01_005 crossref_primary_10_1007_s12350_018_1392_7 crossref_primary_10_1002_acm2_12533 crossref_primary_10_1002_mp_13676 crossref_primary_10_1007_s00330_014_3362_z crossref_primary_10_1002_mp_17749 crossref_primary_10_1088_1361_6560_ac43fc crossref_primary_10_6009_jjrt_2014_JSRT_70_11_1344 crossref_primary_10_2174_1874471013666200317144629 crossref_primary_10_1007_s12149_014_0870_5 crossref_primary_10_1088_1361_6560_aaa16d |
Cites_doi | 10.1016/j.ijrobp.2010.12.055 10.1118/1.3633896 10.1007/s00259-006-0363-4 10.1088/0031-9155/50/7/017 10.1118/1.1809778 10.1118/1.3480508 10.1118/1.3679015 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F 10.1007/s00259-010-1423-3 10.1118/1.3112422 10.1016/S0167-8140(00)00138-9 10.1118/1.2748104 10.1118/1.3254431 10.1016/S0360-3016(01)01824-7 10.1016/j.ijrobp.2003.10.044 10.1118/1.2348764 10.1118/1.2219772 10.1016/j.radonc.2010.10.006 10.1016/j.radonc.2004.07.033 10.1016/j.ijrobp.2008.10.054 10.1016/S0167-8140(01)00470-4 10.1120/jacmp.2027.25373 10.1088/0031-9155/52/12/012 10.1016/j.ijrobp.2010.08.028 10.1016/S0360-3016(99)00061-9 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Inc. Elsevier Inc. Copyright © 2013 Elsevier Inc. All rights reserved. 2013 Elsevier Inc. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 Elsevier Inc. – notice: Elsevier Inc. – notice: Copyright © 2013 Elsevier Inc. All rights reserved. – notice: 2013 Elsevier Inc. All rights reserved. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OTOTI 5PM |
DOI | 10.1016/j.ijrobp.2013.06.2042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-355X |
EndPage | 569 |
ExternalDocumentID | PMC3795431 22267920 24074930 10_1016_j_ijrobp_2013_06_2042 S0360301613027491 1_s2_0_S0360301613027491 |
Genre | Journal Article Comparative Study Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01CA096679; R01CA116712 – fundername: NCI NIH HHS grantid: R01 CA096679 – fundername: NCI NIH HHS grantid: R01 CA116712 – fundername: NCI NIH HHS grantid: R01CA116712 – fundername: NCI NIH HHS grantid: R01CA096679 – fundername: National Cancer Institute : NCI grantid: R01 CA116712 || CA – fundername: National Cancer Institute : NCI grantid: R01 CA096679 || CA |
GroupedDBID | --- --K .1- .FO 0R~ 1B1 1P~ 1RT 1~5 4.4 457 4G. 53G 5RE 5VS 7-5 AAEDT AAEDW AAQFI AAQQT AAWTL AAXUO ABJNI ABLJU ABNEU ABOCM ABUDA ACGFS ACIUM ACVFH ADBBV ADCNI ADVLN AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AGCQF AHHHB AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BELOY DU5 EBS EFKBS EJD F5P FDB GBLVA HED HMO IHE J1W KOM LX3 M41 MO0 O9- OC~ OO- RNS ROL RPZ SDG SEL SES SSZ UV1 XH2 Z5R ~S- .55 .GJ 29J AALRI AAQXK ABEFU ABWVN ACRPL ADMUD ADNMO ADPAM AFCTW AFFNX AFJKZ AGRDE ASPBG AVWKF AZFZN EFJIC FEDTE FGOYB FIRID G-2 HMK HVGLF HX~ HZ~ NQ- R2- RIG SAE SEW UDS X7M XPP ZGI AAIAV AGZHU ALXNB ZA5 AAYWO AAYXX AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7X8 ABPTK OTOTI 5PM |
ID | FETCH-LOGICAL-c670t-1e5dd6a31ef31c5980b984af7b014e1cbee90d690f80d1c8ff3fb5f338c556bb3 |
ISSN | 0360-3016 1879-355X |
IngestDate | Thu Aug 21 18:06:38 EDT 2025 Thu May 18 22:22:42 EDT 2023 Fri Jul 11 15:47:56 EDT 2025 Mon Jul 21 06:04:49 EDT 2025 Tue Jul 01 01:49:09 EDT 2025 Thu Apr 24 22:50:26 EDT 2025 Fri Feb 23 02:32:35 EST 2024 Sun Feb 23 10:19:37 EST 2025 Tue Aug 26 16:37:45 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2013 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c670t-1e5dd6a31ef31c5980b984af7b014e1cbee90d690f80d1c8ff3fb5f338c556bb3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://doi.org/10.1016/j.ijrobp.2013.06.2042 |
PMID | 24074930 |
PQID | 1438571947 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3795431 osti_scitechconnect_22267920 proquest_miscellaneous_1438571947 pubmed_primary_24074930 crossref_primary_10_1016_j_ijrobp_2013_06_2042 crossref_citationtrail_10_1016_j_ijrobp_2013_06_2042 elsevier_sciencedirect_doi_10_1016_j_ijrobp_2013_06_2042 elsevier_clinicalkeyesjournals_1_s2_0_S0360301613027491 elsevier_clinicalkey_doi_10_1016_j_ijrobp_2013_06_2042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | International journal of radiation oncology, biology, physics |
PublicationTitleAlternate | Int J Radiat Oncol Biol Phys |
PublicationYear | 2013 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Li, Noel, Garcia-Ramirez (bib29) 2012; 39 Geets, Lee, Bol (bib23) 2007; 34 Nehmeh, Erdi, Ling (bib7) 2002; 43 Werner-Wasik, Nelson, Choi (bib18) 2012; 82 Aristophanous, Yap, Killoran (bib12) 2011; 80 Vanuytsel, Vansteenkiste, Stroobants (bib2) 2000; 55 Lamb, Robinson, Bradley (bib11) 2011; 38 Zaidi, El Naqa (bib24) 2010; 37 Lu, Nystrom, Parikh (bib17) 2006; 33 Bradley, Thorstad, Mutic (bib4) 2004; 59 Dawood, Buther, Stegger (bib15) 2009; 36 Boucher, Rodrigue, Lecomte (bib8) 2004; 45 Erdi, Rosenzweig, Erdi (bib19) 2002; 62 Feng, Kong, Gross (bib5) 2008; 73 Lu, Parikh, Hubenschmidt (bib27) 2006; 33 Holloway, Robinson, Murray (bib6) 2004; 73 Wanet, Lee, Weynand (bib22) 2011; 98 Nestle, Walter, Schmidt (bib1) 1999; 44 Mah, Caldwell, Ung (bib3) 2002; 52 Wolthaus, van Herk, Muller (bib10) 2005; 50 Bettinardi, Rapisarda, Gilardi (bib25) 2009; 36 van Elmpt, Hamill, Jones (bib13) 2011 Dawood, Büther, Lang (bib16) 2007; 34 Teo, Seo, Bacharach (bib21) 2007; 48 Erdi, Mawlawi, Larson (bib20) 1997; 80 Liu, Alessio, Pierce (bib14) 2010; 37 Wink, Panknin, Solberg (bib26) 2006; 7 Nehmeh, Erdi, Pevsner (bib9) 2004; 31 Abdelnour, Nehmeh, Pan (bib28) 2007; 52 van Elmpt (10.1016/j.ijrobp.2013.06.2042_bib13) 2011 Vanuytsel (10.1016/j.ijrobp.2013.06.2042_bib2) 2000; 55 Dawood (10.1016/j.ijrobp.2013.06.2042_bib16) 2007; 34 Zaidi (10.1016/j.ijrobp.2013.06.2042_bib24) 2010; 37 Holloway (10.1016/j.ijrobp.2013.06.2042_bib6) 2004; 73 Dawood (10.1016/j.ijrobp.2013.06.2042_bib15) 2009; 36 Li (10.1016/j.ijrobp.2013.06.2042_bib29) 2012; 39 Bradley (10.1016/j.ijrobp.2013.06.2042_bib4) 2004; 59 Abdelnour (10.1016/j.ijrobp.2013.06.2042_bib28) 2007; 52 Mah (10.1016/j.ijrobp.2013.06.2042_bib3) 2002; 52 Nehmeh (10.1016/j.ijrobp.2013.06.2042_bib7) 2002; 43 Nehmeh (10.1016/j.ijrobp.2013.06.2042_bib9) 2004; 31 Werner-Wasik (10.1016/j.ijrobp.2013.06.2042_bib18) 2012; 82 Boucher (10.1016/j.ijrobp.2013.06.2042_bib8) 2004; 45 Wanet (10.1016/j.ijrobp.2013.06.2042_bib22) 2011; 98 Wolthaus (10.1016/j.ijrobp.2013.06.2042_bib10) 2005; 50 Erdi (10.1016/j.ijrobp.2013.06.2042_bib20) 1997; 80 Aristophanous (10.1016/j.ijrobp.2013.06.2042_bib12) 2011; 80 Nestle (10.1016/j.ijrobp.2013.06.2042_bib1) 1999; 44 Geets (10.1016/j.ijrobp.2013.06.2042_bib23) 2007; 34 Wink (10.1016/j.ijrobp.2013.06.2042_bib26) 2006; 7 Lu (10.1016/j.ijrobp.2013.06.2042_bib17) 2006; 33 Feng (10.1016/j.ijrobp.2013.06.2042_bib5) 2008; 73 Erdi (10.1016/j.ijrobp.2013.06.2042_bib19) 2002; 62 Teo (10.1016/j.ijrobp.2013.06.2042_bib21) 2007; 48 Bettinardi (10.1016/j.ijrobp.2013.06.2042_bib25) 2009; 36 Lamb (10.1016/j.ijrobp.2013.06.2042_bib11) 2011; 38 Liu (10.1016/j.ijrobp.2013.06.2042_bib14) 2010; 37 Lu (10.1016/j.ijrobp.2013.06.2042_bib27) 2006; 33 15651600 - Med Phys. 2004 Dec;31(12):3179-86 15798344 - Phys Med Biol. 2005 Apr 7;50(7):1569-83 21531085 - Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1164-71 20950956 - Int J Radiat Oncol Biol Phys. 2011 Jul 1;80(3):900-8 15588872 - Radiother Oncol. 2004 Dec;73(3):285-7 16964875 - Med Phys. 2006 Aug;33(8):2964-74 12097456 - J Nucl Med. 2002 Jul;43(7):876-81 10869746 - Radiother Oncol. 2000 Jun;55(3):317-24 11830312 - Radiother Oncol. 2002 Jan;62(1):51-60 20095267 - Med Phys. 2009 Dec;36(12):5547-58 21074882 - Radiother Oncol. 2011 Jan;98(1):117-25 16518319 - J Appl Clin Med Phys. 2006 Winter;7(1):77-85 21992387 - Med Phys. 2011 Oct;38(10):5732-7 17089828 - Med Phys. 2006 Oct;33(10):3634-6 17822014 - Med Phys. 2007 Jul;34(7):3067-76 21222120 - Eur J Nucl Med Mol Imaging. 2011 May;38(5):843-55 15093902 - Int J Radiat Oncol Biol Phys. 2004 May 1;59(1):78-86 20336455 - Eur J Nucl Med Mol Imaging. 2010 Nov;37(11):2165-87 14960638 - J Nucl Med. 2004 Feb;45(2):214-9 17475970 - J Nucl Med. 2007 May;48(5):802-10 9406703 - Cancer. 1997 Dec 15;80(12 Suppl):2505-9 19544796 - Med Phys. 2009 May;36(5):1775-84 11872279 - Int J Radiat Oncol Biol Phys. 2002 Feb 1;52(2):339-50 17431616 - Eur J Nucl Med Mol Imaging. 2007 Sep;34(9):1427-38 22320802 - Med Phys. 2012 Feb;39(2):922-32 10348289 - Int J Radiat Oncol Biol Phys. 1999 Jun 1;44(3):593-7 19251094 - Int J Radiat Oncol Biol Phys. 2009 Mar 15;73(4):1228-34 17664557 - Phys Med Biol. 2007 Jun 21;52(12):3515-29 20964223 - Med Phys. 2010 Sep;37(9):5037-43 |
References_xml | – volume: 73 start-page: 285 year: 2004 end-page: 287 ident: bib6 article-title: Results of a phase I study to dose escalate using intensity modulated radiotherapy guided by combined PET/CT imaging with induction chemotherapy for patients with non-small cell lung cancer publication-title: Radiother Oncol – start-page: 1 year: 2011 end-page: 13 ident: bib13 article-title: Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours publication-title: Eur J Nucl Med Mol Imaging – volume: 36 start-page: 5547 year: 2009 end-page: 5558 ident: bib25 article-title: Number of partitions (gates) needed to obtain motion-free images in a respiratory gated 4D-PET/CT study as a function of the lesion size and motion displacement publication-title: Med Phys – volume: 44 start-page: 593 year: 1999 end-page: 597 ident: bib1 article-title: 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis publication-title: Int J Radiat Oncol Biol Phys – volume: 33 start-page: 2964 year: 2006 end-page: 2974 ident: bib27 article-title: A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT publication-title: Med Phys – volume: 45 start-page: 214 year: 2004 end-page: 219 ident: bib8 article-title: Respiratory gating for 3-dimensional PET of the thorax: Feasibility and initial results publication-title: J Nucl Med – volume: 39 start-page: 922 year: 2012 end-page: 932 ident: bib29 article-title: Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy publication-title: Med Phys – volume: 38 start-page: 5732 year: 2011 end-page: 5737 ident: bib11 article-title: Generating lung tumor internal target volumes from 4D-PET maximum intensity projections publication-title: Med Phys – volume: 31 start-page: 3179 year: 2004 end-page: 3186 ident: bib9 article-title: Four-dimensional (4D) PET/CT imaging of the thorax publication-title: Med Phys – volume: 48 start-page: 802 year: 2007 end-page: 810 ident: bib21 article-title: Partial-volume correction in PET: Validation of an iterative postreconstruction method with phantom and patient data publication-title: J Nucl Med – volume: 55 start-page: 317 year: 2000 end-page: 324 ident: bib2 article-title: The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer publication-title: Radiother Oncol – volume: 80 start-page: 2505 year: 1997 end-page: 2509 ident: bib20 article-title: Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding publication-title: Cancer – volume: 34 start-page: 3067 year: 2007 ident: bib16 article-title: Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes publication-title: Med Phys – volume: 52 start-page: 339 year: 2002 end-page: 350 ident: bib3 article-title: The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: A prospective study publication-title: Int J Radiat Oncol Biol Phys – volume: 82 start-page: 1164 year: 2012 end-page: 1171 ident: bib18 article-title: What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom publication-title: Int J Radiat Oncol Biol Phys – volume: 37 start-page: 2165 year: 2010 end-page: 2187 ident: bib24 article-title: PET-guided delineation of radiation therapy treatment volumes: A survey of image segmentation techniques publication-title: Eur J Nucl Med Mol Imaging – volume: 62 start-page: 51 year: 2002 end-page: 60 ident: bib19 article-title: Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET) publication-title: Radiother Oncol – volume: 59 start-page: 78 year: 2004 end-page: 86 ident: bib4 article-title: Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer publication-title: Int J Radiat Oncol Biol Phys – volume: 80 start-page: 900 year: 2011 end-page: 908 ident: bib12 article-title: Four-dimensional positron emission tomography: Implications for dose painting of high-uptake regions publication-title: Int J Radiat Oncol Biol Phys – volume: 7 start-page: 77 year: 2006 end-page: 85 ident: bib26 article-title: Phase versus amplitude sorting of 4D-CT data publication-title: J Appl Clin Med Phys – volume: 98 start-page: 117 year: 2011 end-page: 125 ident: bib22 article-title: Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens publication-title: Radiother Oncol – volume: 52 start-page: 3515 year: 2007 end-page: 3529 ident: bib28 article-title: Phase and amplitude binning for 4D-CT imaging publication-title: Phys Med Biol – volume: 43 start-page: 876 year: 2002 end-page: 881 ident: bib7 article-title: Effect of respiratory gating on quantifying PET images of lung cancer publication-title: J Nucl Med – volume: 34 start-page: 1427 year: 2007 end-page: 1438 ident: bib23 article-title: A gradient-based method for segmenting FDG-PET images: Methodology and validation publication-title: Eur J Nucl Med Mol Imaging – volume: 73 start-page: 1228 year: 2008 end-page: 1234 ident: bib5 article-title: Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non–small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing publication-title: Int J Radiat Oncol Biol Phys – volume: 36 start-page: 1775 year: 2009 end-page: 1784 ident: bib15 article-title: Optimal number of respiratory gates in positron emission tomography: a cardiac patient study publication-title: Med Phys – volume: 33 start-page: 3634 year: 2006 end-page: 3636 ident: bib17 article-title: A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms publication-title: Med Phys – volume: 50 start-page: 1569 year: 2005 end-page: 1583 ident: bib10 article-title: Fusion of respiration-correlated PET and CT scans: Correlated lung tumour motion in anatomical and functional scans publication-title: Phys Med Biol – volume: 37 start-page: 5037 year: 2010 end-page: 5043 ident: bib14 article-title: Quiescent period respiratory gating for PET/CT publication-title: Med Phys – volume: 48 start-page: 802 year: 2007 ident: 10.1016/j.ijrobp.2013.06.2042_bib21 article-title: Partial-volume correction in PET: Validation of an iterative postreconstruction method with phantom and patient data publication-title: J Nucl Med – volume: 82 start-page: 1164 year: 2012 ident: 10.1016/j.ijrobp.2013.06.2042_bib18 article-title: What is the best way to contour lung tumors on PET scans? Multiobserver validation of a gradient-based method using a NSCLC digital PET phantom publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.12.055 – volume: 38 start-page: 5732 year: 2011 ident: 10.1016/j.ijrobp.2013.06.2042_bib11 article-title: Generating lung tumor internal target volumes from 4D-PET maximum intensity projections publication-title: Med Phys doi: 10.1118/1.3633896 – volume: 34 start-page: 1427 year: 2007 ident: 10.1016/j.ijrobp.2013.06.2042_bib23 article-title: A gradient-based method for segmenting FDG-PET images: Methodology and validation publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-006-0363-4 – volume: 50 start-page: 1569 year: 2005 ident: 10.1016/j.ijrobp.2013.06.2042_bib10 article-title: Fusion of respiration-correlated PET and CT scans: Correlated lung tumour motion in anatomical and functional scans publication-title: Phys Med Biol doi: 10.1088/0031-9155/50/7/017 – volume: 31 start-page: 3179 year: 2004 ident: 10.1016/j.ijrobp.2013.06.2042_bib9 article-title: Four-dimensional (4D) PET/CT imaging of the thorax publication-title: Med Phys doi: 10.1118/1.1809778 – volume: 37 start-page: 5037 year: 2010 ident: 10.1016/j.ijrobp.2013.06.2042_bib14 article-title: Quiescent period respiratory gating for PET/CT publication-title: Med Phys doi: 10.1118/1.3480508 – volume: 39 start-page: 922 year: 2012 ident: 10.1016/j.ijrobp.2013.06.2042_bib29 article-title: Clinical evaluations of an amplitude-based binning algorithm for 4DCT reconstruction in radiation therapy publication-title: Med Phys doi: 10.1118/1.3679015 – volume: 80 start-page: 2505 issue: suppl 12 year: 1997 ident: 10.1016/j.ijrobp.2013.06.2042_bib20 article-title: Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding publication-title: Cancer doi: 10.1002/(SICI)1097-0142(19971215)80:12+<2505::AID-CNCR24>3.0.CO;2-F – volume: 37 start-page: 2165 year: 2010 ident: 10.1016/j.ijrobp.2013.06.2042_bib24 article-title: PET-guided delineation of radiation therapy treatment volumes: A survey of image segmentation techniques publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-010-1423-3 – volume: 36 start-page: 1775 year: 2009 ident: 10.1016/j.ijrobp.2013.06.2042_bib15 article-title: Optimal number of respiratory gates in positron emission tomography: a cardiac patient study publication-title: Med Phys doi: 10.1118/1.3112422 – volume: 55 start-page: 317 year: 2000 ident: 10.1016/j.ijrobp.2013.06.2042_bib2 article-title: The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer publication-title: Radiother Oncol doi: 10.1016/S0167-8140(00)00138-9 – volume: 34 start-page: 3067 year: 2007 ident: 10.1016/j.ijrobp.2013.06.2042_bib16 article-title: Respiratory gating in positron emission tomography: a quantitative comparison of different gating schemes publication-title: Med Phys doi: 10.1118/1.2748104 – volume: 36 start-page: 5547 year: 2009 ident: 10.1016/j.ijrobp.2013.06.2042_bib25 article-title: Number of partitions (gates) needed to obtain motion-free images in a respiratory gated 4D-PET/CT study as a function of the lesion size and motion displacement publication-title: Med Phys doi: 10.1118/1.3254431 – volume: 52 start-page: 339 year: 2002 ident: 10.1016/j.ijrobp.2013.06.2042_bib3 article-title: The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: A prospective study publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(01)01824-7 – volume: 59 start-page: 78 year: 2004 ident: 10.1016/j.ijrobp.2013.06.2042_bib4 article-title: Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2003.10.044 – volume: 45 start-page: 214 year: 2004 ident: 10.1016/j.ijrobp.2013.06.2042_bib8 article-title: Respiratory gating for 3-dimensional PET of the thorax: Feasibility and initial results publication-title: J Nucl Med – volume: 33 start-page: 3634 year: 2006 ident: 10.1016/j.ijrobp.2013.06.2042_bib17 article-title: A semi-automatic method for peak and valley detection in free-breathing respiratory waveforms publication-title: Med Phys doi: 10.1118/1.2348764 – volume: 33 start-page: 2964 year: 2006 ident: 10.1016/j.ijrobp.2013.06.2042_bib27 article-title: A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT publication-title: Med Phys doi: 10.1118/1.2219772 – start-page: 1 year: 2011 ident: 10.1016/j.ijrobp.2013.06.2042_bib13 article-title: Optimal gating compared to 3D and 4D PET reconstruction for characterization of lung tumours publication-title: Eur J Nucl Med Mol Imaging – volume: 98 start-page: 117 year: 2011 ident: 10.1016/j.ijrobp.2013.06.2042_bib22 article-title: Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens publication-title: Radiother Oncol doi: 10.1016/j.radonc.2010.10.006 – volume: 73 start-page: 285 year: 2004 ident: 10.1016/j.ijrobp.2013.06.2042_bib6 article-title: Results of a phase I study to dose escalate using intensity modulated radiotherapy guided by combined PET/CT imaging with induction chemotherapy for patients with non-small cell lung cancer publication-title: Radiother Oncol doi: 10.1016/j.radonc.2004.07.033 – volume: 73 start-page: 1228 year: 2008 ident: 10.1016/j.ijrobp.2013.06.2042_bib5 article-title: Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non–small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2008.10.054 – volume: 62 start-page: 51 year: 2002 ident: 10.1016/j.ijrobp.2013.06.2042_bib19 article-title: Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET) publication-title: Radiother Oncol doi: 10.1016/S0167-8140(01)00470-4 – volume: 7 start-page: 77 year: 2006 ident: 10.1016/j.ijrobp.2013.06.2042_bib26 article-title: Phase versus amplitude sorting of 4D-CT data publication-title: J Appl Clin Med Phys doi: 10.1120/jacmp.2027.25373 – volume: 52 start-page: 3515 year: 2007 ident: 10.1016/j.ijrobp.2013.06.2042_bib28 article-title: Phase and amplitude binning for 4D-CT imaging publication-title: Phys Med Biol doi: 10.1088/0031-9155/52/12/012 – volume: 80 start-page: 900 year: 2011 ident: 10.1016/j.ijrobp.2013.06.2042_bib12 article-title: Four-dimensional positron emission tomography: Implications for dose painting of high-uptake regions publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/j.ijrobp.2010.08.028 – volume: 44 start-page: 593 year: 1999 ident: 10.1016/j.ijrobp.2013.06.2042_bib1 article-title: 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(99)00061-9 – volume: 43 start-page: 876 year: 2002 ident: 10.1016/j.ijrobp.2013.06.2042_bib7 article-title: Effect of respiratory gating on quantifying PET images of lung cancer publication-title: J Nucl Med – reference: 20095267 - Med Phys. 2009 Dec;36(12):5547-58 – reference: 10869746 - Radiother Oncol. 2000 Jun;55(3):317-24 – reference: 17664557 - Phys Med Biol. 2007 Jun 21;52(12):3515-29 – reference: 19544796 - Med Phys. 2009 May;36(5):1775-84 – reference: 14960638 - J Nucl Med. 2004 Feb;45(2):214-9 – reference: 17822014 - Med Phys. 2007 Jul;34(7):3067-76 – reference: 20336455 - Eur J Nucl Med Mol Imaging. 2010 Nov;37(11):2165-87 – reference: 11872279 - Int J Radiat Oncol Biol Phys. 2002 Feb 1;52(2):339-50 – reference: 15588872 - Radiother Oncol. 2004 Dec;73(3):285-7 – reference: 17475970 - J Nucl Med. 2007 May;48(5):802-10 – reference: 21531085 - Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1164-71 – reference: 16518319 - J Appl Clin Med Phys. 2006 Winter;7(1):77-85 – reference: 17089828 - Med Phys. 2006 Oct;33(10):3634-6 – reference: 20964223 - Med Phys. 2010 Sep;37(9):5037-43 – reference: 15093902 - Int J Radiat Oncol Biol Phys. 2004 May 1;59(1):78-86 – reference: 11830312 - Radiother Oncol. 2002 Jan;62(1):51-60 – reference: 17431616 - Eur J Nucl Med Mol Imaging. 2007 Sep;34(9):1427-38 – reference: 20950956 - Int J Radiat Oncol Biol Phys. 2011 Jul 1;80(3):900-8 – reference: 21074882 - Radiother Oncol. 2011 Jan;98(1):117-25 – reference: 15798344 - Phys Med Biol. 2005 Apr 7;50(7):1569-83 – reference: 16964875 - Med Phys. 2006 Aug;33(8):2964-74 – reference: 21992387 - Med Phys. 2011 Oct;38(10):5732-7 – reference: 10348289 - Int J Radiat Oncol Biol Phys. 1999 Jun 1;44(3):593-7 – reference: 21222120 - Eur J Nucl Med Mol Imaging. 2011 May;38(5):843-55 – reference: 19251094 - Int J Radiat Oncol Biol Phys. 2009 Mar 15;73(4):1228-34 – reference: 9406703 - Cancer. 1997 Dec 15;80(12 Suppl):2505-9 – reference: 15651600 - Med Phys. 2004 Dec;31(12):3179-86 – reference: 22320802 - Med Phys. 2012 Feb;39(2):922-32 – reference: 12097456 - J Nucl Med. 2002 Jul;43(7):876-81 |
SSID | ssj0001174 |
Score | 2.1656983 |
Snippet | To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in respiratory-correlated... Purpose To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in... Purpose: To quantitatively compare the accuracy of tumor volume segmentation in amplitude-based and phase-based respiratory gating algorithms in... |
SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 562 |
SubjectTerms | ACCURACY Algorithms AMPLITUDES Analysis of Variance FLUORODEOXYGLUCOSE Fluorodeoxyglucose F18 - pharmacokinetics Hematology, Oncology and Palliative Medicine Lung Neoplasms - diagnostic imaging Lung Neoplasms - metabolism Lung Neoplasms - pathology Lymph Nodes - diagnostic imaging Lymph Nodes - metabolism Lymph Nodes - pathology Mediastinum Movement Multimodal Imaging - instrumentation Multimodal Imaging - methods NEOPLASMS PATIENTS PHANTOMS Phantoms, Imaging POSITRON COMPUTED TOMOGRAPHY Positron-Emission Tomography - methods Radiology RADIOLOGY AND NUCLEAR MEDICINE Radiopharmaceuticals - pharmacokinetics RESPIRATION Statistics, Nonparametric Tomography, X-Ray Computed Tumor Burden |
Title | A Comparison of Amplitude-Based and Phase-Based Positron Emission Tomography Gating Algorithms for Segmentation of Internal Target Volumes of Tumors Subject to Respiratory Motion |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0360301613027491 https://www.clinicalkey.es/playcontent/1-s2.0-S0360301613027491 https://dx.doi.org/10.1016/j.ijrobp.2013.06.2042 https://www.ncbi.nlm.nih.gov/pubmed/24074930 https://www.proquest.com/docview/1438571947 https://www.osti.gov/biblio/22267920 https://pubmed.ncbi.nlm.nih.gov/PMC3795431 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6VVEJcEG8CBS0SNyvB9vp5TEtpaRWo2hR6s7wbbx5K7CqPA_wsfg6_hhnv2uuWQAsXy7E9Xjvz7c7seOZbQt5GnPlS-DAt8VyYoISh3-G253QyKe0siF1fBlg73P8UHJ57Rxf-xdbWz0bW0nrFu-L7xrqS_9EqHAO9YpXsP2i2vikcgH3QL2xBw7C9lY57qjtXywhaPUwPR7LKzi4Yp6GqBBjDrv59ghlaC7h2H7SLYTJrUMw1Z7V1kJYZ0L3ZqFhMVmNF1ABjyWiuy5Pyquyk9GAHZQq59aUc3cp8kMF6jiv3wFCEsR10ak8b3_H7RQ2BqcmeN8HIBoXFAvkSVIO5qKtpuCmsUeEYk_yo1qWyzsbf0rl11jUfkUxt295sIsvSyIP69Pt0POOFCgmno3y9NAZKLxq4m-XTdD7JrX63GR1xmC4TNIMoC8DO2I6m21aDfBTGHfCzLppWQJv9iQkS_GZcVJzjqPvx6PTz7gmmBTLkfnVtxQ92jbcbHK8gjF37Dtl2YQrjtsh27_j063HtJziaI7x6QlNf9m5jG3_ynFoFGINNE6Treb4Nx2nwgNzXMx7aU_B9SLay_BG529c5HY_Jjx41KKaFpNdQTAHFtIFiWqGYViimBsVUoZgaFFPQOm2iGJuoUEwViqlGMZ5SKKYaxXRV0AaKqULxE3L-YX-wd9jRK4l0RBDaq46T-cNhkDInk8wRfhzZPI68VIbcdrzMETzLYnsYxLaM7KEjIimZ5L5kLBK-H3DOnpJWXuTZc0IFzPBlGEghhPRiN0wZRgDAFKZwS5c7beJVWkqEptnH1V5mSZVPOU0m00XBLxNUbmIHCSq3Tbq12KXimblJIKggkFRF1GD2EwDrTYLhJsFsqfv5MnGSpZvYyRkiE4FZ5jZ4MbxaVEtq_1z53bdpdAdRimLITS0wiQ_kqj7SJm8q9CYAHfxmmeZZsYZn8Vjkh07shW3yTKG5_n8wGOXFDKTDKzivL0Dq_Ktn8sm4pNBnYYwkIC_-_lgvyT0zpuyQ1mqxzl7BHGTFX-vO_AtLvTrO |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+Amplitude-Based+and+Phase-Based+Positron+Emission+Tomography+Gating+Algorithms+for+Segmentation+of+Internal+Target+Volumes+of+Tumors+Subject+to+Respiratory+Motion&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Jani%2C+Shyam+S.&rft.au=Robinson%2C+Clifford+G.&rft.au=Dahlbom%2C+Magnus&rft.au=White%2C+Benjamin+M.&rft.date=2013-11-01&rft.issn=0360-3016&rft.eissn=1879-355X&rft.volume=87&rft.issue=3&rft_id=info:doi/10.1016%2FJ.IJROBP.2013.06.2042&rft.externalDocID=22267920 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03603016%2FS0360301613X00136%2Fcov150h.gif |