Adjusting for covariate effects on classification accuracy using the covariate-adjusted receiver operating characteristic curve

Recent scientific and technological innovations have produced an abundance of potential markers that are being investigated for their use in disease screening and diagnosis. In evaluating these markers, it is often necessary to account for covariates associated with the marker of interest. Covariate...

Full description

Saved in:
Bibliographic Details
Published inBiometrika Vol. 96; no. 2; pp. 371 - 382
Main Authors Janes, Holly, Pepe, Margaret S
Format Journal Article
LanguageEnglish
Published England Oxford University Press for Biometrika Trust 01.06.2009
SeriesBiometrika
Online AccessGet more information

Cover

Loading…
Abstract Recent scientific and technological innovations have produced an abundance of potential markers that are being investigated for their use in disease screening and diagnosis. In evaluating these markers, it is often necessary to account for covariates associated with the marker of interest. Covariates may include subject characteristics, expertise of the test operator, test procedures or aspects of specimen handling. In this paper, we propose the covariate-adjusted receiver operating characteristic curve, a measure of covariate-adjusted classification accuracy. Nonparametric and semiparametric estimators are proposed, asymptotic distribution theory is provided and finite sample performance is investigated. For illustration we characterize the age-adjusted discriminatory accuracy of prostate-specific antigen as a biomarker for prostate cancer.
AbstractList Recent scientific and technological innovations have produced an abundance of potential markers that are being investigated for their use in disease screening and diagnosis. In evaluating these markers, it is often necessary to account for covariates associated with the marker of interest. Covariates may include subject characteristics, expertise of the test operator, test procedures or aspects of specimen handling. In this paper, we propose the covariate-adjusted receiver operating characteristic curve, a measure of covariate-adjusted classification accuracy. Nonparametric and semiparametric estimators are proposed, asymptotic distribution theory is provided and finite sample performance is investigated. For illustration we characterize the age-adjusted discriminatory accuracy of prostate-specific antigen as a biomarker for prostate cancer. Copyright 2009, Oxford University Press.
Recent scientific and technological innovations have produced an abundance of potential markers that are being investigated for their use in disease screening and diagnosis. In evaluating these markers, it is often necessary to account for covariates associated with the marker of interest. Covariates may include subject characteristics, expertise of the test operator, test procedures or aspects of specimen handling. In this paper, we propose the covariate-adjusted receiver operating characteristic curve, a measure of covariate-adjusted classification accuracy. Nonparametric and semiparametric estimators are proposed, asymptotic distribution theory is provided and finite sample performance is investigated. For illustration we characterize the age-adjusted discriminatory accuracy of prostate-specific antigen as a biomarker for prostate cancer.
Author Pepe, Margaret S
Janes, Holly
Author_xml – sequence: 1
  givenname: Holly
  surname: Janes
  fullname: Janes, Holly
  email: hjanes@scharp.org, mspepe@u.washington.edu
  organization: Division of Public Health Sciences, Fred Hutchinson Cancer, Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109 , U.S.A. hjanes@scharp.org mspepe@u.washington.edu
– sequence: 2
  givenname: Margaret S
  surname: Pepe
  fullname: Pepe, Margaret S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22822245$$D View this record in MEDLINE/PubMed
http://econpapers.repec.org/article/oupbiomet/v_3a96_3ay_3a2009_3ai_3a2_3ap_3a371-382.htm$$DView record in RePEc
BookMark eNpFkElvwyAQhVGVqlnaY68Vf8ANYDD2MYq6KlIv7dnCeGiI4kWALeXUv16SdDm8eTOH9z1p5mjSdi0gdEvJPSVFuqxs10BYKt8Twi7QjPKMJ6mgZIJmhJAsSTnnUzT3fnc8M5FdoSljOWOMixn6WtW7wQfbfmLTOay7UTmrAmAwBnTwuGux3ivvrbFaBRtPpfXglD7gwR9jYQv_sUSdcFBjBxrsCA53PTh1KtBbFXMBnI2FGkfKCNfo0qi9h5sfX6CPx4f39XOyeXt6Wa82ic4kCQnlpiJUkyIXrM6lMZVWTHDQRkrJTF0YIgTIglciy4WusgpkXag8lVRU1KRsgV7PXAc96LJ3tlHuUHZDf35gOZapKrI4DlGMkCKaPa5RfVQklWnOym1oIuzuDOuHqoH6j_b7VvYNM36AUg
CitedBy_id crossref_primary_10_1214_17_AOAS1085
crossref_primary_10_1177_0962280212451881
crossref_primary_10_1016_j_ajo_2020_05_026
crossref_primary_10_1016_j_ebiom_2022_103886
crossref_primary_10_1177_10731911241261436
crossref_primary_10_1146_annurev_statistics_040720_022432
crossref_primary_10_1214_21_STS839
crossref_primary_10_1016_j_spinee_2024_12_008
crossref_primary_10_1177_0962280217740392
crossref_primary_10_3390_ijerph20196869
crossref_primary_10_1080_10543406_2023_2170394
crossref_primary_10_1016_j_ogla_2020_07_005
crossref_primary_10_1097_CCM_0000000000002168
crossref_primary_10_1080_02664763_2013_789832
crossref_primary_10_1200_JCO_22_01564
crossref_primary_10_1186_s12882_019_1653_y
crossref_primary_10_1038_s41467_020_15700_3
crossref_primary_10_1007_s10620_025_08940_0
crossref_primary_10_12688_wellcomeopenres_21375_1
crossref_primary_10_1371_journal_pone_0142706
crossref_primary_10_1093_biostatistics_kxaf005
crossref_primary_10_1177_0081246315599476
crossref_primary_10_1093_jbi_wbz006
crossref_primary_10_1002_ajim_22850
crossref_primary_10_1016_j_ajo_2020_03_024
crossref_primary_10_1016_j_eclinm_2022_101443
crossref_primary_10_1038_s41598_024_52701_4
crossref_primary_10_1177_09622802241311458
crossref_primary_10_3389_fcvm_2023_1131962
crossref_primary_10_1117_1_JMI_7_1_014003
crossref_primary_10_1111_bjd_14216
crossref_primary_10_3390_cancers15123246
crossref_primary_10_1016_j_jclinepi_2023_06_001
crossref_primary_10_1007_s10157_024_02598_0
crossref_primary_10_1214_13_AOAS634
crossref_primary_10_1016_j_jbankfin_2016_09_001
crossref_primary_10_1093_hmg_ddac102
crossref_primary_10_1136_bjophthalmol_2018_313581
crossref_primary_10_1097_CCM_0000000000001840
crossref_primary_10_1177_1362361318770430
crossref_primary_10_1007_s11222_010_9184_1
crossref_primary_10_1002_sim_5727
crossref_primary_10_1016_j_pan_2015_02_005
crossref_primary_10_1002_sim_8673
crossref_primary_10_1177_0962280217702416
crossref_primary_10_1002_sim_7986
crossref_primary_10_1002_sim_6335
crossref_primary_10_1016_j_ophtha_2018_04_031
crossref_primary_10_1016_j_pscychresns_2021_111313
crossref_primary_10_1002_bimj_201500195
crossref_primary_10_1007_s11425_012_4462_3
crossref_primary_10_1002_cjs_11145
crossref_primary_10_1007_s12028_021_01319_9
crossref_primary_10_1373_clinchem_2017_271890
crossref_primary_10_1088_1361_6560_aab4b1
crossref_primary_10_1016_j_lanepe_2023_100798
crossref_primary_10_1016_j_acra_2013_03_009
crossref_primary_10_1038_s41467_023_44009_0
crossref_primary_10_3141_2386_16
crossref_primary_10_1080_07357907_2021_1985134
crossref_primary_10_1097_MEJ_0000000000000578
crossref_primary_10_1016_j_aap_2012_10_004
crossref_primary_10_1016_j_acra_2013_03_004
crossref_primary_10_1002_ijc_33875
crossref_primary_10_1016_j_ajo_2021_11_008
crossref_primary_10_1111_biom_13601
crossref_primary_10_1080_24709360_2022_2131994
crossref_primary_10_1177_0272989X09357477
crossref_primary_10_1371_journal_pgen_1009670
crossref_primary_10_1007_s10815_023_02871_3
crossref_primary_10_1080_1091367X_2022_2160254
crossref_primary_10_1093_biostatistics_kxw003
crossref_primary_10_1016_j_jclinepi_2021_02_007
crossref_primary_10_1111_biom_12001
crossref_primary_10_1007_s10985_012_9237_1
crossref_primary_10_1080_19485565_2013_774628
crossref_primary_10_1542_peds_2019_3659
crossref_primary_10_1002_sim_9652
crossref_primary_10_1016_j_fertnstert_2013_03_031
crossref_primary_10_1177_1179299X17732007
crossref_primary_10_7717_peerj_7433
crossref_primary_10_1111_liv_16240
crossref_primary_10_1002_sim_7675
crossref_primary_10_1002_sim_8723
crossref_primary_10_1016_j_ajhg_2020_08_025
crossref_primary_10_1016_j_euo_2024_04_017
crossref_primary_10_1097_EDE_0b013e31823035fb
crossref_primary_10_1002_ijc_32541
crossref_primary_10_1080_03054985_2022_2072824
crossref_primary_10_1177_09622802221094940
crossref_primary_10_1002_sim_7274
crossref_primary_10_1177_0962280217742542
ContentType Journal Article
DBID NPM
DKI
X2L
DOI 10.1093/biomet/asp002
DatabaseName PubMed
RePEc IDEAS
RePEc
DatabaseTitle PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Biology
EISSN 1464-3510
EndPage 382
ExternalDocumentID oupbiomet_v_3a96_3ay_3a2009_3ai_3a2_3ap_3a371_382_htm
22822245
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM054438
GroupedDBID -DZ
-E4
-~X
..I
.2P
.55
.DC
.GJ
.I3
0R~
1TH
23N
3R3
4.4
482
48X
53G
5GY
5RE
5VS
5WA
6J9
6OB
70D
79B
8U8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWIL
ABAWQ
ABBHK
ABDFA
ABDTM
ABEJV
ABEUO
ABFAN
ABGNP
ABIME
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABPFR
ABPIB
ABPPZ
ABPQH
ABPQP
ABPTD
ABQLI
ABQTQ
ABSMQ
ABVGC
ABWST
ABXSQ
ABXVV
ABYWD
ABZBJ
ABZEO
ACBEA
ACFRR
ACGFO
ACGFS
ACGOD
ACHJO
ACIPB
ACIWK
ACMTB
ACNCT
ACPQN
ACPRK
ACTMH
ACUBG
ACUFI
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADLSF
ADMHC
ADNBA
ADOCK
ADODI
ADQBN
ADRDM
ADRTK
ADULT
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFVYC
AFXHP
AFYAG
AGINJ
AGKEF
AGKRT
AGLNM
AGMDO
AGQXC
AGSYK
AHXPO
AIAGR
AIHAF
AIJHB
AJDVS
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALTZX
ALUQC
ALXQX
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
AS~
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DQDLB
DSRWC
DU5
D~K
EBS
ECEWR
EE~
EJD
ELUNK
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
FVMVE
GAUVT
GJXCC
H13
H5~
HAR
HGD
HQ6
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NPM
NTWIH
NU-
NVLIB
O0~
O9-
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TJP
TN5
UAP
WH7
X7H
X7M
XSW
YAYTL
YKOAZ
YXANX
ZCG
ZGI
ZKX
~02
~91
02
08R
0R
1AW
2P
55
6.Y
91
AABJS
AABMN
AAIYJ
AANRK
AAPBV
ABFLS
ABPTK
ABSAR
ABYAD
ACTWD
ADBIT
ADEIU
ADORX
ADQLU
ADRIX
AFXEN
AFXKK
AHGVY
AIHXQ
AIKOY
ARQIP
AS
AUCZF
AZQFJ
BYORX
DKI
DPORF
DPPUQ
DZ
E4
EE
EFSUC
ESX
GJ
H5
HZ
I3
IPNFZ
JSODD
KC5
O0
PQEST
RIG
X
X2L
XFK
XHC
ID FETCH-LOGICAL-c670t-14fb01c09852d87ffbca254ecf7772fd9f055e794b5685cb6be7d9a83715b1f32
IEDL.DBID DKI
ISSN 0006-3444
IngestDate Wed Aug 18 03:13:18 EDT 2021
Thu Apr 03 07:00:39 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c670t-14fb01c09852d87ffbca254ecf7772fd9f055e794b5685cb6be7d9a83715b1f32
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3371718
PMID 22822245
PageCount 12
ParticipantIDs repec_primary_oupbiomet_v_3a96_3ay_3a2009_3ai_3a2_3ap_3a371_382_htm
pubmed_primary_22822245
PublicationCentury 2000
PublicationDate 2009-06-01
PublicationDateYYYYMMDD 2009-06-01
PublicationDate_xml – month: 06
  year: 2009
  text: 2009-06-01
  day: 01
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationSeriesTitle Biometrika
PublicationTitle Biometrika
PublicationTitleAlternate Biometrika
PublicationYear 2009
Publisher Oxford University Press for Biometrika Trust
Publisher_xml – name: Oxford University Press for Biometrika Trust
SSID ssj0006656
Score 2.244739
Snippet Recent scientific and technological innovations have produced an abundance of potential markers that are being investigated for their use in disease screening...
SourceID repec
pubmed
SourceType Index Database
StartPage 371
Title Adjusting for covariate effects on classification accuracy using the covariate-adjusted receiver operating characteristic curve
URI https://www.ncbi.nlm.nih.gov/pubmed/22822245
http://econpapers.repec.org/article/oupbiomet/v_3a96_3ay_3a2009_3ai_3a2_3ap_3a371-382.htm
Volume 96
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYqKqQuCMqrvOSBNTRxEsceq0JVQK0YqNQt8rMCiSQqbaVO_HXOSQiwMTDYseTEtu7i83f2-Q6haxMzFVKYgNzXoKBIzjzpc-0RyjXzhSLV3arJlI5n0cM8nrfQlxG7UwILUQDyuVmawtSegisa9vN1Ud5JX_U3aSg4hWwLye3vw-PFFSEVkMIk8EJGQP18A-kccuaM_W4f7xsZTWkZ19WVvDCKotr7Jqj3_boL8V6Uey3NutQuB_Rj8Rnto70aNeJBNcQD1DJZF-1WcSS3XdRxkLHyuHyIPgb61YXoyhYYAClW-QbUYUCUuDbdwHmGlcPMzkio5AsWSq2XQm2xs4JfYMCE3595omzOaAyy0TgrDpwXzhOze1P9cveMoZWNOUKz0d3zcOzVYRY8RRN_5QWRlX6gfKAS0SyxVioBaqNRNgHobTW3fhwbmLcypixWkkqTaC5Asw1iGdiQHKOdLM_MKcLuVJFbQbjULJKWCK4tj4RKhDGGCdFDJxU506LypZESZ8ZKoriHhiV9m4qG2ekfmJ1Cvykw--xfWjlHnerMyO21XKC2BUFgLgF7rORV-RtBPn2afAJBX94b
linkProvider Research Papers in Economics (RePEc)
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adjusting+for+covariate+effects+on+classification+accuracy+using+the+covariate-adjusted+receiver+operating+characteristic+curve&rft.jtitle=Biometrika&rft.au=Janes%2C+Holly&rft.au=Pepe%2C+Margaret+S&rft.date=2009-06-01&rft.issn=0006-3444&rft.volume=96&rft.issue=2&rft.spage=371&rft_id=info:doi/10.1093%2Fbiomet%2Fasp002&rft_id=info%3Apmid%2F22822245&rft_id=info%3Apmid%2F22822245&rft.externalDocID=22822245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon