Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics

Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technol...

Full description

Saved in:
Bibliographic Details
Published inProteomics. Clinical applications Vol. 9; no. 7-8; pp. 745 - 754
Main Authors Deutsch, Eric W., Mendoza, Luis, Shteynberg, David, Slagel, Joseph, Sun, Zhi, Moritz, Robert L.
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 01.08.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1862-8346
1862-8354
1862-8354
DOI10.1002/prca.201400164

Cover

Loading…
Abstract Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans‐Proteomics Pipeline (TPP) is a robust open‐source standardized data processing pipeline for large‐scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features.
AbstractList Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include mass spectrometry to define protein sequence, protein:protein interactions, and protein post-translational modifications. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative mass spectrometry proteomics. It supports all major operating systems and instrument vendors via open data formats. Here we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of tandem mass spectrometry datasets, as well as some major upcoming features.
Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features.
Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features.Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features.
Author Deutsch, Eric W.
Sun, Zhi
Moritz, Robert L.
Shteynberg, David
Mendoza, Luis
Slagel, Joseph
AuthorAffiliation 1 Institute for Systems Biology, Seattle, WA, USA
AuthorAffiliation_xml – name: 1 Institute for Systems Biology, Seattle, WA, USA
Author_xml – sequence: 1
  givenname: Eric W.
  surname: Deutsch
  fullname: Deutsch, Eric W.
  email: eric.deutsch@systemsbiology.org
  organization: Institute for Systems Biology, WA, Seattle, USA
– sequence: 2
  givenname: Luis
  surname: Mendoza
  fullname: Mendoza, Luis
  organization: Institute for Systems Biology, WA, Seattle, USA
– sequence: 3
  givenname: David
  surname: Shteynberg
  fullname: Shteynberg, David
  organization: Institute for Systems Biology, WA, Seattle, USA
– sequence: 4
  givenname: Joseph
  surname: Slagel
  fullname: Slagel, Joseph
  organization: Institute for Systems Biology, WA, Seattle, USA
– sequence: 5
  givenname: Zhi
  surname: Sun
  fullname: Sun, Zhi
  organization: Institute for Systems Biology, WA, Seattle, USA
– sequence: 6
  givenname: Robert L.
  surname: Moritz
  fullname: Moritz, Robert L.
  organization: Institute for Systems Biology, WA, Seattle, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25631240$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNURB-wZYkisWHRDH47s0GqBihUIxhVRV1aHvtmcEns1E4o5dfj0TwElVBXvpa_c3x9fI-LAx88FMVLjCYYIfK2j0ZPCMIMISzYk-II14JUNeXsYF8zcVgcp3SDEGdEomfFIeGCYsLQUTFeRe1TtYhhgNA5Uy5cD63zcFrqMg3aWx2t-w22tHrQZR-DgZScX5X9FiybEMtWxxVUyegWygiZsqNxy7zpd8apdD6TnR5y_bx42ug2wYvtelJ8-_jhavapmn89_zw7m1dGSCQqSy2pG6sbw2vDDKc1BqQJEAogNTUNRTUjRtIpmdaaEcKYxbyxSyO5MJrTk-Ldxrcflx1YA36IulV9dJ2O9ypop_498e67WoWfinEkCJ1mgzdbgxhuR0iD6lwy0LbaQxiTwjJHX0tGyeOomEqCiZA4o68foDdhjD4nsaYEEphzmqlXfze_73r3eRlgG8DEkFKERhk35HzD-i2uVRip9Yyo9Yyo_Yxk2eSBbOf8X8H2njvXwv0jtFpczs6woCLLqo3MpQF-7WU6_lBCUsnV9Zdzdf0eXVzOL6hC9A956t9S
CitedBy_id crossref_primary_10_1093_dnares_dsw057
crossref_primary_10_3390_biomedicines9091156
crossref_primary_10_1007_s00705_017_3366_5
crossref_primary_10_1038_s42003_021_02726_6
crossref_primary_10_1016_j_xpro_2022_101177
crossref_primary_10_1002_pmic_201400535
crossref_primary_10_1021_acs_jproteome_5b00579
crossref_primary_10_1093_bioinformatics_btac014
crossref_primary_10_1038_s41586_022_05035_y
crossref_primary_10_1093_nar_gkv1145
crossref_primary_10_1021_acs_jproteome_8b00600
crossref_primary_10_1016_j_ccell_2020_12_007
crossref_primary_10_1038_s41597_023_02590_5
crossref_primary_10_3390_cells11152450
crossref_primary_10_1016_j_jprot_2022_104541
crossref_primary_10_1038_ismej_2016_132
crossref_primary_10_1016_j_foodcont_2023_109795
crossref_primary_10_1021_acs_analchem_0c01564
crossref_primary_10_1021_acs_jproteome_1c00827
crossref_primary_10_1371_journal_ppat_1007164
crossref_primary_10_1021_acs_jproteome_4c00086
crossref_primary_10_1038_s41597_024_04047_9
crossref_primary_10_1016_j_jprot_2018_09_010
crossref_primary_10_1016_j_cub_2021_09_031
crossref_primary_10_1016_j_dib_2015_10_003
crossref_primary_10_1021_acs_jproteome_2c00464
crossref_primary_10_3390_cells12242807
crossref_primary_10_1186_s12863_022_01045_x
crossref_primary_10_1021_acs_jproteome_8b00392
crossref_primary_10_1038_s41564_018_0142_6
crossref_primary_10_1128_MCB_00395_18
crossref_primary_10_3233_CBM_210033
crossref_primary_10_1021_acs_analchem_9b01556
crossref_primary_10_1093_jb_mvad078
crossref_primary_10_1002_prca_201700046
crossref_primary_10_1038_s41598_018_27650_4
crossref_primary_10_1371_journal_pone_0208973
crossref_primary_10_1021_acs_jproteome_2c00498
crossref_primary_10_3390_ijms22094864
crossref_primary_10_7554_eLife_60482
crossref_primary_10_1021_acs_jproteome_6b00443
crossref_primary_10_1021_acschembio_2c00051
crossref_primary_10_1038_s41592_021_01209_0
crossref_primary_10_1021_acs_jproteome_4c00743
crossref_primary_10_1021_acs_jproteome_1c00485
crossref_primary_10_3389_fmed_2021_666554
crossref_primary_10_1074_mcp_RA118_001138
crossref_primary_10_1097_MPA_0000000000002115
crossref_primary_10_1021_acs_jproteome_4c00187
crossref_primary_10_1021_acs_jproteome_1c00009
crossref_primary_10_1016_j_peptides_2022_170814
crossref_primary_10_1080_14789450_2023_2265062
crossref_primary_10_1093_bioinformatics_btad376
crossref_primary_10_1186_s12915_022_01250_1
crossref_primary_10_1002_cpz1_506
crossref_primary_10_1111_imm_12936
crossref_primary_10_3390_jcm10112309
crossref_primary_10_31083_j_fbl2809227
crossref_primary_10_1016_j_carres_2023_108894
crossref_primary_10_1016_j_foodcont_2021_108417
crossref_primary_10_1021_acs_jproteome_7b00288
crossref_primary_10_1021_acs_jproteome_0c00382
crossref_primary_10_1093_bib_bbv034
crossref_primary_10_1002_pmic_201800433
crossref_primary_10_1021_acs_jproteome_9b00064
crossref_primary_10_1126_science_aad2545
crossref_primary_10_1021_acs_jproteome_0c00928
crossref_primary_10_1021_acs_jproteome_9b00745
crossref_primary_10_1038_s41597_019_0308_y
crossref_primary_10_1002_prca_201700064
crossref_primary_10_3390_cancers12061534
crossref_primary_10_1021_acs_jproteome_3c00085
crossref_primary_10_1186_s12864_021_07640_z
crossref_primary_10_3390_ijms24021050
crossref_primary_10_1016_j_bbapap_2018_09_004
crossref_primary_10_1021_acs_jproteome_2c00672
crossref_primary_10_1016_j_ab_2023_115318
crossref_primary_10_1016_j_dib_2016_02_036
crossref_primary_10_1016_j_bbapap_2017_10_006
crossref_primary_10_7717_peerj_1401
crossref_primary_10_1016_j_bbrep_2022_101259
crossref_primary_10_1093_plcell_koab211
crossref_primary_10_1371_journal_pone_0273357
crossref_primary_10_1021_acs_jproteome_4c00320
crossref_primary_10_1016_j_foodcont_2022_108888
crossref_primary_10_1016_j_mcpro_2022_100214
crossref_primary_10_1038_s41597_020_00724_7
crossref_primary_10_1007_s11684_022_0964_8
crossref_primary_10_1128_mBio_02575_21
crossref_primary_10_1016_j_bbapap_2016_07_002
crossref_primary_10_1021_acs_jproteome_1c00590
crossref_primary_10_1021_acs_jproteome_7b00786
crossref_primary_10_1038_s41467_020_19045_9
crossref_primary_10_1016_j_micres_2022_126973
crossref_primary_10_1021_acs_jproteome_6b00511
crossref_primary_10_1111_mec_17284
crossref_primary_10_1016_j_jprot_2021_104192
crossref_primary_10_1002_pmic_201500295
crossref_primary_10_3389_fpls_2015_00670
crossref_primary_10_1016_j_molcel_2023_05_006
crossref_primary_10_1016_j_ibmb_2024_104247
crossref_primary_10_1093_glycob_cwae054
crossref_primary_10_18632_oncotarget_25946
crossref_primary_10_1016_j_jgg_2018_07_005
crossref_primary_10_1128_mBio_01905_18
crossref_primary_10_1186_s12934_024_02315_2
crossref_primary_10_1038_s41598_023_41124_2
crossref_primary_10_1038_s41598_022_06026_9
crossref_primary_10_1371_journal_ppat_1005606
crossref_primary_10_1016_j_cell_2016_06_041
crossref_primary_10_1093_bib_bbz163
crossref_primary_10_1016_j_molcel_2023_01_023
crossref_primary_10_1016_j_str_2020_09_011
crossref_primary_10_1021_acs_jproteome_3c00536
crossref_primary_10_1371_journal_pone_0199649
crossref_primary_10_1021_acs_jproteome_6b00407
crossref_primary_10_1038_s41586_024_07730_4
crossref_primary_10_1021_acs_jproteome_5b01091
crossref_primary_10_1177_0022034517736054
crossref_primary_10_1016_j_jprot_2017_11_025
crossref_primary_10_1021_acs_analchem_9b02331
crossref_primary_10_3389_fpls_2017_00429
crossref_primary_10_2174_1389203722666210118160946
crossref_primary_10_1016_j_jprot_2018_02_027
crossref_primary_10_1016_j_jprot_2020_103819
crossref_primary_10_1021_acs_jproteome_8b00638
crossref_primary_10_1021_acs_jproteome_4c00418
crossref_primary_10_1016_j_mcpro_2023_100610
crossref_primary_10_1074_mcp_RA118_001067
crossref_primary_10_3389_fmolb_2022_831758
crossref_primary_10_1021_acs_jproteome_7b00640
crossref_primary_10_1002_mas_21595
crossref_primary_10_1002_pmic_201500195
crossref_primary_10_1021_acs_analchem_1c00310
crossref_primary_10_1038_s41598_017_08436_6
crossref_primary_10_1021_acs_jproteome_1c00657
crossref_primary_10_1021_acs_jproteome_9b00542
crossref_primary_10_1021_acs_analchem_7b04340
crossref_primary_10_1021_acs_jproteome_2c00624
crossref_primary_10_1016_j_cmet_2022_12_004
crossref_primary_10_1002_pmic_201800280
crossref_primary_10_1021_acs_analchem_5b03199
crossref_primary_10_1021_acs_jproteome_8b00442
crossref_primary_10_1038_s41467_020_15346_1
crossref_primary_10_1016_j_theriogenology_2019_05_036
crossref_primary_10_1016_j_csbj_2024_06_014
crossref_primary_10_1007_s00521_018_3836_z
crossref_primary_10_1021_acs_jproteome_2c00616
crossref_primary_10_1021_acs_jproteome_9b00434
crossref_primary_10_3389_fphys_2018_00444
crossref_primary_10_1007_s00018_020_03528_5
crossref_primary_10_1021_acs_jproteome_7b00467
crossref_primary_10_1371_journal_pgen_1008511
crossref_primary_10_1016_j_jprot_2015_10_019
crossref_primary_10_1021_acs_jproteome_6b00952
crossref_primary_10_1021_acs_jproteome_1c00796
crossref_primary_10_1016_j_ddtec_2021_06_007
crossref_primary_10_1146_annurev_anchem_071015_041734
crossref_primary_10_1038_s41598_020_67525_1
crossref_primary_10_1099_mgen_0_000876
crossref_primary_10_1021_acs_jproteome_1c00759
crossref_primary_10_3390_ijms20040863
crossref_primary_10_1038_s42255_020_0211_z
crossref_primary_10_18632_oncotarget_24418
crossref_primary_10_1039_C8MO00136G
crossref_primary_10_3389_fcimb_2018_00413
crossref_primary_10_1186_s12014_016_9124_y
crossref_primary_10_3390_cancers15020555
crossref_primary_10_1021_acs_jproteome_6b01019
crossref_primary_10_1002_mas_21540
crossref_primary_10_1371_journal_pone_0228503
crossref_primary_10_1021_acs_jproteome_4c00586
crossref_primary_10_1021_acs_jproteome_8b00544
crossref_primary_10_1021_acs_jproteome_6b00727
crossref_primary_10_1093_bib_bbz122
crossref_primary_10_1371_journal_ppat_1009293
crossref_primary_10_1111_tra_12827
crossref_primary_10_1038_s41592_018_0018_y
crossref_primary_10_1016_j_cub_2018_05_067
crossref_primary_10_1002_pmic_201900362
crossref_primary_10_1021_acs_jproteome_5b00500
crossref_primary_10_1038_nprot_2015_133
crossref_primary_10_1038_s42003_023_05128_y
crossref_primary_10_1021_acs_jproteome_1c00096
crossref_primary_10_1016_j_foodres_2024_114785
crossref_primary_10_1021_acsmeasuresciau_3c00068
crossref_primary_10_1038_s41597_022_01380_9
crossref_primary_10_3390_microorganisms8030379
crossref_primary_10_1016_j_jprot_2020_103985
crossref_primary_10_3390_cells12212524
crossref_primary_10_1021_acs_jproteome_0c00648
crossref_primary_10_1021_acs_jproteome_4c01020
crossref_primary_10_1038_s41467_019_12936_6
crossref_primary_10_1152_ajplung_00198_2021
crossref_primary_10_1007_s00216_016_9482_3
crossref_primary_10_1038_s41598_020_74939_4
crossref_primary_10_1002_ansa_202200044
crossref_primary_10_1016_j_cell_2019_10_007
crossref_primary_10_1038_s41597_022_01259_9
crossref_primary_10_3390_ijms22084174
crossref_primary_10_1007_s13361_016_1435_8
crossref_primary_10_1021_acs_jproteome_8b00485
crossref_primary_10_1093_gbe_evz080
crossref_primary_10_15252_msb_20188486
crossref_primary_10_1038_s41467_021_21873_2
crossref_primary_10_3390_ijms21186830
crossref_primary_10_1038_s41467_020_18901_y
crossref_primary_10_1038_s41467_021_26427_0
crossref_primary_10_1016_j_patter_2020_100137
crossref_primary_10_1038_s41598_021_81740_4
crossref_primary_10_3390_jmse8100790
crossref_primary_10_1016_j_str_2020_07_016
crossref_primary_10_1038_s41598_020_78711_6
crossref_primary_10_1038_s41467_020_14608_2
crossref_primary_10_1007_s00216_022_04353_4
crossref_primary_10_1016_j_celrep_2022_111031
crossref_primary_10_1002_prca_201400181
crossref_primary_10_1186_s12014_019_9251_3
crossref_primary_10_1021_acs_jproteome_9b00205
crossref_primary_10_1038_nmeth_3901
crossref_primary_10_1021_acs_jproteome_9b00324
crossref_primary_10_1021_acs_jproteome_9b00566
crossref_primary_10_1002_pmic_201900276
crossref_primary_10_2139_ssrn_4087714
crossref_primary_10_1002_lno_12012
crossref_primary_10_1021_acs_jproteome_9b00328
crossref_primary_10_1021_acs_jproteome_4c00705
crossref_primary_10_1002_pmic_201700091
crossref_primary_10_1016_j_foodcont_2021_108183
crossref_primary_10_1038_s43856_021_00034_y
crossref_primary_10_1016_j_cell_2024_03_027
crossref_primary_10_1021_acs_jproteome_2c00046
crossref_primary_10_1002_jms_4494
crossref_primary_10_1038_s42003_024_06354_8
crossref_primary_10_1038_s43018_023_00652_6
crossref_primary_10_1021_acs_jproteome_8b00110
Cites_doi 10.1038/nbt.1511
10.1074/mcp.M110.006353
10.1021/pr070325f
10.1021/pr300694b
10.1038/13690
10.1074/mcp.R111.009522
10.1038/75556
10.1074/mcp.R112.019695
10.1002/pmic.201200439
10.1021/ac034633i
10.1021/pr049882h
10.1074/mcp.M200025-MCP200
10.1074/mcp.R110.000133
10.1371/journal.pone.0020873
10.1038/nmeth.1254
10.1093/bioinformatics/btn323
10.1002/pmic.200600625
10.1093/bioinformatics/btq054
10.1038/nmeth.2343
10.1038/nbt.2839
10.1158/2159-8290.CD-13-0219
10.1074/mcp.M111.014381
10.1021/pr301012j
10.1093/nar/gkt328
10.1074/mcp.O114.043380
10.1074/mcp.O113.028506
10.1038/embor.2008.56
10.1016/j.cll.2011.07.001
10.1002/jms.3264
10.1093/jxb/erj168
10.1038/nmeth891
10.1038/nmeth.1584
10.1038/nbt.2377
10.1038/nature13438
10.1074/mcp.M900317-MCP200
10.1021/pr500753r
10.1021/ac025747h
10.1093/bioinformatics/bth092
10.1038/msb4100024
10.1152/physiolgenomics.00298.2007
10.1074/mcp.M111.007690
10.1021/ac0341261
10.1021/pr0503533
10.1016/j.jprot.2010.08.009
10.1074/mcp.O111.016717
10.1093/bioinformatics/btl299
10.1093/bioinformatics/btl379
10.1074/mcp.O113.036681
10.1002/pmic.200900375
10.1093/nar/gkh131
10.1126/scitranslmed.3007013
10.1186/1471-2105-7-286
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
7QO
5PM
DOI 10.1002/prca.201400164
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
Engineering Research Database
MEDLINE

MEDLINE - Academic
Genetics Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1862-8354
EndPage 754
ExternalDocumentID PMC4506239
3742688581
25631240
10_1002_prca_201400164
PRCA1636
ark_67375_WNG_WD0JRLJ3_0
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Research Support, American Recovery and Reinvestment Act
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: ProteomeXchange”
  funderid: 260558
– fundername: NIGMS
  funderid: R01 GM087221 and 2P50 GM076547
– fundername: National Institutes of Health from the NHGRI
  funderid: RC2 HG005805
– fundername: National Institute of Biomedical Imaging and Bioengineering
  funderid: U54EB020406
– fundername: National Science Foundation MRI
  funderid: 0923536
– fundername: NHGRI NIH HHS
  grantid: RC2 HG005805
– fundername: NIGMS NIH HHS
  grantid: R01 GM087221
– fundername: NIGMS NIH HHS
  grantid: P50 GM076547
– fundername: NIBIB NIH HHS
  grantid: U54 EB020406
– fundername: NIGMS NIH HHS
  grantid: 2P50 GM076547
– fundername: Medical Research Council
  grantid: 0923536
– fundername: NIBIB NIH HHS
  grantid: U54EB020406
GroupedDBID ---
05W
0R~
123
1OC
33P
3SF
3WU
4.4
52U
52V
53G
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BDRZF
BHBCM
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HF~
HGLYW
HVGLF
HZ~
IX1
KBYEO
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NNB
O66
O9-
P2W
P4E
PQQKQ
RNS
ROL
SUPJJ
SV3
W99
WBKPD
WIH
WIJ
WIK
WNSPC
WOHZO
WXSBR
WYISQ
WYJ
XV2
~S-
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
AAYXX
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
7TM
7TO
8FD
FR3
H94
K9.
P64
RC3
7X8
7QO
5PM
ID FETCH-LOGICAL-c6706-d3d28fdafc58c4c5381e0a2e23ee7a3cf30842c739298a42244d15fdbc756ca53
IEDL.DBID DR2
ISSN 1862-8346
1862-8354
IngestDate Thu Aug 21 14:07:05 EDT 2025
Fri Jul 11 07:33:53 EDT 2025
Fri Jul 11 12:13:10 EDT 2025
Fri Jul 25 12:15:17 EDT 2025
Mon Jul 21 05:49:16 EDT 2025
Thu Apr 24 23:05:07 EDT 2025
Tue Jul 01 02:14:12 EDT 2025
Wed Jan 22 16:27:03 EST 2025
Wed Oct 30 09:53:28 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords Bioinformatics
Mass spectrometry
Language English
License 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6706-d3d28fdafc58c4c5381e0a2e23ee7a3cf30842c739298a42244d15fdbc756ca53
Notes National Institute of Biomedical Imaging and Bioengineering - No. U54EB020406
istex:EB20B983CD858F97707C606A79F23C206E63C082
ark:/67375/WNG-WD0JRLJ3-0
National Institutes of Health from the NHGRI - No. RC2 HG005805
National Science Foundation MRI - No. 0923536
NIGMS - No. R01 GM087221 and 2P50 GM076547
ProteomeXchange" - No. 260558
ArticleID:PRCA1636
See the article online to view Figs. 1–3 in colour.
Colour Online
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-4
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4506239
PMID 25631240
PQID 1696061553
PQPubID 1016438
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4506239
proquest_miscellaneous_1701487432
proquest_miscellaneous_1697212671
proquest_journals_1696061553
pubmed_primary_25631240
crossref_citationtrail_10_1002_prca_201400164
crossref_primary_10_1002_prca_201400164
wiley_primary_10_1002_prca_201400164_PRCA1636
istex_primary_ark_67375_WNG_WD0JRLJ3_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2015
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: August 2015
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Proteomics. Clinical applications
PublicationTitleAlternate Prot. Clin. Appl
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Marzolf, B., Deutsch, E. W., Moss, P., Campbell, D. et al., SBEAMS-Microarray: database software supporting genomic expression analyses for systems biology. BMC Bioinformatics 2006, 7, 286.
Slagel, J., Mendoza, L., Shteynberg, D., Deutsch, E. W., Moritz, R. L., Processing shotgun proteomics data on the Amazon Cloud with the Trans-Proteomic Pipeline. Mol. Cell. Proteomics 2015, 14, 399-404.
Deutsch, E. W., File formats commonly used in mass spectrometry proteomics. Mol. Cell. Proteomics 2012, 11, 1612-1621.
Eng, J. K., Searle, B. C., Clauser, K. R., Tabb, D. L., A face in the crowd: recognizing peptides through database search. Mol. Cell. Proteomics 2011, 10, R111 009522.
Deutsch, E. W., Lam, H., Aebersold, R., Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol. Genomics 2008, 33, 18-25.
Boja, E. S., Fehniger, T. E., Baker, M. S., Marko-Varga, G., Rodriguez, H., Analytical validation considerations of multiplex mass spectrometry-based proteomic platforms for measuring protein biomarkers. J. Proteome Res. 2014, 13, 5325-5332.
Reiter, L., Claassen, M., Schrimpf, S. P., Jovanovic, M. et al., Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell. Proteomics 2009, 8, 2405-2417.
Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P., ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534-2536.
MacLean, B., Eng, J. K., Beavis, R. C., McIntosh, M., General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 2006, 22, 2830-2832.
Ellis, M. J., Gillette, M., Carr, S. A., Paulovich, A. G. et al., Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013, 3, 1108-1112.
Keller, A., Eng, J., Zhang, N., Li, X. J., Aebersold, R., A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 2005, 1, 2005.0017.
Zieske, L. R., A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J. Exp. Bot. 2006, 57, 1501-1508.
Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B. et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376-386.
Wolstencroft, K., Haines, R., Fellows, D., Williams, A. et al., The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res. 2013, 41, W557-W561.
Deutsch, E. W., Albar, J. P., Binz, P.-A., Eisenacher, M. et al., Development of Data Representation Standards by the Human Proteome Organization Proteomics Standards Initiative. JAMIA 2015, accepted.
Griss, J., Foster, J. M., Hermjakob, H., Vizcaino, J. A., PRIDE Cluster: building a consensus of proteomics data. Nat. Methods 2013, 10, 95-96.
Craig, R., Cortens, J. P., Beavis, R. C., Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 2004, 3, 1234-1242.
Nesvizhskii, A. I., A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 2010, 73, 2092-2123.
Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A. et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223-226.
Kohlbacher, O., Reinert, K., Gropl, C., Lange, E. et al., TOPP-the OpenMS proteomics pipeline. Bioinformatics 2007, 23, e191-197.
Shifman, M. A., Li, Y., Colangelo, C. M., Stone, K. L. et al., YPED: a web-accessible database system for protein expression analysis. J. Proteome Res. 2007, 6, 4019-4024.
Cox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367-1372.
Griss, J., Jones, A. R., Sachsenberg, T., Walzer, M. et al., The mzTab data exchange format: communicating MS-based proteomics and metabolomics experimental results to a wider audience. Mol. Cell. Proteomics 2014, 13, 2765-2775.
Zhang, B., Wang, J., Wang, X., Zhu, J. et al., Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382-387.
Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C. et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115-D119.
Pedrioli, P. G., Raught, B., Zhang, X. D., Rogers, R. et al., Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 2006, 3, 533-539.
Theis, J. D., Dasari, S., Vrana, J. A., Kurtin, P. J., Dogan, A., Shotgun-proteomics-based clinical testing for diagnosis and classification of amyloidosis. J. Mass Spectrom. 2013, 48, 1067-1077.
Trudgian, D. C., Mirzaei, H., Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing. J. Proteome Res. 2012, 11, 6282-6290.
Martens, L., Chambers, M., Sturm, M., Kessner, D. et al., mzML-a community standard for mass spectrometry data. Mol. Cell. Proteomics 2011, 10, R110 000133.
Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646-4658.
Li, X. J., Hayward, C., Fong, P. Y., Dominguez, M. et al., A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl. Med. 2013, 5, 207ra142.
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25-29.
Chambers, M. C., Maclean, B., Burke, R., Amodei, D. et al., A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918-920.
Jones, A. R., Eisenacher, M., Mayer, G., Kohlbacher, O. et al., The mzIdentML data standard for mass spectrometry-based proteomics results. Mol. Cell. Proteomics 2012, 11, M111 014381.
Reiter, L., Rinner, O., Picotti, P., Huttenhain, R. et al., mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 2011, 8, 430-435.
Farrah, T., Deutsch, E. W., Hoopmann, M. R., Hallows, J. L. et al., The state of the human proteome in 2012 as viewed through PeptideAtlas. J. Proteome Res. 2013, 12, 162-171.
Deutsch, E. W., Lam, H., Aebersold, R., PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 2008, 9, 429-434.
MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M. et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966-968.
Farrah, T., Deutsch, E. W., Omenn, G. S., Campbell, D. S. et al., A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell. Proteomics 2011, 10, M110 006353.
Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 2007, 7, 655-667.
Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F. et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, 994-999.
Walzer, M., Qi, D., Mayer, G., Uszkoreit, J. et al., The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics. Mol. Cell. Proteomics 2013, 12, 2332-2340.
Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K. et al., iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics 2011, 10, M111 007690.
Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Building consensus spectral libraries for peptide identification in proteomics. Nat. Methods 2008, 5, 873-875.
Craig, R., Beavis, R. C., TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466-1467.
Boja, E. S., Rodriguez, H., Regulatory considerations for clinical mass spectrometry: multiple reaction monitoring. Clin. Lab. Med. 2011, 31, 443-453.
Knudsen, G. M., Chalkley, R. J., The effect of using an inappropriate protein database for proteomic data analysis. PloS One 2011, 6, e20873.
Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383-5392.
Rauch, A., Bellew, M., Eng, J., Fitzgibbon, M. et al., Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J. Proteome Res. 2006, 5, 112-121.
Eng, J. K., Jahan, T. A., Hoopmann, M. R., Comet: an open source tandem mass spectrometry sequence database search tool. Proteomics 2013, 13, 22-24.
Li, X. J., Zhang, H., Ranish, J. A., Aebersold, R., Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 2003, 75, 6648-6657.
Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T. et al., A guided tour of the Trans-Proteomic Pipeline. Proteomics 2010, 10, 1150-1159.
Gillet, L. C., Navarro, P., Tate, S., Rost, H. et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 2012, 11, O111 016717.
2010; 10
2004; 20
2015; 14
2014; 513
2013; 48
2013; 3
2002; 74
2000; 25
2006; 57
2013; 41
2011; 31
2002; 1
2006; 7
2008; 9
2004; 3
2006; 5
2011; 10
2008; 5
2006; 3
2008; 33
2013; 5
2011; 6
2012; 11
2011; 8
2003; 75
2012; 30
2004; 32
2010; 26
2013; 10
2013; 13
2006; 22
2013; 12
1999; 17
2008; 26
2007; 6
2014; 13
2008; 24
2007; 7
2009; 8
2005; 1
2015
2007; 23
2010; 73
2014; 32
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_47_1
Deutsch E. W. (e_1_2_12_16_1) 2015
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_54_1
e_1_2_12_35_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_34_1
e_1_2_12_36_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_9_1
References_xml – reference: Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K. et al., iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics 2011, 10, M111 007690.
– reference: Marzolf, B., Deutsch, E. W., Moss, P., Campbell, D. et al., SBEAMS-Microarray: database software supporting genomic expression analyses for systems biology. BMC Bioinformatics 2006, 7, 286.
– reference: Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25-29.
– reference: Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 2007, 7, 655-667.
– reference: Griss, J., Jones, A. R., Sachsenberg, T., Walzer, M. et al., The mzTab data exchange format: communicating MS-based proteomics and metabolomics experimental results to a wider audience. Mol. Cell. Proteomics 2014, 13, 2765-2775.
– reference: Eng, J. K., Jahan, T. A., Hoopmann, M. R., Comet: an open source tandem mass spectrometry sequence database search tool. Proteomics 2013, 13, 22-24.
– reference: Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Building consensus spectral libraries for peptide identification in proteomics. Nat. Methods 2008, 5, 873-875.
– reference: Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B. et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376-386.
– reference: Boja, E. S., Fehniger, T. E., Baker, M. S., Marko-Varga, G., Rodriguez, H., Analytical validation considerations of multiplex mass spectrometry-based proteomic platforms for measuring protein biomarkers. J. Proteome Res. 2014, 13, 5325-5332.
– reference: Boja, E. S., Rodriguez, H., Regulatory considerations for clinical mass spectrometry: multiple reaction monitoring. Clin. Lab. Med. 2011, 31, 443-453.
– reference: Theis, J. D., Dasari, S., Vrana, J. A., Kurtin, P. J., Dogan, A., Shotgun-proteomics-based clinical testing for diagnosis and classification of amyloidosis. J. Mass Spectrom. 2013, 48, 1067-1077.
– reference: Keller, A., Eng, J., Zhang, N., Li, X. J., Aebersold, R., A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 2005, 1, 2005.0017.
– reference: Reiter, L., Rinner, O., Picotti, P., Huttenhain, R. et al., mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 2011, 8, 430-435.
– reference: Zieske, L. R., A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J. Exp. Bot. 2006, 57, 1501-1508.
– reference: Jones, A. R., Eisenacher, M., Mayer, G., Kohlbacher, O. et al., The mzIdentML data standard for mass spectrometry-based proteomics results. Mol. Cell. Proteomics 2012, 11, M111 014381.
– reference: Martens, L., Chambers, M., Sturm, M., Kessner, D. et al., mzML-a community standard for mass spectrometry data. Mol. Cell. Proteomics 2011, 10, R110 000133.
– reference: Rauch, A., Bellew, M., Eng, J., Fitzgibbon, M. et al., Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J. Proteome Res. 2006, 5, 112-121.
– reference: Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A. et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223-226.
– reference: Craig, R., Beavis, R. C., TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466-1467.
– reference: Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646-4658.
– reference: MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M. et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966-968.
– reference: Deutsch, E. W., Lam, H., Aebersold, R., PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 2008, 9, 429-434.
– reference: Shifman, M. A., Li, Y., Colangelo, C. M., Stone, K. L. et al., YPED: a web-accessible database system for protein expression analysis. J. Proteome Res. 2007, 6, 4019-4024.
– reference: Deutsch, E. W., Albar, J. P., Binz, P.-A., Eisenacher, M. et al., Development of Data Representation Standards by the Human Proteome Organization Proteomics Standards Initiative. JAMIA 2015, accepted.
– reference: MacLean, B., Eng, J. K., Beavis, R. C., McIntosh, M., General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 2006, 22, 2830-2832.
– reference: Knudsen, G. M., Chalkley, R. J., The effect of using an inappropriate protein database for proteomic data analysis. PloS One 2011, 6, e20873.
– reference: Deutsch, E. W., File formats commonly used in mass spectrometry proteomics. Mol. Cell. Proteomics 2012, 11, 1612-1621.
– reference: Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T. et al., A guided tour of the Trans-Proteomic Pipeline. Proteomics 2010, 10, 1150-1159.
– reference: Gillet, L. C., Navarro, P., Tate, S., Rost, H. et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 2012, 11, O111 016717.
– reference: Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P., ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534-2536.
– reference: Farrah, T., Deutsch, E. W., Hoopmann, M. R., Hallows, J. L. et al., The state of the human proteome in 2012 as viewed through PeptideAtlas. J. Proteome Res. 2013, 12, 162-171.
– reference: Li, X. J., Zhang, H., Ranish, J. A., Aebersold, R., Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 2003, 75, 6648-6657.
– reference: Deutsch, E. W., Lam, H., Aebersold, R., Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol. Genomics 2008, 33, 18-25.
– reference: Chambers, M. C., Maclean, B., Burke, R., Amodei, D. et al., A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918-920.
– reference: Nesvizhskii, A. I., A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 2010, 73, 2092-2123.
– reference: Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F. et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, 994-999.
– reference: Trudgian, D. C., Mirzaei, H., Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing. J. Proteome Res. 2012, 11, 6282-6290.
– reference: Griss, J., Foster, J. M., Hermjakob, H., Vizcaino, J. A., PRIDE Cluster: building a consensus of proteomics data. Nat. Methods 2013, 10, 95-96.
– reference: Ellis, M. J., Gillette, M., Carr, S. A., Paulovich, A. G. et al., Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013, 3, 1108-1112.
– reference: Reiter, L., Claassen, M., Schrimpf, S. P., Jovanovic, M. et al., Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell. Proteomics 2009, 8, 2405-2417.
– reference: Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C. et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115-D119.
– reference: Pedrioli, P. G., Raught, B., Zhang, X. D., Rogers, R. et al., Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 2006, 3, 533-539.
– reference: Farrah, T., Deutsch, E. W., Omenn, G. S., Campbell, D. S. et al., A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell. Proteomics 2011, 10, M110 006353.
– reference: Li, X. J., Hayward, C., Fong, P. Y., Dominguez, M. et al., A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl. Med. 2013, 5, 207ra142.
– reference: Wolstencroft, K., Haines, R., Fellows, D., Williams, A. et al., The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res. 2013, 41, W557-W561.
– reference: Eng, J. K., Searle, B. C., Clauser, K. R., Tabb, D. L., A face in the crowd: recognizing peptides through database search. Mol. Cell. Proteomics 2011, 10, R111 009522.
– reference: Zhang, B., Wang, J., Wang, X., Zhu, J. et al., Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382-387.
– reference: Kohlbacher, O., Reinert, K., Gropl, C., Lange, E. et al., TOPP-the OpenMS proteomics pipeline. Bioinformatics 2007, 23, e191-197.
– reference: Cox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367-1372.
– reference: Slagel, J., Mendoza, L., Shteynberg, D., Deutsch, E. W., Moritz, R. L., Processing shotgun proteomics data on the Amazon Cloud with the Trans-Proteomic Pipeline. Mol. Cell. Proteomics 2015, 14, 399-404.
– reference: Walzer, M., Qi, D., Mayer, G., Uszkoreit, J. et al., The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics. Mol. Cell. Proteomics 2013, 12, 2332-2340.
– reference: Craig, R., Cortens, J. P., Beavis, R. C., Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 2004, 3, 1234-1242.
– reference: Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383-5392.
– volume: 33
  start-page: 18
  year: 2008
  end-page: 25
  article-title: Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics
  publication-title: Physiol. Genomics
– volume: 5
  start-page: 112
  year: 2006
  end-page: 121
  article-title: Computational Proteomics Analysis System (CPAS): an extensible, open‐source analytic system for evaluating and publishing proteomic data and high throughput biological experiments
  publication-title: J. Proteome Res.
– volume: 7
  start-page: 286
  year: 2006
  article-title: SBEAMS‐Microarray: database software supporting genomic expression analyses for systems biology
  publication-title: BMC Bioinformatics
– volume: 13
  start-page: 5325
  year: 2014
  end-page: 5332
  article-title: Analytical validation considerations of multiplex mass spectrometry‐based proteomic platforms for measuring protein biomarkers
  publication-title: J. Proteome Res.
– volume: 8
  start-page: 430
  year: 2011
  end-page: 435
  article-title: mProphet: automated data processing and statistical validation for large‐scale SRM experiments
  publication-title: Nat. Methods
– volume: 11
  start-page: M111 014381
  year: 2012
  article-title: The mzIdentML data standard for mass spectrometry‐based proteomics results
  publication-title: Mol. Cell. Proteomics
– volume: 14
  start-page: 399
  year: 2015
  end-page: 404
  article-title: Processing shotgun proteomics data on the Amazon Cloud with the Trans‐Proteomic Pipeline
  publication-title: Mol. Cell. Proteomics
– year: 2015
  article-title: PTMProphet: statistical analysis of post‐translational modification localization for shotgun proteomics datasets
– volume: 5
  start-page: 207ra142
  year: 2013
  article-title: A blood‐based proteomic classifier for the molecular characterization of pulmonary nodules
  publication-title: Sci. Transl. Med.
– volume: 32
  start-page: D115
  year: 2004
  end-page: D119
  article-title: UniProt: the Universal Protein knowledgebase
  publication-title: Nucleic Acids Res.
– volume: 73
  start-page: 2092
  year: 2010
  end-page: 2123
  article-title: A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics
  publication-title: J. Proteomics
– volume: 6
  start-page: 4019
  year: 2007
  end-page: 4024
  article-title: YPED: a web‐accessible database system for protein expression analysis
  publication-title: J. Proteome Res.
– volume: 74
  start-page: 5383
  year: 2002
  end-page: 5392
  article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search
  publication-title: Anal. Chem.
– volume: 3
  start-page: 1108
  year: 2013
  end-page: 1112
  article-title: Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium
  publication-title: Cancer Discov.
– volume: 23
  start-page: e191
  year: 2007
  end-page: 197
  article-title: TOPP—the OpenMS proteomics pipeline
  publication-title: Bioinformatics
– volume: 12
  start-page: 162
  year: 2013
  end-page: 171
  article-title: The state of the human proteome in 2012 as viewed through PeptideAtlas
  publication-title: J. Proteome Res.
– volume: 57
  start-page: 1501
  year: 2006
  end-page: 1508
  article-title: A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies
  publication-title: J. Exp. Bot.
– volume: 1
  start-page: 376
  year: 2002
  end-page: 386
  article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics
  publication-title: Mol. Cell. Proteomics
– volume: 11
  start-page: O111 016717
  year: 2012
  article-title: Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: a new concept for consistent and accurate proteome analysis
  publication-title: Mol. Cell. Proteomics
– volume: 30
  start-page: 918
  year: 2012
  end-page: 920
  article-title: A cross‐platform toolkit for mass spectrometry and proteomics
  publication-title: Nat. Biotechnol.
– volume: 8
  start-page: 2405
  year: 2009
  end-page: 2417
  article-title: Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry
  publication-title: Mol. Cell. Proteomics
– volume: 3
  start-page: 533
  year: 2006
  end-page: 539
  article-title: Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software
  publication-title: Nat. Methods
– volume: 13
  start-page: 2765
  year: 2014
  end-page: 2775
  article-title: The mzTab data exchange format: communicating MS‐based proteomics and metabolomics experimental results to a wider audience
  publication-title: Mol. Cell. Proteomics
– volume: 10
  start-page: R111 009522
  year: 2011
  article-title: A face in the crowd: recognizing peptides through database search
  publication-title: Mol. Cell. Proteomics
– volume: 75
  start-page: 4646
  year: 2003
  end-page: 4658
  article-title: A statistical model for identifying proteins by tandem mass spectrometry
  publication-title: Anal. Chem.
– volume: 22
  start-page: 2830
  year: 2006
  end-page: 2832
  article-title: General framework for developing and evaluating database scoring algorithms using the TANDEM search engine
  publication-title: Bioinformatics
– volume: 513
  start-page: 382
  year: 2014
  end-page: 387
  article-title: Proteogenomic characterization of human colon and rectal cancer
  publication-title: Nature
– volume: 9
  start-page: 429
  year: 2008
  end-page: 434
  article-title: PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows
  publication-title: EMBO Rep.
– volume: 6
  start-page: e20873
  year: 2011
  article-title: The effect of using an inappropriate protein database for proteomic data analysis
  publication-title: PloS One
– volume: 25
  start-page: 25
  year: 2000
  end-page: 29
  article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium
  publication-title: Nat. Genet.
– volume: 11
  start-page: 6282
  year: 2012
  end-page: 6290
  article-title: Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing
  publication-title: J. Proteome Res.
– volume: 24
  start-page: 2534
  year: 2008
  end-page: 2536
  article-title: ProteoWizard: open source software for rapid proteomics tools development
  publication-title: Bioinformatics
– volume: 75
  start-page: 6648
  year: 2003
  end-page: 6657
  article-title: Automated statistical analysis of protein abundance ratios from data generated by stable‐isotope dilution and tandem mass spectrometry
  publication-title: Anal. Chem.
– volume: 10
  start-page: R110 000133
  year: 2011
  article-title: mzML—a community standard for mass spectrometry data
  publication-title: Mol. Cell. Proteomics
– volume: 32
  start-page: 223
  year: 2014
  end-page: 226
  article-title: ProteomeXchange provides globally coordinated proteomics data submission and dissemination
  publication-title: Nat. Biotechnol.
– volume: 5
  start-page: 873
  year: 2008
  end-page: 875
  article-title: Building consensus spectral libraries for peptide identification in proteomics
  publication-title: Nat. Methods
– volume: 10
  start-page: M110 006353
  year: 2011
  article-title: A high‐confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas
  publication-title: Mol. Cell. Proteomics
– volume: 26
  start-page: 966
  year: 2010
  end-page: 968
  article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments
  publication-title: Bioinformatics
– volume: 20
  start-page: 1466
  year: 2004
  end-page: 1467
  article-title: TANDEM: matching proteins with tandem mass spectra
  publication-title: Bioinformatics
– volume: 3
  start-page: 1234
  year: 2004
  end-page: 1242
  article-title: Open source system for analyzing, validating, and storing protein identification data
  publication-title: J. Proteome Res.
– volume: 10
  start-page: 1150
  year: 2010
  end-page: 1159
  article-title: A guided tour of the Trans‐Proteomic Pipeline
  publication-title: Proteomics
– volume: 7
  start-page: 655
  year: 2007
  end-page: 667
  article-title: Development and validation of a spectral library searching method for peptide identification from MS/MS
  publication-title: Proteomics
– volume: 10
  start-page: M111 007690
  year: 2011
  article-title: iProphet: multi‐level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates
  publication-title: Mol. Cell. Proteomics
– volume: 13
  start-page: 22
  year: 2013
  end-page: 24
  article-title: Comet: an open source tandem mass spectrometry sequence database search tool
  publication-title: Proteomics
– volume: 26
  start-page: 1367
  year: 2008
  end-page: 1372
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification
  publication-title: Nat. Biotechnol.
– year: 2015
  article-title: Development of Data Representation Standards by the Human Proteome Organization Proteomics Standards Initiative
  publication-title: JAMIA
– volume: 11
  start-page: 1612
  year: 2012
  end-page: 1621
  article-title: File formats commonly used in mass spectrometry proteomics
  publication-title: Mol. Cell. Proteomics
– volume: 41
  start-page: W557
  year: 2013
  end-page: W561
  article-title: The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: 2005.0017
  year: 2005
  article-title: A uniform proteomics MS/MS analysis platform utilizing open XML file formats
  publication-title: Mol. Syst. Biol.
– volume: 12
  start-page: 2332
  year: 2013
  end-page: 2340
  article-title: The mzQuantML data standard for mass spectrometry‐based quantitative studies in proteomics
  publication-title: Mol. Cell. Proteomics
– volume: 31
  start-page: 443
  year: 2011
  end-page: 453
  article-title: Regulatory considerations for clinical mass spectrometry: multiple reaction monitoring
  publication-title: Clin. Lab. Med.
– volume: 17
  start-page: 994
  year: 1999
  end-page: 999
  article-title: Quantitative analysis of complex protein mixtures using isotope‐coded affinity tags
  publication-title: Nat. Biotechnol.
– volume: 48
  start-page: 1067
  year: 2013
  end-page: 1077
  article-title: Shotgun‐proteomics‐based clinical testing for diagnosis and classification of amyloidosis
  publication-title: J. Mass Spectrom.
– volume: 10
  start-page: 95
  year: 2013
  end-page: 96
  article-title: PRIDE Cluster: building a consensus of proteomics data
  publication-title: Nat. Methods
– ident: e_1_2_12_8_1
  doi: 10.1038/nbt.1511
– ident: e_1_2_12_54_1
  doi: 10.1074/mcp.M110.006353
– ident: e_1_2_12_37_1
  doi: 10.1021/pr070325f
– ident: e_1_2_12_27_1
– ident: e_1_2_12_35_1
  doi: 10.1021/pr300694b
– ident: e_1_2_12_30_1
  doi: 10.1038/13690
– ident: e_1_2_12_22_1
  doi: 10.1074/mcp.R111.009522
– ident: e_1_2_12_49_1
  doi: 10.1038/75556
– ident: e_1_2_12_18_1
  doi: 10.1074/mcp.R112.019695
– ident: e_1_2_12_21_1
  doi: 10.1002/pmic.201200439
– ident: e_1_2_12_32_1
  doi: 10.1021/ac034633i
– ident: e_1_2_12_41_1
  doi: 10.1021/pr049882h
– ident: e_1_2_12_31_1
  doi: 10.1074/mcp.M200025-MCP200
– ident: e_1_2_12_17_1
  doi: 10.1074/mcp.R110.000133
– year: 2015
  ident: e_1_2_12_16_1
  article-title: Development of Data Representation Standards by the Human Proteome Organization Proteomics Standards Initiative
  publication-title: JAMIA
– ident: e_1_2_12_52_1
  doi: 10.1371/journal.pone.0020873
– ident: e_1_2_12_24_1
  doi: 10.1038/nmeth.1254
– ident: e_1_2_12_14_1
  doi: 10.1093/bioinformatics/btn323
– ident: e_1_2_12_23_1
  doi: 10.1002/pmic.200600625
– ident: e_1_2_12_13_1
  doi: 10.1093/bioinformatics/btq054
– ident: e_1_2_12_40_1
  doi: 10.1038/nmeth.2343
– ident: e_1_2_12_42_1
  doi: 10.1038/nbt.2839
– ident: e_1_2_12_50_1
  doi: 10.1158/2159-8290.CD-13-0219
– ident: e_1_2_12_44_1
  doi: 10.1074/mcp.M111.014381
– ident: e_1_2_12_39_1
  doi: 10.1021/pr301012j
– ident: e_1_2_12_43_1
  doi: 10.1093/nar/gkt328
– ident: e_1_2_12_47_1
  doi: 10.1074/mcp.O114.043380
– ident: e_1_2_12_45_1
  doi: 10.1074/mcp.O113.028506
– ident: e_1_2_12_38_1
  doi: 10.1038/embor.2008.56
– ident: e_1_2_12_4_1
  doi: 10.1016/j.cll.2011.07.001
– ident: e_1_2_12_6_1
  doi: 10.1002/jms.3264
– ident: e_1_2_12_29_1
  doi: 10.1093/jxb/erj168
– ident: e_1_2_12_28_1
  doi: 10.1038/nmeth891
– ident: e_1_2_12_2_1
  doi: 10.1038/nmeth.1584
– ident: e_1_2_12_15_1
  doi: 10.1038/nbt.2377
– ident: e_1_2_12_51_1
  doi: 10.1038/nature13438
– ident: e_1_2_12_53_1
  doi: 10.1074/mcp.M900317-MCP200
– ident: e_1_2_12_5_1
  doi: 10.1021/pr500753r
– ident: e_1_2_12_25_1
  doi: 10.1021/ac025747h
– ident: e_1_2_12_19_1
  doi: 10.1093/bioinformatics/bth092
– ident: e_1_2_12_10_1
  doi: 10.1038/msb4100024
– ident: e_1_2_12_12_1
  doi: 10.1152/physiolgenomics.00298.2007
– ident: e_1_2_12_26_1
  doi: 10.1074/mcp.M111.007690
– ident: e_1_2_12_33_1
  doi: 10.1021/ac0341261
– ident: e_1_2_12_36_1
  doi: 10.1021/pr0503533
– ident: e_1_2_12_7_1
  doi: 10.1016/j.jprot.2010.08.009
– ident: e_1_2_12_55_1
  doi: 10.1074/mcp.O111.016717
– ident: e_1_2_12_9_1
  doi: 10.1093/bioinformatics/btl299
– ident: e_1_2_12_20_1
  doi: 10.1093/bioinformatics/btl379
– ident: e_1_2_12_46_1
  doi: 10.1074/mcp.O113.036681
– ident: e_1_2_12_11_1
  doi: 10.1002/pmic.200900375
– ident: e_1_2_12_48_1
  doi: 10.1093/nar/gkh131
– ident: e_1_2_12_3_1
  doi: 10.1126/scitranslmed.3007013
– ident: e_1_2_12_34_1
  doi: 10.1186/1471-2105-7-286
SSID ssj0054270
Score 2.5227494
SecondaryResourceType review_article
Snippet Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 745
SubjectTerms Bioinformatics
Computational Biology - methods
Data processing
Humans
Mass spectrometry
Proteins
Proteome - metabolism
Proteomics
Proteomics - methods
Reproducibility of Results
Software
Statistics as Topic
Title Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics
URI https://api.istex.fr/ark:/67375/WNG-WD0JRLJ3-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprca.201400164
https://www.ncbi.nlm.nih.gov/pubmed/25631240
https://www.proquest.com/docview/1696061553
https://www.proquest.com/docview/1697212671
https://www.proquest.com/docview/1701487432
https://pubmed.ncbi.nlm.nih.gov/PMC4506239
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXDhVR6BgoyEyoW0iZ_Z46pQqhVUqxVVe7Mc2ytWLWm0D4n2xE_gN_JLmHEedHkKcUwysezJjP2NM_OZkOde5oplWI0TSpuKsgzpwHOWhgKtWbFBVmDt8LtDdXAkRify5EoVf8MP0W-4oWfE-Rod3JaL3e-kofXcIW8QBAjIEgWTMCZsISqa9PxRUrB4WlwOsD0tuFAda2PGdtdfX1uVrqOCP_0Kcv6cOXkV0cYlaf8Wsd1gmkyU053Vstxxlz_wPP7PaG-Tmy1epcPGwO6Qa6G6SzaHFcTqHy_oNo0ZpHFrfpNcxIXv6-cvYyR_wHJnOp7VWPAeXlJLu12L2WXwFDNTad1UKcDqSetWkAKIpmeYng7tLMCAAkXeTaSlnZVwUXdNL2jL-Yo80_fI0f7r93sHaXu0Q-qUzlTquWfF1Nupk4UTDmbdPGSWBcZD0Ja7Kc8KwZxG9FZYAThD-FxOfem0VM5Kfp9sVOdVeEioZIErXwYsjhdOhMJp7VQApJXl07z0CUm7T2tcy3uOx2-cmYaxmRnUrel1m5AXvXzdMH78VnI7WkovZuenmCenpTk-fGOOX2WjydsRN1lCtjpTMu0UsTC5wuARj21KyLP-MTg3_rGxVThfRRmI0JnS-R9kNG4KAxBkCXnQWGffIcCzHAAcdECv2W0vgOTi60-q2YdIMi4keDAfgPaiWf5FFWY82RsCtFeP_lH-MbkBN2WTUrlFNpbzVXgCMG9ZPo2u_A05_k98
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5Be4ALr_JIKbBIqFxwa-_LzjFqKSGkURS1KreVd70WUVvXykOiPfET-I38EmbWDwhPIY6Rv1j2ZGb328nMN4S8yGSkWIjdOM6kgTDGBd2Ms8Al6M2KdcMEe4cPR6p_LAbvZVNNiL0wlT5Em3DDyPDrNQY4JqR3v6mGljOLwkFwQkCZqOtkHcd64xCD_UmrICUF8_PiIiDuQcKFanQbQ7a7-v2VfWkdTfzxV6Tz59rJ7zmt35QObhPTvE5Vi3K6s1yYHXv1g9Ljf73vHXKrpqy0V_nYXXLNFffIRq-A4_r5Jd2mvojUZ-c3yKXf-758-jxG_QfseKbjaYk97-4VTWmTuJheuYxicSotq0YF2EBpWQMp8Gh6hhXqcJ85-JCjKL2JyrRTAx_K5tZzWsu-otT0fXJ88Pporx_U0x0Cq-JQBRnPWJJnaW5lYoWFhTdyYcoc487FKbc5DxPBbIwELkkFUA2RRTLPjI2lsqnkD8hacVG4R4RK5rjKjMP-eGGFS2wcW-WAbIVRHpmsQ4Lmt9W2lj7HCRxnuhJtZhptq1vbdsjLFl9Woh-_RW57V2lh6ewUS-ViqU9Gb_TJfjiYDAdchx2y1fiSrleJuY4Unh9xclOHPG8vQ3zjnzZp4S6WHgOHdKbi6A-YGPPCwAVZhzys3LN9IKC0HDgcPEC84rgtAPXFV68U0w9eZ1xICGLeBet5v_yLKfR4stcDdq82_xH_jNzoHx0O9fDt6N1jchMAsqqw3CJri9nSPQHWtzBPfVx_BfNGU5Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELaglRAvXOUIFDASKi-kTXwl-7hqWcpSVqsVVftmJbYjVi1ptIdE-8RP4DfyS5hxDrqcQjxGnlj2ZMb-PJn5TMhzK2PFIqzGcXkWijx3Yc9yFroUrVmxXpRi7fC7kdo_FMNjeXypir_mh-gCbugZfr1GB69ssfOdNLSaGeQNggMCskRdJetCgccgLJp0BFJSMH9dXAy4PUy5UC1tY8R2Vt9f2ZbWUcOffoU5f06dvAxp_Z40uEmydjZ1KsrJ9nKRb5uLH4ge_2e6t8iNBrDSfm1ht8kVV94hG_0SDusfz-kW9SmkPja_Qc79zvf185cxsj9gvTMdTyuseHcvaUbbsMX0wlmKqam0qssUYPukVSNIAUXTU8xPh37mYEGOIvEm8tJOc3io2q7ntCF9RaLpu-Rw8Or97n7Y3O0QGpVEKrTcsrSwWWFkaoSBZTd2UcYc484lGTcFj1LBTILwLc0EAA1hY1nY3CRSmUzye2StPCvdA0Ilc1zZ3GF1vDDCpSZJjHIAtaK4iHMbkLD9tNo0xOd4_8aprimbmUbd6k63AXnRyVc15cdvJbe8pXRi2ewEE-USqY9Gr_XRXjScHAy5jgKy2ZqSbtaIuY4Vnh7x3qaAPOuawbvxl01WurOll4EjOlNJ_AeZBKPCgARZQO7X1tkNCAAtBwQHA0hW7LYTQHbx1ZZy-sGzjAsJLsx7oD1vln9RhR5PdvuA7dXDf5R_Sq6N9wb64M3o7SNyHdplnV65SdYWs6V7DJBvkT_xXv0N49dSTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trans-Proteomic+Pipeline%2C+a+standardized+data+processing+pipeline+for+large-scale+reproducible+proteomics+informatics&rft.jtitle=Proteomics.+Clinical+applications&rft.au=Deutsch%2C+Eric+W.&rft.au=Mendoza%2C+Luis&rft.au=Shteynberg%2C+David&rft.au=Slagel%2C+Joseph&rft.date=2015-08-01&rft.issn=1862-8346&rft.eissn=1862-8354&rft.volume=9&rft.spage=745&rft.epage=754&rft_id=info:doi/10.1002%2Fprca.201400164&rft_id=info%3Apmid%2F25631240&rft.externalDocID=PMC4506239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-8346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-8346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-8346&client=summon