Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics
Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technol...
Saved in:
Published in | Proteomics. Clinical applications Vol. 9; no. 7-8; pp. 745 - 754 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
01.08.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1862-8346 1862-8354 1862-8354 |
DOI | 10.1002/prca.201400164 |
Cover
Loading…
Abstract | Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans‐Proteomics Pipeline (TPP) is a robust open‐source standardized data processing pipeline for large‐scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features. |
---|---|
AbstractList | Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include mass spectrometry to define protein sequence, protein:protein interactions, and protein post-translational modifications. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative mass spectrometry proteomics. It supports all major operating systems and instrument vendors via open data formats. Here we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of tandem mass spectrometry datasets, as well as some major upcoming features. Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features. Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features.Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include MS to define protein sequence, protein:protein interactions, and protein PTMs. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative MS proteomics. It supports all major operating systems and instrument vendors via open data formats. Here, we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of MS/MS datasets, as well as some major upcoming features. |
Author | Deutsch, Eric W. Sun, Zhi Moritz, Robert L. Shteynberg, David Mendoza, Luis Slagel, Joseph |
AuthorAffiliation | 1 Institute for Systems Biology, Seattle, WA, USA |
AuthorAffiliation_xml | – name: 1 Institute for Systems Biology, Seattle, WA, USA |
Author_xml | – sequence: 1 givenname: Eric W. surname: Deutsch fullname: Deutsch, Eric W. email: eric.deutsch@systemsbiology.org organization: Institute for Systems Biology, WA, Seattle, USA – sequence: 2 givenname: Luis surname: Mendoza fullname: Mendoza, Luis organization: Institute for Systems Biology, WA, Seattle, USA – sequence: 3 givenname: David surname: Shteynberg fullname: Shteynberg, David organization: Institute for Systems Biology, WA, Seattle, USA – sequence: 4 givenname: Joseph surname: Slagel fullname: Slagel, Joseph organization: Institute for Systems Biology, WA, Seattle, USA – sequence: 5 givenname: Zhi surname: Sun fullname: Sun, Zhi organization: Institute for Systems Biology, WA, Seattle, USA – sequence: 6 givenname: Robert L. surname: Moritz fullname: Moritz, Robert L. organization: Institute for Systems Biology, WA, Seattle, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25631240$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv1DAUhSNURB-wZYkisWHRDH47s0GqBihUIxhVRV1aHvtmcEns1E4o5dfj0TwElVBXvpa_c3x9fI-LAx88FMVLjCYYIfK2j0ZPCMIMISzYk-II14JUNeXsYF8zcVgcp3SDEGdEomfFIeGCYsLQUTFeRe1TtYhhgNA5Uy5cD63zcFrqMg3aWx2t-w22tHrQZR-DgZScX5X9FiybEMtWxxVUyegWygiZsqNxy7zpd8apdD6TnR5y_bx42ug2wYvtelJ8-_jhavapmn89_zw7m1dGSCQqSy2pG6sbw2vDDKc1BqQJEAogNTUNRTUjRtIpmdaaEcKYxbyxSyO5MJrTk-Ldxrcflx1YA36IulV9dJ2O9ypop_498e67WoWfinEkCJ1mgzdbgxhuR0iD6lwy0LbaQxiTwjJHX0tGyeOomEqCiZA4o68foDdhjD4nsaYEEphzmqlXfze_73r3eRlgG8DEkFKERhk35HzD-i2uVRip9Yyo9Yyo_Yxk2eSBbOf8X8H2njvXwv0jtFpczs6woCLLqo3MpQF-7WU6_lBCUsnV9Zdzdf0eXVzOL6hC9A956t9S |
CitedBy_id | crossref_primary_10_1093_dnares_dsw057 crossref_primary_10_3390_biomedicines9091156 crossref_primary_10_1007_s00705_017_3366_5 crossref_primary_10_1038_s42003_021_02726_6 crossref_primary_10_1016_j_xpro_2022_101177 crossref_primary_10_1002_pmic_201400535 crossref_primary_10_1021_acs_jproteome_5b00579 crossref_primary_10_1093_bioinformatics_btac014 crossref_primary_10_1038_s41586_022_05035_y crossref_primary_10_1093_nar_gkv1145 crossref_primary_10_1021_acs_jproteome_8b00600 crossref_primary_10_1016_j_ccell_2020_12_007 crossref_primary_10_1038_s41597_023_02590_5 crossref_primary_10_3390_cells11152450 crossref_primary_10_1016_j_jprot_2022_104541 crossref_primary_10_1038_ismej_2016_132 crossref_primary_10_1016_j_foodcont_2023_109795 crossref_primary_10_1021_acs_analchem_0c01564 crossref_primary_10_1021_acs_jproteome_1c00827 crossref_primary_10_1371_journal_ppat_1007164 crossref_primary_10_1021_acs_jproteome_4c00086 crossref_primary_10_1038_s41597_024_04047_9 crossref_primary_10_1016_j_jprot_2018_09_010 crossref_primary_10_1016_j_cub_2021_09_031 crossref_primary_10_1016_j_dib_2015_10_003 crossref_primary_10_1021_acs_jproteome_2c00464 crossref_primary_10_3390_cells12242807 crossref_primary_10_1186_s12863_022_01045_x crossref_primary_10_1021_acs_jproteome_8b00392 crossref_primary_10_1038_s41564_018_0142_6 crossref_primary_10_1128_MCB_00395_18 crossref_primary_10_3233_CBM_210033 crossref_primary_10_1021_acs_analchem_9b01556 crossref_primary_10_1093_jb_mvad078 crossref_primary_10_1002_prca_201700046 crossref_primary_10_1038_s41598_018_27650_4 crossref_primary_10_1371_journal_pone_0208973 crossref_primary_10_1021_acs_jproteome_2c00498 crossref_primary_10_3390_ijms22094864 crossref_primary_10_7554_eLife_60482 crossref_primary_10_1021_acs_jproteome_6b00443 crossref_primary_10_1021_acschembio_2c00051 crossref_primary_10_1038_s41592_021_01209_0 crossref_primary_10_1021_acs_jproteome_4c00743 crossref_primary_10_1021_acs_jproteome_1c00485 crossref_primary_10_3389_fmed_2021_666554 crossref_primary_10_1074_mcp_RA118_001138 crossref_primary_10_1097_MPA_0000000000002115 crossref_primary_10_1021_acs_jproteome_4c00187 crossref_primary_10_1021_acs_jproteome_1c00009 crossref_primary_10_1016_j_peptides_2022_170814 crossref_primary_10_1080_14789450_2023_2265062 crossref_primary_10_1093_bioinformatics_btad376 crossref_primary_10_1186_s12915_022_01250_1 crossref_primary_10_1002_cpz1_506 crossref_primary_10_1111_imm_12936 crossref_primary_10_3390_jcm10112309 crossref_primary_10_31083_j_fbl2809227 crossref_primary_10_1016_j_carres_2023_108894 crossref_primary_10_1016_j_foodcont_2021_108417 crossref_primary_10_1021_acs_jproteome_7b00288 crossref_primary_10_1021_acs_jproteome_0c00382 crossref_primary_10_1093_bib_bbv034 crossref_primary_10_1002_pmic_201800433 crossref_primary_10_1021_acs_jproteome_9b00064 crossref_primary_10_1126_science_aad2545 crossref_primary_10_1021_acs_jproteome_0c00928 crossref_primary_10_1021_acs_jproteome_9b00745 crossref_primary_10_1038_s41597_019_0308_y crossref_primary_10_1002_prca_201700064 crossref_primary_10_3390_cancers12061534 crossref_primary_10_1021_acs_jproteome_3c00085 crossref_primary_10_1186_s12864_021_07640_z crossref_primary_10_3390_ijms24021050 crossref_primary_10_1016_j_bbapap_2018_09_004 crossref_primary_10_1021_acs_jproteome_2c00672 crossref_primary_10_1016_j_ab_2023_115318 crossref_primary_10_1016_j_dib_2016_02_036 crossref_primary_10_1016_j_bbapap_2017_10_006 crossref_primary_10_7717_peerj_1401 crossref_primary_10_1016_j_bbrep_2022_101259 crossref_primary_10_1093_plcell_koab211 crossref_primary_10_1371_journal_pone_0273357 crossref_primary_10_1021_acs_jproteome_4c00320 crossref_primary_10_1016_j_foodcont_2022_108888 crossref_primary_10_1016_j_mcpro_2022_100214 crossref_primary_10_1038_s41597_020_00724_7 crossref_primary_10_1007_s11684_022_0964_8 crossref_primary_10_1128_mBio_02575_21 crossref_primary_10_1016_j_bbapap_2016_07_002 crossref_primary_10_1021_acs_jproteome_1c00590 crossref_primary_10_1021_acs_jproteome_7b00786 crossref_primary_10_1038_s41467_020_19045_9 crossref_primary_10_1016_j_micres_2022_126973 crossref_primary_10_1021_acs_jproteome_6b00511 crossref_primary_10_1111_mec_17284 crossref_primary_10_1016_j_jprot_2021_104192 crossref_primary_10_1002_pmic_201500295 crossref_primary_10_3389_fpls_2015_00670 crossref_primary_10_1016_j_molcel_2023_05_006 crossref_primary_10_1016_j_ibmb_2024_104247 crossref_primary_10_1093_glycob_cwae054 crossref_primary_10_18632_oncotarget_25946 crossref_primary_10_1016_j_jgg_2018_07_005 crossref_primary_10_1128_mBio_01905_18 crossref_primary_10_1186_s12934_024_02315_2 crossref_primary_10_1038_s41598_023_41124_2 crossref_primary_10_1038_s41598_022_06026_9 crossref_primary_10_1371_journal_ppat_1005606 crossref_primary_10_1016_j_cell_2016_06_041 crossref_primary_10_1093_bib_bbz163 crossref_primary_10_1016_j_molcel_2023_01_023 crossref_primary_10_1016_j_str_2020_09_011 crossref_primary_10_1021_acs_jproteome_3c00536 crossref_primary_10_1371_journal_pone_0199649 crossref_primary_10_1021_acs_jproteome_6b00407 crossref_primary_10_1038_s41586_024_07730_4 crossref_primary_10_1021_acs_jproteome_5b01091 crossref_primary_10_1177_0022034517736054 crossref_primary_10_1016_j_jprot_2017_11_025 crossref_primary_10_1021_acs_analchem_9b02331 crossref_primary_10_3389_fpls_2017_00429 crossref_primary_10_2174_1389203722666210118160946 crossref_primary_10_1016_j_jprot_2018_02_027 crossref_primary_10_1016_j_jprot_2020_103819 crossref_primary_10_1021_acs_jproteome_8b00638 crossref_primary_10_1021_acs_jproteome_4c00418 crossref_primary_10_1016_j_mcpro_2023_100610 crossref_primary_10_1074_mcp_RA118_001067 crossref_primary_10_3389_fmolb_2022_831758 crossref_primary_10_1021_acs_jproteome_7b00640 crossref_primary_10_1002_mas_21595 crossref_primary_10_1002_pmic_201500195 crossref_primary_10_1021_acs_analchem_1c00310 crossref_primary_10_1038_s41598_017_08436_6 crossref_primary_10_1021_acs_jproteome_1c00657 crossref_primary_10_1021_acs_jproteome_9b00542 crossref_primary_10_1021_acs_analchem_7b04340 crossref_primary_10_1021_acs_jproteome_2c00624 crossref_primary_10_1016_j_cmet_2022_12_004 crossref_primary_10_1002_pmic_201800280 crossref_primary_10_1021_acs_analchem_5b03199 crossref_primary_10_1021_acs_jproteome_8b00442 crossref_primary_10_1038_s41467_020_15346_1 crossref_primary_10_1016_j_theriogenology_2019_05_036 crossref_primary_10_1016_j_csbj_2024_06_014 crossref_primary_10_1007_s00521_018_3836_z crossref_primary_10_1021_acs_jproteome_2c00616 crossref_primary_10_1021_acs_jproteome_9b00434 crossref_primary_10_3389_fphys_2018_00444 crossref_primary_10_1007_s00018_020_03528_5 crossref_primary_10_1021_acs_jproteome_7b00467 crossref_primary_10_1371_journal_pgen_1008511 crossref_primary_10_1016_j_jprot_2015_10_019 crossref_primary_10_1021_acs_jproteome_6b00952 crossref_primary_10_1021_acs_jproteome_1c00796 crossref_primary_10_1016_j_ddtec_2021_06_007 crossref_primary_10_1146_annurev_anchem_071015_041734 crossref_primary_10_1038_s41598_020_67525_1 crossref_primary_10_1099_mgen_0_000876 crossref_primary_10_1021_acs_jproteome_1c00759 crossref_primary_10_3390_ijms20040863 crossref_primary_10_1038_s42255_020_0211_z crossref_primary_10_18632_oncotarget_24418 crossref_primary_10_1039_C8MO00136G crossref_primary_10_3389_fcimb_2018_00413 crossref_primary_10_1186_s12014_016_9124_y crossref_primary_10_3390_cancers15020555 crossref_primary_10_1021_acs_jproteome_6b01019 crossref_primary_10_1002_mas_21540 crossref_primary_10_1371_journal_pone_0228503 crossref_primary_10_1021_acs_jproteome_4c00586 crossref_primary_10_1021_acs_jproteome_8b00544 crossref_primary_10_1021_acs_jproteome_6b00727 crossref_primary_10_1093_bib_bbz122 crossref_primary_10_1371_journal_ppat_1009293 crossref_primary_10_1111_tra_12827 crossref_primary_10_1038_s41592_018_0018_y crossref_primary_10_1016_j_cub_2018_05_067 crossref_primary_10_1002_pmic_201900362 crossref_primary_10_1021_acs_jproteome_5b00500 crossref_primary_10_1038_nprot_2015_133 crossref_primary_10_1038_s42003_023_05128_y crossref_primary_10_1021_acs_jproteome_1c00096 crossref_primary_10_1016_j_foodres_2024_114785 crossref_primary_10_1021_acsmeasuresciau_3c00068 crossref_primary_10_1038_s41597_022_01380_9 crossref_primary_10_3390_microorganisms8030379 crossref_primary_10_1016_j_jprot_2020_103985 crossref_primary_10_3390_cells12212524 crossref_primary_10_1021_acs_jproteome_0c00648 crossref_primary_10_1021_acs_jproteome_4c01020 crossref_primary_10_1038_s41467_019_12936_6 crossref_primary_10_1152_ajplung_00198_2021 crossref_primary_10_1007_s00216_016_9482_3 crossref_primary_10_1038_s41598_020_74939_4 crossref_primary_10_1002_ansa_202200044 crossref_primary_10_1016_j_cell_2019_10_007 crossref_primary_10_1038_s41597_022_01259_9 crossref_primary_10_3390_ijms22084174 crossref_primary_10_1007_s13361_016_1435_8 crossref_primary_10_1021_acs_jproteome_8b00485 crossref_primary_10_1093_gbe_evz080 crossref_primary_10_15252_msb_20188486 crossref_primary_10_1038_s41467_021_21873_2 crossref_primary_10_3390_ijms21186830 crossref_primary_10_1038_s41467_020_18901_y crossref_primary_10_1038_s41467_021_26427_0 crossref_primary_10_1016_j_patter_2020_100137 crossref_primary_10_1038_s41598_021_81740_4 crossref_primary_10_3390_jmse8100790 crossref_primary_10_1016_j_str_2020_07_016 crossref_primary_10_1038_s41598_020_78711_6 crossref_primary_10_1038_s41467_020_14608_2 crossref_primary_10_1007_s00216_022_04353_4 crossref_primary_10_1016_j_celrep_2022_111031 crossref_primary_10_1002_prca_201400181 crossref_primary_10_1186_s12014_019_9251_3 crossref_primary_10_1021_acs_jproteome_9b00205 crossref_primary_10_1038_nmeth_3901 crossref_primary_10_1021_acs_jproteome_9b00324 crossref_primary_10_1021_acs_jproteome_9b00566 crossref_primary_10_1002_pmic_201900276 crossref_primary_10_2139_ssrn_4087714 crossref_primary_10_1002_lno_12012 crossref_primary_10_1021_acs_jproteome_9b00328 crossref_primary_10_1021_acs_jproteome_4c00705 crossref_primary_10_1002_pmic_201700091 crossref_primary_10_1016_j_foodcont_2021_108183 crossref_primary_10_1038_s43856_021_00034_y crossref_primary_10_1016_j_cell_2024_03_027 crossref_primary_10_1021_acs_jproteome_2c00046 crossref_primary_10_1002_jms_4494 crossref_primary_10_1038_s42003_024_06354_8 crossref_primary_10_1038_s43018_023_00652_6 crossref_primary_10_1021_acs_jproteome_8b00110 |
Cites_doi | 10.1038/nbt.1511 10.1074/mcp.M110.006353 10.1021/pr070325f 10.1021/pr300694b 10.1038/13690 10.1074/mcp.R111.009522 10.1038/75556 10.1074/mcp.R112.019695 10.1002/pmic.201200439 10.1021/ac034633i 10.1021/pr049882h 10.1074/mcp.M200025-MCP200 10.1074/mcp.R110.000133 10.1371/journal.pone.0020873 10.1038/nmeth.1254 10.1093/bioinformatics/btn323 10.1002/pmic.200600625 10.1093/bioinformatics/btq054 10.1038/nmeth.2343 10.1038/nbt.2839 10.1158/2159-8290.CD-13-0219 10.1074/mcp.M111.014381 10.1021/pr301012j 10.1093/nar/gkt328 10.1074/mcp.O114.043380 10.1074/mcp.O113.028506 10.1038/embor.2008.56 10.1016/j.cll.2011.07.001 10.1002/jms.3264 10.1093/jxb/erj168 10.1038/nmeth891 10.1038/nmeth.1584 10.1038/nbt.2377 10.1038/nature13438 10.1074/mcp.M900317-MCP200 10.1021/pr500753r 10.1021/ac025747h 10.1093/bioinformatics/bth092 10.1038/msb4100024 10.1152/physiolgenomics.00298.2007 10.1074/mcp.M111.007690 10.1021/ac0341261 10.1021/pr0503533 10.1016/j.jprot.2010.08.009 10.1074/mcp.O111.016717 10.1093/bioinformatics/btl299 10.1093/bioinformatics/btl379 10.1074/mcp.O113.036681 10.1002/pmic.200900375 10.1093/nar/gkh131 10.1126/scitranslmed.3007013 10.1186/1471-2105-7-286 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK 7TM 7TO 8FD FR3 H94 K9. P64 RC3 7X8 7QO 5PM |
DOI | 10.1002/prca.201400164 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1862-8354 |
EndPage | 754 |
ExternalDocumentID | PMC4506239 3742688581 25631240 10_1002_prca_201400164 PRCA1636 ark_67375_WNG_WD0JRLJ3_0 |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Research Support, American Recovery and Reinvestment Act Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: ProteomeXchange” funderid: 260558 – fundername: NIGMS funderid: R01 GM087221 and 2P50 GM076547 – fundername: National Institutes of Health from the NHGRI funderid: RC2 HG005805 – fundername: National Institute of Biomedical Imaging and Bioengineering funderid: U54EB020406 – fundername: National Science Foundation MRI funderid: 0923536 – fundername: NHGRI NIH HHS grantid: RC2 HG005805 – fundername: NIGMS NIH HHS grantid: R01 GM087221 – fundername: NIGMS NIH HHS grantid: P50 GM076547 – fundername: NIBIB NIH HHS grantid: U54 EB020406 – fundername: NIGMS NIH HHS grantid: 2P50 GM076547 – fundername: Medical Research Council grantid: 0923536 – fundername: NIBIB NIH HHS grantid: U54EB020406 |
GroupedDBID | --- 05W 0R~ 123 1OC 33P 3SF 3WU 4.4 52U 52V 53G 8-1 8UM A00 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACMXC ACPOU ACPRK ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BDRZF BHBCM BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HF~ HGLYW HVGLF HZ~ IX1 KBYEO LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NNB O66 O9- P2W P4E PQQKQ RNS ROL SUPJJ SV3 W99 WBKPD WIH WIJ WIK WNSPC WOHZO WXSBR WYISQ WYJ XV2 ~S- AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ AAYXX AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7T5 7TK 7TM 7TO 8FD FR3 H94 K9. P64 RC3 7X8 7QO 5PM |
ID | FETCH-LOGICAL-c6706-d3d28fdafc58c4c5381e0a2e23ee7a3cf30842c739298a42244d15fdbc756ca53 |
IEDL.DBID | DR2 |
ISSN | 1862-8346 1862-8354 |
IngestDate | Thu Aug 21 14:07:05 EDT 2025 Fri Jul 11 07:33:53 EDT 2025 Fri Jul 11 12:13:10 EDT 2025 Fri Jul 25 12:15:17 EDT 2025 Mon Jul 21 05:49:16 EDT 2025 Thu Apr 24 23:05:07 EDT 2025 Tue Jul 01 02:14:12 EDT 2025 Wed Jan 22 16:27:03 EST 2025 Wed Oct 30 09:53:28 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7-8 |
Keywords | Bioinformatics Mass spectrometry |
Language | English |
License | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6706-d3d28fdafc58c4c5381e0a2e23ee7a3cf30842c739298a42244d15fdbc756ca53 |
Notes | National Institute of Biomedical Imaging and Bioengineering - No. U54EB020406 istex:EB20B983CD858F97707C606A79F23C206E63C082 ark:/67375/WNG-WD0JRLJ3-0 National Institutes of Health from the NHGRI - No. RC2 HG005805 National Science Foundation MRI - No. 0923536 NIGMS - No. R01 GM087221 and 2P50 GM076547 ProteomeXchange" - No. 260558 ArticleID:PRCA1636 See the article online to view Figs. 1–3 in colour. Colour Online ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-4 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4506239 |
PMID | 25631240 |
PQID | 1696061553 |
PQPubID | 1016438 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4506239 proquest_miscellaneous_1701487432 proquest_miscellaneous_1697212671 proquest_journals_1696061553 pubmed_primary_25631240 crossref_citationtrail_10_1002_prca_201400164 crossref_primary_10_1002_prca_201400164 wiley_primary_10_1002_prca_201400164_PRCA1636 istex_primary_ark_67375_WNG_WD0JRLJ3_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2015 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: August 2015 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Proteomics. Clinical applications |
PublicationTitleAlternate | Prot. Clin. Appl |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Marzolf, B., Deutsch, E. W., Moss, P., Campbell, D. et al., SBEAMS-Microarray: database software supporting genomic expression analyses for systems biology. BMC Bioinformatics 2006, 7, 286. Slagel, J., Mendoza, L., Shteynberg, D., Deutsch, E. W., Moritz, R. L., Processing shotgun proteomics data on the Amazon Cloud with the Trans-Proteomic Pipeline. Mol. Cell. Proteomics 2015, 14, 399-404. Deutsch, E. W., File formats commonly used in mass spectrometry proteomics. Mol. Cell. Proteomics 2012, 11, 1612-1621. Eng, J. K., Searle, B. C., Clauser, K. R., Tabb, D. L., A face in the crowd: recognizing peptides through database search. Mol. Cell. Proteomics 2011, 10, R111 009522. Deutsch, E. W., Lam, H., Aebersold, R., Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol. Genomics 2008, 33, 18-25. Boja, E. S., Fehniger, T. E., Baker, M. S., Marko-Varga, G., Rodriguez, H., Analytical validation considerations of multiplex mass spectrometry-based proteomic platforms for measuring protein biomarkers. J. Proteome Res. 2014, 13, 5325-5332. Reiter, L., Claassen, M., Schrimpf, S. P., Jovanovic, M. et al., Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell. Proteomics 2009, 8, 2405-2417. Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P., ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534-2536. MacLean, B., Eng, J. K., Beavis, R. C., McIntosh, M., General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 2006, 22, 2830-2832. Ellis, M. J., Gillette, M., Carr, S. A., Paulovich, A. G. et al., Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013, 3, 1108-1112. Keller, A., Eng, J., Zhang, N., Li, X. J., Aebersold, R., A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 2005, 1, 2005.0017. Zieske, L. R., A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J. Exp. Bot. 2006, 57, 1501-1508. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B. et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376-386. Wolstencroft, K., Haines, R., Fellows, D., Williams, A. et al., The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res. 2013, 41, W557-W561. Deutsch, E. W., Albar, J. P., Binz, P.-A., Eisenacher, M. et al., Development of Data Representation Standards by the Human Proteome Organization Proteomics Standards Initiative. JAMIA 2015, accepted. Griss, J., Foster, J. M., Hermjakob, H., Vizcaino, J. A., PRIDE Cluster: building a consensus of proteomics data. Nat. Methods 2013, 10, 95-96. Craig, R., Cortens, J. P., Beavis, R. C., Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 2004, 3, 1234-1242. Nesvizhskii, A. I., A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 2010, 73, 2092-2123. Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A. et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223-226. Kohlbacher, O., Reinert, K., Gropl, C., Lange, E. et al., TOPP-the OpenMS proteomics pipeline. Bioinformatics 2007, 23, e191-197. Shifman, M. A., Li, Y., Colangelo, C. M., Stone, K. L. et al., YPED: a web-accessible database system for protein expression analysis. J. Proteome Res. 2007, 6, 4019-4024. Cox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367-1372. Griss, J., Jones, A. R., Sachsenberg, T., Walzer, M. et al., The mzTab data exchange format: communicating MS-based proteomics and metabolomics experimental results to a wider audience. Mol. Cell. Proteomics 2014, 13, 2765-2775. Zhang, B., Wang, J., Wang, X., Zhu, J. et al., Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382-387. Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C. et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115-D119. Pedrioli, P. G., Raught, B., Zhang, X. D., Rogers, R. et al., Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 2006, 3, 533-539. Theis, J. D., Dasari, S., Vrana, J. A., Kurtin, P. J., Dogan, A., Shotgun-proteomics-based clinical testing for diagnosis and classification of amyloidosis. J. Mass Spectrom. 2013, 48, 1067-1077. Trudgian, D. C., Mirzaei, H., Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing. J. Proteome Res. 2012, 11, 6282-6290. Martens, L., Chambers, M., Sturm, M., Kessner, D. et al., mzML-a community standard for mass spectrometry data. Mol. Cell. Proteomics 2011, 10, R110 000133. Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646-4658. Li, X. J., Hayward, C., Fong, P. Y., Dominguez, M. et al., A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl. Med. 2013, 5, 207ra142. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25-29. Chambers, M. C., Maclean, B., Burke, R., Amodei, D. et al., A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918-920. Jones, A. R., Eisenacher, M., Mayer, G., Kohlbacher, O. et al., The mzIdentML data standard for mass spectrometry-based proteomics results. Mol. Cell. Proteomics 2012, 11, M111 014381. Reiter, L., Rinner, O., Picotti, P., Huttenhain, R. et al., mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 2011, 8, 430-435. Farrah, T., Deutsch, E. W., Hoopmann, M. R., Hallows, J. L. et al., The state of the human proteome in 2012 as viewed through PeptideAtlas. J. Proteome Res. 2013, 12, 162-171. Deutsch, E. W., Lam, H., Aebersold, R., PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 2008, 9, 429-434. MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M. et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966-968. Farrah, T., Deutsch, E. W., Omenn, G. S., Campbell, D. S. et al., A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell. Proteomics 2011, 10, M110 006353. Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 2007, 7, 655-667. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F. et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, 994-999. Walzer, M., Qi, D., Mayer, G., Uszkoreit, J. et al., The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics. Mol. Cell. Proteomics 2013, 12, 2332-2340. Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K. et al., iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics 2011, 10, M111 007690. Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Building consensus spectral libraries for peptide identification in proteomics. Nat. Methods 2008, 5, 873-875. Craig, R., Beavis, R. C., TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466-1467. Boja, E. S., Rodriguez, H., Regulatory considerations for clinical mass spectrometry: multiple reaction monitoring. Clin. Lab. Med. 2011, 31, 443-453. Knudsen, G. M., Chalkley, R. J., The effect of using an inappropriate protein database for proteomic data analysis. PloS One 2011, 6, e20873. Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383-5392. Rauch, A., Bellew, M., Eng, J., Fitzgibbon, M. et al., Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J. Proteome Res. 2006, 5, 112-121. Eng, J. K., Jahan, T. A., Hoopmann, M. R., Comet: an open source tandem mass spectrometry sequence database search tool. Proteomics 2013, 13, 22-24. Li, X. J., Zhang, H., Ranish, J. A., Aebersold, R., Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 2003, 75, 6648-6657. Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T. et al., A guided tour of the Trans-Proteomic Pipeline. Proteomics 2010, 10, 1150-1159. Gillet, L. C., Navarro, P., Tate, S., Rost, H. et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 2012, 11, O111 016717. 2010; 10 2004; 20 2015; 14 2014; 513 2013; 48 2013; 3 2002; 74 2000; 25 2006; 57 2013; 41 2011; 31 2002; 1 2006; 7 2008; 9 2004; 3 2006; 5 2011; 10 2008; 5 2006; 3 2008; 33 2013; 5 2011; 6 2012; 11 2011; 8 2003; 75 2012; 30 2004; 32 2010; 26 2013; 10 2013; 13 2006; 22 2013; 12 1999; 17 2008; 26 2007; 6 2014; 13 2008; 24 2007; 7 2009; 8 2005; 1 2015 2007; 23 2010; 73 2014; 32 e_1_2_12_4_1 e_1_2_12_6_1 e_1_2_12_19_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_38_1 e_1_2_12_20_1 e_1_2_12_41_1 e_1_2_12_22_1 e_1_2_12_43_1 e_1_2_12_24_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_47_1 Deutsch E. W. (e_1_2_12_16_1) 2015 e_1_2_12_28_1 e_1_2_12_49_1 e_1_2_12_31_1 e_1_2_12_52_1 e_1_2_12_33_1 e_1_2_12_54_1 e_1_2_12_35_1 e_1_2_12_37_1 e_1_2_12_14_1 e_1_2_12_12_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_50_1 e_1_2_12_3_1 e_1_2_12_5_1 e_1_2_12_18_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_40_1 e_1_2_12_27_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_34_1 e_1_2_12_36_1 e_1_2_12_15_1 e_1_2_12_13_1 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_9_1 |
References_xml | – reference: Shteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K. et al., iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics 2011, 10, M111 007690. – reference: Marzolf, B., Deutsch, E. W., Moss, P., Campbell, D. et al., SBEAMS-Microarray: database software supporting genomic expression analyses for systems biology. BMC Bioinformatics 2006, 7, 286. – reference: Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D. et al., Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25-29. – reference: Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 2007, 7, 655-667. – reference: Griss, J., Jones, A. R., Sachsenberg, T., Walzer, M. et al., The mzTab data exchange format: communicating MS-based proteomics and metabolomics experimental results to a wider audience. Mol. Cell. Proteomics 2014, 13, 2765-2775. – reference: Eng, J. K., Jahan, T. A., Hoopmann, M. R., Comet: an open source tandem mass spectrometry sequence database search tool. Proteomics 2013, 13, 22-24. – reference: Lam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Building consensus spectral libraries for peptide identification in proteomics. Nat. Methods 2008, 5, 873-875. – reference: Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B. et al., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 2002, 1, 376-386. – reference: Boja, E. S., Fehniger, T. E., Baker, M. S., Marko-Varga, G., Rodriguez, H., Analytical validation considerations of multiplex mass spectrometry-based proteomic platforms for measuring protein biomarkers. J. Proteome Res. 2014, 13, 5325-5332. – reference: Boja, E. S., Rodriguez, H., Regulatory considerations for clinical mass spectrometry: multiple reaction monitoring. Clin. Lab. Med. 2011, 31, 443-453. – reference: Theis, J. D., Dasari, S., Vrana, J. A., Kurtin, P. J., Dogan, A., Shotgun-proteomics-based clinical testing for diagnosis and classification of amyloidosis. J. Mass Spectrom. 2013, 48, 1067-1077. – reference: Keller, A., Eng, J., Zhang, N., Li, X. J., Aebersold, R., A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 2005, 1, 2005.0017. – reference: Reiter, L., Rinner, O., Picotti, P., Huttenhain, R. et al., mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat. Methods 2011, 8, 430-435. – reference: Zieske, L. R., A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J. Exp. Bot. 2006, 57, 1501-1508. – reference: Jones, A. R., Eisenacher, M., Mayer, G., Kohlbacher, O. et al., The mzIdentML data standard for mass spectrometry-based proteomics results. Mol. Cell. Proteomics 2012, 11, M111 014381. – reference: Martens, L., Chambers, M., Sturm, M., Kessner, D. et al., mzML-a community standard for mass spectrometry data. Mol. Cell. Proteomics 2011, 10, R110 000133. – reference: Rauch, A., Bellew, M., Eng, J., Fitzgibbon, M. et al., Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J. Proteome Res. 2006, 5, 112-121. – reference: Vizcaino, J. A., Deutsch, E. W., Wang, R., Csordas, A. et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 2014, 32, 223-226. – reference: Craig, R., Beavis, R. C., TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466-1467. – reference: Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646-4658. – reference: MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M. et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966-968. – reference: Deutsch, E. W., Lam, H., Aebersold, R., PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 2008, 9, 429-434. – reference: Shifman, M. A., Li, Y., Colangelo, C. M., Stone, K. L. et al., YPED: a web-accessible database system for protein expression analysis. J. Proteome Res. 2007, 6, 4019-4024. – reference: Deutsch, E. W., Albar, J. P., Binz, P.-A., Eisenacher, M. et al., Development of Data Representation Standards by the Human Proteome Organization Proteomics Standards Initiative. JAMIA 2015, accepted. – reference: MacLean, B., Eng, J. K., Beavis, R. C., McIntosh, M., General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 2006, 22, 2830-2832. – reference: Knudsen, G. M., Chalkley, R. J., The effect of using an inappropriate protein database for proteomic data analysis. PloS One 2011, 6, e20873. – reference: Deutsch, E. W., File formats commonly used in mass spectrometry proteomics. Mol. Cell. Proteomics 2012, 11, 1612-1621. – reference: Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T. et al., A guided tour of the Trans-Proteomic Pipeline. Proteomics 2010, 10, 1150-1159. – reference: Gillet, L. C., Navarro, P., Tate, S., Rost, H. et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 2012, 11, O111 016717. – reference: Kessner, D., Chambers, M., Burke, R., Agus, D., Mallick, P., ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534-2536. – reference: Farrah, T., Deutsch, E. W., Hoopmann, M. R., Hallows, J. L. et al., The state of the human proteome in 2012 as viewed through PeptideAtlas. J. Proteome Res. 2013, 12, 162-171. – reference: Li, X. J., Zhang, H., Ranish, J. A., Aebersold, R., Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 2003, 75, 6648-6657. – reference: Deutsch, E. W., Lam, H., Aebersold, R., Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol. Genomics 2008, 33, 18-25. – reference: Chambers, M. C., Maclean, B., Burke, R., Amodei, D. et al., A cross-platform toolkit for mass spectrometry and proteomics. Nat. Biotechnol. 2012, 30, 918-920. – reference: Nesvizhskii, A. I., A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 2010, 73, 2092-2123. – reference: Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F. et al., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 1999, 17, 994-999. – reference: Trudgian, D. C., Mirzaei, H., Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing. J. Proteome Res. 2012, 11, 6282-6290. – reference: Griss, J., Foster, J. M., Hermjakob, H., Vizcaino, J. A., PRIDE Cluster: building a consensus of proteomics data. Nat. Methods 2013, 10, 95-96. – reference: Ellis, M. J., Gillette, M., Carr, S. A., Paulovich, A. G. et al., Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013, 3, 1108-1112. – reference: Reiter, L., Claassen, M., Schrimpf, S. P., Jovanovic, M. et al., Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Mol. Cell. Proteomics 2009, 8, 2405-2417. – reference: Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C. et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 2004, 32, D115-D119. – reference: Pedrioli, P. G., Raught, B., Zhang, X. D., Rogers, R. et al., Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 2006, 3, 533-539. – reference: Farrah, T., Deutsch, E. W., Omenn, G. S., Campbell, D. S. et al., A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol. Cell. Proteomics 2011, 10, M110 006353. – reference: Li, X. J., Hayward, C., Fong, P. Y., Dominguez, M. et al., A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci. Transl. Med. 2013, 5, 207ra142. – reference: Wolstencroft, K., Haines, R., Fellows, D., Williams, A. et al., The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucleic Acids Res. 2013, 41, W557-W561. – reference: Eng, J. K., Searle, B. C., Clauser, K. R., Tabb, D. L., A face in the crowd: recognizing peptides through database search. Mol. Cell. Proteomics 2011, 10, R111 009522. – reference: Zhang, B., Wang, J., Wang, X., Zhu, J. et al., Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382-387. – reference: Kohlbacher, O., Reinert, K., Gropl, C., Lange, E. et al., TOPP-the OpenMS proteomics pipeline. Bioinformatics 2007, 23, e191-197. – reference: Cox, J., Mann, M., MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367-1372. – reference: Slagel, J., Mendoza, L., Shteynberg, D., Deutsch, E. W., Moritz, R. L., Processing shotgun proteomics data on the Amazon Cloud with the Trans-Proteomic Pipeline. Mol. Cell. Proteomics 2015, 14, 399-404. – reference: Walzer, M., Qi, D., Mayer, G., Uszkoreit, J. et al., The mzQuantML data standard for mass spectrometry-based quantitative studies in proteomics. Mol. Cell. Proteomics 2013, 12, 2332-2340. – reference: Craig, R., Cortens, J. P., Beavis, R. C., Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 2004, 3, 1234-1242. – reference: Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383-5392. – volume: 33 start-page: 18 year: 2008 end-page: 25 article-title: Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics publication-title: Physiol. Genomics – volume: 5 start-page: 112 year: 2006 end-page: 121 article-title: Computational Proteomics Analysis System (CPAS): an extensible, open‐source analytic system for evaluating and publishing proteomic data and high throughput biological experiments publication-title: J. Proteome Res. – volume: 7 start-page: 286 year: 2006 article-title: SBEAMS‐Microarray: database software supporting genomic expression analyses for systems biology publication-title: BMC Bioinformatics – volume: 13 start-page: 5325 year: 2014 end-page: 5332 article-title: Analytical validation considerations of multiplex mass spectrometry‐based proteomic platforms for measuring protein biomarkers publication-title: J. Proteome Res. – volume: 8 start-page: 430 year: 2011 end-page: 435 article-title: mProphet: automated data processing and statistical validation for large‐scale SRM experiments publication-title: Nat. Methods – volume: 11 start-page: M111 014381 year: 2012 article-title: The mzIdentML data standard for mass spectrometry‐based proteomics results publication-title: Mol. Cell. Proteomics – volume: 14 start-page: 399 year: 2015 end-page: 404 article-title: Processing shotgun proteomics data on the Amazon Cloud with the Trans‐Proteomic Pipeline publication-title: Mol. Cell. Proteomics – year: 2015 article-title: PTMProphet: statistical analysis of post‐translational modification localization for shotgun proteomics datasets – volume: 5 start-page: 207ra142 year: 2013 article-title: A blood‐based proteomic classifier for the molecular characterization of pulmonary nodules publication-title: Sci. Transl. Med. – volume: 32 start-page: D115 year: 2004 end-page: D119 article-title: UniProt: the Universal Protein knowledgebase publication-title: Nucleic Acids Res. – volume: 73 start-page: 2092 year: 2010 end-page: 2123 article-title: A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics publication-title: J. Proteomics – volume: 6 start-page: 4019 year: 2007 end-page: 4024 article-title: YPED: a web‐accessible database system for protein expression analysis publication-title: J. Proteome Res. – volume: 74 start-page: 5383 year: 2002 end-page: 5392 article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search publication-title: Anal. Chem. – volume: 3 start-page: 1108 year: 2013 end-page: 1112 article-title: Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium publication-title: Cancer Discov. – volume: 23 start-page: e191 year: 2007 end-page: 197 article-title: TOPP—the OpenMS proteomics pipeline publication-title: Bioinformatics – volume: 12 start-page: 162 year: 2013 end-page: 171 article-title: The state of the human proteome in 2012 as viewed through PeptideAtlas publication-title: J. Proteome Res. – volume: 57 start-page: 1501 year: 2006 end-page: 1508 article-title: A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies publication-title: J. Exp. Bot. – volume: 1 start-page: 376 year: 2002 end-page: 386 article-title: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics publication-title: Mol. Cell. Proteomics – volume: 11 start-page: O111 016717 year: 2012 article-title: Targeted data extraction of the MS/MS spectra generated by data‐independent acquisition: a new concept for consistent and accurate proteome analysis publication-title: Mol. Cell. Proteomics – volume: 30 start-page: 918 year: 2012 end-page: 920 article-title: A cross‐platform toolkit for mass spectrometry and proteomics publication-title: Nat. Biotechnol. – volume: 8 start-page: 2405 year: 2009 end-page: 2417 article-title: Protein identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry publication-title: Mol. Cell. Proteomics – volume: 3 start-page: 533 year: 2006 end-page: 539 article-title: Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software publication-title: Nat. Methods – volume: 13 start-page: 2765 year: 2014 end-page: 2775 article-title: The mzTab data exchange format: communicating MS‐based proteomics and metabolomics experimental results to a wider audience publication-title: Mol. Cell. Proteomics – volume: 10 start-page: R111 009522 year: 2011 article-title: A face in the crowd: recognizing peptides through database search publication-title: Mol. Cell. Proteomics – volume: 75 start-page: 4646 year: 2003 end-page: 4658 article-title: A statistical model for identifying proteins by tandem mass spectrometry publication-title: Anal. Chem. – volume: 22 start-page: 2830 year: 2006 end-page: 2832 article-title: General framework for developing and evaluating database scoring algorithms using the TANDEM search engine publication-title: Bioinformatics – volume: 513 start-page: 382 year: 2014 end-page: 387 article-title: Proteogenomic characterization of human colon and rectal cancer publication-title: Nature – volume: 9 start-page: 429 year: 2008 end-page: 434 article-title: PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows publication-title: EMBO Rep. – volume: 6 start-page: e20873 year: 2011 article-title: The effect of using an inappropriate protein database for proteomic data analysis publication-title: PloS One – volume: 25 start-page: 25 year: 2000 end-page: 29 article-title: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium publication-title: Nat. Genet. – volume: 11 start-page: 6282 year: 2012 end-page: 6290 article-title: Cloud CPFP: a shotgun proteomics data analysis pipeline using cloud and high performance computing publication-title: J. Proteome Res. – volume: 24 start-page: 2534 year: 2008 end-page: 2536 article-title: ProteoWizard: open source software for rapid proteomics tools development publication-title: Bioinformatics – volume: 75 start-page: 6648 year: 2003 end-page: 6657 article-title: Automated statistical analysis of protein abundance ratios from data generated by stable‐isotope dilution and tandem mass spectrometry publication-title: Anal. Chem. – volume: 10 start-page: R110 000133 year: 2011 article-title: mzML—a community standard for mass spectrometry data publication-title: Mol. Cell. Proteomics – volume: 32 start-page: 223 year: 2014 end-page: 226 article-title: ProteomeXchange provides globally coordinated proteomics data submission and dissemination publication-title: Nat. Biotechnol. – volume: 5 start-page: 873 year: 2008 end-page: 875 article-title: Building consensus spectral libraries for peptide identification in proteomics publication-title: Nat. Methods – volume: 10 start-page: M110 006353 year: 2011 article-title: A high‐confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas publication-title: Mol. Cell. Proteomics – volume: 26 start-page: 966 year: 2010 end-page: 968 article-title: Skyline: an open source document editor for creating and analyzing targeted proteomics experiments publication-title: Bioinformatics – volume: 20 start-page: 1466 year: 2004 end-page: 1467 article-title: TANDEM: matching proteins with tandem mass spectra publication-title: Bioinformatics – volume: 3 start-page: 1234 year: 2004 end-page: 1242 article-title: Open source system for analyzing, validating, and storing protein identification data publication-title: J. Proteome Res. – volume: 10 start-page: 1150 year: 2010 end-page: 1159 article-title: A guided tour of the Trans‐Proteomic Pipeline publication-title: Proteomics – volume: 7 start-page: 655 year: 2007 end-page: 667 article-title: Development and validation of a spectral library searching method for peptide identification from MS/MS publication-title: Proteomics – volume: 10 start-page: M111 007690 year: 2011 article-title: iProphet: multi‐level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates publication-title: Mol. Cell. Proteomics – volume: 13 start-page: 22 year: 2013 end-page: 24 article-title: Comet: an open source tandem mass spectrometry sequence database search tool publication-title: Proteomics – volume: 26 start-page: 1367 year: 2008 end-page: 1372 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification publication-title: Nat. Biotechnol. – year: 2015 article-title: Development of Data Representation Standards by the Human Proteome Organization Proteomics Standards Initiative publication-title: JAMIA – volume: 11 start-page: 1612 year: 2012 end-page: 1621 article-title: File formats commonly used in mass spectrometry proteomics publication-title: Mol. Cell. Proteomics – volume: 41 start-page: W557 year: 2013 end-page: W561 article-title: The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud publication-title: Nucleic Acids Res. – volume: 1 start-page: 2005.0017 year: 2005 article-title: A uniform proteomics MS/MS analysis platform utilizing open XML file formats publication-title: Mol. Syst. Biol. – volume: 12 start-page: 2332 year: 2013 end-page: 2340 article-title: The mzQuantML data standard for mass spectrometry‐based quantitative studies in proteomics publication-title: Mol. Cell. Proteomics – volume: 31 start-page: 443 year: 2011 end-page: 453 article-title: Regulatory considerations for clinical mass spectrometry: multiple reaction monitoring publication-title: Clin. Lab. Med. – volume: 17 start-page: 994 year: 1999 end-page: 999 article-title: Quantitative analysis of complex protein mixtures using isotope‐coded affinity tags publication-title: Nat. Biotechnol. – volume: 48 start-page: 1067 year: 2013 end-page: 1077 article-title: Shotgun‐proteomics‐based clinical testing for diagnosis and classification of amyloidosis publication-title: J. Mass Spectrom. – volume: 10 start-page: 95 year: 2013 end-page: 96 article-title: PRIDE Cluster: building a consensus of proteomics data publication-title: Nat. Methods – ident: e_1_2_12_8_1 doi: 10.1038/nbt.1511 – ident: e_1_2_12_54_1 doi: 10.1074/mcp.M110.006353 – ident: e_1_2_12_37_1 doi: 10.1021/pr070325f – ident: e_1_2_12_27_1 – ident: e_1_2_12_35_1 doi: 10.1021/pr300694b – ident: e_1_2_12_30_1 doi: 10.1038/13690 – ident: e_1_2_12_22_1 doi: 10.1074/mcp.R111.009522 – ident: e_1_2_12_49_1 doi: 10.1038/75556 – ident: e_1_2_12_18_1 doi: 10.1074/mcp.R112.019695 – ident: e_1_2_12_21_1 doi: 10.1002/pmic.201200439 – ident: e_1_2_12_32_1 doi: 10.1021/ac034633i – ident: e_1_2_12_41_1 doi: 10.1021/pr049882h – ident: e_1_2_12_31_1 doi: 10.1074/mcp.M200025-MCP200 – ident: e_1_2_12_17_1 doi: 10.1074/mcp.R110.000133 – year: 2015 ident: e_1_2_12_16_1 article-title: Development of Data Representation Standards by the Human Proteome Organization Proteomics Standards Initiative publication-title: JAMIA – ident: e_1_2_12_52_1 doi: 10.1371/journal.pone.0020873 – ident: e_1_2_12_24_1 doi: 10.1038/nmeth.1254 – ident: e_1_2_12_14_1 doi: 10.1093/bioinformatics/btn323 – ident: e_1_2_12_23_1 doi: 10.1002/pmic.200600625 – ident: e_1_2_12_13_1 doi: 10.1093/bioinformatics/btq054 – ident: e_1_2_12_40_1 doi: 10.1038/nmeth.2343 – ident: e_1_2_12_42_1 doi: 10.1038/nbt.2839 – ident: e_1_2_12_50_1 doi: 10.1158/2159-8290.CD-13-0219 – ident: e_1_2_12_44_1 doi: 10.1074/mcp.M111.014381 – ident: e_1_2_12_39_1 doi: 10.1021/pr301012j – ident: e_1_2_12_43_1 doi: 10.1093/nar/gkt328 – ident: e_1_2_12_47_1 doi: 10.1074/mcp.O114.043380 – ident: e_1_2_12_45_1 doi: 10.1074/mcp.O113.028506 – ident: e_1_2_12_38_1 doi: 10.1038/embor.2008.56 – ident: e_1_2_12_4_1 doi: 10.1016/j.cll.2011.07.001 – ident: e_1_2_12_6_1 doi: 10.1002/jms.3264 – ident: e_1_2_12_29_1 doi: 10.1093/jxb/erj168 – ident: e_1_2_12_28_1 doi: 10.1038/nmeth891 – ident: e_1_2_12_2_1 doi: 10.1038/nmeth.1584 – ident: e_1_2_12_15_1 doi: 10.1038/nbt.2377 – ident: e_1_2_12_51_1 doi: 10.1038/nature13438 – ident: e_1_2_12_53_1 doi: 10.1074/mcp.M900317-MCP200 – ident: e_1_2_12_5_1 doi: 10.1021/pr500753r – ident: e_1_2_12_25_1 doi: 10.1021/ac025747h – ident: e_1_2_12_19_1 doi: 10.1093/bioinformatics/bth092 – ident: e_1_2_12_10_1 doi: 10.1038/msb4100024 – ident: e_1_2_12_12_1 doi: 10.1152/physiolgenomics.00298.2007 – ident: e_1_2_12_26_1 doi: 10.1074/mcp.M111.007690 – ident: e_1_2_12_33_1 doi: 10.1021/ac0341261 – ident: e_1_2_12_36_1 doi: 10.1021/pr0503533 – ident: e_1_2_12_7_1 doi: 10.1016/j.jprot.2010.08.009 – ident: e_1_2_12_55_1 doi: 10.1074/mcp.O111.016717 – ident: e_1_2_12_9_1 doi: 10.1093/bioinformatics/btl299 – ident: e_1_2_12_20_1 doi: 10.1093/bioinformatics/btl379 – ident: e_1_2_12_46_1 doi: 10.1074/mcp.O113.036681 – ident: e_1_2_12_11_1 doi: 10.1002/pmic.200900375 – ident: e_1_2_12_48_1 doi: 10.1093/nar/gkh131 – ident: e_1_2_12_3_1 doi: 10.1126/scitranslmed.3007013 – ident: e_1_2_12_34_1 doi: 10.1186/1471-2105-7-286 |
SSID | ssj0054270 |
Score | 2.5227494 |
SecondaryResourceType | review_article |
Snippet | Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 745 |
SubjectTerms | Bioinformatics Computational Biology - methods Data processing Humans Mass spectrometry Proteins Proteome - metabolism Proteomics Proteomics - methods Reproducibility of Results Software Statistics as Topic |
Title | Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics |
URI | https://api.istex.fr/ark:/67375/WNG-WD0JRLJ3-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprca.201400164 https://www.ncbi.nlm.nih.gov/pubmed/25631240 https://www.proquest.com/docview/1696061553 https://www.proquest.com/docview/1697212671 https://www.proquest.com/docview/1701487432 https://pubmed.ncbi.nlm.nih.gov/PMC4506239 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQuXDhVR6BgoyEyoW0iZ_Z46pQqhVUqxVVe7Mc2ytWLWm0D4n2xE_gN_JLmHEedHkKcUwysezJjP2NM_OZkOde5oplWI0TSpuKsgzpwHOWhgKtWbFBVmDt8LtDdXAkRify5EoVf8MP0W-4oWfE-Rod3JaL3e-kofXcIW8QBAjIEgWTMCZsISqa9PxRUrB4WlwOsD0tuFAda2PGdtdfX1uVrqOCP_0Kcv6cOXkV0cYlaf8Wsd1gmkyU053Vstxxlz_wPP7PaG-Tmy1epcPGwO6Qa6G6SzaHFcTqHy_oNo0ZpHFrfpNcxIXv6-cvYyR_wHJnOp7VWPAeXlJLu12L2WXwFDNTad1UKcDqSetWkAKIpmeYng7tLMCAAkXeTaSlnZVwUXdNL2jL-Yo80_fI0f7r93sHaXu0Q-qUzlTquWfF1Nupk4UTDmbdPGSWBcZD0Ja7Kc8KwZxG9FZYAThD-FxOfem0VM5Kfp9sVOdVeEioZIErXwYsjhdOhMJp7VQApJXl07z0CUm7T2tcy3uOx2-cmYaxmRnUrel1m5AXvXzdMH78VnI7WkovZuenmCenpTk-fGOOX2WjydsRN1lCtjpTMu0UsTC5wuARj21KyLP-MTg3_rGxVThfRRmI0JnS-R9kNG4KAxBkCXnQWGffIcCzHAAcdECv2W0vgOTi60-q2YdIMi4keDAfgPaiWf5FFWY82RsCtFeP_lH-MbkBN2WTUrlFNpbzVXgCMG9ZPo2u_A05_k98 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5Be4ALr_JIKbBIqFxwa-_LzjFqKSGkURS1KreVd70WUVvXykOiPfET-I38EmbWDwhPIY6Rv1j2ZGb328nMN4S8yGSkWIjdOM6kgTDGBd2Ms8Al6M2KdcMEe4cPR6p_LAbvZVNNiL0wlT5Em3DDyPDrNQY4JqR3v6mGljOLwkFwQkCZqOtkHcd64xCD_UmrICUF8_PiIiDuQcKFanQbQ7a7-v2VfWkdTfzxV6Tz59rJ7zmt35QObhPTvE5Vi3K6s1yYHXv1g9Ljf73vHXKrpqy0V_nYXXLNFffIRq-A4_r5Jd2mvojUZ-c3yKXf-758-jxG_QfseKbjaYk97-4VTWmTuJheuYxicSotq0YF2EBpWQMp8Gh6hhXqcJ85-JCjKL2JyrRTAx_K5tZzWsu-otT0fXJ88Pporx_U0x0Cq-JQBRnPWJJnaW5lYoWFhTdyYcoc487FKbc5DxPBbIwELkkFUA2RRTLPjI2lsqnkD8hacVG4R4RK5rjKjMP-eGGFS2wcW-WAbIVRHpmsQ4Lmt9W2lj7HCRxnuhJtZhptq1vbdsjLFl9Woh-_RW57V2lh6ewUS-ViqU9Gb_TJfjiYDAdchx2y1fiSrleJuY4Unh9xclOHPG8vQ3zjnzZp4S6WHgOHdKbi6A-YGPPCwAVZhzys3LN9IKC0HDgcPEC84rgtAPXFV68U0w9eZ1xICGLeBet5v_yLKfR4stcDdq82_xH_jNzoHx0O9fDt6N1jchMAsqqw3CJri9nSPQHWtzBPfVx_BfNGU5Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELaglRAvXOUIFDASKi-kTXwl-7hqWcpSVqsVVftmJbYjVi1ptIdE-8RP4DfyS5hxDrqcQjxGnlj2ZMb-PJn5TMhzK2PFIqzGcXkWijx3Yc9yFroUrVmxXpRi7fC7kdo_FMNjeXypir_mh-gCbugZfr1GB69ssfOdNLSaGeQNggMCskRdJetCgccgLJp0BFJSMH9dXAy4PUy5UC1tY8R2Vt9f2ZbWUcOffoU5f06dvAxp_Z40uEmydjZ1KsrJ9nKRb5uLH4ge_2e6t8iNBrDSfm1ht8kVV94hG_0SDusfz-kW9SmkPja_Qc79zvf185cxsj9gvTMdTyuseHcvaUbbsMX0wlmKqam0qssUYPukVSNIAUXTU8xPh37mYEGOIvEm8tJOc3io2q7ntCF9RaLpu-Rw8Or97n7Y3O0QGpVEKrTcsrSwWWFkaoSBZTd2UcYc484lGTcFj1LBTILwLc0EAA1hY1nY3CRSmUzye2StPCvdA0Ilc1zZ3GF1vDDCpSZJjHIAtaK4iHMbkLD9tNo0xOd4_8aprimbmUbd6k63AXnRyVc15cdvJbe8pXRi2ewEE-USqY9Gr_XRXjScHAy5jgKy2ZqSbtaIuY4Vnh7x3qaAPOuawbvxl01WurOll4EjOlNJ_AeZBKPCgARZQO7X1tkNCAAtBwQHA0hW7LYTQHbx1ZZy-sGzjAsJLsx7oD1vln9RhR5PdvuA7dXDf5R_Sq6N9wb64M3o7SNyHdplnV65SdYWs6V7DJBvkT_xXv0N49dSTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trans-Proteomic+Pipeline%2C+a+standardized+data+processing+pipeline+for+large-scale+reproducible+proteomics+informatics&rft.jtitle=Proteomics.+Clinical+applications&rft.au=Deutsch%2C+Eric+W.&rft.au=Mendoza%2C+Luis&rft.au=Shteynberg%2C+David&rft.au=Slagel%2C+Joseph&rft.date=2015-08-01&rft.issn=1862-8346&rft.eissn=1862-8354&rft.volume=9&rft.spage=745&rft.epage=754&rft_id=info:doi/10.1002%2Fprca.201400164&rft_id=info%3Apmid%2F25631240&rft.externalDocID=PMC4506239 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-8346&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-8346&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-8346&client=summon |