Expectation maximization based framework for joint localization and parameter estimation in single particle tracking from segmented images
Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the locatio...
Saved in:
Published in | PloS one Vol. 16; no. 5; p. e0243115 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
21.05.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the location of the emitter inside each frame of a sequence of camera images is estimated using, for example, Gaussian fitting (GF), and these locations are linked to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to determine motion parameters such as diffusion coefficients. However, the problems of localization and parameter estimation are clearly coupled. Motivated by this, we have created an Expectation Maximization (EM) based framework for simultaneous localization and parameter estimation. We demonstrate this framework through two representative methods, namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion in two-dimensions as a prototypical example, we conduct quantitative investigations on localization and parameter estimation performance across a wide range of signal to background ratios and diffusion coefficients and compare our methods to the standard techniques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework, we do comparisons using two different camera models, an ideal camera with Poisson distributed shot noise but no readout noise, and a camera with both shot noise and the pixel-dependent readout noise that is common to scientific complementary metal-oxide semiconductor (sCMOS) camera. Our results indicate our EM based methods outperform the standard techniques, especially at low signal levels. While U-EM and SMC-EM have similar accuracy, U-EM is significantly more computationally efficient, though the use of the Unscented Kalman Filter limits U-EM to lower diffusion rates. |
---|---|
AbstractList | Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the location of the emitter inside each frame of a sequence of camera images is estimated using, for example, Gaussian fitting (GF), and these locations are linked to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to determine motion parameters such as diffusion coefficients. However, the problems of localization and parameter estimation are clearly coupled. Motivated by this, we have created an Expectation Maximization (EM) based framework for simultaneous localization and parameter estimation. We demonstrate this framework through two representative methods, namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion in two-dimensions as a prototypical example, we conduct quantitative investigations on localization and parameter estimation performance across a wide range of signal to background ratios and diffusion coefficients and compare our methods to the standard techniques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework, we do comparisons using two different camera models, an ideal camera with Poisson distributed shot noise but no readout noise, and a camera with both shot noise and the pixel-dependent readout noise that is common to scientific complementary metal-oxide semiconductor (sCMOS) camera. Our results indicate our EM based methods outperform the standard techniques, especially at low signal levels. While U-EM and SMC-EM have similar accuracy, U-EM is significantly more computationally efficient, though the use of the Unscented Kalman Filter limits U-EM to lower diffusion rates. Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the location of the emitter inside each frame of a sequence of camera images is estimated using, for example, Gaussian fitting (GF), and these locations are linked to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to determine motion parameters such as diffusion coefficients. However, the problems of localization and parameter estimation are clearly coupled. Motivated by this, we have created an Expectation Maximization (EM) based framework for simultaneous localization and parameter estimation. We demonstrate this framework through two representative methods, namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion in two-dimensions as a prototypical example, we conduct quantitative investigations on localization and parameter estimation performance across a wide range of signal to background ratios and diffusion coefficients and compare our methods to the standard techniques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework, we do comparisons using two different camera models, an ideal camera with Poisson distributed shot noise but no readout noise, and a camera with both shot noise and the pixel-dependent readout noise that is common to scientific complementary metal-oxide semiconductor (sCMOS) camera. Our results indicate our EM based methods outperform the standard techniques, especially at low signal levels. While U-EM and SMC-EM have similar accuracy, U-EM is significantly more computationally efficient, though the use of the Unscented Kalman Filter limits U-EM to lower diffusion rates.Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the location of the emitter inside each frame of a sequence of camera images is estimated using, for example, Gaussian fitting (GF), and these locations are linked to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to determine motion parameters such as diffusion coefficients. However, the problems of localization and parameter estimation are clearly coupled. Motivated by this, we have created an Expectation Maximization (EM) based framework for simultaneous localization and parameter estimation. We demonstrate this framework through two representative methods, namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion in two-dimensions as a prototypical example, we conduct quantitative investigations on localization and parameter estimation performance across a wide range of signal to background ratios and diffusion coefficients and compare our methods to the standard techniques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework, we do comparisons using two different camera models, an ideal camera with Poisson distributed shot noise but no readout noise, and a camera with both shot noise and the pixel-dependent readout noise that is common to scientific complementary metal-oxide semiconductor (sCMOS) camera. Our results indicate our EM based methods outperform the standard techniques, especially at low signal levels. While U-EM and SMC-EM have similar accuracy, U-EM is significantly more computationally efficient, though the use of the Unscented Kalman Filter limits U-EM to lower diffusion rates. About the Authors: Ye Lin Roles Formal analysis, Investigation, Software, Writing – original draft Affiliation: Division of Systems Engineering, Boston University, Boston, MA, United States of America Sean B. Andersson Roles Conceptualization, Funding acquisition, Methodology, Project administration, Visualization, Writing – review & editing * E-mail: sanderss@bu.edu Affiliations Division of Systems Engineering, Boston University, Boston, MA, United States of America, Department of Mechanical Engineering, Boston University, Boston, MA, United States of America ORCID logo https://orcid.org/0000-0001-7575-3507 Introduction Single particle tracking (SPT) is an important class of techniques for studying the motion of single biological macromolecules. Because SPT experiments are often photon-impoverised and subject to significant background, it is important to consider the impact of signal and noise levels when comparing different analysis algorithms. [...]23] investigated the performance of an experimental method in error estimation techniques across a variety of signal and noise values, the comparison work in [11] included the signal level as a core factor in their simulations, [24] generated simulated videos at various levels of signal to noise ratios to validate the use of convolutional neural networks on SPT data, and [25] applied deep learning to analyze particle trajectories based on simulated data over a large range of signal to noise ratios. [...]the measured intensity, Ixy can be described as(1)where G is the peak amplitude of the intensity, (x, y) are the lateral coordinates in the image frame, (xo, yo) are the position of the particle, (σx, σy) are physical parameters describing the width of the PSF, and Nbgd is the background intensity. About the Authors: Ye Lin Roles Formal analysis, Investigation, Software, Writing – original draft Affiliation: Division of Systems Engineering, Boston University, Boston, MA, United States of America Sean B. Andersson Roles Conceptualization, Funding acquisition, Methodology, Project administration, Visualization, Writing – review & editing * E-mail: sanderss@bu.edu Affiliations Division of Systems Engineering, Boston University, Boston, MA, United States of America, Department of Mechanical Engineering, Boston University, Boston, MA, United States of America ORCID logo https://orcid.org/0000-0001-7575-3507 Introduction Single particle tracking (SPT) is an important class of techniques for studying the motion of single biological macromolecules. Because SPT experiments are often photon-impoverised and subject to significant background, it is important to consider the impact of signal and noise levels when comparing different analysis algorithms. [...]23] investigated the performance of an experimental method in error estimation techniques across a variety of signal and noise values, the comparison work in [11] included the signal level as a core factor in their simulations, [24] generated simulated videos at various levels of signal to noise ratios to validate the use of convolutional neural networks on SPT data, and [25] applied deep learning to analyze particle trajectories based on simulated data over a large range of signal to noise ratios. [...]the measured intensity, Ixy can be described as(1)where G is the peak amplitude of the intensity, (x, y) are the lateral coordinates in the image frame, (xo, yo) are the position of the particle, (σx, σy) are physical parameters describing the width of the PSF, and Nbgd is the background intensity. |
Audience | Academic |
Author | Lin, Ye Andersson, Sean B. |
AuthorAffiliation | 1 Division of Systems Engineering, Boston University, Boston, MA, United States of America 2 Department of Mechanical Engineering, Boston University, Boston, MA, United States of America Institut de Robotica i Informatica Industrial, SPAIN |
AuthorAffiliation_xml | – name: 1 Division of Systems Engineering, Boston University, Boston, MA, United States of America – name: Institut de Robotica i Informatica Industrial, SPAIN – name: 2 Department of Mechanical Engineering, Boston University, Boston, MA, United States of America |
Author_xml | – sequence: 1 givenname: Ye surname: Lin fullname: Lin, Ye – sequence: 2 givenname: Sean B. orcidid: 0000-0001-7575-3507 surname: Andersson fullname: Andersson, Sean B. |
BookMark | eNqNk12L1DAUhousuB_6DwQLgujFjEnz0dYLYVlWHVhY8Os2ZNKTTmbTZkxaHf0J_mrTbVe2yyLSi6Ynz_uenNOc4-SgdS0kyVOMlpjk-PXW9b6VdrmL4SXKKMGYPUiOcEmyBc8QObi1PkyOQ9gixEjB-aPkkFCES0bxUfL7fL8D1cnOuDZt5N405tf4sZYBqlR72cAP569S7Xy6dabtUuuUtDeYbKt0JweqA59C6Ewzbpg2DaatLQzbnVFx0XmprmIsuromDVA30HYxSZTUEB4nD7W0AZ5M75Pky7vzz2cfFheX71dnpxcLxXnZLVQBZa4qTSWlGDGZ6wIBMMp1KbUinMuKME4YlAUmCmktK8gh1xQVheJQkpPk2ei7sy6IqY1BZIwgEnWYR2I1EpWTW7Hz8Xz-p3DSiOuA87WYShKKsoywimSaxyUha5QRylSuVUkIZnn0ejtl69cNVCpW7KWdmc53WrMRtfsu4ulLluFo8HIy8O5bHxssGhMUWCtbcP31uXGGOadDrud30Purm6haxgJMq93wXwZTccp5xighCEVqeQ8Vnwoao-Kd0ybGZ4JXM0FkOth3texDEKtPH_-fvfw6Z1_cYjcgbbcJzvbDJQtzkI6g8i4ED_pvkzESw8jcdEMMIyOmkYmyN3dkyozzEAs29t_iPx4IIAs |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_6_033272 crossref_primary_10_1364_BOE_432187 |
Cites_doi | 10.1109/TIP.2012.2202675 10.1016/S0076-6879(10)72003-6 10.1038/s41556-018-0192-2 10.1109/CDC40024.2019.9029251 10.1073/pnas.1804420115 10.1109/TAC.2009.2019800 10.3390/mps2010012 10.1021/acs.chemrev.6b00815 10.1146/annurev-anchem-091819-100409 10.1103/PhysRevE.82.011917 10.1016/j.bpj.2019.06.015 10.1103/PhysRevLett.121.078001 10.1016/S0006-3495(02)75618-X 10.1038/nmeth.2808 10.1146/annurev.biophys.26.1.373 10.1111/j.2517-6161.1977.tb01600.x 10.1021/acsinfecdis.7b00270 10.1117/12.280797 10.1016/S0006-3495(95)79972-6 10.1002/9780470191613 10.1016/j.bpj.2009.12.4297 10.1364/AO.46.001819 10.1364/BOE.7.003355 10.1103/PhysRevE.82.041914 10.2307/2332343 10.1364/OE.25.011701 10.1073/pnas.0504407102 10.1038/nmeth.2488 10.3390/molecules26040886 10.1038/nmeth.2844 10.1103/PhysRevE.85.061916 10.1016/j.automatica.2005.05.008 10.1103/PhysRevE.92.052707 10.1021/la900393v 10.1364/OE.22.000210 10.1038/s41598-018-34572-8 10.1103/PhysRevE.93.053303 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Lin, Andersson. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Lin, Andersson 2021 Lin, Andersson |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Lin, Andersson. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Lin, Andersson 2021 Lin, Andersson |
DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0243115 |
DatabaseName | CrossRef Gale in Context: Opposing Viewpoints Gale in Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database ProQuest Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | EM framework for joint localization and parameter estimation in single particle tracking from segmented images |
EISSN | 1932-6203 |
ExternalDocumentID | 2530363516 oai_doaj_org_article_c45235d32f6c4533b02345c7fc933157 PMC8139521 A662543300 10_1371_journal_pone_0243115 |
GeographicLocations | United States United States--US |
GeographicLocations_xml | – name: United States – name: United States--US |
GrantInformation_xml | – fundername: ; grantid: 1R01GM117039-01A1 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO - 02 AAPBV ABPTK ADACO BBAFP KM |
ID | FETCH-LOGICAL-c669t-c8e97cdf4a44105a7f80ee546f9afc366ad35635e9813c0ffade7e7f4088c6e93 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Jan 02 13:50:12 EST 2022 Wed Aug 27 01:25:27 EDT 2025 Thu Aug 21 13:52:32 EDT 2025 Thu Jul 10 16:56:56 EDT 2025 Fri Jul 25 11:19:43 EDT 2025 Tue Jun 17 21:12:03 EDT 2025 Tue Jun 10 20:28:16 EDT 2025 Fri Jun 27 03:47:13 EDT 2025 Fri Jun 27 04:59:07 EDT 2025 Thu May 22 21:20:54 EDT 2025 Tue Jul 01 02:42:09 EDT 2025 Thu Apr 24 22:59:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c669t-c8e97cdf4a44105a7f80ee546f9afc366ad35635e9813c0ffade7e7f4088c6e93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0001-7575-3507 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0243115 |
PMID | 34019541 |
PQID | 2530363516 |
PQPubID | 1436336 |
PageCount | e0243115 |
ParticipantIDs | plos_journals_2530363516 doaj_primary_oai_doaj_org_article_c45235d32f6c4533b02345c7fc933157 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139521 proquest_miscellaneous_2531216647 proquest_journals_2530363516 gale_infotracmisc_A662543300 gale_infotracacademiconefile_A662543300 gale_incontextgauss_ISR_A662543300 gale_incontextgauss_IOV_A662543300 gale_healthsolutions_A662543300 crossref_primary_10_1371_journal_pone_0243115 crossref_citationtrail_10_1371_journal_pone_0243115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-21 |
PublicationDateYYYYMMDD | 2021-05-21 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | H Shen (pone.0243115.ref001) 2017; 117 TT Ashley (pone.0243115.ref020) 2015; 92 D Holcman (pone.0243115.ref003) 2018; 20 TC Rösch (pone.0243115.ref005) 2018; 8 X Michalet (pone.0243115.ref028) 2012; 85 GJ McLachlan (pone.0243115.ref030) 2008 C Kurzthaler (pone.0243115.ref009) 2018; 121 N Peerboom (pone.0243115.ref007) 2018; 4 N Chenouard (pone.0243115.ref011) 2014; 11 pone.0243115.ref032 HY Park (pone.0243115.ref004) 2010; 472 MJ Saxton (pone.0243115.ref014) 1997; 26 F Huang (pone.0243115.ref038) 2013; 10 JM Newby (pone.0243115.ref024) 2018; 115 X Michalet (pone.0243115.ref015) 2010; 82 Y Zhong (pone.0243115.ref010) 2020; 13 N Granik (pone.0243115.ref025) 2019; 117 AP Dempster (pone.0243115.ref029) 1977; 39 S Gibson (pone.0243115.ref031) 2005; 41 R Lin (pone.0243115.ref019) 2017; 25 B Zhang (pone.0243115.ref034) 2007; 46 CD Saunter (pone.0243115.ref023) 2010; 98 A Small (pone.0243115.ref035) 2014; 11 RE Thompson (pone.0243115.ref012) 2002; 82 SM Anthony (pone.0243115.ref013) 2009; 25 DT Clarke (pone.0243115.ref008) 2019; 2 BI Godoy (pone.0243115.ref027); 26 R Simson (pone.0243115.ref002) 1995; 69 FJ Anscombe (pone.0243115.ref036) 1948; 35 pone.0243115.ref021 CP Calderon (pone.0243115.ref017) 2016; 93 TT Ashley (pone.0243115.ref026); 7 AJ Berglund (pone.0243115.ref016) 2010; 82 S Simo (pone.0243115.ref022) 2013 I Arasaratnam (pone.0243115.ref033); 54 A Krull (pone.0243115.ref018) 2014; 22 H Ewers (pone.0243115.ref006) 2005; 102 M Makitalo (pone.0243115.ref037) 2012; 22 |
References_xml | – volume: 22 start-page: 91 issue: 1 year: 2012 ident: pone.0243115.ref037 article-title: Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2202675 – volume: 472 start-page: 387 year: 2010 ident: pone.0243115.ref004 article-title: Single mRNA tracking in live cells publication-title: Methods Enzymol doi: 10.1016/S0076-6879(10)72003-6 – volume: 20 start-page: 1118 issue: 10 year: 2018 ident: pone.0243115.ref003 article-title: Single particle trajectories reveal active endoplasmic reticulum luminal flow publication-title: Nat Cell Biol doi: 10.1038/s41556-018-0192-2 – ident: pone.0243115.ref021 doi: 10.1109/CDC40024.2019.9029251 – volume: 115 start-page: 9026 issue: 36 year: 2018 ident: pone.0243115.ref024 article-title: Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1804420115 – volume: 54 start-page: 1254 issue: 6 ident: pone.0243115.ref033 article-title: Cubature kalman filters publication-title: IEEE Trans Automat Control doi: 10.1109/TAC.2009.2019800 – volume: 2 start-page: 12 issue: 1 year: 2019 ident: pone.0243115.ref008 article-title: A brief history of single-particle tracking of the epidermal growth factor receptor publication-title: Methods Protoc doi: 10.3390/mps2010012 – volume: 117 start-page: 7331 issue: 11 year: 2017 ident: pone.0243115.ref001 article-title: Single particle tracking: from theory to biophysical applications publication-title: Chem Rev doi: 10.1021/acs.chemrev.6b00815 – volume: 13 start-page: 1 issue: 1 year: 2020 ident: pone.0243115.ref010 article-title: Three-dimensional single particle tracking and its applications in confined environments publication-title: Annu Rev Anal Chem doi: 10.1146/annurev-anchem-091819-100409 – volume: 82 start-page: 011917 issue: 1 year: 2010 ident: pone.0243115.ref016 article-title: Statistics of camera-based single-particle tracking publication-title: Phys Rev E doi: 10.1103/PhysRevE.82.011917 – volume: 117 start-page: 185 issue: 2 year: 2019 ident: pone.0243115.ref025 article-title: Single particle diffusion characterization by deep learning publication-title: Biophys J doi: 10.1016/j.bpj.2019.06.015 – volume: 121 start-page: 078001 issue: 7 year: 2018 ident: pone.0243115.ref009 article-title: Probing the spatiotemporal dynamics of catalytic Janus particles with single-particle tracking and differential dynamic microscopy publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.121.078001 – volume: 82 start-page: 2775 issue: 5 year: 2002 ident: pone.0243115.ref012 article-title: Precise nanometer localization analysis for individual fluorescent probes publication-title: Biophys J doi: 10.1016/S0006-3495(02)75618-X – volume: 11 start-page: 281 issue: 3 year: 2014 ident: pone.0243115.ref011 article-title: Objective comparison of particle tracking methods publication-title: Nat Methods doi: 10.1038/nmeth.2808 – volume: 26 start-page: 373 year: 1997 ident: pone.0243115.ref014 article-title: Single-particle tracking: applications to membrane dynamics publication-title: Annu Rev Biophys Biomol Struct doi: 10.1146/annurev.biophys.26.1.373 – volume: 39 start-page: 1 year: 1977 ident: pone.0243115.ref029 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: R Stat Soc Series B Stat Methodol doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 4 start-page: 944 issue: 6 year: 2018 ident: pone.0243115.ref007 article-title: Cell membrane derived platform to study virus binding kinetics and diffusion with single particle sensitivity publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.7b00270 – ident: pone.0243115.ref032 doi: 10.1117/12.280797 – volume: 69 start-page: 989 issue: 3 year: 1995 ident: pone.0243115.ref002 article-title: Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis publication-title: Biophys J doi: 10.1016/S0006-3495(95)79972-6 – volume-title: The EM algorithm and its extensions year: 2008 ident: pone.0243115.ref030 doi: 10.1002/9780470191613 – volume: 98 start-page: 1566 issue: 8 year: 2010 ident: pone.0243115.ref023 article-title: Quantifying subpixel accuracy: an experimental method for measuring accuracy in image-correlation-based, single-particle tracking publication-title: Biophys J doi: 10.1016/j.bpj.2009.12.4297 – volume: 46 start-page: 1819 issue: 10 year: 2007 ident: pone.0243115.ref034 article-title: Gaussian approximations of fluorescence microscope point-spread function models publication-title: Appl Opt doi: 10.1364/AO.46.001819 – volume-title: Bayesian filtering and smoothing year: 2013 ident: pone.0243115.ref022 – volume: 7 start-page: 3355 issue: 9 ident: pone.0243115.ref026 article-title: Tracking single fluorescent particles in three dimensions via extremum seeking publication-title: Biomed Opt Express doi: 10.1364/BOE.7.003355 – volume: 82 start-page: 041914 issue: 4 year: 2010 ident: pone.0243115.ref015 article-title: Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium publication-title: Phys Rev E doi: 10.1103/PhysRevE.82.041914 – volume: 35 start-page: 246 issue: 3/4 year: 1948 ident: pone.0243115.ref036 article-title: The transformation of Poisson, binomial and negative-binomial data publication-title: Biometrika doi: 10.2307/2332343 – volume: 25 start-page: 11701 issue: 10 year: 2017 ident: pone.0243115.ref019 article-title: Algorithmic corrections for localization microscopy with sCMOS cameras-characterisation of a computationally efficient localization approach publication-title: Opt Express doi: 10.1364/OE.25.011701 – volume: 102 start-page: 15110 issue: 42 year: 2005 ident: pone.0243115.ref006 article-title: Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0504407102 – volume: 10 start-page: 653 issue: 7 year: 2013 ident: pone.0243115.ref038 article-title: Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms publication-title: Nat Methods doi: 10.1038/nmeth.2488 – volume: 26 start-page: 886 issue: 4 ident: pone.0243115.ref027 article-title: An estimation algorithm for general linear single particle tracking models with time-varying parameters publication-title: Molecules doi: 10.3390/molecules26040886 – volume: 11 start-page: 267 issue: 3 year: 2014 ident: pone.0243115.ref035 article-title: Fluorophore localization algorithms for super-resolution microscopy publication-title: Nat Methods doi: 10.1038/nmeth.2844 – volume: 85 start-page: 061916 issue: 6 year: 2012 ident: pone.0243115.ref028 article-title: Optimal diffusion coefficient estimation in single-particle tracking publication-title: Phys Rev E doi: 10.1103/PhysRevE.85.061916 – volume: 41 issue: 10 year: 2005 ident: pone.0243115.ref031 article-title: Robust maximum-likelihood estimation of multivariable dynamic systems publication-title: Automatica doi: 10.1016/j.automatica.2005.05.008 – volume: 92 start-page: 052707 issue: 5 year: 2015 ident: pone.0243115.ref020 article-title: Method for simultaneous localization and parameter estimation in particle tracking experiments publication-title: Phys Rev E doi: 10.1103/PhysRevE.92.052707 – volume: 25 start-page: 8152 issue: 14 year: 2009 ident: pone.0243115.ref013 article-title: Image analysis with rapid and accurate two-dimensional Gaussian fitting publication-title: Langmuir doi: 10.1021/la900393v – volume: 22 start-page: 210 issue: 1 year: 2014 ident: pone.0243115.ref018 article-title: A divide and conquer strategy for the maximum likelihood localization of low intensity objects publication-title: Opt Express doi: 10.1364/OE.22.000210 – volume: 8 start-page: 16450 issue: 1 year: 2018 ident: pone.0243115.ref005 article-title: Single molecule tracking reveals spatio-temporal dynamics of bacterial DNA repair centres publication-title: Sci Rep doi: 10.1038/s41598-018-34572-8 – volume: 93 start-page: 053303 issue: 5 year: 2016 ident: pone.0243115.ref017 article-title: Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory publication-title: Phys Rev E doi: 10.1103/PhysRevE.93.053303 |
SSID | ssj0053866 |
Score | 2.3686926 |
Snippet | Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper,... About the Authors: Ye Lin Roles Formal analysis, Investigation, Software, Writing – original draft Affiliation: Division of Systems Engineering, Boston... |
SourceID | plos doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e0243115 |
SubjectTerms | Algorithms Analysis Artificial neural networks Background noise Cameras CMOS Computer and Information Sciences Computer simulation Deep learning Drafting software Engineering and Technology Experimental methods Image segmentation Kalman filters Localization Machine learning Macromolecules Mechanical engineering Neural networks Noise Noise levels Parameter estimation Parameter identification Particle tracking Particle trajectories Physical properties Physical Sciences Random variables Research and Analysis Methods Systems engineering Trajectory analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yT76I5we3ep5RBPWhd03z1T6e4nEKKqgn91bSNFlXdtvlugv-Df7VzqRp2YJwPvhWmklJZyYzk3bmN4S8YFw7cAUmgWi3SIQ1PjE5Z4lCLHZf5bkP_VM-flIXl-LDlbzaa_WFOWE9PHDPuFMr4Kgka555BZecV_BkIa32Fo7iTIY6cvB5w2Gqt8Gwi5WKhXJcs9Mol5NN27gTxOBj2AZ3zxEFvP7RKs82q7abhJzThMk9D3R-l9yJoSM965d8QG655h45iJuzo68igvTr--Q3Ahjb_ic7XZtfy3WstqTotGrqh4wsCiEr_dkumy0NTm0gM01NERR8jckyFIE4-gpHumwoflxYORwO66CwVIvf2ylWqtDOLQLMZ01hysJ1D8jl-btvby-S2HQhsUoV28TmrtC29sIIzAA12uepc1IoXxhvuVKm5hIk6YqccZt6b2qnnfYCzJVVruAPyawBNh8S6urcphXLbSWccFpXuqiKrBZG51ZaKeeEDxIobUQkx8YYqzL8ZtNwMuk5W6Lcyii3OUnGWZsekeMG-jco3JEW8bTDDdCyMrKqvEnL5uQpqkbZF6eOVqE8UwrRBHiazsnzQIGYGg0m7SzMruvK95-__wPR1y8TopeRyLcoQhMLJeCdEKtrQnk0oQTLYCfDh6jIA1e6MpMYsHDJFMwclPvvw8_GYXwoJuI1rt0FGpYxpQSwRE82xYTB05Fm-SMAl4PGFBAuPvofEnlMbmeYXpTKJGNHZLa93rknEB9uq-NgCv4AAf9mKA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDI9gvPCCOD50gwMCQgIeetc0X-0TOhDjQAIk4NC9VWmajKGtHddN4m_gr8ZO03GVEPA2NU7X2o7tJvbPhDxmXDtwBSaBaLdIhDU-MTlniUIsdl_luQ_9U969Vyen4u2ZPIsbbl1MqxxsYjDUdWtxj_wok2hsuWTq-fp7gl2j8HQ1ttC4TK4w8DSY0pXPXg-WGNayUrFcjmt2FKVzuG4bd4hIfAyb4V5wRwG1f2ebJ-tl240Cz3Ha5AU_NLtOrsUAkh73Et8jl1xzg-zFJdrRpxFH-tlN8hNhjG1_1E5X5sdiFWsuKbqumvohL4tC4Eq_tYtmQ4NrG8hMU1OEBl9hygxFOI6-zpEuGopbDEuHw-E5KDyqxV13ivUqtHPzAPZZU5gyd90tcjp79fnlSRJbLyRWqWKT2NwV2tZeGIF5oEb7PHVOCuUL4y1XytRcgjRckTNuU-9N7bTTXoDRssoV_DaZNMDmfUJdndu0YrmthBNO60oXVZHVwujcSivllPBBAqWNuOTYHmNZhsM2Dd8nPWdLlFsZ5TYlyW7Wusfl-Af9CxTujhZRtcOF9nxeRlaVVsBnuax55hX85LwCLRbSam8LzpnUU_IAVaPsS1R3tqE8VgoxBXiaTsmjQIHIGg2m7szNtuvKNx--_AfRp48joieRyLcoQhPLJeCdELFrRHkwogT7YEfD-6jIA1e68vdKgpmDcv95-OFuGG-K6XiNa7eBhmVMKQEs0aNFMWLweKRZfA3w5aAxBQSNd_7-53fJ1QzTh1KZZOyATDbnW3cP4r9NdT8s8l-lNV8M priority: 102 providerName: ProQuest |
Title | Expectation maximization based framework for joint localization and parameter estimation in single particle tracking from segmented images |
URI | https://www.proquest.com/docview/2530363516 https://www.proquest.com/docview/2531216647 https://pubmed.ncbi.nlm.nih.gov/PMC8139521 https://doaj.org/article/c45235d32f6c4533b02345c7fc933157 http://dx.doi.org/10.1371/journal.pone.0243115 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdG98ILYvzRCqMYhAQ8pIpjx04eENqmloG0gQZFfYscxy5FbVKaVhovfAA-NT7HqYg0xF6sqj5Hyd3Zd7bvfofQC0KFtqZABtbbTQOmpAlkQknAAYvd5EliXP2U8wt-NmEfpvF0D7U1Wz0D62u3dlBParJeDK9-_HxrJ_wbV7VBkHbQcFWVeggIewSyzvetbRJQ0-Cc7e4V7Ox2t5fgtQQ8CqlPpvvXUzrGymH671bu3mpR1R23tBtU-ZeVGt9Fd7x7iY8bfThAe7q8hw78BK7xK48y_fo--g0gx6q5iMdLeTVf-oxMDIatwKaN2sLWrcXfq3m5wc7wtWSyLDAAhy8hoAYDWEeTBYnnJYYDiIWGbvce2L6qgjN5DNksuNYzBwVaYDtkpusHaDIefTk9C3xhhkBxnm4ClehUqMIwySBKVAqThFrHjJtUGkU5lwWNrbR1mhCqQmNkoYUWhtklTXGd0oeoV1o2HyKsi0SFOUlUzjTTQuQizdOoYFIkKlZx3Ee0lUCmPGo5FM9YZO4qTtjdS8PZDOSWebn1UbAbtWpQO_5DfwLC3dEC5rb7o1rPMs-qTDG7aY8LGhluf1KaWx1nsRJGpZSSWPTRU1CNrElg3a0c2THngDhAw7CPnjsKwN0oIbBnJrd1nb3_-PUGRJ8vO0QvPZGpQITSJ1PYbwI8rw7lUYfSrh6q030Iitxypc6iGJwaGhNuR7bKfX33s103PBSC9UpdbR0NiQjnzLJEdCZFh8HdnnL-zYGbW41JrUv56MYf-BjdjiDOKIyDiByh3ma91U-so7jJB-iWmArbJqcE2vG7Ado_GV18uhy4o5eBWxug_TX6AwYrcS0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAXRHmoC4UaBAIOaZP4lRwQKo9llz6QoK16C45jL4t2k6XZFfAX-DH8RjyOszQSAi69Retxkp0Zz0zsmW8QehgRoa0rkIGNdtOAKmkCmZAo4IDFbvIkMa5_ysEhHx7Tt6fsdA39bGthIK2ytYnOUBeVgj3ynZiBsSUs4s_nXwLoGgWnq20LjUYt9vT3r_aTrX42emXl-yiOB6-PXg4D31UgUJyni0AlOhWqMFRSSHGUwiSh1oxyk0qjCOeyIMw-SKdJRFRojCy00MJQux4V1wC-ZE3-JUqsJ4fK9MGb1vJb28G5L88jItrx2rA9r0q9Dch_ETTfPef-XJeAlS_ozadV3Ql0u2ma5_ze4Bq66gNWvNto2Dpa0-V1tO5NQo2feNzqpzfQD4BNVs3RPp7Jb5OZr_HE4CoLbNo8MGwDZfy5mpQL7FxpSybLAgMU-QxSdDDAfzR1lXhSYtjSmGoYdu-B7asq2OXHUB-Daz124KIFtlPGur6Jji9EKLdQr7Rs3kBYF4kK8yhROdVUC5GLNE_jgkqRKKYY6yPSSiBTHgcd2nFMM3e4J-z3UMPZDOSWebn1UbCaNW9wQP5B_wKEu6IFFG_3Q3U2zjyrMkVZTFhBYsPtJSG5XTWUKWFUSkjERB9tgWpkTUnsyhZlu5wDhgEJwz564CgAyaOEVKGxXNZ1Nnp38h9EH953iB57IlOBCKUvz7D_CRDCOpSbHUprj1RneAMUueVKnf1euXZmq9x_Hr6_GoabQvpfqaulo4niiHNqWSI6i6LD4O5IOfnk4NKtxqQ2SL3994dvocvDo4P9bH90uHcHXYkhdSlkQRxtot7ibKnv2thzkd9zCx6jjxdtYX4BOfedMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFeEOOiFQYzCAQ8ZE3iW_KA0NioVgYDAUN7C45jl6I2KUsr4C_wk_h1-DhOWCQEvOytqk-a9Nxjn_MdhO5HRGgbCmRgs900oEqaQCYkCjhgsZs8SYybn_LqiB8c0xcn7GQN_Wx7YaCssvWJzlEXlYI98mHMwNkSFvGh8WURb_ZHTxdfApggBSet7TiNRkUO9fev9vWtfjLet7J-EMej5-_3DgI_YSBQnKfLQCU6FaowVFIod5TCJKHWjHKTSqMI57IgzN5Up0lEVGiMLLTQwlBrm4prAGKy7v-CICIBG0v2uvIS60c49616RERDrxk7i6rUO4ACGMEg3jOh0E0M6OLC-mJW1b2kt1-yeSYGjq6gyz55xbuNtm2gNV1eRRvePdT4kcewfnwN_QAIZdUc8-O5_Dad-35PDGGzwKatCcM2acafq2m5xC6stmSyLDDAks-hXAcDFEjTY4mnJYbtjZmGZfcc2D6qgh1_DL0yuNYTBzRaYHvJRNfX0fG5COUGWi8tmzcR1kWiwjxKVE411ULkIs3TuKBSJIopxgaItBLIlMdEh9Ecs8wd9An7btRwNgO5ZV5uAxR0Vy0aTJB_0D8D4Xa0gOjtvqhOJ5lnVaYoiwkrSGy4_UhIbi2IMiWMSgmJmBigbVCNrGmP7fxStss54BmQMByge44CUD1KsI-JXNV1Nn794T-I3r3tET30RKYCEUrfqmH_E6CF9Si3epTWN6ne8iYocsuVOvttxfbKVrn_vHy3W4YfhVLAUlcrRxPFEefUskT0jKLH4P5KOf3koNOtxqQ2Yb3595tvo4vWt2Qvx0eHt9ClGKqYQhbE0RZaX56u9G2bhi7zO87eMfp43g7mF8rfoTM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation+maximization+based+framework+for+joint+localization+and+parameter+estimation+in+single+particle+tracking+from+segmented+images&rft.jtitle=PloS+one&rft.au=Lin%2C+Ye&rft.au=Andersson%2C+Sean+B&rft.date=2021-05-21&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=5&rft.spage=e0243115&rft_id=info:doi/10.1371%2Fjournal.pone.0243115&rft.externalDocID=A662543300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |