Expectation maximization based framework for joint localization and parameter estimation in single particle tracking from segmented images

Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the locatio...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 5; p. e0243115
Main Authors Lin, Ye, Andersson, Sean B.
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 21.05.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the location of the emitter inside each frame of a sequence of camera images is estimated using, for example, Gaussian fitting (GF), and these locations are linked to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to determine motion parameters such as diffusion coefficients. However, the problems of localization and parameter estimation are clearly coupled. Motivated by this, we have created an Expectation Maximization (EM) based framework for simultaneous localization and parameter estimation. We demonstrate this framework through two representative methods, namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion in two-dimensions as a prototypical example, we conduct quantitative investigations on localization and parameter estimation performance across a wide range of signal to background ratios and diffusion coefficients and compare our methods to the standard techniques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework, we do comparisons using two different camera models, an ideal camera with Poisson distributed shot noise but no readout noise, and a camera with both shot noise and the pixel-dependent readout noise that is common to scientific complementary metal-oxide semiconductor (sCMOS) camera. Our results indicate our EM based methods outperform the standard techniques, especially at low signal levels. While U-EM and SMC-EM have similar accuracy, U-EM is significantly more computationally efficient, though the use of the Unscented Kalman Filter limits U-EM to lower diffusion rates.
AbstractList Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the location of the emitter inside each frame of a sequence of camera images is estimated using, for example, Gaussian fitting (GF), and these locations are linked to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to determine motion parameters such as diffusion coefficients. However, the problems of localization and parameter estimation are clearly coupled. Motivated by this, we have created an Expectation Maximization (EM) based framework for simultaneous localization and parameter estimation. We demonstrate this framework through two representative methods, namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion in two-dimensions as a prototypical example, we conduct quantitative investigations on localization and parameter estimation performance across a wide range of signal to background ratios and diffusion coefficients and compare our methods to the standard techniques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework, we do comparisons using two different camera models, an ideal camera with Poisson distributed shot noise but no readout noise, and a camera with both shot noise and the pixel-dependent readout noise that is common to scientific complementary metal-oxide semiconductor (sCMOS) camera. Our results indicate our EM based methods outperform the standard techniques, especially at low signal levels. While U-EM and SMC-EM have similar accuracy, U-EM is significantly more computationally efficient, though the use of the Unscented Kalman Filter limits U-EM to lower diffusion rates.
Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the location of the emitter inside each frame of a sequence of camera images is estimated using, for example, Gaussian fitting (GF), and these locations are linked to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to determine motion parameters such as diffusion coefficients. However, the problems of localization and parameter estimation are clearly coupled. Motivated by this, we have created an Expectation Maximization (EM) based framework for simultaneous localization and parameter estimation. We demonstrate this framework through two representative methods, namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion in two-dimensions as a prototypical example, we conduct quantitative investigations on localization and parameter estimation performance across a wide range of signal to background ratios and diffusion coefficients and compare our methods to the standard techniques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework, we do comparisons using two different camera models, an ideal camera with Poisson distributed shot noise but no readout noise, and a camera with both shot noise and the pixel-dependent readout noise that is common to scientific complementary metal-oxide semiconductor (sCMOS) camera. Our results indicate our EM based methods outperform the standard techniques, especially at low signal levels. While U-EM and SMC-EM have similar accuracy, U-EM is significantly more computationally efficient, though the use of the Unscented Kalman Filter limits U-EM to lower diffusion rates.Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper, we focus on the problem of localization and parameter estimation given a sequence of segmented images. In the standard paradigm, the location of the emitter inside each frame of a sequence of camera images is estimated using, for example, Gaussian fitting (GF), and these locations are linked to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to determine motion parameters such as diffusion coefficients. However, the problems of localization and parameter estimation are clearly coupled. Motivated by this, we have created an Expectation Maximization (EM) based framework for simultaneous localization and parameter estimation. We demonstrate this framework through two representative methods, namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion in two-dimensions as a prototypical example, we conduct quantitative investigations on localization and parameter estimation performance across a wide range of signal to background ratios and diffusion coefficients and compare our methods to the standard techniques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework, we do comparisons using two different camera models, an ideal camera with Poisson distributed shot noise but no readout noise, and a camera with both shot noise and the pixel-dependent readout noise that is common to scientific complementary metal-oxide semiconductor (sCMOS) camera. Our results indicate our EM based methods outperform the standard techniques, especially at low signal levels. While U-EM and SMC-EM have similar accuracy, U-EM is significantly more computationally efficient, though the use of the Unscented Kalman Filter limits U-EM to lower diffusion rates.
About the Authors: Ye Lin Roles Formal analysis, Investigation, Software, Writing – original draft Affiliation: Division of Systems Engineering, Boston University, Boston, MA, United States of America Sean B. Andersson Roles Conceptualization, Funding acquisition, Methodology, Project administration, Visualization, Writing – review & editing * E-mail: sanderss@bu.edu Affiliations Division of Systems Engineering, Boston University, Boston, MA, United States of America, Department of Mechanical Engineering, Boston University, Boston, MA, United States of America ORCID logo https://orcid.org/0000-0001-7575-3507 Introduction Single particle tracking (SPT) is an important class of techniques for studying the motion of single biological macromolecules. Because SPT experiments are often photon-impoverised and subject to significant background, it is important to consider the impact of signal and noise levels when comparing different analysis algorithms. [...]23] investigated the performance of an experimental method in error estimation techniques across a variety of signal and noise values, the comparison work in [11] included the signal level as a core factor in their simulations, [24] generated simulated videos at various levels of signal to noise ratios to validate the use of convolutional neural networks on SPT data, and [25] applied deep learning to analyze particle trajectories based on simulated data over a large range of signal to noise ratios. [...]the measured intensity, Ixy can be described as(1)where G is the peak amplitude of the intensity, (x, y) are the lateral coordinates in the image frame, (xo, yo) are the position of the particle, (σx, σy) are physical parameters describing the width of the PSF, and Nbgd is the background intensity.
About the Authors: Ye Lin Roles Formal analysis, Investigation, Software, Writing – original draft Affiliation: Division of Systems Engineering, Boston University, Boston, MA, United States of America Sean B. Andersson Roles Conceptualization, Funding acquisition, Methodology, Project administration, Visualization, Writing – review & editing * E-mail: sanderss@bu.edu Affiliations Division of Systems Engineering, Boston University, Boston, MA, United States of America, Department of Mechanical Engineering, Boston University, Boston, MA, United States of America ORCID logo https://orcid.org/0000-0001-7575-3507 Introduction Single particle tracking (SPT) is an important class of techniques for studying the motion of single biological macromolecules. Because SPT experiments are often photon-impoverised and subject to significant background, it is important to consider the impact of signal and noise levels when comparing different analysis algorithms. [...]23] investigated the performance of an experimental method in error estimation techniques across a variety of signal and noise values, the comparison work in [11] included the signal level as a core factor in their simulations, [24] generated simulated videos at various levels of signal to noise ratios to validate the use of convolutional neural networks on SPT data, and [25] applied deep learning to analyze particle trajectories based on simulated data over a large range of signal to noise ratios. [...]the measured intensity, Ixy can be described as(1)where G is the peak amplitude of the intensity, (x, y) are the lateral coordinates in the image frame, (xo, yo) are the position of the particle, (σx, σy) are physical parameters describing the width of the PSF, and Nbgd is the background intensity.
Audience Academic
Author Lin, Ye
Andersson, Sean B.
AuthorAffiliation 1 Division of Systems Engineering, Boston University, Boston, MA, United States of America
2 Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
Institut de Robotica i Informatica Industrial, SPAIN
AuthorAffiliation_xml – name: 1 Division of Systems Engineering, Boston University, Boston, MA, United States of America
– name: Institut de Robotica i Informatica Industrial, SPAIN
– name: 2 Department of Mechanical Engineering, Boston University, Boston, MA, United States of America
Author_xml – sequence: 1
  givenname: Ye
  surname: Lin
  fullname: Lin, Ye
– sequence: 2
  givenname: Sean B.
  orcidid: 0000-0001-7575-3507
  surname: Andersson
  fullname: Andersson, Sean B.
BookMark eNqNk12L1DAUhousuB_6DwQLgujFjEnz0dYLYVlWHVhY8Os2ZNKTTmbTZkxaHf0J_mrTbVe2yyLSi6Ynz_uenNOc4-SgdS0kyVOMlpjk-PXW9b6VdrmL4SXKKMGYPUiOcEmyBc8QObi1PkyOQ9gixEjB-aPkkFCES0bxUfL7fL8D1cnOuDZt5N405tf4sZYBqlR72cAP569S7Xy6dabtUuuUtDeYbKt0JweqA59C6Ewzbpg2DaatLQzbnVFx0XmprmIsuromDVA30HYxSZTUEB4nD7W0AZ5M75Pky7vzz2cfFheX71dnpxcLxXnZLVQBZa4qTSWlGDGZ6wIBMMp1KbUinMuKME4YlAUmCmktK8gh1xQVheJQkpPk2ei7sy6IqY1BZIwgEnWYR2I1EpWTW7Hz8Xz-p3DSiOuA87WYShKKsoywimSaxyUha5QRylSuVUkIZnn0ejtl69cNVCpW7KWdmc53WrMRtfsu4ulLluFo8HIy8O5bHxssGhMUWCtbcP31uXGGOadDrud30Purm6haxgJMq93wXwZTccp5xighCEVqeQ8Vnwoao-Kd0ybGZ4JXM0FkOth3texDEKtPH_-fvfw6Z1_cYjcgbbcJzvbDJQtzkI6g8i4ED_pvkzESw8jcdEMMIyOmkYmyN3dkyozzEAs29t_iPx4IIAs
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_033272
crossref_primary_10_1364_BOE_432187
Cites_doi 10.1109/TIP.2012.2202675
10.1016/S0076-6879(10)72003-6
10.1038/s41556-018-0192-2
10.1109/CDC40024.2019.9029251
10.1073/pnas.1804420115
10.1109/TAC.2009.2019800
10.3390/mps2010012
10.1021/acs.chemrev.6b00815
10.1146/annurev-anchem-091819-100409
10.1103/PhysRevE.82.011917
10.1016/j.bpj.2019.06.015
10.1103/PhysRevLett.121.078001
10.1016/S0006-3495(02)75618-X
10.1038/nmeth.2808
10.1146/annurev.biophys.26.1.373
10.1111/j.2517-6161.1977.tb01600.x
10.1021/acsinfecdis.7b00270
10.1117/12.280797
10.1016/S0006-3495(95)79972-6
10.1002/9780470191613
10.1016/j.bpj.2009.12.4297
10.1364/AO.46.001819
10.1364/BOE.7.003355
10.1103/PhysRevE.82.041914
10.2307/2332343
10.1364/OE.25.011701
10.1073/pnas.0504407102
10.1038/nmeth.2488
10.3390/molecules26040886
10.1038/nmeth.2844
10.1103/PhysRevE.85.061916
10.1016/j.automatica.2005.05.008
10.1103/PhysRevE.92.052707
10.1021/la900393v
10.1364/OE.22.000210
10.1038/s41598-018-34572-8
10.1103/PhysRevE.93.053303
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Lin, Andersson. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Lin, Andersson 2021 Lin, Andersson
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Lin, Andersson. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Lin, Andersson 2021 Lin, Andersson
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0243115
DatabaseName CrossRef
Gale in Context: Opposing Viewpoints
Gale in Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
ProQuest Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate EM framework for joint localization and parameter estimation in single particle tracking from segmented images
EISSN 1932-6203
ExternalDocumentID 2530363516
oai_doaj_org_article_c45235d32f6c4533b02345c7fc933157
PMC8139521
A662543300
10_1371_journal_pone_0243115
GeographicLocations United States
United States--US
GeographicLocations_xml – name: United States
– name: United States--US
GrantInformation_xml – fundername: ;
  grantid: 1R01GM117039-01A1
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
-
02
AAPBV
ABPTK
ADACO
BBAFP
KM
ID FETCH-LOGICAL-c669t-c8e97cdf4a44105a7f80ee546f9afc366ad35635e9813c0ffade7e7f4088c6e93
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jan 02 13:50:12 EST 2022
Wed Aug 27 01:25:27 EDT 2025
Thu Aug 21 13:52:32 EDT 2025
Thu Jul 10 16:56:56 EDT 2025
Fri Jul 25 11:19:43 EDT 2025
Tue Jun 17 21:12:03 EDT 2025
Tue Jun 10 20:28:16 EDT 2025
Fri Jun 27 03:47:13 EDT 2025
Fri Jun 27 04:59:07 EDT 2025
Thu May 22 21:20:54 EDT 2025
Tue Jul 01 02:42:09 EDT 2025
Thu Apr 24 22:59:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-c8e97cdf4a44105a7f80ee546f9afc366ad35635e9813c0ffade7e7f4088c6e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0001-7575-3507
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0243115
PMID 34019541
PQID 2530363516
PQPubID 1436336
PageCount e0243115
ParticipantIDs plos_journals_2530363516
doaj_primary_oai_doaj_org_article_c45235d32f6c4533b02345c7fc933157
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8139521
proquest_miscellaneous_2531216647
proquest_journals_2530363516
gale_infotracmisc_A662543300
gale_infotracacademiconefile_A662543300
gale_incontextgauss_ISR_A662543300
gale_incontextgauss_IOV_A662543300
gale_healthsolutions_A662543300
crossref_primary_10_1371_journal_pone_0243115
crossref_citationtrail_10_1371_journal_pone_0243115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-21
PublicationDateYYYYMMDD 2021-05-21
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-21
  day: 21
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References H Shen (pone.0243115.ref001) 2017; 117
TT Ashley (pone.0243115.ref020) 2015; 92
D Holcman (pone.0243115.ref003) 2018; 20
TC Rösch (pone.0243115.ref005) 2018; 8
X Michalet (pone.0243115.ref028) 2012; 85
GJ McLachlan (pone.0243115.ref030) 2008
C Kurzthaler (pone.0243115.ref009) 2018; 121
N Peerboom (pone.0243115.ref007) 2018; 4
N Chenouard (pone.0243115.ref011) 2014; 11
pone.0243115.ref032
HY Park (pone.0243115.ref004) 2010; 472
MJ Saxton (pone.0243115.ref014) 1997; 26
F Huang (pone.0243115.ref038) 2013; 10
JM Newby (pone.0243115.ref024) 2018; 115
X Michalet (pone.0243115.ref015) 2010; 82
Y Zhong (pone.0243115.ref010) 2020; 13
N Granik (pone.0243115.ref025) 2019; 117
AP Dempster (pone.0243115.ref029) 1977; 39
S Gibson (pone.0243115.ref031) 2005; 41
R Lin (pone.0243115.ref019) 2017; 25
B Zhang (pone.0243115.ref034) 2007; 46
CD Saunter (pone.0243115.ref023) 2010; 98
A Small (pone.0243115.ref035) 2014; 11
RE Thompson (pone.0243115.ref012) 2002; 82
SM Anthony (pone.0243115.ref013) 2009; 25
DT Clarke (pone.0243115.ref008) 2019; 2
BI Godoy (pone.0243115.ref027); 26
R Simson (pone.0243115.ref002) 1995; 69
FJ Anscombe (pone.0243115.ref036) 1948; 35
pone.0243115.ref021
CP Calderon (pone.0243115.ref017) 2016; 93
TT Ashley (pone.0243115.ref026); 7
AJ Berglund (pone.0243115.ref016) 2010; 82
S Simo (pone.0243115.ref022) 2013
I Arasaratnam (pone.0243115.ref033); 54
A Krull (pone.0243115.ref018) 2014; 22
H Ewers (pone.0243115.ref006) 2005; 102
M Makitalo (pone.0243115.ref037) 2012; 22
References_xml – volume: 22
  start-page: 91
  issue: 1
  year: 2012
  ident: pone.0243115.ref037
  article-title: Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2202675
– volume: 472
  start-page: 387
  year: 2010
  ident: pone.0243115.ref004
  article-title: Single mRNA tracking in live cells
  publication-title: Methods Enzymol
  doi: 10.1016/S0076-6879(10)72003-6
– volume: 20
  start-page: 1118
  issue: 10
  year: 2018
  ident: pone.0243115.ref003
  article-title: Single particle trajectories reveal active endoplasmic reticulum luminal flow
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-018-0192-2
– ident: pone.0243115.ref021
  doi: 10.1109/CDC40024.2019.9029251
– volume: 115
  start-page: 9026
  issue: 36
  year: 2018
  ident: pone.0243115.ref024
  article-title: Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1804420115
– volume: 54
  start-page: 1254
  issue: 6
  ident: pone.0243115.ref033
  article-title: Cubature kalman filters
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/TAC.2009.2019800
– volume: 2
  start-page: 12
  issue: 1
  year: 2019
  ident: pone.0243115.ref008
  article-title: A brief history of single-particle tracking of the epidermal growth factor receptor
  publication-title: Methods Protoc
  doi: 10.3390/mps2010012
– volume: 117
  start-page: 7331
  issue: 11
  year: 2017
  ident: pone.0243115.ref001
  article-title: Single particle tracking: from theory to biophysical applications
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.6b00815
– volume: 13
  start-page: 1
  issue: 1
  year: 2020
  ident: pone.0243115.ref010
  article-title: Three-dimensional single particle tracking and its applications in confined environments
  publication-title: Annu Rev Anal Chem
  doi: 10.1146/annurev-anchem-091819-100409
– volume: 82
  start-page: 011917
  issue: 1
  year: 2010
  ident: pone.0243115.ref016
  article-title: Statistics of camera-based single-particle tracking
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.82.011917
– volume: 117
  start-page: 185
  issue: 2
  year: 2019
  ident: pone.0243115.ref025
  article-title: Single particle diffusion characterization by deep learning
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2019.06.015
– volume: 121
  start-page: 078001
  issue: 7
  year: 2018
  ident: pone.0243115.ref009
  article-title: Probing the spatiotemporal dynamics of catalytic Janus particles with single-particle tracking and differential dynamic microscopy
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.121.078001
– volume: 82
  start-page: 2775
  issue: 5
  year: 2002
  ident: pone.0243115.ref012
  article-title: Precise nanometer localization analysis for individual fluorescent probes
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(02)75618-X
– volume: 11
  start-page: 281
  issue: 3
  year: 2014
  ident: pone.0243115.ref011
  article-title: Objective comparison of particle tracking methods
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2808
– volume: 26
  start-page: 373
  year: 1997
  ident: pone.0243115.ref014
  article-title: Single-particle tracking: applications to membrane dynamics
  publication-title: Annu Rev Biophys Biomol Struct
  doi: 10.1146/annurev.biophys.26.1.373
– volume: 39
  start-page: 1
  year: 1977
  ident: pone.0243115.ref029
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: R Stat Soc Series B Stat Methodol
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 4
  start-page: 944
  issue: 6
  year: 2018
  ident: pone.0243115.ref007
  article-title: Cell membrane derived platform to study virus binding kinetics and diffusion with single particle sensitivity
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.7b00270
– ident: pone.0243115.ref032
  doi: 10.1117/12.280797
– volume: 69
  start-page: 989
  issue: 3
  year: 1995
  ident: pone.0243115.ref002
  article-title: Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(95)79972-6
– volume-title: The EM algorithm and its extensions
  year: 2008
  ident: pone.0243115.ref030
  doi: 10.1002/9780470191613
– volume: 98
  start-page: 1566
  issue: 8
  year: 2010
  ident: pone.0243115.ref023
  article-title: Quantifying subpixel accuracy: an experimental method for measuring accuracy in image-correlation-based, single-particle tracking
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2009.12.4297
– volume: 46
  start-page: 1819
  issue: 10
  year: 2007
  ident: pone.0243115.ref034
  article-title: Gaussian approximations of fluorescence microscope point-spread function models
  publication-title: Appl Opt
  doi: 10.1364/AO.46.001819
– volume-title: Bayesian filtering and smoothing
  year: 2013
  ident: pone.0243115.ref022
– volume: 7
  start-page: 3355
  issue: 9
  ident: pone.0243115.ref026
  article-title: Tracking single fluorescent particles in three dimensions via extremum seeking
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.7.003355
– volume: 82
  start-page: 041914
  issue: 4
  year: 2010
  ident: pone.0243115.ref015
  article-title: Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.82.041914
– volume: 35
  start-page: 246
  issue: 3/4
  year: 1948
  ident: pone.0243115.ref036
  article-title: The transformation of Poisson, binomial and negative-binomial data
  publication-title: Biometrika
  doi: 10.2307/2332343
– volume: 25
  start-page: 11701
  issue: 10
  year: 2017
  ident: pone.0243115.ref019
  article-title: Algorithmic corrections for localization microscopy with sCMOS cameras-characterisation of a computationally efficient localization approach
  publication-title: Opt Express
  doi: 10.1364/OE.25.011701
– volume: 102
  start-page: 15110
  issue: 42
  year: 2005
  ident: pone.0243115.ref006
  article-title: Single-particle tracking of murine polyoma virus-like particles on live cells and artificial membranes
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0504407102
– volume: 10
  start-page: 653
  issue: 7
  year: 2013
  ident: pone.0243115.ref038
  article-title: Video-rate nanoscopy using sCMOS camera–specific single-molecule localization algorithms
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2488
– volume: 26
  start-page: 886
  issue: 4
  ident: pone.0243115.ref027
  article-title: An estimation algorithm for general linear single particle tracking models with time-varying parameters
  publication-title: Molecules
  doi: 10.3390/molecules26040886
– volume: 11
  start-page: 267
  issue: 3
  year: 2014
  ident: pone.0243115.ref035
  article-title: Fluorophore localization algorithms for super-resolution microscopy
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2844
– volume: 85
  start-page: 061916
  issue: 6
  year: 2012
  ident: pone.0243115.ref028
  article-title: Optimal diffusion coefficient estimation in single-particle tracking
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.85.061916
– volume: 41
  issue: 10
  year: 2005
  ident: pone.0243115.ref031
  article-title: Robust maximum-likelihood estimation of multivariable dynamic systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.05.008
– volume: 92
  start-page: 052707
  issue: 5
  year: 2015
  ident: pone.0243115.ref020
  article-title: Method for simultaneous localization and parameter estimation in particle tracking experiments
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.92.052707
– volume: 25
  start-page: 8152
  issue: 14
  year: 2009
  ident: pone.0243115.ref013
  article-title: Image analysis with rapid and accurate two-dimensional Gaussian fitting
  publication-title: Langmuir
  doi: 10.1021/la900393v
– volume: 22
  start-page: 210
  issue: 1
  year: 2014
  ident: pone.0243115.ref018
  article-title: A divide and conquer strategy for the maximum likelihood localization of low intensity objects
  publication-title: Opt Express
  doi: 10.1364/OE.22.000210
– volume: 8
  start-page: 16450
  issue: 1
  year: 2018
  ident: pone.0243115.ref005
  article-title: Single molecule tracking reveals spatio-temporal dynamics of bacterial DNA repair centres
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-34572-8
– volume: 93
  start-page: 053303
  issue: 5
  year: 2016
  ident: pone.0243115.ref017
  article-title: Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.93.053303
SSID ssj0053866
Score 2.3686926
Snippet Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of biological macromolecules moving inside living cells. In this paper,...
About the Authors: Ye Lin Roles Formal analysis, Investigation, Software, Writing – original draft Affiliation: Division of Systems Engineering, Boston...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0243115
SubjectTerms Algorithms
Analysis
Artificial neural networks
Background noise
Cameras
CMOS
Computer and Information Sciences
Computer simulation
Deep learning
Drafting software
Engineering and Technology
Experimental methods
Image segmentation
Kalman filters
Localization
Machine learning
Macromolecules
Mechanical engineering
Neural networks
Noise
Noise levels
Parameter estimation
Parameter identification
Particle tracking
Particle trajectories
Physical properties
Physical Sciences
Random variables
Research and Analysis Methods
Systems engineering
Trajectory analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yT76I5we3ep5RBPWhd03z1T6e4nEKKqgn91bSNFlXdtvlugv-Df7VzqRp2YJwPvhWmklJZyYzk3bmN4S8YFw7cAUmgWi3SIQ1PjE5Z4lCLHZf5bkP_VM-flIXl-LDlbzaa_WFOWE9PHDPuFMr4Kgka555BZecV_BkIa32Fo7iTIY6cvB5w2Gqt8Gwi5WKhXJcs9Mol5NN27gTxOBj2AZ3zxEFvP7RKs82q7abhJzThMk9D3R-l9yJoSM965d8QG655h45iJuzo68igvTr--Q3Ahjb_ic7XZtfy3WstqTotGrqh4wsCiEr_dkumy0NTm0gM01NERR8jckyFIE4-gpHumwoflxYORwO66CwVIvf2ylWqtDOLQLMZ01hysJ1D8jl-btvby-S2HQhsUoV28TmrtC29sIIzAA12uepc1IoXxhvuVKm5hIk6YqccZt6b2qnnfYCzJVVruAPyawBNh8S6urcphXLbSWccFpXuqiKrBZG51ZaKeeEDxIobUQkx8YYqzL8ZtNwMuk5W6Lcyii3OUnGWZsekeMG-jco3JEW8bTDDdCyMrKqvEnL5uQpqkbZF6eOVqE8UwrRBHiazsnzQIGYGg0m7SzMruvK95-__wPR1y8TopeRyLcoQhMLJeCdEKtrQnk0oQTLYCfDh6jIA1e6MpMYsHDJFMwclPvvw8_GYXwoJuI1rt0FGpYxpQSwRE82xYTB05Fm-SMAl4PGFBAuPvofEnlMbmeYXpTKJGNHZLa93rknEB9uq-NgCv4AAf9mKA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDI9gvPCCOD50gwMCQgIeetc0X-0TOhDjQAIk4NC9VWmajKGtHddN4m_gr8ZO03GVEPA2NU7X2o7tJvbPhDxmXDtwBSaBaLdIhDU-MTlniUIsdl_luQ_9U969Vyen4u2ZPIsbbl1MqxxsYjDUdWtxj_wok2hsuWTq-fp7gl2j8HQ1ttC4TK4w8DSY0pXPXg-WGNayUrFcjmt2FKVzuG4bd4hIfAyb4V5wRwG1f2ebJ-tl240Cz3Ha5AU_NLtOrsUAkh73Et8jl1xzg-zFJdrRpxFH-tlN8hNhjG1_1E5X5sdiFWsuKbqumvohL4tC4Eq_tYtmQ4NrG8hMU1OEBl9hygxFOI6-zpEuGopbDEuHw-E5KDyqxV13ivUqtHPzAPZZU5gyd90tcjp79fnlSRJbLyRWqWKT2NwV2tZeGIF5oEb7PHVOCuUL4y1XytRcgjRckTNuU-9N7bTTXoDRssoV_DaZNMDmfUJdndu0YrmthBNO60oXVZHVwujcSivllPBBAqWNuOTYHmNZhsM2Dd8nPWdLlFsZ5TYlyW7Wusfl-Af9CxTujhZRtcOF9nxeRlaVVsBnuax55hX85LwCLRbSam8LzpnUU_IAVaPsS1R3tqE8VgoxBXiaTsmjQIHIGg2m7szNtuvKNx--_AfRp48joieRyLcoQhPLJeCdELFrRHkwogT7YEfD-6jIA1e68vdKgpmDcv95-OFuGG-K6XiNa7eBhmVMKQEs0aNFMWLweKRZfA3w5aAxBQSNd_7-53fJ1QzTh1KZZOyATDbnW3cP4r9NdT8s8l-lNV8M
  priority: 102
  providerName: ProQuest
Title Expectation maximization based framework for joint localization and parameter estimation in single particle tracking from segmented images
URI https://www.proquest.com/docview/2530363516
https://www.proquest.com/docview/2531216647
https://pubmed.ncbi.nlm.nih.gov/PMC8139521
https://doaj.org/article/c45235d32f6c4533b02345c7fc933157
http://dx.doi.org/10.1371/journal.pone.0243115
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELdG98ILYvzRCqMYhAQ8pIpjx04eENqmloG0gQZFfYscxy5FbVKaVhovfAA-NT7HqYg0xF6sqj5Hyd3Zd7bvfofQC0KFtqZABtbbTQOmpAlkQknAAYvd5EliXP2U8wt-NmEfpvF0D7U1Wz0D62u3dlBParJeDK9-_HxrJ_wbV7VBkHbQcFWVeggIewSyzvetbRJQ0-Cc7e4V7Ox2t5fgtQQ8CqlPpvvXUzrGymH671bu3mpR1R23tBtU-ZeVGt9Fd7x7iY8bfThAe7q8hw78BK7xK48y_fo--g0gx6q5iMdLeTVf-oxMDIatwKaN2sLWrcXfq3m5wc7wtWSyLDAAhy8hoAYDWEeTBYnnJYYDiIWGbvce2L6qgjN5DNksuNYzBwVaYDtkpusHaDIefTk9C3xhhkBxnm4ClehUqMIwySBKVAqThFrHjJtUGkU5lwWNrbR1mhCqQmNkoYUWhtklTXGd0oeoV1o2HyKsi0SFOUlUzjTTQuQizdOoYFIkKlZx3Ee0lUCmPGo5FM9YZO4qTtjdS8PZDOSWebn1UbAbtWpQO_5DfwLC3dEC5rb7o1rPMs-qTDG7aY8LGhluf1KaWx1nsRJGpZSSWPTRU1CNrElg3a0c2THngDhAw7CPnjsKwN0oIbBnJrd1nb3_-PUGRJ8vO0QvPZGpQITSJ1PYbwI8rw7lUYfSrh6q030Iitxypc6iGJwaGhNuR7bKfX33s103PBSC9UpdbR0NiQjnzLJEdCZFh8HdnnL-zYGbW41JrUv56MYf-BjdjiDOKIyDiByh3ma91U-so7jJB-iWmArbJqcE2vG7Ado_GV18uhy4o5eBWxug_TX6AwYrcS0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq5QAXRHmoC4UaBAIOaZP4lRwQKo9llz6QoK16C45jL4t2k6XZFfAX-DH8RjyOszQSAi69Retxkp0Zz0zsmW8QehgRoa0rkIGNdtOAKmkCmZAo4IDFbvIkMa5_ysEhHx7Tt6fsdA39bGthIK2ytYnOUBeVgj3ynZiBsSUs4s_nXwLoGgWnq20LjUYt9vT3r_aTrX42emXl-yiOB6-PXg4D31UgUJyni0AlOhWqMFRSSHGUwiSh1oxyk0qjCOeyIMw-SKdJRFRojCy00MJQux4V1wC-ZE3-JUqsJ4fK9MGb1vJb28G5L88jItrx2rA9r0q9Dch_ETTfPef-XJeAlS_ozadV3Ql0u2ma5_ze4Bq66gNWvNto2Dpa0-V1tO5NQo2feNzqpzfQD4BNVs3RPp7Jb5OZr_HE4CoLbNo8MGwDZfy5mpQL7FxpSybLAgMU-QxSdDDAfzR1lXhSYtjSmGoYdu-B7asq2OXHUB-Daz124KIFtlPGur6Jji9EKLdQr7Rs3kBYF4kK8yhROdVUC5GLNE_jgkqRKKYY6yPSSiBTHgcd2nFMM3e4J-z3UMPZDOSWebn1UbCaNW9wQP5B_wKEu6IFFG_3Q3U2zjyrMkVZTFhBYsPtJSG5XTWUKWFUSkjERB9tgWpkTUnsyhZlu5wDhgEJwz564CgAyaOEVKGxXNZ1Nnp38h9EH953iB57IlOBCKUvz7D_CRDCOpSbHUprj1RneAMUueVKnf1euXZmq9x_Hr6_GoabQvpfqaulo4niiHNqWSI6i6LD4O5IOfnk4NKtxqQ2SL3994dvocvDo4P9bH90uHcHXYkhdSlkQRxtot7ibKnv2thzkd9zCx6jjxdtYX4BOfedMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamISFeEOOiFQYzCAQ8ZE3iW_KA0NioVgYDAUN7C45jl6I2KUsr4C_wk_h1-DhOWCQEvOytqk-a9Nxjn_MdhO5HRGgbCmRgs900oEqaQCYkCjhgsZs8SYybn_LqiB8c0xcn7GQN_Wx7YaCssvWJzlEXlYI98mHMwNkSFvGh8WURb_ZHTxdfApggBSet7TiNRkUO9fev9vWtfjLet7J-EMej5-_3DgI_YSBQnKfLQCU6FaowVFIod5TCJKHWjHKTSqMI57IgzN5Up0lEVGiMLLTQwlBrm4prAGKy7v-CICIBG0v2uvIS60c49616RERDrxk7i6rUO4ACGMEg3jOh0E0M6OLC-mJW1b2kt1-yeSYGjq6gyz55xbuNtm2gNV1eRRvePdT4kcewfnwN_QAIZdUc8-O5_Dad-35PDGGzwKatCcM2acafq2m5xC6stmSyLDDAks-hXAcDFEjTY4mnJYbtjZmGZfcc2D6qgh1_DL0yuNYTBzRaYHvJRNfX0fG5COUGWi8tmzcR1kWiwjxKVE411ULkIs3TuKBSJIopxgaItBLIlMdEh9Ecs8wd9An7btRwNgO5ZV5uAxR0Vy0aTJB_0D8D4Xa0gOjtvqhOJ5lnVaYoiwkrSGy4_UhIbi2IMiWMSgmJmBigbVCNrGmP7fxStss54BmQMByge44CUD1KsI-JXNV1Nn794T-I3r3tET30RKYCEUrfqmH_E6CF9Si3epTWN6ne8iYocsuVOvttxfbKVrn_vHy3W4YfhVLAUlcrRxPFEefUskT0jKLH4P5KOf3koNOtxqQ2Yb3595tvo4vWt2Qvx0eHt9ClGKqYQhbE0RZaX56u9G2bhi7zO87eMfp43g7mF8rfoTM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Expectation+maximization+based+framework+for+joint+localization+and+parameter+estimation+in+single+particle+tracking+from+segmented+images&rft.jtitle=PloS+one&rft.au=Lin%2C+Ye&rft.au=Andersson%2C+Sean+B&rft.date=2021-05-21&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=16&rft.issue=5&rft.spage=e0243115&rft_id=info:doi/10.1371%2Fjournal.pone.0243115&rft.externalDocID=A662543300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon