Origin of nascent lineages and the mechanisms used to prime second-strand DNA synthesis in the R1 and R2 retrotransposons of Drosophila
Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concer...
Saved in:
Published in | Genome biology Vol. 10; no. 5; pp. R49 - 2199 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
05.05.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 1474-760X 1465-6906 1474-760X 1465-6914 |
DOI | 10.1186/gb-2009-10-5-r49 |
Cover
Loading…
Abstract | Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements?
Most copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis.
These findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis. |
---|---|
AbstractList | Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements?BACKGROUNDMost arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements?Most copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis.RESULTSMost copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis.These findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis.CONCLUSIONSThese findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis. Comparative analysis of 12 Drosophila genomes reveals insights into the evolution and mechanism of integration of R1 and R2 retrotransposons. BACKGROUND: Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements? RESULTS: Most copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis. CONCLUSIONS: These findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis. Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have been used to address two questions concerning these elements. First, to what extent is the evolution of these elements subject to the concerted evolution process that is responsible for sequence homogeneity among the different copies of rRNA genes? Second, how precise are the target DNA cleavages and priming of DNA synthesis used by these elements? Most copies of R1 and R2 in each species were found to exhibit less than 0.2% sequence divergence. However, in many species evidence was obtained for the formation of distinct sublineages of elements, particularly in the case of R1. Analysis of the hundreds of R1 and R2 junctions with the 28S gene revealed that cleavage of the first DNA strand was precise both in location and the priming of reverse transcription. Cleavage of the second DNA strand was less precise within a species, differed between species, and gave rise to variable priming mechanisms for second strand synthesis. These findings suggest that the high sequence identity amongst R1 and R2 copies is because all copies are relatively new. However, each active element generates its own independent lineage that can eventually populate the locus. Independent lineages occur more often with R1, possibly because these elements contain their own promoter. Finally, both R1 and R2 use imprecise, rapidly evolving mechanisms to cleave the second strand and prime second strand synthesis. |
ArticleNumber | R49 |
Author | Stage, Deborah E Eickbush, Thomas H |
AuthorAffiliation | 1 Biology Department, University of Rochester, 213 Hutchison, Rochester NY, 14627-0211, USA |
AuthorAffiliation_xml | – name: 1 Biology Department, University of Rochester, 213 Hutchison, Rochester NY, 14627-0211, USA |
Author_xml | – sequence: 1 givenname: Deborah E surname: Stage fullname: Stage, Deborah E – sequence: 2 givenname: Thomas H surname: Eickbush fullname: Eickbush, Thomas H |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19416522$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UktrFjEUDVKxD927kqzEzWgyk8fMRihtfUBpoSi4C5nMnfkiM8ln7nxCf0H_tomtpQp2dW-Sc07OfRySvRADEPKSs7ect-rd1Fc1Y13FWSWrJLon5IALLSqt2Le9B_k-OUT8zhjvRK2ekf0cuZJ1fUBuLpOffKBxpMGig7DS2QewEyC1YaDrBugCbmODxwXpDiHfRbpNfgGK4GIYKlxTgZ5eHFO8DpmBHmnWLNwr_lvmqqYJ1hQLErcRY8Dy5WnK6XbjZ_ucPB3tjPDiLh6Rrx_Ovpx8qs4vP34-OT6vnFLdWikYdN-6oee9EBzaBuSYO2BBWwZ91zjZ5gQ6p3XTScZaUbux51qJfhyEYs0ReX-ru931Cwyl4GRnU-qx6dpE683fL8FvzBR_mlrzVnKZBV7fCaT4Ywe4msXnvs2zDRB3aJSWjc4zycA3jwKzbcZlK2TRfPXQ1L2bP2PKAHULcLlhmGA0zq929bF49LPhzJR9MFNfZLtylibvQyayf4j32v-j_AK137t4 |
CitedBy_id | crossref_primary_10_1016_j_gene_2009_08_016 crossref_primary_10_1093_genetics_iyaa027 crossref_primary_10_1128_microbiolspec_MDNA3_0029_2014 crossref_primary_10_1128_MCB_00300_10 crossref_primary_10_4161_mge_1_3_18453 crossref_primary_10_1016_j_ygeno_2012_04_005 crossref_primary_10_1101_gr_231472_117 crossref_primary_10_1080_2159256X_2017_1318201 crossref_primary_10_1371_journal_pgen_1003179 crossref_primary_10_1038_srep41946 crossref_primary_10_1111_j_1365_2583_2009_00949_x crossref_primary_10_1371_journal_pone_0121831 crossref_primary_10_1371_journal_pone_0066441 crossref_primary_10_1093_nar_gkab818 crossref_primary_10_1080_21541264_2018_1506682 crossref_primary_10_1261_rna_080031_124 crossref_primary_10_4161_mge_1_1_16485 crossref_primary_10_1186_1759_8753_4_20 crossref_primary_10_1093_nar_gkz673 crossref_primary_10_1128_microbiolspec_MDNA3_0011_2014 crossref_primary_10_1073_pnas_1000612107 crossref_primary_10_1186_1759_8753_2_11 crossref_primary_10_1134_S1022795410110037 |
Cites_doi | 10.1006/geno.2001.6540 10.1074/jbc.M310450200 10.1093/nar/gkn180 10.1016/0092-8674(88)90046-3 10.1093/oxfordjournals.molbev.a003793 10.1073/pnas.88.8.3295 10.1101/gr.6376807 10.1073/pnas.0605476103 10.1186/1471-2105-7-439 10.1128/MCB.15.7.3882 10.1016/0965-1748(94)00102-N 10.1093/molbev/msl067 10.1093/genetics/158.4.1557 10.1038/32330 10.1093/genetics/151.2.653 10.1016/j.ibmb.2008.05.012 10.1186/gb-2002-3-12-research0084 10.1128/MCB.01015-08 10.1093/oxfordjournals.molbev.a003797 10.1016/S0378-1119(01)00344-4 10.1101/gr.205701 10.1371/journal.pgen.1000386 10.1093/bioinformatics/btl427 10.1073/pnas.95.5.2083 10.1128/MCB.23.11.3825-3836.2003 10.1016/j.mrfmmm.2006.11.021 10.1016/0092-8674(93)90078-5 10.1038/nature06341 10.1128/MCB.10.3.863 10.1093/molbev/msi210 10.1128/9781555817954.ch34 10.1093/bioinformatics/btg430 10.1093/genetics/142.3.853 10.1002/bies.20452 10.1080/10635150600755453 10.1038/296579a0 10.1093/oxfordjournals.molbev.a025732 10.1534/genetics.107.071399 10.1016/0022-2836(90)90303-4 10.1093/oxfordjournals.molbev.a026164 10.1093/nar/25.24.4876 10.1146/annurev.bi.49.070180.003455 10.1093/bioinformatics/bti320 10.1101/gr.5457707 10.1128/MCB.16.9.4726 10.1046/j.1365-2583.1999.810003.x 10.1093/nar/gkm397 10.1093/genetics/139.2.671 10.1093/genetics/162.2.799 10.1093/oxfordjournals.molbev.a026132 10.1023/A:1018396505115 10.1073/pnas.77.12.7323 10.1016/j.jmb.2007.09.047 10.1093/molbev/msg235 10.1534/genetics.104.038703 10.1080/10635150390235520 |
ContentType | Journal Article |
Copyright | Copyright © 2009 Stage and Eickbush; licensee BioMed Central Ltd. 2009 Stage and Eickbush; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Copyright © 2009 Stage and Eickbush; licensee BioMed Central Ltd. 2009 Stage and Eickbush; licensee BioMed Central Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 5PM |
DOI | 10.1186/gb-2009-10-5-r49 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X 1465-6914 |
EndPage | 2199 |
ExternalDocumentID | PMC2718515 19416522 10_1186_gb_2009_10_5_r49 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM042790 – fundername: NIGMS NIH HHS grantid: GM42790 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 AAFWJ AAHBH AAJSJ AASML AAYXX ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFPKN AHBYD AHSBF AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BCNDV BFQNJ BMC C6C CITATION EBLON EBS GROUPED_DOAJ GX1 HYE IAO IGS IHR ISR ITC KPI ROL RPM RSV SJN SOJ 123 88E 8FE 8FH 8FI 8FJ 8R4 8R5 ABUWG AFKRA BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CGR CUY CVF EBD ECM EIF EMOBN FYUFA H13 HCIFZ HMCUK LK8 M1P M7P NPM PHGZT PIMPY PQQKQ PROAC PSQYO SV3 UKHRP 7S9 L.6 7X8 2WC 5PM AENEX C1A CS3 E3Z EJD F5P HZ~ KQ8 O5R O5S O9- OK1 RBZ SBL TR2 WOQ |
ID | FETCH-LOGICAL-c669t-6ed7b8cdb1b441e83e5f200ae7a0eb93c58a0ee9c7739500842cfb1764bfd4603 |
ISSN | 1474-760X 1465-6906 |
IngestDate | Thu Aug 21 13:49:37 EDT 2025 Fri Jul 11 01:40:02 EDT 2025 Thu Jul 10 23:40:16 EDT 2025 Thu Apr 03 07:06:08 EDT 2025 Thu Apr 24 23:13:05 EDT 2025 Tue Jul 01 03:26:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c669t-6ed7b8cdb1b441e83e5f200ae7a0eb93c58a0ee9c7739500842cfb1764bfd4603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC2718515 |
PMID | 19416522 |
PQID | 2000158455 |
PQPubID | 24069 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2718515 proquest_miscellaneous_67537009 proquest_miscellaneous_2000158455 pubmed_primary_19416522 crossref_citationtrail_10_1186_gb_2009_10_5_r49 crossref_primary_10_1186_gb_2009_10_5_r49 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-05-05 |
PublicationDateYYYYMMDD | 2009-05-05 |
PublicationDate_xml | – month: 05 year: 2009 text: 2009-05-05 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Genome biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2009 |
Publisher | BioMed Central |
Publisher_xml | – name: BioMed Central |
References | M Anisimova (2199_CR59) 2006; 55 DG Eickbush (2199_CR33) 2008; 28 JL Jakubczak (2199_CR24) 1990; 212 HS Malik (2199_CR7) 1999; 16 WC Lathe III (2199_CR25) 1997; 14 KK Kojima (2199_CR8) 2004; 21 A Kurzynska-Kokorniak (2199_CR50) 2007; 374 KK Kojima (2199_CR35) 2005; 22 P Varricchio (2199_CR40) 1995; 25 DG Eickbush (2199_CR26) 1995; 139 TH Eickbush (2199_CR5) 2002 DG Eickbush (2199_CR20) 2003; 23 CE Pérez-González (2199_CR44) 2001; 158 M Clamp (2199_CR54) 2004; 20 N Arnheim (2199_CR15) 1980; 77 J Hey (2199_CR34) 1993; 10 JA George (2199_CR32) 1999; 8 S Guindon (2199_CR55) 2003; 52 2199_CR56 KL Gentile (2199_CR28) 2001; 18 TH Eickbush (2199_CR21) 1997; 100 A Bibillo (2199_CR39) 2004; 279 2199_CR51 JL Jakubczak (2199_CR19) 1991; 88 SLK Pond (2199_CR61) 2005; 21 WD Burke (2199_CR22) 1993; 10 2199_CR53 EO Long (2199_CR3) 1980; 49 DD Luan (2199_CR10) 1993; 72 DD Luan (2199_CR49) 1996; 16 NB Haas (2199_CR30) 2001; 265 JN Volff (2199_CR1) 2006; 28 I Busseau (2199_CR29) 2001; 18 Y Xiong (2199_CR41) 1988; 55 A Dereeper (2199_CR57) 2008; 36 AR Ganley (2199_CR17) 2007; 17 CE Pérez-González (2199_CR46) 2002; 162 DJ Hedges (2199_CR2) 2007; 616 AG Clark (2199_CR23) 2007; 450 M Osani-Futahashi (2199_CR43) 2008; 38 2199_CR60 JS Kaminker (2199_CR27) 2002; 3 JD Thompson (2199_CR52) 1997; 25 IL Gonzalez (2199_CR16) 2001; 73 JA George (2199_CR36) 1996; 142 KK Kojima (2199_CR9) 2006; 23 K Scheffler (2199_CR62) 2006; 22 EM Ostertag (2199_CR14) 2001; 11 WD Burke (2199_CR6) 1998; 392 WD Burke (2199_CR37) 1999; 16 Q Feng (2199_CR12) 1998; 95 X Zhang (2199_CR47) 2005; 170 NJ Besansky (2199_CR31) 1990; 10 PM Rae (2199_CR42) 1982; 296 HS Malik (2199_CR48) 1999; 151 TH Eickbush (2199_CR4) 2007; 175 N Maita (2199_CR13) 2007; 35 DE Stage (2199_CR18) 2007; 17 J Zhou (2199_CR45) 2009; 5 DD Luan (2199_CR38) 1995; 15 SM Christensen (2199_CR11) 2006; 103 F Chevenet (2199_CR58) 2006; 7 14960472 - Bioinformatics. 2004 Feb 12;20(3):426-7 17200233 - Genome Res. 2007 Feb;17(2):184-91 12537573 - Genome Biol. 2002;3(12):RESEARCH0084 16870681 - Mol Biol Evol. 2006 Oct;23(10):1984-93 17537809 - Nucleic Acids Res. 2007;35(12):3918-27 16785212 - Syst Biol. 2006 Aug;55(4):539-52 9402733 - Mol Biol Evol. 1997 Dec;14(12):1232-41 9927458 - Genetics. 1999 Feb;151(2):653-65 7787843 - Insect Biochem Mol Biol. 1995 May;25(5):603-12 6261251 - Proc Natl Acad Sci U S A. 1980 Dec;77(12):7323-7 16937363 - Bioessays. 2006 Sep;28(9):913-22 9440258 - Genetica. 1997;100(1-3):49-61 10368957 - Mol Biol Evol. 1999 Jun;16(6):793-805 14752111 - J Biol Chem. 2004 Apr 9;279(15):14945-53 18678644 - Mol Cell Biol. 2008 Oct;28(20):6452-61 6280055 - Nature. 1982 Apr 8;296(5857):579-81 17989256 - Genome Res. 2007 Dec;17(12):1888-97 11514447 - Genetics. 2001 Aug;158(4):1557-67 17322354 - Genetics. 2007 Feb;175(2):477-85 7713424 - Genetics. 1995 Feb;139(2):671-84 7540721 - Mol Cell Biol. 1995 Jul;15(7):3882-91 9927169 - Insect Mol Biol. 1999 Feb;8(1):3-10 15781697 - Genetics. 2005 May;170(1):195-205 17936300 - J Mol Biol. 2007 Nov 23;374(2):322-33 14530136 - Syst Biol. 2003 Oct;52(5):696-704 16014872 - Mol Biol Evol. 2005 Nov;22(11):2157-65 1689457 - Mol Cell Biol. 1990 Mar;10(3):863-71 17994087 - Nature. 2007 Nov 8;450(7167):203-18 19229317 - PLoS Genet. 2009 Feb;5(2):e1000386 11158378 - Mol Biol Evol. 2001 Feb;18(2):196-205 19280695 - Insect Biochem Mol Biol. 2008 Dec;38(12):1046-57 11731496 - Genome Res. 2001 Dec;11(12):2059-65 11255020 - Gene. 2001 Mar 7;265(1-2):175-83 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 10331276 - Mol Biol Evol. 1999 Apr;16(4):502-11 9482842 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2083-8 15713735 - Bioinformatics. 2005 May 15;21(10):2531-3 8383793 - Mol Biol Evol. 1993 Jan;10(1):163-85 8849892 - Genetics. 1996 Mar;142(3):853-63 17157332 - Mutat Res. 2007 Mar 1;616(1-2):46-59 7679954 - Cell. 1993 Feb 26;72(4):595-605 1849649 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3295-9 6996571 - Annu Rev Biochem. 1980;49:727-64 17105809 - Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17602-7 9515960 - Nature. 1998 Mar 12;392(6672):141-2 2844414 - Cell. 1988 Oct 21;55(2):235-46 11158382 - Mol Biol Evol. 2001 Feb;18(2):235-45 8756630 - Mol Cell Biol. 1996 Sep;16(9):4726-34 12949131 - Mol Biol Evol. 2004 Feb;21(2):207-17 12399390 - Genetics. 2002 Oct;162(2):799-811 11350117 - Genomics. 2001 May 1;73(3):255-63 17032440 - BMC Bioinformatics. 2006;7:439 16895925 - Bioinformatics. 2006 Oct 15;22(20):2493-9 1690812 - J Mol Biol. 1990 Mar 5;212(1):37-52 12748285 - Mol Cell Biol. 2003 Jun;23(11):3825-36 18424797 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 8355601 - Mol Biol Evol. 1993 Jul;10(4):804-22 |
References_xml | – volume: 73 start-page: 255 year: 2001 ident: 2199_CR16 publication-title: Genomics doi: 10.1006/geno.2001.6540 – volume: 279 start-page: 14945 year: 2004 ident: 2199_CR39 publication-title: J Biol Chem doi: 10.1074/jbc.M310450200 – volume: 36 start-page: W465 year: 2008 ident: 2199_CR57 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn180 – volume: 55 start-page: 235 year: 1988 ident: 2199_CR41 publication-title: Cell doi: 10.1016/0092-8674(88)90046-3 – volume: 18 start-page: 196 year: 2001 ident: 2199_CR29 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003793 – volume: 88 start-page: 3295 year: 1991 ident: 2199_CR19 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.88.8.3295 – volume: 17 start-page: 1888 year: 2007 ident: 2199_CR18 publication-title: Genome Res doi: 10.1101/gr.6376807 – volume: 103 start-page: 17602 year: 2006 ident: 2199_CR11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0605476103 – volume: 7 start-page: 439 year: 2006 ident: 2199_CR58 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-7-439 – volume: 15 start-page: 3882 year: 1995 ident: 2199_CR38 publication-title: Mol Cell Biol doi: 10.1128/MCB.15.7.3882 – volume: 25 start-page: 603 year: 1995 ident: 2199_CR40 publication-title: Insect Biochem Mol Biol doi: 10.1016/0965-1748(94)00102-N – volume: 23 start-page: 1984 year: 2006 ident: 2199_CR9 publication-title: Mol Evol Biol doi: 10.1093/molbev/msl067 – volume: 158 start-page: 1557 year: 2001 ident: 2199_CR44 publication-title: Genetics doi: 10.1093/genetics/158.4.1557 – volume: 392 start-page: 141 year: 1998 ident: 2199_CR6 publication-title: Nature doi: 10.1038/32330 – volume: 151 start-page: 653 year: 1999 ident: 2199_CR48 publication-title: Genetics doi: 10.1093/genetics/151.2.653 – volume: 38 start-page: 1046 year: 2008 ident: 2199_CR43 publication-title: Insect Biochem Mol Biol doi: 10.1016/j.ibmb.2008.05.012 – volume: 3 start-page: RESEARCH0084 year: 2002 ident: 2199_CR27 publication-title: Genome Biol doi: 10.1186/gb-2002-3-12-research0084 – volume: 28 start-page: 6452 year: 2008 ident: 2199_CR33 publication-title: Mol Cell Biol doi: 10.1128/MCB.01015-08 – volume: 18 start-page: 235 year: 2001 ident: 2199_CR28 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003797 – volume: 265 start-page: 175 year: 2001 ident: 2199_CR30 publication-title: Gene doi: 10.1016/S0378-1119(01)00344-4 – volume: 11 start-page: 2059 year: 2001 ident: 2199_CR14 publication-title: Genome Res doi: 10.1101/gr.205701 – volume: 5 start-page: e1000386 year: 2009 ident: 2199_CR45 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000386 – volume: 22 start-page: 2493 year: 2006 ident: 2199_CR62 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl427 – volume: 95 start-page: 2083 year: 1998 ident: 2199_CR12 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.95.5.2083 – ident: 2199_CR60 – volume: 23 start-page: 3825 year: 2003 ident: 2199_CR20 publication-title: Mol Cell Biol doi: 10.1128/MCB.23.11.3825-3836.2003 – volume: 616 start-page: 46 year: 2007 ident: 2199_CR2 publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2006.11.021 – volume: 72 start-page: 595 year: 1993 ident: 2199_CR10 publication-title: Cell doi: 10.1016/0092-8674(93)90078-5 – volume: 450 start-page: 203 year: 2007 ident: 2199_CR23 publication-title: Nature doi: 10.1038/nature06341 – volume: 10 start-page: 863 year: 1990 ident: 2199_CR31 publication-title: Mol Cell Biol doi: 10.1128/MCB.10.3.863 – volume: 10 start-page: 163 year: 1993 ident: 2199_CR22 publication-title: Mol Biol Evol – volume: 10 start-page: 804 year: 1993 ident: 2199_CR34 publication-title: Mol Biol Evol – volume: 22 start-page: 2157 year: 2005 ident: 2199_CR35 publication-title: Mol Biol Evol doi: 10.1093/molbev/msi210 – ident: 2199_CR53 – start-page: 813 volume-title: Mobile DNA II year: 2002 ident: 2199_CR5 doi: 10.1128/9781555817954.ch34 – volume: 20 start-page: 426 year: 2004 ident: 2199_CR54 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg430 – volume: 142 start-page: 853 year: 1996 ident: 2199_CR36 publication-title: Genetics doi: 10.1093/genetics/142.3.853 – volume: 28 start-page: 913 year: 2006 ident: 2199_CR1 publication-title: Bioessays doi: 10.1002/bies.20452 – volume: 55 start-page: 539 year: 2006 ident: 2199_CR59 publication-title: Syst Biol doi: 10.1080/10635150600755453 – volume: 296 start-page: 579 year: 1982 ident: 2199_CR42 publication-title: Nature doi: 10.1038/296579a0 – volume: 14 start-page: 1232 year: 1997 ident: 2199_CR25 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a025732 – volume: 175 start-page: 477 year: 2007 ident: 2199_CR4 publication-title: Genetics doi: 10.1534/genetics.107.071399 – ident: 2199_CR56 – volume: 212 start-page: 37 year: 1990 ident: 2199_CR24 publication-title: J Mol Biol doi: 10.1016/0022-2836(90)90303-4 – volume: 16 start-page: 793 year: 1999 ident: 2199_CR7 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026164 – volume: 25 start-page: 4876 year: 1997 ident: 2199_CR52 publication-title: Nucleic Acids Res doi: 10.1093/nar/25.24.4876 – volume: 49 start-page: 727 year: 1980 ident: 2199_CR3 publication-title: Annu Rev Biochem doi: 10.1146/annurev.bi.49.070180.003455 – volume: 21 start-page: 2531 year: 2005 ident: 2199_CR61 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti320 – volume: 17 start-page: 184 year: 2007 ident: 2199_CR17 publication-title: Genome Res doi: 10.1101/gr.5457707 – volume: 16 start-page: 4726 year: 1996 ident: 2199_CR49 publication-title: Mol Cell Biol doi: 10.1128/MCB.16.9.4726 – volume: 8 start-page: 3 year: 1999 ident: 2199_CR32 publication-title: Insect Mol Biol doi: 10.1046/j.1365-2583.1999.810003.x – volume: 35 start-page: 3918 year: 2007 ident: 2199_CR13 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm397 – volume: 139 start-page: 671 year: 1995 ident: 2199_CR26 publication-title: Genetics doi: 10.1093/genetics/139.2.671 – volume: 162 start-page: 799 year: 2002 ident: 2199_CR46 publication-title: Genetics doi: 10.1093/genetics/162.2.799 – volume: 16 start-page: 502 year: 1999 ident: 2199_CR37 publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a026132 – volume: 100 start-page: 49 year: 1997 ident: 2199_CR21 publication-title: Genetica doi: 10.1023/A:1018396505115 – volume: 77 start-page: 7323 year: 1980 ident: 2199_CR15 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.77.12.7323 – volume: 374 start-page: 322 year: 2007 ident: 2199_CR50 publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.09.047 – volume: 21 start-page: 207 year: 2004 ident: 2199_CR8 publication-title: Mol Biol Evol doi: 10.1093/molbev/msg235 – volume: 170 start-page: 195 year: 2005 ident: 2199_CR47 publication-title: Genetics doi: 10.1534/genetics.104.038703 – ident: 2199_CR51 – volume: 52 start-page: 696 year: 2003 ident: 2199_CR55 publication-title: Syst Biol doi: 10.1080/10635150390235520 – reference: 12537573 - Genome Biol. 2002;3(12):RESEARCH0084 – reference: 8383793 - Mol Biol Evol. 1993 Jan;10(1):163-85 – reference: 17322354 - Genetics. 2007 Feb;175(2):477-85 – reference: 9482842 - Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2083-8 – reference: 9927458 - Genetics. 1999 Feb;151(2):653-65 – reference: 16785212 - Syst Biol. 2006 Aug;55(4):539-52 – reference: 11731496 - Genome Res. 2001 Dec;11(12):2059-65 – reference: 12748285 - Mol Cell Biol. 2003 Jun;23(11):3825-36 – reference: 14960472 - Bioinformatics. 2004 Feb 12;20(3):426-7 – reference: 7713424 - Genetics. 1995 Feb;139(2):671-84 – reference: 17105809 - Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):17602-7 – reference: 11158378 - Mol Biol Evol. 2001 Feb;18(2):196-205 – reference: 6261251 - Proc Natl Acad Sci U S A. 1980 Dec;77(12):7323-7 – reference: 2844414 - Cell. 1988 Oct 21;55(2):235-46 – reference: 7787843 - Insect Biochem Mol Biol. 1995 May;25(5):603-12 – reference: 16870681 - Mol Biol Evol. 2006 Oct;23(10):1984-93 – reference: 8355601 - Mol Biol Evol. 1993 Jul;10(4):804-22 – reference: 11158382 - Mol Biol Evol. 2001 Feb;18(2):235-45 – reference: 17989256 - Genome Res. 2007 Dec;17(12):1888-97 – reference: 7679954 - Cell. 1993 Feb 26;72(4):595-605 – reference: 17032440 - BMC Bioinformatics. 2006;7:439 – reference: 11255020 - Gene. 2001 Mar 7;265(1-2):175-83 – reference: 12399390 - Genetics. 2002 Oct;162(2):799-811 – reference: 19280695 - Insect Biochem Mol Biol. 2008 Dec;38(12):1046-57 – reference: 1849649 - Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3295-9 – reference: 9515960 - Nature. 1998 Mar 12;392(6672):141-2 – reference: 8849892 - Genetics. 1996 Mar;142(3):853-63 – reference: 6996571 - Annu Rev Biochem. 1980;49:727-64 – reference: 11350117 - Genomics. 2001 May 1;73(3):255-63 – reference: 16895925 - Bioinformatics. 2006 Oct 15;22(20):2493-9 – reference: 17537809 - Nucleic Acids Res. 2007;35(12):3918-27 – reference: 1690812 - J Mol Biol. 1990 Mar 5;212(1):37-52 – reference: 18424797 - Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9 – reference: 7540721 - Mol Cell Biol. 1995 Jul;15(7):3882-91 – reference: 17157332 - Mutat Res. 2007 Mar 1;616(1-2):46-59 – reference: 10331276 - Mol Biol Evol. 1999 Apr;16(4):502-11 – reference: 9927169 - Insect Mol Biol. 1999 Feb;8(1):3-10 – reference: 15713735 - Bioinformatics. 2005 May 15;21(10):2531-3 – reference: 19229317 - PLoS Genet. 2009 Feb;5(2):e1000386 – reference: 11514447 - Genetics. 2001 Aug;158(4):1557-67 – reference: 18678644 - Mol Cell Biol. 2008 Oct;28(20):6452-61 – reference: 1689457 - Mol Cell Biol. 1990 Mar;10(3):863-71 – reference: 9396791 - Nucleic Acids Res. 1997 Dec 15;25(24):4876-82 – reference: 16014872 - Mol Biol Evol. 2005 Nov;22(11):2157-65 – reference: 15781697 - Genetics. 2005 May;170(1):195-205 – reference: 17200233 - Genome Res. 2007 Feb;17(2):184-91 – reference: 9440258 - Genetica. 1997;100(1-3):49-61 – reference: 6280055 - Nature. 1982 Apr 8;296(5857):579-81 – reference: 12949131 - Mol Biol Evol. 2004 Feb;21(2):207-17 – reference: 9402733 - Mol Biol Evol. 1997 Dec;14(12):1232-41 – reference: 17936300 - J Mol Biol. 2007 Nov 23;374(2):322-33 – reference: 10368957 - Mol Biol Evol. 1999 Jun;16(6):793-805 – reference: 8756630 - Mol Cell Biol. 1996 Sep;16(9):4726-34 – reference: 14530136 - Syst Biol. 2003 Oct;52(5):696-704 – reference: 16937363 - Bioessays. 2006 Sep;28(9):913-22 – reference: 17994087 - Nature. 2007 Nov 8;450(7167):203-18 – reference: 14752111 - J Biol Chem. 2004 Apr 9;279(15):14945-53 |
SSID | ssj0019426 ssj0017866 |
Score | 2.0745144 |
Snippet | Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila genomes have... BACKGROUND: Most arthropods contain R1 and R2 retrotransposons that specifically insert into the 28S rRNA genes. Here, the sequencing reads from 12 Drosophila... Comparative analysis of 12 Drosophila genomes reveals insights into the evolution and mechanism of integration of R1 and R2 retrotransposons. |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | R49 |
SubjectTerms | Animals arthropods concerted evolution DNA DNA Replication Drosophila Drosophila - classification Drosophila - genetics genes Genome, Insect loci Phylogeny Retroelements retrotransposons reverse transcription ribosomal RNA sequence analysis |
Title | Origin of nascent lineages and the mechanisms used to prime second-strand DNA synthesis in the R1 and R2 retrotransposons of Drosophila |
URI | https://www.ncbi.nlm.nih.gov/pubmed/19416522 https://www.proquest.com/docview/2000158455 https://www.proquest.com/docview/67537009 https://pubmed.ncbi.nlm.nih.gov/PMC2718515 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCIkXxJ1yGUbiBVVhaWo78eMoHRManVR1UsVLZCfOVrElU5M-wB_gb3OOnUvbjetLlDq-RDlf7XPsc75DyBsWsZQprT0uZOIxHXJPJaHyUlh9UuPLUNtch58n4vCEfZrzeZcu1UaXVPpd8v3auJL_kSqUgVwxSvYfJNt2CgVwD_KFK0gYrn8l42Ob1cr6YijLytRHpVEhbUPjGHlhMLR3UV6U_VUJyiWompfI6N8v0RJOPdzpQGfkyT6SF0ALJCipfR-nAxe-GPSXploWleNBL2vPuQ9LmwJhca7WFdyPJi-g95rbqd2_qZRL4V5Pb138w3iRfNWr8qxzVqrDJZqdCGn9_vja5MnQt1P4c7e2XFPWzLj-GrL42vQ5dfSlV6d1e8p0qj07LKwc3Fu6qpsM2pPj-ODk6Ciejeezm-RWAKYDZrUYiVF7siRZ4CLO6vdqjq4jsbfd_6aqcsX-2HajXdNLZvfI3dqgoPsOHffJDZM_ILdditFvD8kPhxFaZLTGCG0wQkG4FORMO4xQxAitCmoxQjcwQgEjtMUIhT6x7XRgu5kGdBsjOGSHkUfk5GA8Gx16dfINLxFCVp4waaijJNUDDRqziYaGZ_B1lAmVb7QcJjyCGyOTEI96MS1DkGR6EAqms5QJf_iY7ORFbp4SmmVcSVBUZYhbIKAdcTMUacb8FGxnsFd7ZK_5znFSM9NjgpTz2FqokYhPNaZLlfibxyCZHnnbtrh0rCy_qfu6EV0MUyeeh6ncFKsSq4EyHDHOe-TVL-rA-w1D6K5Hnjhhd-NJsGXAeumRcAMGbQUkbt98ki_OLIF7AAoh2BHP_jjqc3Kn-6O9IDvVcmVeghJc6V2L6l27hQTX6fsvPwH-Qrkn |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origin+of+nascent+lineages+and+the+mechanisms+used+to+prime+second-strand+DNA+synthesis+in+the+R1+and+R2+retrotransposons+of+Drosophila&rft.jtitle=Genome+biology&rft.au=Stage%2C+Deborah+E&rft.au=Eickbush%2C+Thomas+H&rft.date=2009-05-05&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=10&rft.issue=5&rft.spage=R49&rft_id=info:doi/10.1186%2Fgb-2009-10-5-r49&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |