Text classification to streamline online wildlife trade analyses
Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practition...
Saved in:
Published in | PloS one Vol. 16; no. 7; p. e0254007 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
09.07.2021
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practitioners. Given that many wildlife-trade advertisements have an unstructured text format, automated identification of relevant listings has not traditionally been possible, nor attempted. Other scientific disciplines have solved similar problems using machine learning and natural language processing models, such as text classifiers. Here, we test the ability of a suite of text classifiers to extract relevant advertisements from wildlife trade occurring on the Internet. We collected data from an Australian classifieds website where people can post advertisements of their pet birds (n = 16.5k advertisements). We found that text classifiers can predict, with a high degree of accuracy, which listings are relevant (ROC AUC ≥ 0.98, F1 score ≥ 0.77). Furthermore, in an attempt to answer the question ‘how much data is required to have an adequately performing model?’, we conducted a sensitivity analysis by simulating decreases in sample sizes to measure the subsequent change in model performance. From our sensitivity analysis, we found that text classifiers required a minimum sample size of 33% (c. 5.5k listings) to accurately identify relevant listings (for our dataset), providing a reference point for future applications of this sort. Our results suggest that text classification is a viable tool that can be applied to the online trade of wildlife to reduce time dedicated to data cleaning. However, the success of text classifiers will vary depending on the advertisements and websites, and will therefore be context dependent. Further work to integrate other machine learning tools, such as image classification, may provide better predictive abilities in the context of streamlining data processing for wildlife trade related online data. |
---|---|
AbstractList | Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practitioners. Given that many wildlife-trade advertisements have an unstructured text format, automated identification of relevant listings has not traditionally been possible, nor attempted. Other scientific disciplines have solved similar problems using machine learning and natural language processing models, such as text classifiers. Here, we test the ability of a suite of text classifiers to extract relevant advertisements from wildlife trade occurring on the Internet. We collected data from an Australian classifieds website where people can post advertisements of their pet birds (n = 16.5k advertisements). We found that text classifiers can predict, with a high degree of accuracy, which listings are relevant (ROC AUC [greater than or equal to] 0.98, F1 score [greater than or equal to] 0.77). Furthermore, in an attempt to answer the question 'how much data is required to have an adequately performing model?', we conducted a sensitivity analysis by simulating decreases in sample sizes to measure the subsequent change in model performance. From our sensitivity analysis, we found that text classifiers required a minimum sample size of 33% (c. 5.5k listings) to accurately identify relevant listings (for our dataset), providing a reference point for future applications of this sort. Our results suggest that text classification is a viable tool that can be applied to the online trade of wildlife to reduce time dedicated to data cleaning. However, the success of text classifiers will vary depending on the advertisements and websites, and will therefore be context dependent. Further work to integrate other machine learning tools, such as image classification, may provide better predictive abilities in the context of streamlining data processing for wildlife trade related online data. Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practitioners. Given that many wildlife-trade advertisements have an unstructured text format, automated identification of relevant listings has not traditionally been possible, nor attempted. Other scientific disciplines have solved similar problems using machine learning and natural language processing models, such as text classifiers. Here, we test the ability of a suite of text classifiers to extract relevant advertisements from wildlife trade occurring on the Internet. We collected data from an Australian classifieds website where people can post advertisements of their pet birds (n = 16.5k advertisements). We found that text classifiers can predict, with a high degree of accuracy, which listings are relevant (ROC AUC ≥ 0.98, F1 score ≥ 0.77). Furthermore, in an attempt to answer the question 'how much data is required to have an adequately performing model?', we conducted a sensitivity analysis by simulating decreases in sample sizes to measure the subsequent change in model performance. From our sensitivity analysis, we found that text classifiers required a minimum sample size of 33% (c. 5.5k listings) to accurately identify relevant listings (for our dataset), providing a reference point for future applications of this sort. Our results suggest that text classification is a viable tool that can be applied to the online trade of wildlife to reduce time dedicated to data cleaning. However, the success of text classifiers will vary depending on the advertisements and websites, and will therefore be context dependent. Further work to integrate other machine learning tools, such as image classification, may provide better predictive abilities in the context of streamlining data processing for wildlife trade related online data. |
Audience | Academic |
Author | Hill, Katherine G. W Toomes, Adam Stringham, Oliver C Ross, Joshua V Mitchell, Lewis Moncayo, Stephanie Cassey, Phillip |
AuthorAffiliation | 1 Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, SA, Australia 2 School of Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia National University of Sciences and Technology (NUST), PAKISTAN |
AuthorAffiliation_xml | – name: 1 Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, SA, Australia – name: 2 School of Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia – name: National University of Sciences and Technology (NUST), PAKISTAN |
Author_xml | – sequence: 1 fullname: Stringham, Oliver C – sequence: 2 fullname: Moncayo, Stephanie – sequence: 3 fullname: Hill, Katherine G. W – sequence: 4 fullname: Toomes, Adam – sequence: 5 fullname: Mitchell, Lewis – sequence: 6 fullname: Ross, Joshua V – sequence: 7 fullname: Cassey, Phillip |
BookMark | eNqNkl2L1DAUhousuB_6DwQLgujFjEnz0eZGXBY_BhYWdPU2nKYnMxkyzWzTqvvvTXeqbGUvJBcJp0_ek_f0Pc2O2tBilj2nZElZSd9uw9C14Jf7VF6SQnBCykfZCVWsWMiCsKN75-PsNMYtIYJVUj7JjhkveFGU6iR7f42_-tx4iNFZZ6B3oc37kMe-Q9h512Ie2rvtp_ONdxbzvoMGc0i9byPGp9ljCz7is2k_y759_HB98XlxefVpdXF-uTBSqn7BBbPCSk4sq6EuKmaUhdpKAFGq9C4QwjZYU1ZUlHLZNJISI0sDwjBg0rKz7MVBd-9D1JP5qJNvpdI4CpGI1YFoAmz1vnM76G51AKfvCqFba-h6ZzxqxFKK0hrCuORVYxSvhaolUwq5pMiT1rup21DvsDHYJtd-Jjr_0rqNXocfuipKUhCaBF5PAl24GTD2eueiQe-hxTCM7xbpn6nkPaEv_0EfdjdRa0gGXGtD6mtGUX0uZakqQqsyUcsHqLQa3DmTkmJdqs8uvJldSEyfErGGIUa9-vrl_9mr73P21T12g-D7TQx-GPMV5yA_gKYLMXZo_w6ZEj0G_c809Bh0PQWd_QYq1--9 |
CitedBy_id | crossref_primary_10_1007_s10530_023_03221_1 crossref_primary_10_1088_1755_1315_1341_1_012094 crossref_primary_10_1071_WR22116 crossref_primary_10_3897_neobiota_87_104472 crossref_primary_10_1016_j_ecoinf_2023_102076 crossref_primary_10_1016_j_biocon_2023_109924 crossref_primary_10_1038_s41467_023_43754_6 |
Cites_doi | 10.1016/j.tree.2020.03.003 10.1016/j.biocon.2018.09.025 10.1016/j.oneear.2020.04.012 10.1007/978-0-387-98141-3 10.21105/joss.00037 10.1111/cobi.13104 10.1111/cobi.12721 10.7717/peerj-cs.10 10.1016/j.cub.2019.08.016 10.1073/pnas.1719367115 10.1371/journal.pone.0172851 10.1126/science.1174460 10.1126/science.aav5327 10.1111/1365-2664.13237 10.1145/1401890.1401965 10.1016/j.eswa.2009.02.037 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 Public Library of Science 2021 Stringham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 Stringham et al 2021 Stringham et al |
Copyright_xml | – notice: COPYRIGHT 2021 Public Library of Science – notice: 2021 Stringham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 Stringham et al 2021 Stringham et al |
DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0254007 |
DatabaseName | CrossRef Gale in Context : Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection Publicly Available Content Database (ProQuest Open Access資料庫) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals(OpenAccess) |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic Technology Collection Technology Research Database Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Text classification and online wildlife trade |
EISSN | 1932-6203 |
Editor | Qamar, Usman |
Editor_xml | – sequence: 1 givenname: Usman surname: Qamar fullname: Qamar, Usman |
EndPage | e0254007 |
ExternalDocumentID | 2549937125 oai_doaj_org_article_ee7657fc034648dc94b59b6399e461e4 A667980187 10_1371_journal_pone_0254007 |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GrantInformation_xml | – fundername: ; grantid: PO1-I-002 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ADBBV AEAQA AENEX AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BBORY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 P2P P62 PATMY PDBOC PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PQEST PQUKI PRINS RC3 7X8 5PM AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c669t-453f5f640f3bab283c9fabf6aa579053a55fdeb13281146dd610c67ca5c3a36f3 |
IEDL.DBID | RPM |
ISSN | 1932-6203 |
IngestDate | Sun Jul 02 11:04:17 EDT 2023 Tue Oct 22 15:13:27 EDT 2024 Tue Sep 17 21:25:55 EDT 2024 Fri Oct 25 10:40:06 EDT 2024 Thu Oct 10 19:14:17 EDT 2024 Thu Feb 22 23:46:00 EST 2024 Fri Feb 02 04:09:02 EST 2024 Thu Aug 01 19:22:26 EDT 2024 Thu Aug 01 20:37:26 EDT 2024 Tue Aug 20 22:08:43 EDT 2024 Fri Aug 23 00:26:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c669t-453f5f640f3bab283c9fabf6aa579053a55fdeb13281146dd610c67ca5c3a36f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
ORCID | 0000-0002-4224-7090 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270201/ |
PMID | 34242279 |
PQID | 2549937125 |
PQPubID | 1436336 |
ParticipantIDs | plos_journals_2549937125 doaj_primary_oai_doaj_org_article_ee7657fc034648dc94b59b6399e461e4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8270201 proquest_miscellaneous_2550259790 proquest_journals_2549937125 gale_infotracmisc_A667980187 gale_infotracacademiconefile_A667980187 gale_incontextgauss_ISR_A667980187 gale_incontextgauss_IOV_A667980187 gale_healthsolutions_A667980187 crossref_primary_10_1371_journal_pone_0254007 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-09 |
PublicationDateYYYYMMDD | 2021-07-09 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationYear | 2021 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | P Siriwat (pone.0254007.ref004) 2020 OC Stringham (pone.0254007.ref007) JD Olden (pone.0254007.ref028) 2020 Y-H Sung (pone.0254007.ref005) 2018; 227 I Jarić (pone.0254007.ref003) 2020; 35 OC Stringham (pone.0254007.ref008) 2018; 55 M Vall-llosera (pone.0254007.ref013) 2017; 12 J Hernandez-Castro (pone.0254007.ref026) 2015; 1 AP Woolnough (pone.0254007.ref012) 2020; 13 pone.0254007.ref017 MS Norouzzadeh (pone.0254007.ref027) 2018; 115 pone.0254007.ref016 pone.0254007.ref015 pone.0254007.ref019 pone.0254007.ref018 H Wickham (pone.0254007.ref024) 2009 ED Minin (pone.0254007.ref010) 2019; 33 pone.0254007.ref020 pone.0254007.ref022 pone.0254007.ref021 A Hinsley (pone.0254007.ref014) 2016; 30 BR Scheffers (pone.0254007.ref002) 2019; 366 Q Xu (pone.0254007.ref009) 2019 F Pedregosa (pone.0254007.ref023) 2011; 12 KF Smith (pone.0254007.ref001) 2009; 324 A Lamba (pone.0254007.ref025) 2019; 29 TS Guzella (pone.0254007.ref011) 2009; 36 ADM Dobson (pone.0254007.ref006) 2020; 2 |
References_xml | – volume: 35 start-page: 630 year: 2020 ident: pone.0254007.ref003 article-title: iEcology: Harnessing Large Online Resources to Generate Ecological Insights publication-title: Trends Ecol Evol doi: 10.1016/j.tree.2020.03.003 contributor: fullname: I Jarić – start-page: 2 year: 2019 ident: pone.0254007.ref009 article-title: Use of Machine Learning to Detect Wildlife Product Promotion and Sales on Twitter publication-title: Front Big Data contributor: fullname: Q Xu – ident: pone.0254007.ref016 – volume: 227 start-page: 219 year: 2018 ident: pone.0254007.ref005 article-title: Assessing consumer trends and illegal activity by monitoring the online wildlife trade publication-title: Biol Conserv doi: 10.1016/j.biocon.2018.09.025 contributor: fullname: Y-H Sung – volume: 2 start-page: 455 year: 2020 ident: pone.0254007.ref006 article-title: Making Messy Data Work for Conservation publication-title: One Earth doi: 10.1016/j.oneear.2020.04.012 contributor: fullname: ADM Dobson – volume-title: ggplot2: Elegant Graphics for Data Analysis year: 2009 ident: pone.0254007.ref024 doi: 10.1007/978-0-387-98141-3 contributor: fullname: H Wickham – ident: pone.0254007.ref018 – ident: pone.0254007.ref020 – year: 2020 ident: pone.0254007.ref004 article-title: Wildlife trade shifts from brick-and-mortar markets to virtual marketplaces: A case study of birds of prey trade in Thailand publication-title: J Asia-Pac Biodivers contributor: fullname: P Siriwat – volume: 13 start-page: 203 year: 2020 ident: pone.0254007.ref012 article-title: A policy approach to nonindigenous bird management in Victoria–managing potential threats to biodiversity, social amenity and economic values publication-title: Vic Nat contributor: fullname: AP Woolnough – ident: pone.0254007.ref017 doi: 10.21105/joss.00037 – volume: 33 start-page: 210 year: 2019 ident: pone.0254007.ref010 article-title: A framework for investigating illegal wildlife trade on social media with machine learning publication-title: Conserv Biol doi: 10.1111/cobi.13104 contributor: fullname: ED Minin – year: 2020 ident: pone.0254007.ref028 article-title: Online auction marketplaces as a global pathway for aquatic invasive species publication-title: Hydrobiologia contributor: fullname: JD Olden – volume: 30 start-page: 1038 year: 2016 ident: pone.0254007.ref014 article-title: Estimating the extent and structure of trade in horticultural orchids via social media publication-title: Conserv Biol doi: 10.1111/cobi.12721 contributor: fullname: A Hinsley – volume: 1 start-page: e10 year: 2015 ident: pone.0254007.ref026 article-title: Automatic detection of potentially illegal online sales of elephant ivory via data mining publication-title: PeerJ Comput Sci doi: 10.7717/peerj-cs.10 contributor: fullname: J Hernandez-Castro – ident: pone.0254007.ref022 – ident: pone.0254007.ref007 article-title: A guide to using the Internet to monitor and quantify the wildlife trade publication-title: Conserv Biol contributor: fullname: OC Stringham – volume: 29 start-page: R977 year: 2019 ident: pone.0254007.ref025 article-title: Deep learning for environmental conservation publication-title: Curr Biol doi: 10.1016/j.cub.2019.08.016 contributor: fullname: A Lamba – volume: 115 start-page: E5716 year: 2018 ident: pone.0254007.ref027 article-title: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.1719367115 contributor: fullname: MS Norouzzadeh – volume: 12 start-page: e0172851 year: 2017 ident: pone.0254007.ref013 article-title: Leaky doors: Private captivity as a prominent source of bird introductions in Australia publication-title: PLOS ONE doi: 10.1371/journal.pone.0172851 contributor: fullname: M Vall-llosera – volume: 324 start-page: 594 year: 2009 ident: pone.0254007.ref001 article-title: Reducing the Risks of the Wildlife Trade publication-title: Science doi: 10.1126/science.1174460 contributor: fullname: KF Smith – volume: 366 start-page: 71 year: 2019 ident: pone.0254007.ref002 article-title: Global wildlife trade across the tree of life publication-title: Science doi: 10.1126/science.aav5327 contributor: fullname: BR Scheffers – volume: 55 start-page: 2632 year: 2018 ident: pone.0254007.ref008 article-title: Pet problems: Biological and economic factors that influence the release of alien reptiles and amphibians by pet owners publication-title: J Appl Ecol doi: 10.1111/1365-2664.13237 contributor: fullname: OC Stringham – ident: pone.0254007.ref019 – ident: pone.0254007.ref021 – ident: pone.0254007.ref015 doi: 10.1145/1401890.1401965 – volume: 36 start-page: 10206 year: 2009 ident: pone.0254007.ref011 article-title: A review of machine learning approaches to Spam filtering publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.02.037 contributor: fullname: TS Guzella – volume: 12 start-page: 2825 year: 2011 ident: pone.0254007.ref023 article-title: Scikit-learn: Machine Learning in Python publication-title: J Mach Learn Res contributor: fullname: F Pedregosa |
SSID | ssj0053866 |
Score | 2.4811106 |
Snippet | Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife... |
SourceID | plos doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | e0254007 |
SubjectTerms | Advertising Biodiversity Biology and Life Sciences Biosecurity Birds Classification Classifiers Computer and Information Sciences Conservation Context Data collection Data processing Datasets Electronic commerce Evaluation Food Funding Image classification Internet Learning algorithms Machine learning Natural language processing Poultry Reptiles & amphibians Sensitivity analysis Social Sciences Streamlining Text categorization Text processing Unstructured data Websites Wild animal trade Wildlife conservation Wildlife trade |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals(OpenAccess) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggykMNtGAQEnBI610_Et8oiKogARK0qDfLT6jUJiuy-_-ZSbyrtYQEB67x5PWNx_6czHwm5AXz2gkRUs08szXKn9RO8aa2QjPfaiBKHKuRP31WZxfi46W83NnqC3PCJnngCbjjGBslm-QZF0q0wWvhpHY4r0ah5nFSAmV6s5iaxmCIYqVyoRxv5sfZL0fLvotHWP_NcPvYnYlo1Ovfjsqz5XU_FJSzTJjcmYFO75I7mTrSk-mR98it2N0jezk4B_oqK0i_vk_enMOQSz0SY8wEGsGnq55iYYi9QWJJJ4UMCkw5XF-lSOGGIVI7SpTE4QG5OH1__u6szlsl1F4pvaqF5EkmJVjizjqgDF4n65KyVqICF7dSpgDDMl-0WIYcArAmrxpvpeeWq8QfklkH4OwT6oMD0pRcYoAwELJWcS6TnscgFyLGtiL1BjeznBQxzPhbrIGVxISEQZxNxrkibxHcrS3qWY8HwMsme9n8zcsVeYquMVNx6DYqzYnCv0i4sWBFno8WqGnRYdLMD7seBvPhy_d_MPr2tTB6mY1SD-B7mwsV4J1QK6uwPCgsITJ90byPHWmDymDGxTjgtJBw5qZz_bn52bYZL4qJcF3s12gjAVcNTq1IU3TKAuCypbv6OQqHt1h8yOaP_odHHpPbC0zvwS_d-oDMVr_W8RD42co9GUPxNwLlOLo priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZge-GCKA81UMAgJOCQNhs_Ep-gRa0KEgWVFvVm-VkqlWRpdv8_M4mzNBJCXNeTRDvjGX-2Z74h5FXhlOXcx7xwhcmR_iS3klW54apwtQKgxLAa-fOxPDrjn87FeTpw61Ja5RgT-0DtW4dn5Lv9RoZVsB6_W_zKsWsU3q6mFhq3yUYJO4VyRjb2D46_noyxGLxZylQwB8_uJvvsLNom7GAdeIFtZG8sSD1v_zo6zxZXbTeBntPEyRsr0eE9cjdBSLo32HyT3ArNfbKZnLSjbxKT9NsH5P0phF7qECBjRlBvBLpsKRaImJ8IMOnAlEEBMfuryxgofNAHanqqktA9JGeHB6cfjvLUMiF3UqplzgWLIkpeRGaNBejgVDQ2SmMEMnExI0T0EJ5ZWWM5sveAnpysnBGOGSYje0RmDShni1DnLYCnaGOhAtKg1ZIxEdU8eFHyEOqM5KPe9GJgxtD99VgFO4pBExr1rJOeM7KPyl3LIq91_0N7faGTm-gQKimq6ArGJa-9U9wKZRFFBS7ngWfkOZpGD0Wia-_UexJvk7DBYEZe9hLIbdFg8syFWXWd_vjl-38IfTuZCL1OQrEF5TuTChbgPyFn1kRyeyIJHuomw1s4kUatdPrPXIYnx8n19-EX62F8KSbENaFdoYwAvSowakaqyaScKHg60lz-6AnEayxCLOaP__3xJ-ROiQk8eJattslseb0KTwGBLe2z5Ga_AQQDMgw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access(OpenAccess) dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLWm8sILYnxoYQMMQgIeUqXxR-IHBAMxDSRAghXtzbIde0wqSWlaCf49vo4TYWmTeK2v2-bY1z6O7z0XoWeFEZrSxuWFKVQO8ie55qTKFRWFqYUnSgSykT995qdL-vGcne-hsWZrBLC_8mgH9aSWm9X8968_r73DvwpVG6rF2Gm-7lo7h-zukF5-owRpLgjmo9O9gvduzmMC3XU9kw0q6PhPq_Vsver6hIqmgZT_7Ewnt9GtSCnx8TAH9tGebe-g_ei0PX4RlaVf3kVvzvxSjA0QZogQCoOCtx2GhBH1EwgnHpQzsGfQzerSWex_sLFYBekS299Dy5P3Z-9O81hCITeci21OGXHMcVo4opX2VMIIp7TjSjFQ5iKKMdf45ZqUNaQnN41nU4ZXRjFDFOGO3Eez1oNzgLBptCdTTrtCWJBFqzkhzImFbVhJra0zlI-4yfWglCHDdVnlTxgDEhJwlhHnDL0FcCdb0LkOH3SbCxndRlpbcVY5UxDKad0YQTUTGliVpXxhaYYew9DIIWl08lZ5zOF2CQoOZuhpsACtixaCaS7Uru_lhy_f_8Po29fE6Hk0cp0H36iYwOCfCTS0EsujxNJ7rEmaD2Aijaj0MhzSPU4l8z3HyXV185OpGb4UAuRa2-3AhnlchR_UDFXJpEwATlvayx9BULyGpMRi8eD6_3WIbpYQzAPvtcURmm03O_vQs7GtfhQc7C8Y-zSv priority: 102 providerName: Scholars Portal |
Title | Text classification to streamline online wildlife trade analyses |
URI | https://www.proquest.com/docview/2549937125 https://search.proquest.com/docview/2550259790 https://pubmed.ncbi.nlm.nih.gov/PMC8270201 https://doaj.org/article/ee7657fc034648dc94b59b6399e461e4 http://dx.doi.org/10.1371/journal.pone.0254007 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2IqFdEONDK4wSEBJwSJvWH4lvbFXLQOqYxoZ6i2zH3iq1SbW01_3te89JqkXigLj4UL989Pf87J-T934h5FNkpGYsc2FkIhWi_EmoBY1DxWRkEglEiWI18uxcnF2zn3M-3yO8qYXxSftGL_r5ctXPF7c-t3K9MoMmT2xwMRsnWEQVDQf7ZB8GaLNFr6ZfCGAh6ho5Gg8HtUv66yK3fSz9hkXxgDylDNamESZwPVqOvGr_bm7urJdF2SKe7bTJR-vQ9Dl5VhPI4KS60UOyZ_MX5LAO0TL4UutIf31Jvl3BxBsYpMeYD-RdEGyKAMtD1ArpZVDpZATAl7PlwtkALpjZQHmhElu-ItfTydX4LKw_mBAaIeQmZJw67gSLHNVKA3Ew0inthFIcdbio4txlMDnTUYLFyFkG3MmI2ChuqKLC0dekkwNORyQwmQbq5LSLpEURtERQyp0c2oyPmLVJl4QNbum60sVI_cuxGPYTFRIpQp7WkHfJKYK7s0VVa_9DcXeT1r5NrY0Fj52JKBMsyYxkmkuNHMoyMbSsS96ja9KqRHQXm-mJwHdJ-HnBLvnoLVDZIsfUmRu1Lcv0x68__2D0-7Jl9Lk2cgWAb1RdrgD_CRWzWpbHLUuIT9PqPsKB1KBSpn5LDjiNOBzZDK6_d3_YdeNJMR0ut8UWbTjgKsGpXRK3BmUL4HYPRJOXD6-j581_H_mWHIwwswcfcstj0tncbe07oGYb3YOAnMfQJuMhttPvPfLkdHJ-cdnzDzugnbEE2_tJz4ftAxF7QLY |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,12070,12237,12779,21402,24332,27938,27939,31733,31734,33280,33281,33387,33388,33758,33759,43324,43593,43614,43819,53806,53808,74081,74350,74371,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOcAFUR5q2kIDQgIOabPrR-ITFMSyhbZIsEW9WY4fpVKbLM3u_2fGcZZGQohrPEmUGc_4iz3zDSEvcyMrxqzPcpPrDOlPskrQItNM5qaUAJQoViMfn4jZKft8xs_ihlsb0yr7mBgCtW0M7pHvhx8ZWsB6_HbxK8OuUXi6Glto3CZ3GIWFBivFp5_6SAy-LEQsl4M796N19hZN7fawCjzHJrI3lqPA2r-OzaPFZdMOgOcwbfLGOjR9QO5HAJkedBbfILdc_ZBsRBdt09eRR_rNI_JuDoE3NQiPMR8omCBdNimWh-grhJdpx5ORAl62lxfepfBC61IdiEpc-5icTj_OP8yy2DAhM0LIZcY49dwLlnta6QqAg5FeV15ozZGHi2rOvYXgTCclFiNbC9jJiMJobqimwtMnZFSDcjZJamwF0MlXPpcOSdBKQSn3cuwsnzDnyoRkvd7UouPFUOFwrID_iU4TCvWsop4T8h6Vu5ZFVutwobk-V9FJlHOF4IU3OWWCldZIVnFZIYZyTIwdS8gumkZ1JaJr31QHAs-SsL1gQl4ECWS2qDF15lyv2lYdfv3xH0Lfvw2EXkUh34DyjY7lCvBNyJg1kNwZSIJ_msHwJk6kXiut-jOT4c5-cv19-Pl6GB-K6XC1a1Yow0GvEoyakGIwKQcKHo7UFz8DfXiJJYj5eOvfL98ld2fz4yN1dHjyZZvcm2AqD-5qyx0yWl6v3FPAYsvqWXC433tFM5c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZgkRAviHKogUIDQgIe0s2uj8RPUI5Vy1EQtGjfLJ-lUkmWZvf_M-P1hkZCiNd4kihz2J_jmW8IeVpaaRhzoShtqQukPymMoFWhmSxtLQEoUaxG_nQkDk7Y-zmfp_ynLqVVbubEOFG71uI_8nHcyNAK1uNxSGkRX97OXi5-FdhBCk9aUzuNq-RaxWChA9-u5v3mC-JaiFQ6B08ZJ0vtLdrG72FFeIkNZS8tTZHBv5-nR4vzthuA0GEK5aU1aXaL3ExgMt9fW3-LXPHNbbKVwrXLnydO6Rd3yKtj-JLcIlTG3KBojnzZ5lgqon8i1MzXnBk5YGd3fhZ8Di90PteRtMR3d8nJ7N3xm4MiNU8orBByWTBOAw-ClYEabQBEWBm0CUJrjpxcVHMeHEzUdFpjYbJzgKOsqKzmlmoqAr1HRg0oZ5vk1hmAUcGEUnokRKsFpTzIiXd8yryvM1Js9KYWa44MFQ_KKthbrDWhUM8q6Tkjr1G5vSwyXMcL7cWpSgGjvK8Er4ItKROsdlYyw6VBPOWZmHiWkV00jVqXi_ZxqvYFnithq8GMPIkSyHLRoL-c6lXXqcPP3_9D6NvXgdCzJBRaUL7VqXQBvgnZswaSOwNJiFU7GN5GR9popVN_vBru3DjX34cf98P4UEyNa3y7QhkOepVg1IxUA6ccKHg40pz9iFTiNZYjlpP7_375LrkOsaY-Hh59eEBuTDGrB39wyx0yWl6s_EOAZUvzKMbbb-9PN8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+classification+to+streamline+online+wildlife+trade+analyses&rft.jtitle=PloS+one&rft.au=Stringham%2C+Oliver&rft.au=Moncayo%2C+Stephanie&rft.au=Katherine+G+W+Hill&rft.au=Toomes%2C+Adam&rft.date=2021-07-09&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=16&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.pone.0254007&rft.externalDocID=2549937125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |