Text classification to streamline online wildlife trade analyses

Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practition...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 7; p. e0254007
Main Authors Stringham, Oliver C, Moncayo, Stephanie, Hill, Katherine G. W, Toomes, Adam, Mitchell, Lewis, Ross, Joshua V, Cassey, Phillip
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 09.07.2021
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practitioners. Given that many wildlife-trade advertisements have an unstructured text format, automated identification of relevant listings has not traditionally been possible, nor attempted. Other scientific disciplines have solved similar problems using machine learning and natural language processing models, such as text classifiers. Here, we test the ability of a suite of text classifiers to extract relevant advertisements from wildlife trade occurring on the Internet. We collected data from an Australian classifieds website where people can post advertisements of their pet birds (n = 16.5k advertisements). We found that text classifiers can predict, with a high degree of accuracy, which listings are relevant (ROC AUC ≥ 0.98, F1 score ≥ 0.77). Furthermore, in an attempt to answer the question ‘how much data is required to have an adequately performing model?’, we conducted a sensitivity analysis by simulating decreases in sample sizes to measure the subsequent change in model performance. From our sensitivity analysis, we found that text classifiers required a minimum sample size of 33% (c. 5.5k listings) to accurately identify relevant listings (for our dataset), providing a reference point for future applications of this sort. Our results suggest that text classification is a viable tool that can be applied to the online trade of wildlife to reduce time dedicated to data cleaning. However, the success of text classifiers will vary depending on the advertisements and websites, and will therefore be context dependent. Further work to integrate other machine learning tools, such as image classification, may provide better predictive abilities in the context of streamlining data processing for wildlife trade related online data.
AbstractList Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practitioners. Given that many wildlife-trade advertisements have an unstructured text format, automated identification of relevant listings has not traditionally been possible, nor attempted. Other scientific disciplines have solved similar problems using machine learning and natural language processing models, such as text classifiers. Here, we test the ability of a suite of text classifiers to extract relevant advertisements from wildlife trade occurring on the Internet. We collected data from an Australian classifieds website where people can post advertisements of their pet birds (n = 16.5k advertisements). We found that text classifiers can predict, with a high degree of accuracy, which listings are relevant (ROC AUC [greater than or equal to] 0.98, F1 score [greater than or equal to] 0.77). Furthermore, in an attempt to answer the question 'how much data is required to have an adequately performing model?', we conducted a sensitivity analysis by simulating decreases in sample sizes to measure the subsequent change in model performance. From our sensitivity analysis, we found that text classifiers required a minimum sample size of 33% (c. 5.5k listings) to accurately identify relevant listings (for our dataset), providing a reference point for future applications of this sort. Our results suggest that text classification is a viable tool that can be applied to the online trade of wildlife to reduce time dedicated to data cleaning. However, the success of text classifiers will vary depending on the advertisements and websites, and will therefore be context dependent. Further work to integrate other machine learning tools, such as image classification, may provide better predictive abilities in the context of streamlining data processing for wildlife trade related online data.
Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife trading websites can contain a vast number of advertisements, an unknown proportion of which may be irrelevant to researchers and practitioners. Given that many wildlife-trade advertisements have an unstructured text format, automated identification of relevant listings has not traditionally been possible, nor attempted. Other scientific disciplines have solved similar problems using machine learning and natural language processing models, such as text classifiers. Here, we test the ability of a suite of text classifiers to extract relevant advertisements from wildlife trade occurring on the Internet. We collected data from an Australian classifieds website where people can post advertisements of their pet birds (n = 16.5k advertisements). We found that text classifiers can predict, with a high degree of accuracy, which listings are relevant (ROC AUC ≥ 0.98, F1 score ≥ 0.77). Furthermore, in an attempt to answer the question 'how much data is required to have an adequately performing model?', we conducted a sensitivity analysis by simulating decreases in sample sizes to measure the subsequent change in model performance. From our sensitivity analysis, we found that text classifiers required a minimum sample size of 33% (c. 5.5k listings) to accurately identify relevant listings (for our dataset), providing a reference point for future applications of this sort. Our results suggest that text classification is a viable tool that can be applied to the online trade of wildlife to reduce time dedicated to data cleaning. However, the success of text classifiers will vary depending on the advertisements and websites, and will therefore be context dependent. Further work to integrate other machine learning tools, such as image classification, may provide better predictive abilities in the context of streamlining data processing for wildlife trade related online data.
Audience Academic
Author Hill, Katherine G. W
Toomes, Adam
Stringham, Oliver C
Ross, Joshua V
Mitchell, Lewis
Moncayo, Stephanie
Cassey, Phillip
AuthorAffiliation 1 Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, SA, Australia
2 School of Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia
National University of Sciences and Technology (NUST), PAKISTAN
AuthorAffiliation_xml – name: 1 Invasion Science & Wildlife Ecology Lab, University of Adelaide, Adelaide, SA, Australia
– name: 2 School of Mathematical Sciences, University of Adelaide, Adelaide, SA, Australia
– name: National University of Sciences and Technology (NUST), PAKISTAN
Author_xml – sequence: 1
  fullname: Stringham, Oliver C
– sequence: 2
  fullname: Moncayo, Stephanie
– sequence: 3
  fullname: Hill, Katherine G. W
– sequence: 4
  fullname: Toomes, Adam
– sequence: 5
  fullname: Mitchell, Lewis
– sequence: 6
  fullname: Ross, Joshua V
– sequence: 7
  fullname: Cassey, Phillip
BookMark eNqNkl2L1DAUhousuB_6DwQLgujFjEnz0eZGXBY_BhYWdPU2nKYnMxkyzWzTqvvvTXeqbGUvJBcJp0_ek_f0Pc2O2tBilj2nZElZSd9uw9C14Jf7VF6SQnBCykfZCVWsWMiCsKN75-PsNMYtIYJVUj7JjhkveFGU6iR7f42_-tx4iNFZZ6B3oc37kMe-Q9h512Ie2rvtp_ONdxbzvoMGc0i9byPGp9ljCz7is2k_y759_HB98XlxefVpdXF-uTBSqn7BBbPCSk4sq6EuKmaUhdpKAFGq9C4QwjZYU1ZUlHLZNJISI0sDwjBg0rKz7MVBd-9D1JP5qJNvpdI4CpGI1YFoAmz1vnM76G51AKfvCqFba-h6ZzxqxFKK0hrCuORVYxSvhaolUwq5pMiT1rup21DvsDHYJtd-Jjr_0rqNXocfuipKUhCaBF5PAl24GTD2eueiQe-hxTCM7xbpn6nkPaEv_0EfdjdRa0gGXGtD6mtGUX0uZakqQqsyUcsHqLQa3DmTkmJdqs8uvJldSEyfErGGIUa9-vrl_9mr73P21T12g-D7TQx-GPMV5yA_gKYLMXZo_w6ZEj0G_c809Bh0PQWd_QYq1--9
CitedBy_id crossref_primary_10_1007_s10530_023_03221_1
crossref_primary_10_1088_1755_1315_1341_1_012094
crossref_primary_10_1071_WR22116
crossref_primary_10_3897_neobiota_87_104472
crossref_primary_10_1016_j_ecoinf_2023_102076
crossref_primary_10_1016_j_biocon_2023_109924
crossref_primary_10_1038_s41467_023_43754_6
Cites_doi 10.1016/j.tree.2020.03.003
10.1016/j.biocon.2018.09.025
10.1016/j.oneear.2020.04.012
10.1007/978-0-387-98141-3
10.21105/joss.00037
10.1111/cobi.13104
10.1111/cobi.12721
10.7717/peerj-cs.10
10.1016/j.cub.2019.08.016
10.1073/pnas.1719367115
10.1371/journal.pone.0172851
10.1126/science.1174460
10.1126/science.aav5327
10.1111/1365-2664.13237
10.1145/1401890.1401965
10.1016/j.eswa.2009.02.037
ContentType Journal Article
Copyright COPYRIGHT 2021 Public Library of Science
2021 Stringham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 Stringham et al 2021 Stringham et al
Copyright_xml – notice: COPYRIGHT 2021 Public Library of Science
– notice: 2021 Stringham et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 Stringham et al 2021 Stringham et al
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0254007
DatabaseName CrossRef
Gale in Context : Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
Publicly Available Content Database (ProQuest Open Access資料庫)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals(OpenAccess)
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
Technology Collection
Technology Research Database
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


Agricultural Science Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Text classification and online wildlife trade
EISSN 1932-6203
Editor Qamar, Usman
Editor_xml – sequence: 1
  givenname: Usman
  surname: Qamar
  fullname: Qamar, Usman
EndPage e0254007
ExternalDocumentID 2549937125
oai_doaj_org_article_ee7657fc034648dc94b59b6399e461e4
A667980187
10_1371_journal_pone_0254007
GeographicLocations Australia
GeographicLocations_xml – name: Australia
GrantInformation_xml – fundername: ;
  grantid: PO1-I-002
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ADBBV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BBORY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
P2P
P62
PATMY
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PQEST
PQUKI
PRINS
RC3
7X8
5PM
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c669t-453f5f640f3bab283c9fabf6aa579053a55fdeb13281146dd610c67ca5c3a36f3
IEDL.DBID RPM
ISSN 1932-6203
IngestDate Sun Jul 02 11:04:17 EDT 2023
Tue Oct 22 15:13:27 EDT 2024
Tue Sep 17 21:25:55 EDT 2024
Fri Oct 25 10:40:06 EDT 2024
Thu Oct 10 19:14:17 EDT 2024
Thu Feb 22 23:46:00 EST 2024
Fri Feb 02 04:09:02 EST 2024
Thu Aug 01 19:22:26 EDT 2024
Thu Aug 01 20:37:26 EDT 2024
Tue Aug 20 22:08:43 EDT 2024
Fri Aug 23 00:26:14 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-453f5f640f3bab283c9fabf6aa579053a55fdeb13281146dd610c67ca5c3a36f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
ORCID 0000-0002-4224-7090
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270201/
PMID 34242279
PQID 2549937125
PQPubID 1436336
ParticipantIDs plos_journals_2549937125
doaj_primary_oai_doaj_org_article_ee7657fc034648dc94b59b6399e461e4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8270201
proquest_miscellaneous_2550259790
proquest_journals_2549937125
gale_infotracmisc_A667980187
gale_infotracacademiconefile_A667980187
gale_incontextgauss_ISR_A667980187
gale_incontextgauss_IOV_A667980187
gale_healthsolutions_A667980187
crossref_primary_10_1371_journal_pone_0254007
PublicationCentury 2000
PublicationDate 2021-07-09
PublicationDateYYYYMMDD 2021-07-09
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-09
  day: 09
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2021
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References P Siriwat (pone.0254007.ref004) 2020
OC Stringham (pone.0254007.ref007)
JD Olden (pone.0254007.ref028) 2020
Y-H Sung (pone.0254007.ref005) 2018; 227
I Jarić (pone.0254007.ref003) 2020; 35
OC Stringham (pone.0254007.ref008) 2018; 55
M Vall-llosera (pone.0254007.ref013) 2017; 12
J Hernandez-Castro (pone.0254007.ref026) 2015; 1
AP Woolnough (pone.0254007.ref012) 2020; 13
pone.0254007.ref017
MS Norouzzadeh (pone.0254007.ref027) 2018; 115
pone.0254007.ref016
pone.0254007.ref015
pone.0254007.ref019
pone.0254007.ref018
H Wickham (pone.0254007.ref024) 2009
ED Minin (pone.0254007.ref010) 2019; 33
pone.0254007.ref020
pone.0254007.ref022
pone.0254007.ref021
A Hinsley (pone.0254007.ref014) 2016; 30
BR Scheffers (pone.0254007.ref002) 2019; 366
Q Xu (pone.0254007.ref009) 2019
F Pedregosa (pone.0254007.ref023) 2011; 12
KF Smith (pone.0254007.ref001) 2009; 324
A Lamba (pone.0254007.ref025) 2019; 29
TS Guzella (pone.0254007.ref011) 2009; 36
ADM Dobson (pone.0254007.ref006) 2020; 2
References_xml – volume: 35
  start-page: 630
  year: 2020
  ident: pone.0254007.ref003
  article-title: iEcology: Harnessing Large Online Resources to Generate Ecological Insights
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2020.03.003
  contributor:
    fullname: I Jarić
– start-page: 2
  year: 2019
  ident: pone.0254007.ref009
  article-title: Use of Machine Learning to Detect Wildlife Product Promotion and Sales on Twitter
  publication-title: Front Big Data
  contributor:
    fullname: Q Xu
– ident: pone.0254007.ref016
– volume: 227
  start-page: 219
  year: 2018
  ident: pone.0254007.ref005
  article-title: Assessing consumer trends and illegal activity by monitoring the online wildlife trade
  publication-title: Biol Conserv
  doi: 10.1016/j.biocon.2018.09.025
  contributor:
    fullname: Y-H Sung
– volume: 2
  start-page: 455
  year: 2020
  ident: pone.0254007.ref006
  article-title: Making Messy Data Work for Conservation
  publication-title: One Earth
  doi: 10.1016/j.oneear.2020.04.012
  contributor:
    fullname: ADM Dobson
– volume-title: ggplot2: Elegant Graphics for Data Analysis
  year: 2009
  ident: pone.0254007.ref024
  doi: 10.1007/978-0-387-98141-3
  contributor:
    fullname: H Wickham
– ident: pone.0254007.ref018
– ident: pone.0254007.ref020
– year: 2020
  ident: pone.0254007.ref004
  article-title: Wildlife trade shifts from brick-and-mortar markets to virtual marketplaces: A case study of birds of prey trade in Thailand
  publication-title: J Asia-Pac Biodivers
  contributor:
    fullname: P Siriwat
– volume: 13
  start-page: 203
  year: 2020
  ident: pone.0254007.ref012
  article-title: A policy approach to nonindigenous bird management in Victoria–managing potential threats to biodiversity, social amenity and economic values
  publication-title: Vic Nat
  contributor:
    fullname: AP Woolnough
– ident: pone.0254007.ref017
  doi: 10.21105/joss.00037
– volume: 33
  start-page: 210
  year: 2019
  ident: pone.0254007.ref010
  article-title: A framework for investigating illegal wildlife trade on social media with machine learning
  publication-title: Conserv Biol
  doi: 10.1111/cobi.13104
  contributor:
    fullname: ED Minin
– year: 2020
  ident: pone.0254007.ref028
  article-title: Online auction marketplaces as a global pathway for aquatic invasive species
  publication-title: Hydrobiologia
  contributor:
    fullname: JD Olden
– volume: 30
  start-page: 1038
  year: 2016
  ident: pone.0254007.ref014
  article-title: Estimating the extent and structure of trade in horticultural orchids via social media
  publication-title: Conserv Biol
  doi: 10.1111/cobi.12721
  contributor:
    fullname: A Hinsley
– volume: 1
  start-page: e10
  year: 2015
  ident: pone.0254007.ref026
  article-title: Automatic detection of potentially illegal online sales of elephant ivory via data mining
  publication-title: PeerJ Comput Sci
  doi: 10.7717/peerj-cs.10
  contributor:
    fullname: J Hernandez-Castro
– ident: pone.0254007.ref022
– ident: pone.0254007.ref007
  article-title: A guide to using the Internet to monitor and quantify the wildlife trade
  publication-title: Conserv Biol
  contributor:
    fullname: OC Stringham
– volume: 29
  start-page: R977
  year: 2019
  ident: pone.0254007.ref025
  article-title: Deep learning for environmental conservation
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2019.08.016
  contributor:
    fullname: A Lamba
– volume: 115
  start-page: E5716
  year: 2018
  ident: pone.0254007.ref027
  article-title: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.1719367115
  contributor:
    fullname: MS Norouzzadeh
– volume: 12
  start-page: e0172851
  year: 2017
  ident: pone.0254007.ref013
  article-title: Leaky doors: Private captivity as a prominent source of bird introductions in Australia
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0172851
  contributor:
    fullname: M Vall-llosera
– volume: 324
  start-page: 594
  year: 2009
  ident: pone.0254007.ref001
  article-title: Reducing the Risks of the Wildlife Trade
  publication-title: Science
  doi: 10.1126/science.1174460
  contributor:
    fullname: KF Smith
– volume: 366
  start-page: 71
  year: 2019
  ident: pone.0254007.ref002
  article-title: Global wildlife trade across the tree of life
  publication-title: Science
  doi: 10.1126/science.aav5327
  contributor:
    fullname: BR Scheffers
– volume: 55
  start-page: 2632
  year: 2018
  ident: pone.0254007.ref008
  article-title: Pet problems: Biological and economic factors that influence the release of alien reptiles and amphibians by pet owners
  publication-title: J Appl Ecol
  doi: 10.1111/1365-2664.13237
  contributor:
    fullname: OC Stringham
– ident: pone.0254007.ref019
– ident: pone.0254007.ref021
– ident: pone.0254007.ref015
  doi: 10.1145/1401890.1401965
– volume: 36
  start-page: 10206
  year: 2009
  ident: pone.0254007.ref011
  article-title: A review of machine learning approaches to Spam filtering
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.02.037
  contributor:
    fullname: TS Guzella
– volume: 12
  start-page: 2825
  year: 2011
  ident: pone.0254007.ref023
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J Mach Learn Res
  contributor:
    fullname: F Pedregosa
SSID ssj0053866
Score 2.4811106
Snippet Automated monitoring of websites that trade wildlife is increasingly necessary to inform conservation and biosecurity efforts. However, e-commerce and wildlife...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage e0254007
SubjectTerms Advertising
Biodiversity
Biology and Life Sciences
Biosecurity
Birds
Classification
Classifiers
Computer and Information Sciences
Conservation
Context
Data collection
Data processing
Datasets
Electronic commerce
Evaluation
Food
Funding
Image classification
Internet
Learning algorithms
Machine learning
Natural language processing
Poultry
Reptiles & amphibians
Sensitivity analysis
Social Sciences
Streamlining
Text categorization
Text processing
Unstructured data
Websites
Wild animal trade
Wildlife conservation
Wildlife trade
SummonAdditionalLinks – databaseName: Directory of Open Access Journals(OpenAccess)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggykMNtGAQEnBI610_Et8oiKogARK0qDfLT6jUJiuy-_-ZSbyrtYQEB67x5PWNx_6czHwm5AXz2gkRUs08szXKn9RO8aa2QjPfaiBKHKuRP31WZxfi46W83NnqC3PCJnngCbjjGBslm-QZF0q0wWvhpHY4r0ah5nFSAmV6s5iaxmCIYqVyoRxv5sfZL0fLvotHWP_NcPvYnYlo1Ovfjsqz5XU_FJSzTJjcmYFO75I7mTrSk-mR98it2N0jezk4B_oqK0i_vk_enMOQSz0SY8wEGsGnq55iYYi9QWJJJ4UMCkw5XF-lSOGGIVI7SpTE4QG5OH1__u6szlsl1F4pvaqF5EkmJVjizjqgDF4n65KyVqICF7dSpgDDMl-0WIYcArAmrxpvpeeWq8QfklkH4OwT6oMD0pRcYoAwELJWcS6TnscgFyLGtiL1BjeznBQxzPhbrIGVxISEQZxNxrkibxHcrS3qWY8HwMsme9n8zcsVeYquMVNx6DYqzYnCv0i4sWBFno8WqGnRYdLMD7seBvPhy_d_MPr2tTB6mY1SD-B7mwsV4J1QK6uwPCgsITJ90byPHWmDymDGxTjgtJBw5qZz_bn52bYZL4qJcF3s12gjAVcNTq1IU3TKAuCypbv6OQqHt1h8yOaP_odHHpPbC0zvwS_d-oDMVr_W8RD42co9GUPxNwLlOLo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZge-GCKA81UMAgJOCQNhs_Ep-gRa0KEgWVFvVm-VkqlWRpdv8_M4mzNBJCXNeTRDvjGX-2Z74h5FXhlOXcx7xwhcmR_iS3klW54apwtQKgxLAa-fOxPDrjn87FeTpw61Ja5RgT-0DtW4dn5Lv9RoZVsB6_W_zKsWsU3q6mFhq3yUYJO4VyRjb2D46_noyxGLxZylQwB8_uJvvsLNom7GAdeIFtZG8sSD1v_zo6zxZXbTeBntPEyRsr0eE9cjdBSLo32HyT3ArNfbKZnLSjbxKT9NsH5P0phF7qECBjRlBvBLpsKRaImJ8IMOnAlEEBMfuryxgofNAHanqqktA9JGeHB6cfjvLUMiF3UqplzgWLIkpeRGaNBejgVDQ2SmMEMnExI0T0EJ5ZWWM5sveAnpysnBGOGSYje0RmDShni1DnLYCnaGOhAtKg1ZIxEdU8eFHyEOqM5KPe9GJgxtD99VgFO4pBExr1rJOeM7KPyl3LIq91_0N7faGTm-gQKimq6ArGJa-9U9wKZRFFBS7ngWfkOZpGD0Wia-_UexJvk7DBYEZe9hLIbdFg8syFWXWd_vjl-38IfTuZCL1OQrEF5TuTChbgPyFn1kRyeyIJHuomw1s4kUatdPrPXIYnx8n19-EX62F8KSbENaFdoYwAvSowakaqyaScKHg60lz-6AnEayxCLOaP__3xJ-ROiQk8eJattslseb0KTwGBLe2z5Ga_AQQDMgw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access(OpenAccess)
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLWm8sILYnxoYQMMQgIeUqXxR-IHBAMxDSRAghXtzbIde0wqSWlaCf49vo4TYWmTeK2v2-bY1z6O7z0XoWeFEZrSxuWFKVQO8ie55qTKFRWFqYUnSgSykT995qdL-vGcne-hsWZrBLC_8mgH9aSWm9X8968_r73DvwpVG6rF2Gm-7lo7h-zukF5-owRpLgjmo9O9gvduzmMC3XU9kw0q6PhPq_Vsver6hIqmgZT_7Ewnt9GtSCnx8TAH9tGebe-g_ei0PX4RlaVf3kVvzvxSjA0QZogQCoOCtx2GhBH1EwgnHpQzsGfQzerSWex_sLFYBekS299Dy5P3Z-9O81hCITeci21OGXHMcVo4opX2VMIIp7TjSjFQ5iKKMdf45ZqUNaQnN41nU4ZXRjFDFOGO3Eez1oNzgLBptCdTTrtCWJBFqzkhzImFbVhJra0zlI-4yfWglCHDdVnlTxgDEhJwlhHnDL0FcCdb0LkOH3SbCxndRlpbcVY5UxDKad0YQTUTGliVpXxhaYYew9DIIWl08lZ5zOF2CQoOZuhpsACtixaCaS7Uru_lhy_f_8Po29fE6Hk0cp0H36iYwOCfCTS0EsujxNJ7rEmaD2Aijaj0MhzSPU4l8z3HyXV185OpGb4UAuRa2-3AhnlchR_UDFXJpEwATlvayx9BULyGpMRi8eD6_3WIbpYQzAPvtcURmm03O_vQs7GtfhQc7C8Y-zSv
  priority: 102
  providerName: Scholars Portal
Title Text classification to streamline online wildlife trade analyses
URI https://www.proquest.com/docview/2549937125
https://search.proquest.com/docview/2550259790
https://pubmed.ncbi.nlm.nih.gov/PMC8270201
https://doaj.org/article/ee7657fc034648dc94b59b6399e461e4
http://dx.doi.org/10.1371/journal.pone.0254007
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2IqFdEONDK4wSEBJwSJvWH4lvbFXLQOqYxoZ6i2zH3iq1SbW01_3te89JqkXigLj4UL989Pf87J-T934h5FNkpGYsc2FkIhWi_EmoBY1DxWRkEglEiWI18uxcnF2zn3M-3yO8qYXxSftGL_r5ctXPF7c-t3K9MoMmT2xwMRsnWEQVDQf7ZB8GaLNFr6ZfCGAh6ho5Gg8HtUv66yK3fSz9hkXxgDylDNamESZwPVqOvGr_bm7urJdF2SKe7bTJR-vQ9Dl5VhPI4KS60UOyZ_MX5LAO0TL4UutIf31Jvl3BxBsYpMeYD-RdEGyKAMtD1ArpZVDpZATAl7PlwtkALpjZQHmhElu-ItfTydX4LKw_mBAaIeQmZJw67gSLHNVKA3Ew0inthFIcdbio4txlMDnTUYLFyFkG3MmI2ChuqKLC0dekkwNORyQwmQbq5LSLpEURtERQyp0c2oyPmLVJl4QNbum60sVI_cuxGPYTFRIpQp7WkHfJKYK7s0VVa_9DcXeT1r5NrY0Fj52JKBMsyYxkmkuNHMoyMbSsS96ja9KqRHQXm-mJwHdJ-HnBLvnoLVDZIsfUmRu1Lcv0x68__2D0-7Jl9Lk2cgWAb1RdrgD_CRWzWpbHLUuIT9PqPsKB1KBSpn5LDjiNOBzZDK6_d3_YdeNJMR0ut8UWbTjgKsGpXRK3BmUL4HYPRJOXD6-j581_H_mWHIwwswcfcstj0tncbe07oGYb3YOAnMfQJuMhttPvPfLkdHJ-cdnzDzugnbEE2_tJz4ftAxF7QLY
link.rule.ids 230,315,730,783,787,867,888,2109,2228,12070,12237,12779,21402,24332,27938,27939,31733,31734,33280,33281,33387,33388,33758,33759,43324,43593,43614,43819,53806,53808,74081,74350,74371,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOcAFUR5q2kIDQgIOabPrR-ITFMSyhbZIsEW9WY4fpVKbLM3u_2fGcZZGQohrPEmUGc_4iz3zDSEvcyMrxqzPcpPrDOlPskrQItNM5qaUAJQoViMfn4jZKft8xs_ihlsb0yr7mBgCtW0M7pHvhx8ZWsB6_HbxK8OuUXi6Glto3CZ3GIWFBivFp5_6SAy-LEQsl4M796N19hZN7fawCjzHJrI3lqPA2r-OzaPFZdMOgOcwbfLGOjR9QO5HAJkedBbfILdc_ZBsRBdt09eRR_rNI_JuDoE3NQiPMR8omCBdNimWh-grhJdpx5ORAl62lxfepfBC61IdiEpc-5icTj_OP8yy2DAhM0LIZcY49dwLlnta6QqAg5FeV15ozZGHi2rOvYXgTCclFiNbC9jJiMJobqimwtMnZFSDcjZJamwF0MlXPpcOSdBKQSn3cuwsnzDnyoRkvd7UouPFUOFwrID_iU4TCvWsop4T8h6Vu5ZFVutwobk-V9FJlHOF4IU3OWWCldZIVnFZIYZyTIwdS8gumkZ1JaJr31QHAs-SsL1gQl4ECWS2qDF15lyv2lYdfv3xH0Lfvw2EXkUh34DyjY7lCvBNyJg1kNwZSIJ_msHwJk6kXiut-jOT4c5-cv19-Pl6GB-K6XC1a1Yow0GvEoyakGIwKQcKHo7UFz8DfXiJJYj5eOvfL98ld2fz4yN1dHjyZZvcm2AqD-5qyx0yWl6v3FPAYsvqWXC433tFM5c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELZgkRAviHKogUIDQgIe0s2uj8RPUI5Vy1EQtGjfLJ-lUkmWZvf_M-P1hkZCiNd4kihz2J_jmW8IeVpaaRhzoShtqQukPymMoFWhmSxtLQEoUaxG_nQkDk7Y-zmfp_ynLqVVbubEOFG71uI_8nHcyNAK1uNxSGkRX97OXi5-FdhBCk9aUzuNq-RaxWChA9-u5v3mC-JaiFQ6B08ZJ0vtLdrG72FFeIkNZS8tTZHBv5-nR4vzthuA0GEK5aU1aXaL3ExgMt9fW3-LXPHNbbKVwrXLnydO6Rd3yKtj-JLcIlTG3KBojnzZ5lgqon8i1MzXnBk5YGd3fhZ8Di90PteRtMR3d8nJ7N3xm4MiNU8orBByWTBOAw-ClYEabQBEWBm0CUJrjpxcVHMeHEzUdFpjYbJzgKOsqKzmlmoqAr1HRg0oZ5vk1hmAUcGEUnokRKsFpTzIiXd8yryvM1Js9KYWa44MFQ_KKthbrDWhUM8q6Tkjr1G5vSwyXMcL7cWpSgGjvK8Er4ItKROsdlYyw6VBPOWZmHiWkV00jVqXi_ZxqvYFnithq8GMPIkSyHLRoL-c6lXXqcPP3_9D6NvXgdCzJBRaUL7VqXQBvgnZswaSOwNJiFU7GN5GR9popVN_vBru3DjX34cf98P4UEyNa3y7QhkOepVg1IxUA6ccKHg40pz9iFTiNZYjlpP7_375LrkOsaY-Hh59eEBuTDGrB39wyx0yWl6s_EOAZUvzKMbbb-9PN8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Text+classification+to+streamline+online+wildlife+trade+analyses&rft.jtitle=PloS+one&rft.au=Stringham%2C+Oliver&rft.au=Moncayo%2C+Stephanie&rft.au=Katherine+G+W+Hill&rft.au=Toomes%2C+Adam&rft.date=2021-07-09&rft.pub=Public+Library+of+Science&rft.eissn=1932-6203&rft.volume=16&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.pone.0254007&rft.externalDocID=2549937125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon