Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network
Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in no...
Saved in:
Published in | PloS one Vol. 15; no. 9; p. e0238915 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
San Francisco
Public Library of Science
24.09.2020
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in noisy PPI networks is an essential computational method for automatically expanding the human interactome and for identifying biologically legitimate but undetected interactions for experimental determination of PPIs, which is both expensive and time-consuming. Recently, graph convolutional networks (GCN) have shown their effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood aggregation procedure and have emerged as a powerful architecture for node or graph representations. In this paper, we propose a novel node (protein) embedding method by combining GCN and PageRank as the latter can significantly improve the GCN's aggregation scheme, which has difficulty in extending and exploring topological information of networks across higher-order neighborhoods of each node. Building on this novel node embedding model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture, which can learn a joint node representation of higher-order local and global PPI network topology for novel protein interaction prediction. It is worth noting that our method is based exclusively on network topology, with no protein attributes or extra biological features used. Extensive computational validations on PPI prediction task demonstrate our method without leveraging any additional biological information shows competitive performance-outperforms all existing graph embedding-based link prediction methods in both accuracy and robustness. |
---|---|
AbstractList | Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in noisy PPI networks is an essential computational method for automatically expanding the human interactome and for identifying biologically legitimate but undetected interactions for experimental determination of PPIs, which is both expensive and time-consuming. Recently, graph convolutional networks (GCN) have shown their effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood aggregation procedure and have emerged as a powerful architecture for node or graph representations. In this paper, we propose a novel node (protein) embedding method by combining GCN and PageRank as the latter can significantly improve the GCN's aggregation scheme, which has difficulty in extending and exploring topological information of networks across higher-order neighborhoods of each node. Building on this novel node embedding model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture, which can learn a joint node representation of higher-order local and global PPI network topology for novel protein interaction prediction. It is worth noting that our method is based exclusively on network topology, with no protein attributes or extra biological features used. Extensive computational validations on PPI prediction task demonstrate our method without leveraging any additional biological information shows competitive performance-outperforms all existing graph embedding-based link prediction methods in both accuracy and robustness. Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in noisy PPI networks is an essential computational method for automatically expanding the human interactome and for identifying biologically legitimate but undetected interactions for experimental determination of PPIs, which is both expensive and time-consuming. Recently, graph convolutional networks (GCN) have shown their effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood aggregation procedure and have emerged as a powerful architecture for node or graph representations. In this paper, we propose a novel node (protein) embedding method by combining GCN and PageRank as the latter can significantly improve the GCN's aggregation scheme, which has difficulty in extending and exploring topological information of networks across higher-order neighborhoods of each node. Building on this novel node embedding model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture, which can learn a joint node representation of higher-order local and global PPI network topology for novel protein interaction prediction. It is worth noting that our method is based exclusively on network topology, with no protein attributes or extra biological features used. Extensive computational validations on PPI prediction task demonstrate our method without leveraging any additional biological information shows competitive performance-outperforms all existing graph embedding-based link prediction methods in both accuracy and robustness.Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in noisy PPI networks is an essential computational method for automatically expanding the human interactome and for identifying biologically legitimate but undetected interactions for experimental determination of PPIs, which is both expensive and time-consuming. Recently, graph convolutional networks (GCN) have shown their effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood aggregation procedure and have emerged as a powerful architecture for node or graph representations. In this paper, we propose a novel node (protein) embedding method by combining GCN and PageRank as the latter can significantly improve the GCN's aggregation scheme, which has difficulty in extending and exploring topological information of networks across higher-order neighborhoods of each node. Building on this novel node embedding model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture, which can learn a joint node representation of higher-order local and global PPI network topology for novel protein interaction prediction. It is worth noting that our method is based exclusively on network topology, with no protein attributes or extra biological features used. Extensive computational validations on PPI prediction task demonstrate our method without leveraging any additional biological information shows competitive performance-outperforms all existing graph embedding-based link prediction methods in both accuracy and robustness. |
Audience | Academic |
Author | Xiao, Ze Deng, Yue |
AuthorAffiliation | School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, China Technische Universitat Dresden, GERMANY |
AuthorAffiliation_xml | – name: Technische Universitat Dresden, GERMANY – name: School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, China |
Author_xml | – sequence: 1 givenname: Ze surname: Xiao fullname: Xiao, Ze – sequence: 2 givenname: Yue surname: Deng fullname: Deng, Yue |
BookMark | eNqNk1trFDEUxwep2It-A8EBQfRh1tx31gehFK0LhYK315DLmdnU2WRNZlb99mZ3R-mUIpKHhJPf_5-ck5zT4sgHD0XxFKMZpnP8-iYM0atutsnhGSK0XmD-oDjBC0oqQRA9urU-Lk5TukGI01qIR8UxJYs5EjU-KdrLqDarEtYarHW-rbRKYEsfttCVmxh6cL50voeoTO-CzzGw7rDcOlWuXLuCWIVoIZbt3ssEvw3dsENUV3rof4T47XHxsFFdgifjfFZ8ef_u88WH6ur6cnlxflUZIRZ9RZnRoFnNCBgGgmtDakyoJUgzazVqKICgNSgiMCYaIb0QgouGM6QboTg9K54dfDddSHKsUZKEMb7guR44E8sDYYO6kZvo1ir-kkE5uQ-E2EoVe2c6kEoBFoQ3gLRlls0Vq3UNBnOuuSFKZa-342mDXoM14PuouonpdMe7lWzDVs45Zvk1ssHL0SCG7wOkXq5dMtB1ykMY9vcWQswRrTP6_A56f3Yj1aqcgPNNyOeanak8F1QwzPM3ydTsHioPC2uX3w8al-MTwauJIDM9_OxbNaQkl58-_j97_XXKvrjFrkB1_SqNnydNQXYATQwpRWj-FhkjueuHP9WQu36QYz9k2Zs7MuN6tXPPCbvu3-LffCQT3g |
CitedBy_id | crossref_primary_10_1016_j_compbiolchem_2022_107755 crossref_primary_10_1109_TCBB_2024_3381825 crossref_primary_10_1016_j_chaos_2024_115062 crossref_primary_10_3389_fbioe_2022_807522 crossref_primary_10_1186_s12859_023_05612_6 crossref_primary_10_1016_j_sbi_2022_102344 crossref_primary_10_1186_s12859_023_05594_5 crossref_primary_10_1016_j_compbiolchem_2023_107980 crossref_primary_10_1093_bib_bbaa357 crossref_primary_10_1186_s12859_022_04942_1 crossref_primary_10_1177_11769343221123050 crossref_primary_10_1142_S0129065723500636 crossref_primary_10_1093_bib_bbac170 crossref_primary_10_1109_TCBB_2021_3078089 crossref_primary_10_1142_S0129065721500477 crossref_primary_10_3390_make6030104 crossref_primary_10_1016_j_compbiomed_2024_109449 crossref_primary_10_1155_2023_8342104 crossref_primary_10_1186_s12880_024_01349_7 crossref_primary_10_1093_bib_bbaa391 crossref_primary_10_1021_acs_jcim_1c00982 crossref_primary_10_1145_3626528 crossref_primary_10_32604_iasc_2024_058736 crossref_primary_10_1109_TCBB_2023_3239983 crossref_primary_10_1080_17460441_2021_1910673 crossref_primary_10_1109_TCBB_2023_3273567 crossref_primary_10_2174_1574893618666230612161210 |
Cites_doi | 10.1093/nar/gkj109 10.1093/bioinformatics/btq510 10.1093/bioinformatics/bty294 10.1038/nature04209 10.1038/s41467-019-09177-y 10.1145/2623330.2623732 10.1016/j.tibtech.2016.02.014 10.1093/bioinformatics/btz718 10.1145/2939672.2939753 10.1093/bib/bby117 10.1101/346916 10.1145/2939672.2939751 10.1093/bioinformatics/btt208 10.1016/j.physa.2010.11.027 10.1145/2488388.2488393 10.1016/S0378-8733(03)00009-1 10.1007/s11432-014-5237-y 10.1101/605451 10.1093/bioinformatics/bts688 10.1109/TKDE.2018.2807452 10.1038/nature22366 10.1016/j.physa.2019.121319 10.1007/978-3-319-93417-4_38 10.1145/2939672.2939754 10.1145/2736277.2741093 10.1016/j.cell.2014.10.050 10.1016/j.ymeth.2019.04.008 10.1371/journal.pcbi.1000454 10.1609/aaai.v32i1.11604 10.1145/2806416.2806512 10.1016/j.sbi.2013.08.002 10.1016/j.cell.2015.09.053 10.1186/1471-2105-13-S7-S3 10.1038/nrd.2016.29 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Public Library of Science 2020 Xiao, Deng. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Xiao, Deng 2020 Xiao, Deng |
Copyright_xml | – notice: COPYRIGHT 2020 Public Library of Science – notice: 2020 Xiao, Deng. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Xiao, Deng 2020 Xiao, Deng |
DBID | AAYXX CITATION IOV ISR 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1371/journal.pone.0238915 |
DatabaseName | CrossRef Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : directory of open access journals |
DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Architecture Computer Science |
DocumentTitleAlternate | Graph embedding-based novel protein interaction prediction |
EISSN | 1932-6203 |
ExternalDocumentID | 2445951931 oai_doaj_org_article_aae1625fe0bd4d47a48b8ec155b5c2aa PMC7514053 A636415915 10_1371_journal_pone_0238915 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 61672406 – fundername: ; grantid: 61772395 |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PTHSS PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM BBORY PMFND 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 5PM PUEGO AAPBV ABPTK N95 |
ID | FETCH-LOGICAL-c669t-34cbeb4842ec4e65bc28123d20b4ddb0f3ee638ea26112b00b96656f540bf6a53 |
IEDL.DBID | M48 |
ISSN | 1932-6203 |
IngestDate | Sun Jun 04 06:36:57 EDT 2023 Wed Aug 27 01:22:45 EDT 2025 Thu Aug 21 18:45:23 EDT 2025 Fri Jul 11 01:58:09 EDT 2025 Fri Jul 25 11:22:22 EDT 2025 Tue Jun 17 20:26:55 EDT 2025 Tue Jun 10 20:31:30 EDT 2025 Fri Jun 27 03:54:50 EDT 2025 Fri Jun 27 04:59:06 EDT 2025 Thu May 22 20:59:25 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Jul 01 01:21:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c669t-34cbeb4842ec4e65bc28123d20b4ddb0f3ee638ea26112b00b96656f540bf6a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. |
OpenAccessLink | https://doaj.org/article/aae1625fe0bd4d47a48b8ec155b5c2aa |
PMID | 32970681 |
PQID | 2445951931 |
PQPubID | 1436336 |
PageCount | e0238915 |
ParticipantIDs | plos_journals_2445951931 doaj_primary_oai_doaj_org_article_aae1625fe0bd4d47a48b8ec155b5c2aa pubmedcentral_primary_oai_pubmedcentral_nih_gov_7514053 proquest_miscellaneous_2446667038 proquest_journals_2445951931 gale_infotracmisc_A636415915 gale_infotracacademiconefile_A636415915 gale_incontextgauss_ISR_A636415915 gale_incontextgauss_IOV_A636415915 gale_healthsolutions_A636415915 crossref_primary_10_1371_journal_pone_0238915 crossref_citationtrail_10_1371_journal_pone_0238915 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-24 |
PublicationDateYYYYMMDD | 2020-09-24 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | San Francisco |
PublicationPlace_xml | – name: San Francisco – name: San Francisco, CA USA |
PublicationTitle | PloS one |
PublicationYear | 2020 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | pone.0238915.ref027 pone.0238915.ref026 pone.0238915.ref029 Y Li (pone.0238915.ref030) 2019; 166 S J Wodak (pone.0238915.ref007) 2013; 23 W Hamilton (pone.0238915.ref033) 2017 M Y Hein (pone.0238915.ref005) 2015; 163 Y-K Lei (pone.0238915.ref011) 2012; 13 O Kuchaiev (pone.0238915.ref008) 2009; 5 L Lü (pone.0238915.ref016) 2011; 390 R Pech (pone.0238915.ref015) 2019; 528 pone.0238915.ref041 A H Smits (pone.0238915.ref003) 2016; 34 pone.0238915.ref020 C Su (pone.0238915.ref025) 2020; 21 pone.0238915.ref040 pone.0238915.ref045 C Lei (pone.0238915.ref012) 2012; 29 pone.0238915.ref024 N Srivastava (pone.0238915.ref046) 2014; 15 I A Kovács (pone.0238915.ref017) 2019; 10 pone.0238915.ref021 pone.0238915.ref043 D E Scott (pone.0238915.ref002) 2016; 15 T Rolland (pone.0238915.ref004) 2014; 159 pone.0238915.ref022 pone.0238915.ref038 pone.0238915.ref039 H Cai (pone.0238915.ref023) 2018; 30 pone.0238915.ref036 pone.0238915.ref018 M Belkin (pone.0238915.ref044) 2002 pone.0238915.ref019 E L Huttlin (pone.0238915.ref006) 2017; 545 P Veličković (pone.0238915.ref034) 2018 J F Rual (pone.0238915.ref001) 2005; 437 J Klicpera (pone.0238915.ref037) 2019 M Zitnik (pone.0238915.ref031) 2018; 34 Z-H You (pone.0238915.ref010) 2010; 26 C Stark (pone.0238915.ref042) 2006; 34 A Lada (pone.0238915.ref013) 2003; 25 C V Cannistraci (pone.0238915.ref009) 2013; 29 T. N Kipf (pone.0238915.ref028) 2017 P Wang (pone.0238915.ref014) 2015; 58 pone.0238915.ref035 pone.0238915.ref032 |
References_xml | – ident: pone.0238915.ref040 – volume: 34 start-page: D535 issue: suppl1 year: 2006 ident: pone.0238915.ref042 article-title: BioGRID: a general repository for interaction datasets publication-title: Nucleic acids research doi: 10.1093/nar/gkj109 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: pone.0238915.ref046 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: The journal of machine learning research – volume: 26 start-page: 2744 year: 2010 ident: pone.0238915.ref010 article-title: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq510 – year: 2018 ident: pone.0238915.ref034 article-title: Graph attention networks publication-title: ICLR – year: 2019 ident: pone.0238915.ref037 article-title: Predict then propagate: Graph neural networks meet personalized pagerank publication-title: ICLR – ident: pone.0238915.ref038 – volume: 34 start-page: i457 issue: 13 year: 2018 ident: pone.0238915.ref031 article-title: Modeling polypharmacy side effects with graph convolutional networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty294 – volume: 437 start-page: 1173 issue: 7062 year: 2005 ident: pone.0238915.ref001 article-title: Towards a proteome-scale map of the human protein–protein interaction network publication-title: Nature doi: 10.1038/nature04209 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: pone.0238915.ref017 article-title: Network-based prediction of protein interactions publication-title: Nature communications doi: 10.1038/s41467-019-09177-y – ident: pone.0238915.ref019 doi: 10.1145/2623330.2623732 – ident: pone.0238915.ref032 – volume: 34 start-page: 825 issue: 10 year: 2016 ident: pone.0238915.ref003 article-title: Characterizing protein–protein interactions using mass spectrometry: challenges and opportunities publication-title: Trends in biotechnology doi: 10.1016/j.tibtech.2016.02.014 – ident: pone.0238915.ref024 doi: 10.1093/bioinformatics/btz718 – ident: pone.0238915.ref027 doi: 10.1145/2939672.2939753 – volume: 21 start-page: 182 issue: 1 year: 2020 ident: pone.0238915.ref025 article-title: Network embedding in biomedical data science publication-title: Briefings in bioinformatics doi: 10.1093/bib/bby117 – ident: pone.0238915.ref018 doi: 10.1101/346916 – ident: pone.0238915.ref021 doi: 10.1145/2939672.2939751 – volume: 29 start-page: i199 issue: 13 year: 2013 ident: pone.0238915.ref009 article-title: Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt208 – ident: pone.0238915.ref029 – volume: 390 start-page: 1150 issue: 6 year: 2011 ident: pone.0238915.ref016 article-title: Link prediction in complex networks: A survey publication-title: Physica A: statistical mechanics and its applications doi: 10.1016/j.physa.2010.11.027 – ident: pone.0238915.ref043 doi: 10.1145/2488388.2488393 – volume: 25 start-page: 211 issue: 3 year: 2003 ident: pone.0238915.ref013 article-title: Adamic and Eytan Adar. Friends and neighbors on the web publication-title: Social Networks doi: 10.1016/S0378-8733(03)00009-1 – volume: 58 start-page: 1 issue: 1 year: 2015 ident: pone.0238915.ref014 article-title: Link prediction in social networks: the state-of-the-art publication-title: Science China Information Sciences doi: 10.1007/s11432-014-5237-y – ident: pone.0238915.ref041 doi: 10.1101/605451 – volume: 29 start-page: 355 issue: 3 year: 2012 ident: pone.0238915.ref012 article-title: A novel link prediction algorithm for reconstructing protein–protein interaction networks by topological similarity publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts688 – start-page: 585 year: 2002 ident: pone.0238915.ref044 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Advances in neural information processing systems – volume: 30 start-page: 1616 issue: 9 year: 2018 ident: pone.0238915.ref023 article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2018.2807452 – volume: 545 start-page: 505 issue: 7655 year: 2017 ident: pone.0238915.ref006 article-title: Architecture of the human interactome defines protein communities and disease networks publication-title: Nature doi: 10.1038/nature22366 – volume: 528 start-page: 121319 year: 2019 ident: pone.0238915.ref015 article-title: Link prediction via linear optimization publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2019.121319 – ident: pone.0238915.ref035 doi: 10.1007/978-3-319-93417-4_38 – ident: pone.0238915.ref039 – ident: pone.0238915.ref020 doi: 10.1145/2939672.2939754 – ident: pone.0238915.ref026 doi: 10.1145/2736277.2741093 – volume: 159 start-page: 1212 issue: 5 year: 2014 ident: pone.0238915.ref004 article-title: A proteome-scale map of the human interactome network publication-title: Cell doi: 10.1016/j.cell.2014.10.050 – volume: 166 start-page: 4 year: 2019 ident: pone.0238915.ref030 article-title: Deep learning in bioinformatics: Introduction, application, and perspective in the big data era publication-title: Methods doi: 10.1016/j.ymeth.2019.04.008 – volume: 5 start-page: e1000454 year: 2009 ident: pone.0238915.ref008 article-title: Geometric denoising of protein–protein interaction networks publication-title: PLOS Computational Biology doi: 10.1371/journal.pcbi.1000454 – ident: pone.0238915.ref036 doi: 10.1609/aaai.v32i1.11604 – year: 2017 ident: pone.0238915.ref028 article-title: Semisupervised classification with graph convolutional networks publication-title: ICLR – ident: pone.0238915.ref022 doi: 10.1145/2806416.2806512 – volume: 23 start-page: 941 issue: 6 year: 2013 ident: pone.0238915.ref007 article-title: Protein–protein interaction networks: the puzzling riches publication-title: Current opinion in structural biology doi: 10.1016/j.sbi.2013.08.002 – ident: pone.0238915.ref045 – volume: 163 start-page: 712 issue: 3 year: 2015 ident: pone.0238915.ref005 article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances publication-title: Cell doi: 10.1016/j.cell.2015.09.053 – volume: 13 start-page: S3 issue: Suppl 7 year: 2012 ident: pone.0238915.ref011 article-title: Assessing and predicting protein interactions by combining manifold embedding with multiple information integration publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S7-S3 – start-page: 1024 year: 2017 ident: pone.0238915.ref033 article-title: Inductive representation learning on large graphs publication-title: Advances in Neural Information Processing Systems 30 – volume: 15 start-page: 533 issue: 8 year: 2016 ident: pone.0238915.ref002 article-title: Small molecules, big targets: drug discovery faces the protein–protein interaction challenge publication-title: Nature Reviews Drug Discovery doi: 10.1038/nrd.2016.29 |
SSID | ssj0053866 |
Score | 2.48729 |
Snippet | Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and... Protein–protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and... |
SourceID | plos doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | e0238915 |
SubjectTerms | Agglomeration Algorithms Architecture Artificial neural networks Biological activity Biological computing Biology and Life Sciences Coders Computer and Information Sciences Computer applications Computer science Embedding Graphical representations Informatics Machine learning Medicine and Health Sciences Methods Neighborhoods Network topologies Neural networks Nodes Noise levels Physical Sciences Predictions Protein interaction Protein-protein interactions Proteins Research and Analysis Methods Search engines Social networks Topology |
SummonAdditionalLinks | – databaseName: DOAJ : directory of open access journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggykNdKGAQEnBwu4kdJzkWRClIgAQU9Wb5MWlX2iar7m5_PzOON9pISOXAbRVPssk8Mt_E48-Mvc7KoGoZtCi99ELpRovawUxgJGXS5spCtPTXb_r0TH05L853tvqinrCeHrhX3JG1kCFGb2DmggqqtKpyFXhMg67wuY3QCHPetpjq38EYxVqnhXKyzI6SXQ6XXQuHlKVq2gZ3JxFFvv7hrTxZLrrVCHKOGyZ3MtDJfXYvQUd-3N_yHrsD7QO2l4Jzxd8mBul3D9nFJ6Kh5nDlIFBuEpSrAm-7G1jwyMwwbzkRRVz3yxrwGM3XxJ83c8svY_OHiLScPFJac-pOT16K99D2zeOP2NnJx18fTkXaUUF4reu1kMo7cKpSOXgFunA-xwQvQz5zKgQ3ayQABiRYrKuyHCPSYTVU6AZhnWu0LeRjNmlRh_uM1yV4a-ugciURUqlKNkXTWJRSWRV0PWVyq17jE9047XqxMHEOrcSyo1ebIaOYZJQpE8NZy55u4xb592S5QZbIsuMBdCGTXMjc5kJT9oLsbvqVp0PIm2MtNeKb-DevogQRZrTUkXNhN6uV-fz99z8I_fwxEnqThJoO1eFtWgWBz0REXCPJg5Ekhr0fDe-Tl261sjKI04qa8HiGZ2499-_DL4dhuih12bXQbaIMVrOYA6opK0ceP1LweKSdX0ZW8hKhNwbek_9hkafsbk7fNeLs3wGbrK838AzB39o9j3H-B5GEXT4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDI9gvCAk4AboBgcEhAQ85G5t0rR9QgNxHEiABBzaW5Wv7iaNdqzb_f3YaVpWCQFvVeOunR3Hduz8TMizKLUi51ay1HDDhCwly7WbMtCkiKtYKOcl_fGTPDsXH-bJPGy4NaGsslsT_UJta4N75CdghpIc3Y3o1fonw65RmF0NLTSukmsIXYYlXem8D7hAl6UMx-V4Gp0E6Ryv68odo63KsRnunjnyqP392jxar-pm4HgOyyb37NDpbXIzOJB01kr8gFxx1ZjcmO3lA8bkVtergQbVHZODcNXQFwFp-uUdsniHcNXU_dDOog1jaNMsrepLt6IewWFZUQSU2LTHH-Ae5nX85eVS0QtfJMI8fCf10NcUq9jDbIavrNoi87vk_PTttzdnLHReYEbKfMu4MNppkYnYGeFkok0MjgC38VQLa_W05M6B4joF8VcUg-ZqiJoSWYL7p0upEn6PjCrg8iGheeqMUrkVseDgeomMl0lZKqASUWZlPiG8E0BhAiw5dsdYFT7XlkJ40jK2QLEVQWwTwvqn1i0sxz_oX6Nse1oE1fY36s2iCDpaKOUiCAdLN9VWWJEqkenMGfC4dGJipSbkMc6Moj2h2i8NxUxyCX6Qf81TT4HAGhVW7izUrmmK95-__wfR1y8DoueBqKyBHUaF0xLwnxCwa0B5NKCE5cEMhg9xHndcaYrfigRPdnP7z8NP-mH8UazGq1y98zQQ9YKtyCYkHejEgMHDkWp54dHLU3DRQTXv__3lD8j1GHc2fP7viIy2m517CO7fVj_yOv4LI45emw priority: 102 providerName: ProQuest |
Title | Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network |
URI | https://www.proquest.com/docview/2445951931 https://www.proquest.com/docview/2446667038 https://pubmed.ncbi.nlm.nih.gov/PMC7514053 https://doaj.org/article/aae1625fe0bd4d47a48b8ec155b5c2aa http://dx.doi.org/10.1371/journal.pone.0238915 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnxoHaMEhAQ8pGpix04eENqmdQNpAw2K-hb5K12lkpSmneC_585xIyINsZeois9pe_b5fheff0fI60gYllHDQ6GpDhkveJgpOwrBkiIqYyatG-mLS34-YZ-myXSHbGu2egXWt4Z2WE9qsloMf_38_QEM_r2r2iCibafhsirtEH1QhqfOd8E3CTTVC9buK4B1u91LRC0hj0fUH6b711M6zspx-rcrd2-5qOoOLO0mVf7lpcYPyQMPL4OjZj7skR1bPiJ73oDr4K1nmX73mMzOkKo6sD-UNei_QvRnJiirG7sIHHvDvAyQTGLVHH2Ae7in4z7ezGVw7RJEQkfdGTja6wAz2P1Mht9QNgnmT8hkfPrt5Dz0VRdCzXm2DinTyiqWsthqZnmidAwggJp4pJgxalRQa8ForYTYK4rBahVETAkvAPqpgsuEPiW9EnS4T4JMWC1lZljMKMAultIiKQoJUixKDc_6hG7Vm2tPSY6VMRa522cTEJo0astxUHI_KH0Str2WDSXHf-SPceRaWSTUdjeq1Sz39plLaSMIBQs7UoYZJiRLVWo1oC2V6FjKPnmB4543p1PbZSE_4pQDBnJf88pJIKlGiVk7M7mp6_zj5-93EPp61RF644WKCtShpT8pAf8Jybo6kocdSVgadKd5H2fpVit1DlguyRCzR9BzO3Nvb37ZNuNDMROvtNXGyUDEC34i7RPRmfEdBXdbyvm1Yy4XAM_BCA_uoqpn5H6M7zbcDuAh6a1XG_scAOBaDcg9MRVwTU8ivI7PBmT3-PTyy9XAvVIZOJv_A9MFYiY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam8gBCAlZAKwxmEAh4yNYkjpM8IFQuo2UXJNimvgXbcbpKJSlNO8Sf4jdyjuOERkLAy96i-OTmc4-Pv0PIEzdMWeyn3AmVrxzGM-7EUvcd0CTXFx4T2nD66JgPT9mHcTDeID_rvTBYVlnbRGOo00LhP_I9cENBjOGG-2r-zcGuUbi6WrfQqMTiQP_4Dilb-XL0Fvj71PP23528GTq2q4CjOI-Xjs-U1JJFzNOKaR5I5YGT81OvL1mayn7maw1CqQXkFq4HUikhIwh4BqGNzLjALhFg8q-A4-2jRoXjJsED28G53Z7nh-6elYbdeZHrXfSNMTbfXXN_pktA4ws681lRtgLddpnmmt_bv0Vu2ICVDioJ2yQbOu-S64O19YcuuVn3hqDWVHTJpj0q6XOLbP3iNpm8R3hsqr9KnaLPdNCHpjQvLvSMGsSIaU4RwGJRbbeAc7iOZA4vpoKem6IUx8CFUgO1TbFq3moPvGVeFbXfIaeXwpO7pJPDLG8RGodaCRGnzGM-hHos8rMgywRQMTdKedwjfs2ARFkYdOzGMUvM2l4I6VA1sQmyLbFs6xGnuWpewYD8g_418rahRRBvc6JYTBJrExIhtAvpZ6b7MmUpCwWLZKQVRHgyUJ4QPbKDkpFUO2IbU5QMuM8h7jKPeWwoEMgjx0qhiViVZTL6ePYfRJ8_tYieWaKsgOlQwu7OgG9CgLAW5XaLEsyRag1voRzXs1ImvxUXrqxl-8_Dj5phvClW_-W6WBkayLLBN0U9ErZ0ojXB7ZF8em7Q0kNICUA17_394Tvk6vDk6DA5HB0f3CfXPPyrYtYet0lnuVjpBxB6LuVDo--UfLlsA_MLq9CbdA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiGEBKyAVhjMIBDwkLVJHCd5QKgwyspgIGCob8F2nK5SSUrTDvGv8ddx5zihkRDwsrcovnz5vuPz7wh54IYpi_2UO6HylcN4xp1Y6oEDmuT6wmNCG06_PeaHJ-z1JJhskZ_1Xhgsq6xtojHUaaHwH3kf3FAQY7jh9jNbFvH-YPRs8c3BDlK40lq306hE5Ej_-A7pW_l0fAC8fuh5o5efXhw6tsOAoziPV47PlNSSRczTimkeSOWBw_NTbyBZmspB5msNAqoF5BmuBxIqITsIeAZhjsy4wI4RYP4vhH7goo6FkybZAzvCud2q54du30rG_qLI9T76yRgb8W64QtMxoPELncW8KFtBb7tkc8MHjq6RKzZ4pcNK2rbJls675PJwYy2iS67WfSKoNRtdsm2PSvrYolw_uU6mrxAqm-qvUqfoPx30pynNizM9pwY9YpZTBLNYVlsv4ByuKZnDs5mgp6ZAxTHQodTAblOsoLeaBG-ZVwXuN8jJufDkJunkMMs7hMahVkLEKfOYD2Efi_wsyDIBVMyNUh73iF8zIFEWEh07c8wTs84XQmpUTWyCbEss23rEaa5aVJAg_6B_jrxtaBHQ25woltPE2odECO1CKprpgUxZykLBIhlpBdGeDJQnRI_soWQk1e7YxiwlQ-5ziMHMY-4bCgT1yFE9pmJdlsn43ef_IPr4oUX0yBJlBUyHEnanBnwTgoW1KHdblGCaVGt4B-W4npUy-a3EcGUt238evtcM402xEjDXxdrQQMYNfirqkbClE60Jbo_ks1ODnB5CegCqeevvD98jF8G0JG_Gx0e3ySUPf7CYZchd0lkt1_oORKEredeoOyVfztu-_ALFmJ-q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+embedding-based+novel+protein+interaction+prediction+via+higher-order+graph+convolutional+network&rft.jtitle=PloS+one&rft.au=Xiao%2C+Ze&rft.au=Deng%2C+Yue&rft.date=2020-09-24&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=9&rft.spage=e0238915&rft_id=info:doi/10.1371%2Fjournal.pone.0238915&rft.externalDBID=IOV&rft.externalDocID=A636415915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |