Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network

Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in no...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 15; no. 9; p. e0238915
Main Authors Xiao, Ze, Deng, Yue
Format Journal Article
LanguageEnglish
Published San Francisco Public Library of Science 24.09.2020
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in noisy PPI networks is an essential computational method for automatically expanding the human interactome and for identifying biologically legitimate but undetected interactions for experimental determination of PPIs, which is both expensive and time-consuming. Recently, graph convolutional networks (GCN) have shown their effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood aggregation procedure and have emerged as a powerful architecture for node or graph representations. In this paper, we propose a novel node (protein) embedding method by combining GCN and PageRank as the latter can significantly improve the GCN's aggregation scheme, which has difficulty in extending and exploring topological information of networks across higher-order neighborhoods of each node. Building on this novel node embedding model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture, which can learn a joint node representation of higher-order local and global PPI network topology for novel protein interaction prediction. It is worth noting that our method is based exclusively on network topology, with no protein attributes or extra biological features used. Extensive computational validations on PPI prediction task demonstrate our method without leveraging any additional biological information shows competitive performance-outperforms all existing graph embedding-based link prediction methods in both accuracy and robustness.
AbstractList Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in noisy PPI networks is an essential computational method for automatically expanding the human interactome and for identifying biologically legitimate but undetected interactions for experimental determination of PPIs, which is both expensive and time-consuming. Recently, graph convolutional networks (GCN) have shown their effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood aggregation procedure and have emerged as a powerful architecture for node or graph representations. In this paper, we propose a novel node (protein) embedding method by combining GCN and PageRank as the latter can significantly improve the GCN's aggregation scheme, which has difficulty in extending and exploring topological information of networks across higher-order neighborhoods of each node. Building on this novel node embedding model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture, which can learn a joint node representation of higher-order local and global PPI network topology for novel protein interaction prediction. It is worth noting that our method is based exclusively on network topology, with no protein attributes or extra biological features used. Extensive computational validations on PPI prediction task demonstrate our method without leveraging any additional biological information shows competitive performance-outperforms all existing graph embedding-based link prediction methods in both accuracy and robustness.
Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in noisy PPI networks is an essential computational method for automatically expanding the human interactome and for identifying biologically legitimate but undetected interactions for experimental determination of PPIs, which is both expensive and time-consuming. Recently, graph convolutional networks (GCN) have shown their effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood aggregation procedure and have emerged as a powerful architecture for node or graph representations. In this paper, we propose a novel node (protein) embedding method by combining GCN and PageRank as the latter can significantly improve the GCN's aggregation scheme, which has difficulty in extending and exploring topological information of networks across higher-order neighborhoods of each node. Building on this novel node embedding model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture, which can learn a joint node representation of higher-order local and global PPI network topology for novel protein interaction prediction. It is worth noting that our method is based exclusively on network topology, with no protein attributes or extra biological features used. Extensive computational validations on PPI prediction task demonstrate our method without leveraging any additional biological information shows competitive performance-outperforms all existing graph embedding-based link prediction methods in both accuracy and robustness.Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and incompleteness, which limits our ability to understand the cell at the system level from the PPI network. Predicting novel (missing) links in noisy PPI networks is an essential computational method for automatically expanding the human interactome and for identifying biologically legitimate but undetected interactions for experimental determination of PPIs, which is both expensive and time-consuming. Recently, graph convolutional networks (GCN) have shown their effectiveness in modeling graph-structured data, which employ a 1-hop neighborhood aggregation procedure and have emerged as a powerful architecture for node or graph representations. In this paper, we propose a novel node (protein) embedding method by combining GCN and PageRank as the latter can significantly improve the GCN's aggregation scheme, which has difficulty in extending and exploring topological information of networks across higher-order neighborhoods of each node. Building on this novel node embedding model, we develop a higher-order GCN variational auto-encoder (HO-VGAE) architecture, which can learn a joint node representation of higher-order local and global PPI network topology for novel protein interaction prediction. It is worth noting that our method is based exclusively on network topology, with no protein attributes or extra biological features used. Extensive computational validations on PPI prediction task demonstrate our method without leveraging any additional biological information shows competitive performance-outperforms all existing graph embedding-based link prediction methods in both accuracy and robustness.
Audience Academic
Author Xiao, Ze
Deng, Yue
AuthorAffiliation School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, China
Technische Universitat Dresden, GERMANY
AuthorAffiliation_xml – name: Technische Universitat Dresden, GERMANY
– name: School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, China
Author_xml – sequence: 1
  givenname: Ze
  surname: Xiao
  fullname: Xiao, Ze
– sequence: 2
  givenname: Yue
  surname: Deng
  fullname: Deng, Yue
BookMark eNqNk1trFDEUxwep2It-A8EBQfRh1tx31gehFK0LhYK315DLmdnU2WRNZlb99mZ3R-mUIpKHhJPf_5-ck5zT4sgHD0XxFKMZpnP8-iYM0atutsnhGSK0XmD-oDjBC0oqQRA9urU-Lk5TukGI01qIR8UxJYs5EjU-KdrLqDarEtYarHW-rbRKYEsfttCVmxh6cL50voeoTO-CzzGw7rDcOlWuXLuCWIVoIZbt3ssEvw3dsENUV3rof4T47XHxsFFdgifjfFZ8ef_u88WH6ur6cnlxflUZIRZ9RZnRoFnNCBgGgmtDakyoJUgzazVqKICgNSgiMCYaIb0QgouGM6QboTg9K54dfDddSHKsUZKEMb7guR44E8sDYYO6kZvo1ir-kkE5uQ-E2EoVe2c6kEoBFoQ3gLRlls0Vq3UNBnOuuSFKZa-342mDXoM14PuouonpdMe7lWzDVs45Zvk1ssHL0SCG7wOkXq5dMtB1ykMY9vcWQswRrTP6_A56f3Yj1aqcgPNNyOeanak8F1QwzPM3ydTsHioPC2uX3w8al-MTwauJIDM9_OxbNaQkl58-_j97_XXKvrjFrkB1_SqNnydNQXYATQwpRWj-FhkjueuHP9WQu36QYz9k2Zs7MuN6tXPPCbvu3-LffCQT3g
CitedBy_id crossref_primary_10_1016_j_compbiolchem_2022_107755
crossref_primary_10_1109_TCBB_2024_3381825
crossref_primary_10_1016_j_chaos_2024_115062
crossref_primary_10_3389_fbioe_2022_807522
crossref_primary_10_1186_s12859_023_05612_6
crossref_primary_10_1016_j_sbi_2022_102344
crossref_primary_10_1186_s12859_023_05594_5
crossref_primary_10_1016_j_compbiolchem_2023_107980
crossref_primary_10_1093_bib_bbaa357
crossref_primary_10_1186_s12859_022_04942_1
crossref_primary_10_1177_11769343221123050
crossref_primary_10_1142_S0129065723500636
crossref_primary_10_1093_bib_bbac170
crossref_primary_10_1109_TCBB_2021_3078089
crossref_primary_10_1142_S0129065721500477
crossref_primary_10_3390_make6030104
crossref_primary_10_1016_j_compbiomed_2024_109449
crossref_primary_10_1155_2023_8342104
crossref_primary_10_1186_s12880_024_01349_7
crossref_primary_10_1093_bib_bbaa391
crossref_primary_10_1021_acs_jcim_1c00982
crossref_primary_10_1145_3626528
crossref_primary_10_32604_iasc_2024_058736
crossref_primary_10_1109_TCBB_2023_3239983
crossref_primary_10_1080_17460441_2021_1910673
crossref_primary_10_1109_TCBB_2023_3273567
crossref_primary_10_2174_1574893618666230612161210
Cites_doi 10.1093/nar/gkj109
10.1093/bioinformatics/btq510
10.1093/bioinformatics/bty294
10.1038/nature04209
10.1038/s41467-019-09177-y
10.1145/2623330.2623732
10.1016/j.tibtech.2016.02.014
10.1093/bioinformatics/btz718
10.1145/2939672.2939753
10.1093/bib/bby117
10.1101/346916
10.1145/2939672.2939751
10.1093/bioinformatics/btt208
10.1016/j.physa.2010.11.027
10.1145/2488388.2488393
10.1016/S0378-8733(03)00009-1
10.1007/s11432-014-5237-y
10.1101/605451
10.1093/bioinformatics/bts688
10.1109/TKDE.2018.2807452
10.1038/nature22366
10.1016/j.physa.2019.121319
10.1007/978-3-319-93417-4_38
10.1145/2939672.2939754
10.1145/2736277.2741093
10.1016/j.cell.2014.10.050
10.1016/j.ymeth.2019.04.008
10.1371/journal.pcbi.1000454
10.1609/aaai.v32i1.11604
10.1145/2806416.2806512
10.1016/j.sbi.2013.08.002
10.1016/j.cell.2015.09.053
10.1186/1471-2105-13-S7-S3
10.1038/nrd.2016.29
ContentType Journal Article
Copyright COPYRIGHT 2020 Public Library of Science
2020 Xiao, Deng. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2020 Xiao, Deng 2020 Xiao, Deng
Copyright_xml – notice: COPYRIGHT 2020 Public Library of Science
– notice: 2020 Xiao, Deng. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2020 Xiao, Deng 2020 Xiao, Deng
DBID AAYXX
CITATION
IOV
ISR
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pone.0238915
DatabaseName CrossRef
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : directory of open access journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic




Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Architecture
Computer Science
DocumentTitleAlternate Graph embedding-based novel protein interaction prediction
EISSN 1932-6203
ExternalDocumentID 2445951931
oai_doaj_org_article_aae1625fe0bd4d47a48b8ec155b5c2aa
PMC7514053
A636415915
10_1371_journal_pone_0238915
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: ;
  grantid: 61672406
– fundername: ;
  grantid: 61772395
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PTHSS
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
BBORY
PMFND
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
5PM
PUEGO
AAPBV
ABPTK
N95
ID FETCH-LOGICAL-c669t-34cbeb4842ec4e65bc28123d20b4ddb0f3ee638ea26112b00b96656f540bf6a53
IEDL.DBID M48
ISSN 1932-6203
IngestDate Sun Jun 04 06:36:57 EDT 2023
Wed Aug 27 01:22:45 EDT 2025
Thu Aug 21 18:45:23 EDT 2025
Fri Jul 11 01:58:09 EDT 2025
Fri Jul 25 11:22:22 EDT 2025
Tue Jun 17 20:26:55 EDT 2025
Tue Jun 10 20:31:30 EDT 2025
Fri Jun 27 03:54:50 EDT 2025
Fri Jun 27 04:59:06 EDT 2025
Thu May 22 20:59:25 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Jul 01 01:21:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-34cbeb4842ec4e65bc28123d20b4ddb0f3ee638ea26112b00b96656f540bf6a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
OpenAccessLink https://doaj.org/article/aae1625fe0bd4d47a48b8ec155b5c2aa
PMID 32970681
PQID 2445951931
PQPubID 1436336
PageCount e0238915
ParticipantIDs plos_journals_2445951931
doaj_primary_oai_doaj_org_article_aae1625fe0bd4d47a48b8ec155b5c2aa
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7514053
proquest_miscellaneous_2446667038
proquest_journals_2445951931
gale_infotracmisc_A636415915
gale_infotracacademiconefile_A636415915
gale_incontextgauss_ISR_A636415915
gale_incontextgauss_IOV_A636415915
gale_healthsolutions_A636415915
crossref_primary_10_1371_journal_pone_0238915
crossref_citationtrail_10_1371_journal_pone_0238915
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-24
PublicationDateYYYYMMDD 2020-09-24
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-24
  day: 24
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PloS one
PublicationYear 2020
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References pone.0238915.ref027
pone.0238915.ref026
pone.0238915.ref029
Y Li (pone.0238915.ref030) 2019; 166
S J Wodak (pone.0238915.ref007) 2013; 23
W Hamilton (pone.0238915.ref033) 2017
M Y Hein (pone.0238915.ref005) 2015; 163
Y-K Lei (pone.0238915.ref011) 2012; 13
O Kuchaiev (pone.0238915.ref008) 2009; 5
L Lü (pone.0238915.ref016) 2011; 390
R Pech (pone.0238915.ref015) 2019; 528
pone.0238915.ref041
A H Smits (pone.0238915.ref003) 2016; 34
pone.0238915.ref020
C Su (pone.0238915.ref025) 2020; 21
pone.0238915.ref040
pone.0238915.ref045
C Lei (pone.0238915.ref012) 2012; 29
pone.0238915.ref024
N Srivastava (pone.0238915.ref046) 2014; 15
I A Kovács (pone.0238915.ref017) 2019; 10
pone.0238915.ref021
pone.0238915.ref043
D E Scott (pone.0238915.ref002) 2016; 15
T Rolland (pone.0238915.ref004) 2014; 159
pone.0238915.ref022
pone.0238915.ref038
pone.0238915.ref039
H Cai (pone.0238915.ref023) 2018; 30
pone.0238915.ref036
pone.0238915.ref018
M Belkin (pone.0238915.ref044) 2002
pone.0238915.ref019
E L Huttlin (pone.0238915.ref006) 2017; 545
P Veličković (pone.0238915.ref034) 2018
J F Rual (pone.0238915.ref001) 2005; 437
J Klicpera (pone.0238915.ref037) 2019
M Zitnik (pone.0238915.ref031) 2018; 34
Z-H You (pone.0238915.ref010) 2010; 26
C Stark (pone.0238915.ref042) 2006; 34
A Lada (pone.0238915.ref013) 2003; 25
C V Cannistraci (pone.0238915.ref009) 2013; 29
T. N Kipf (pone.0238915.ref028) 2017
P Wang (pone.0238915.ref014) 2015; 58
pone.0238915.ref035
pone.0238915.ref032
References_xml – ident: pone.0238915.ref040
– volume: 34
  start-page: D535
  issue: suppl1
  year: 2006
  ident: pone.0238915.ref042
  article-title: BioGRID: a general repository for interaction datasets
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkj109
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: pone.0238915.ref046
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: The journal of machine learning research
– volume: 26
  start-page: 2744
  year: 2010
  ident: pone.0238915.ref010
  article-title: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq510
– year: 2018
  ident: pone.0238915.ref034
  article-title: Graph attention networks
  publication-title: ICLR
– year: 2019
  ident: pone.0238915.ref037
  article-title: Predict then propagate: Graph neural networks meet personalized pagerank
  publication-title: ICLR
– ident: pone.0238915.ref038
– volume: 34
  start-page: i457
  issue: 13
  year: 2018
  ident: pone.0238915.ref031
  article-title: Modeling polypharmacy side effects with graph convolutional networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty294
– volume: 437
  start-page: 1173
  issue: 7062
  year: 2005
  ident: pone.0238915.ref001
  article-title: Towards a proteome-scale map of the human protein–protein interaction network
  publication-title: Nature
  doi: 10.1038/nature04209
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: pone.0238915.ref017
  article-title: Network-based prediction of protein interactions
  publication-title: Nature communications
  doi: 10.1038/s41467-019-09177-y
– ident: pone.0238915.ref019
  doi: 10.1145/2623330.2623732
– ident: pone.0238915.ref032
– volume: 34
  start-page: 825
  issue: 10
  year: 2016
  ident: pone.0238915.ref003
  article-title: Characterizing protein–protein interactions using mass spectrometry: challenges and opportunities
  publication-title: Trends in biotechnology
  doi: 10.1016/j.tibtech.2016.02.014
– ident: pone.0238915.ref024
  doi: 10.1093/bioinformatics/btz718
– ident: pone.0238915.ref027
  doi: 10.1145/2939672.2939753
– volume: 21
  start-page: 182
  issue: 1
  year: 2020
  ident: pone.0238915.ref025
  article-title: Network embedding in biomedical data science
  publication-title: Briefings in bioinformatics
  doi: 10.1093/bib/bby117
– ident: pone.0238915.ref018
  doi: 10.1101/346916
– ident: pone.0238915.ref021
  doi: 10.1145/2939672.2939751
– volume: 29
  start-page: i199
  issue: 13
  year: 2013
  ident: pone.0238915.ref009
  article-title: Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt208
– ident: pone.0238915.ref029
– volume: 390
  start-page: 1150
  issue: 6
  year: 2011
  ident: pone.0238915.ref016
  article-title: Link prediction in complex networks: A survey
  publication-title: Physica A: statistical mechanics and its applications
  doi: 10.1016/j.physa.2010.11.027
– ident: pone.0238915.ref043
  doi: 10.1145/2488388.2488393
– volume: 25
  start-page: 211
  issue: 3
  year: 2003
  ident: pone.0238915.ref013
  article-title: Adamic and Eytan Adar. Friends and neighbors on the web
  publication-title: Social Networks
  doi: 10.1016/S0378-8733(03)00009-1
– volume: 58
  start-page: 1
  issue: 1
  year: 2015
  ident: pone.0238915.ref014
  article-title: Link prediction in social networks: the state-of-the-art
  publication-title: Science China Information Sciences
  doi: 10.1007/s11432-014-5237-y
– ident: pone.0238915.ref041
  doi: 10.1101/605451
– volume: 29
  start-page: 355
  issue: 3
  year: 2012
  ident: pone.0238915.ref012
  article-title: A novel link prediction algorithm for reconstructing protein–protein interaction networks by topological similarity
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts688
– start-page: 585
  year: 2002
  ident: pone.0238915.ref044
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Advances in neural information processing systems
– volume: 30
  start-page: 1616
  issue: 9
  year: 2018
  ident: pone.0238915.ref023
  article-title: A comprehensive survey of graph embedding: Problems, techniques, and applications
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2018.2807452
– volume: 545
  start-page: 505
  issue: 7655
  year: 2017
  ident: pone.0238915.ref006
  article-title: Architecture of the human interactome defines protein communities and disease networks
  publication-title: Nature
  doi: 10.1038/nature22366
– volume: 528
  start-page: 121319
  year: 2019
  ident: pone.0238915.ref015
  article-title: Link prediction via linear optimization
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2019.121319
– ident: pone.0238915.ref035
  doi: 10.1007/978-3-319-93417-4_38
– ident: pone.0238915.ref039
– ident: pone.0238915.ref020
  doi: 10.1145/2939672.2939754
– ident: pone.0238915.ref026
  doi: 10.1145/2736277.2741093
– volume: 159
  start-page: 1212
  issue: 5
  year: 2014
  ident: pone.0238915.ref004
  article-title: A proteome-scale map of the human interactome network
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.050
– volume: 166
  start-page: 4
  year: 2019
  ident: pone.0238915.ref030
  article-title: Deep learning in bioinformatics: Introduction, application, and perspective in the big data era
  publication-title: Methods
  doi: 10.1016/j.ymeth.2019.04.008
– volume: 5
  start-page: e1000454
  year: 2009
  ident: pone.0238915.ref008
  article-title: Geometric denoising of protein–protein interaction networks
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000454
– ident: pone.0238915.ref036
  doi: 10.1609/aaai.v32i1.11604
– year: 2017
  ident: pone.0238915.ref028
  article-title: Semisupervised classification with graph convolutional networks
  publication-title: ICLR
– ident: pone.0238915.ref022
  doi: 10.1145/2806416.2806512
– volume: 23
  start-page: 941
  issue: 6
  year: 2013
  ident: pone.0238915.ref007
  article-title: Protein–protein interaction networks: the puzzling riches
  publication-title: Current opinion in structural biology
  doi: 10.1016/j.sbi.2013.08.002
– ident: pone.0238915.ref045
– volume: 163
  start-page: 712
  issue: 3
  year: 2015
  ident: pone.0238915.ref005
  article-title: A human interactome in three quantitative dimensions organized by stoichiometries and abundances
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.053
– volume: 13
  start-page: S3
  issue: Suppl 7
  year: 2012
  ident: pone.0238915.ref011
  article-title: Assessing and predicting protein interactions by combining manifold embedding with multiple information integration
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-S7-S3
– start-page: 1024
  year: 2017
  ident: pone.0238915.ref033
  article-title: Inductive representation learning on large graphs
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 15
  start-page: 533
  issue: 8
  year: 2016
  ident: pone.0238915.ref002
  article-title: Small molecules, big targets: drug discovery faces the protein–protein interaction challenge
  publication-title: Nature Reviews Drug Discovery
  doi: 10.1038/nrd.2016.29
SSID ssj0053866
Score 2.48729
Snippet Protein-protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and...
Protein–protein interactions (PPIs) are essential for most biological processes. However, current PPI networks present high levels of noise, sparseness and...
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage e0238915
SubjectTerms Agglomeration
Algorithms
Architecture
Artificial neural networks
Biological activity
Biological computing
Biology and Life Sciences
Coders
Computer and Information Sciences
Computer applications
Computer science
Embedding
Graphical representations
Informatics
Machine learning
Medicine and Health Sciences
Methods
Neighborhoods
Network topologies
Neural networks
Nodes
Noise levels
Physical Sciences
Predictions
Protein interaction
Protein-protein interactions
Proteins
Research and Analysis Methods
Search engines
Social networks
Topology
SummonAdditionalLinks – databaseName: DOAJ : directory of open access journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQnrggykNdKGAQEnBwu4kdJzkWRClIgAQU9Wb5MWlX2iar7m5_PzOON9pISOXAbRVPssk8Mt_E48-Mvc7KoGoZtCi99ELpRovawUxgJGXS5spCtPTXb_r0TH05L853tvqinrCeHrhX3JG1kCFGb2DmggqqtKpyFXhMg67wuY3QCHPetpjq38EYxVqnhXKyzI6SXQ6XXQuHlKVq2gZ3JxFFvv7hrTxZLrrVCHKOGyZ3MtDJfXYvQUd-3N_yHrsD7QO2l4Jzxd8mBul3D9nFJ6Kh5nDlIFBuEpSrAm-7G1jwyMwwbzkRRVz3yxrwGM3XxJ83c8svY_OHiLScPFJac-pOT16K99D2zeOP2NnJx18fTkXaUUF4reu1kMo7cKpSOXgFunA-xwQvQz5zKgQ3ayQABiRYrKuyHCPSYTVU6AZhnWu0LeRjNmlRh_uM1yV4a-ugciURUqlKNkXTWJRSWRV0PWVyq17jE9047XqxMHEOrcSyo1ebIaOYZJQpE8NZy55u4xb592S5QZbIsuMBdCGTXMjc5kJT9oLsbvqVp0PIm2MtNeKb-DevogQRZrTUkXNhN6uV-fz99z8I_fwxEnqThJoO1eFtWgWBz0REXCPJg5Ekhr0fDe-Tl261sjKI04qa8HiGZ2499-_DL4dhuih12bXQbaIMVrOYA6opK0ceP1LweKSdX0ZW8hKhNwbek_9hkafsbk7fNeLs3wGbrK838AzB39o9j3H-B5GEXT4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj9MwDI9gvCAk4AboBgcEhAQ85G5t0rR9QgNxHEiABBzaW5Wv7iaNdqzb_f3YaVpWCQFvVeOunR3Hduz8TMizKLUi51ay1HDDhCwly7WbMtCkiKtYKOcl_fGTPDsXH-bJPGy4NaGsslsT_UJta4N75CdghpIc3Y3o1fonw65RmF0NLTSukmsIXYYlXem8D7hAl6UMx-V4Gp0E6Ryv68odo63KsRnunjnyqP392jxar-pm4HgOyyb37NDpbXIzOJB01kr8gFxx1ZjcmO3lA8bkVtergQbVHZODcNXQFwFp-uUdsniHcNXU_dDOog1jaNMsrepLt6IewWFZUQSU2LTHH-Ae5nX85eVS0QtfJMI8fCf10NcUq9jDbIavrNoi87vk_PTttzdnLHReYEbKfMu4MNppkYnYGeFkok0MjgC38VQLa_W05M6B4joF8VcUg-ZqiJoSWYL7p0upEn6PjCrg8iGheeqMUrkVseDgeomMl0lZKqASUWZlPiG8E0BhAiw5dsdYFT7XlkJ40jK2QLEVQWwTwvqn1i0sxz_oX6Nse1oE1fY36s2iCDpaKOUiCAdLN9VWWJEqkenMGfC4dGJipSbkMc6Moj2h2i8NxUxyCX6Qf81TT4HAGhVW7izUrmmK95-__wfR1y8DoueBqKyBHUaF0xLwnxCwa0B5NKCE5cEMhg9xHndcaYrfigRPdnP7z8NP-mH8UazGq1y98zQQ9YKtyCYkHejEgMHDkWp54dHLU3DRQTXv__3lD8j1GHc2fP7viIy2m517CO7fVj_yOv4LI45emw
  priority: 102
  providerName: ProQuest
Title Graph embedding-based novel protein interaction prediction via higher-order graph convolutional network
URI https://www.proquest.com/docview/2445951931
https://www.proquest.com/docview/2446667038
https://pubmed.ncbi.nlm.nih.gov/PMC7514053
https://doaj.org/article/aae1625fe0bd4d47a48b8ec155b5c2aa
http://dx.doi.org/10.1371/journal.pone.0238915
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdG98ILYnxoHaMEhAQ8pGpix04eENqmdQNpAw2K-hb5K12lkpSmneC_585xIyINsZeois9pe_b5fheff0fI60gYllHDQ6GpDhkveJgpOwrBkiIqYyatG-mLS34-YZ-myXSHbGu2egXWt4Z2WE9qsloMf_38_QEM_r2r2iCibafhsirtEH1QhqfOd8E3CTTVC9buK4B1u91LRC0hj0fUH6b711M6zspx-rcrd2-5qOoOLO0mVf7lpcYPyQMPL4OjZj7skR1bPiJ73oDr4K1nmX73mMzOkKo6sD-UNei_QvRnJiirG7sIHHvDvAyQTGLVHH2Ae7in4z7ezGVw7RJEQkfdGTja6wAz2P1Mht9QNgnmT8hkfPrt5Dz0VRdCzXm2DinTyiqWsthqZnmidAwggJp4pJgxalRQa8ForYTYK4rBahVETAkvAPqpgsuEPiW9EnS4T4JMWC1lZljMKMAultIiKQoJUixKDc_6hG7Vm2tPSY6VMRa522cTEJo0astxUHI_KH0Str2WDSXHf-SPceRaWSTUdjeq1Sz39plLaSMIBQs7UoYZJiRLVWo1oC2V6FjKPnmB4543p1PbZSE_4pQDBnJf88pJIKlGiVk7M7mp6_zj5-93EPp61RF644WKCtShpT8pAf8Jybo6kocdSVgadKd5H2fpVit1DlguyRCzR9BzO3Nvb37ZNuNDMROvtNXGyUDEC34i7RPRmfEdBXdbyvm1Yy4XAM_BCA_uoqpn5H6M7zbcDuAh6a1XG_scAOBaDcg9MRVwTU8ivI7PBmT3-PTyy9XAvVIZOJv_A9MFYiY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLam8gBCAlZAKwxmEAh4yNYkjpM8IFQuo2UXJNimvgXbcbpKJSlNO8Sf4jdyjuOERkLAy96i-OTmc4-Pv0PIEzdMWeyn3AmVrxzGM-7EUvcd0CTXFx4T2nD66JgPT9mHcTDeID_rvTBYVlnbRGOo00LhP_I9cENBjOGG-2r-zcGuUbi6WrfQqMTiQP_4Dilb-XL0Fvj71PP23528GTq2q4CjOI-Xjs-U1JJFzNOKaR5I5YGT81OvL1mayn7maw1CqQXkFq4HUikhIwh4BqGNzLjALhFg8q-A4-2jRoXjJsED28G53Z7nh-6elYbdeZHrXfSNMTbfXXN_pktA4ws681lRtgLddpnmmt_bv0Vu2ICVDioJ2yQbOu-S64O19YcuuVn3hqDWVHTJpj0q6XOLbP3iNpm8R3hsqr9KnaLPdNCHpjQvLvSMGsSIaU4RwGJRbbeAc7iOZA4vpoKem6IUx8CFUgO1TbFq3moPvGVeFbXfIaeXwpO7pJPDLG8RGodaCRGnzGM-hHos8rMgywRQMTdKedwjfs2ARFkYdOzGMUvM2l4I6VA1sQmyLbFs6xGnuWpewYD8g_418rahRRBvc6JYTBJrExIhtAvpZ6b7MmUpCwWLZKQVRHgyUJ4QPbKDkpFUO2IbU5QMuM8h7jKPeWwoEMgjx0qhiViVZTL6ePYfRJ8_tYieWaKsgOlQwu7OgG9CgLAW5XaLEsyRag1voRzXs1ImvxUXrqxl-8_Dj5phvClW_-W6WBkayLLBN0U9ErZ0ojXB7ZF8em7Q0kNICUA17_394Tvk6vDk6DA5HB0f3CfXPPyrYtYet0lnuVjpBxB6LuVDo--UfLlsA_MLq9CbdA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIiGEBKyAVhjMIBDwkLVJHCd5QKgwyspgIGCob8F2nK5SSUrTDvGv8ddx5zihkRDwsrcovnz5vuPz7wh54IYpi_2UO6HylcN4xp1Y6oEDmuT6wmNCG06_PeaHJ-z1JJhskZ_1Xhgsq6xtojHUaaHwH3kf3FAQY7jh9jNbFvH-YPRs8c3BDlK40lq306hE5Ej_-A7pW_l0fAC8fuh5o5efXhw6tsOAoziPV47PlNSSRczTimkeSOWBw_NTbyBZmspB5msNAqoF5BmuBxIqITsIeAZhjsy4wI4RYP4vhH7goo6FkybZAzvCud2q54du30rG_qLI9T76yRgb8W64QtMxoPELncW8KFtBb7tkc8MHjq6RKzZ4pcNK2rbJls675PJwYy2iS67WfSKoNRtdsm2PSvrYolw_uU6mrxAqm-qvUqfoPx30pynNizM9pwY9YpZTBLNYVlsv4ByuKZnDs5mgp6ZAxTHQodTAblOsoLeaBG-ZVwXuN8jJufDkJunkMMs7hMahVkLEKfOYD2Efi_wsyDIBVMyNUh73iF8zIFEWEh07c8wTs84XQmpUTWyCbEss23rEaa5aVJAg_6B_jrxtaBHQ25woltPE2odECO1CKprpgUxZykLBIhlpBdGeDJQnRI_soWQk1e7YxiwlQ-5ziMHMY-4bCgT1yFE9pmJdlsn43ef_IPr4oUX0yBJlBUyHEnanBnwTgoW1KHdblGCaVGt4B-W4npUy-a3EcGUt238evtcM402xEjDXxdrQQMYNfirqkbClE60Jbo_ks1ODnB5CegCqeevvD98jF8G0JG_Gx0e3ySUPf7CYZchd0lkt1_oORKEredeoOyVfztu-_ALFmJ-q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+embedding-based+novel+protein+interaction+prediction+via+higher-order+graph+convolutional+network&rft.jtitle=PloS+one&rft.au=Xiao%2C+Ze&rft.au=Deng%2C+Yue&rft.date=2020-09-24&rft.pub=Public+Library+of+Science&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=15&rft.issue=9&rft.spage=e0238915&rft_id=info:doi/10.1371%2Fjournal.pone.0238915&rft.externalDBID=IOV&rft.externalDocID=A636415915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon