Microbial Diversity in Sediments from the Bottom of the Challenger Deep, the Mariana Trench
The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the trench bottom sediments of the Challenger Deep, the Mariana Trench. The SSU rRNA gene communities found in trench bottom sediments were dominate...
Saved in:
Published in | Microbes and Environments Vol. 33; no. 2; pp. 186 - 194 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2018
Japan Science and Technology Agency the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
Subjects | |
Online Access | Get full text |
ISSN | 1342-6311 1347-4405 |
DOI | 10.1264/jsme2.ME17194 |
Cover
Abstract | The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the trench bottom sediments of the Challenger Deep, the Mariana Trench. The SSU rRNA gene communities found in trench bottom sediments were dominated by the bacteria Chloroflexi (SAR202 and other lineages), Bacteroidetes, Planctomycetes, “Ca. Marinimicrobia” (SAR406), and Gemmatimonadetes and by the archaeal α subgroup of MGI Thaumarchaeota and “Ca. Woesearchaeota” (Deep-sea Hydrothermal Vent Euryarchaeotic Group 6). The SSU rRNA gene sequencing analysis indicated that the dominant populations of the thaumarchaeal α group in hadal water and sediments were similar to each other at the species or genus level. In addition, the co-occurrence of nitrification and denitrification was revealed by the combination of pore water geochemical analyses and quantitative PCR for nitrifiers. |
---|---|
AbstractList | The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the trench bottom sediments of the Challenger Deep, the Mariana Trench. The SSU rRNA gene communities found in trench bottom sediments were dominated by the bacteria
Chloroflexi
(SAR202 and other lineages),
Bacteroidetes
,
Planctomycetes
, “
Ca.
Marinimicrobia” (SAR406), and
Gemmatimonadetes
and by the archaeal α subgroup of MGI
Thaumarchaeota
and “
Ca.
Woesearchaeota” (Deep-sea Hydrothermal Vent Euryarchaeotic Group 6). The SSU rRNA gene sequencing analysis indicated that the dominant populations of the thaumarchaeal α group in hadal water and sediments were similar to each other at the species or genus level. In addition, the co-occurrence of nitrification and denitrification was revealed by the combination of pore water geochemical analyses and quantitative PCR for nitrifiers. The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the trench bottom sediments of the Challenger Deep, the Mariana Trench. The SSU rRNA gene communities found in trench bottom sediments were dominated by the bacteria Chloroflexi (SAR202 and other lineages), Bacteroidetes, Planctomycetes, “Ca. Marinimicrobia” (SAR406), and Gemmatimonadetes and by the archaeal α subgroup of MGI Thaumarchaeota and “Ca. Woesearchaeota” (Deep-sea Hydrothermal Vent Euryarchaeotic Group 6). The SSU rRNA gene sequencing analysis indicated that the dominant populations of the thaumarchaeal α group in hadal water and sediments were similar to each other at the species or genus level. In addition, the co-occurrence of nitrification and denitrification was revealed by the combination of pore water geochemical analyses and quantitative PCR for nitrifiers. |
Author | Nishizawa, Manabu Fukui, Toshiaki Takai, Ken Hirai, Miho Shimamura, Shigeru Koide, Osamu Nunoura, Takuro Harnvoravongchai, Phurt Inagaki, Fumio Miyazaki, Junichi Morono, Yuki Takaki, Yoshihiro |
AuthorAffiliation | 4 Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Nankoku, 783–0093 Japan 2 Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2–15 Natsushima-cho, Yokosuka 237–0061 Japan 1 Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2–15 Natsushima-cho, Yokosuka 237–0061 Japan 5 Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Nankoku, 783–0093 Japan 6 Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Yokohama 236–0001 Japan 3 School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226–8501 Japan |
AuthorAffiliation_xml | – name: 1 Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2–15 Natsushima-cho, Yokosuka 237–0061 Japan – name: 2 Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2–15 Natsushima-cho, Yokosuka 237–0061 Japan – name: 4 Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Nankoku, 783–0093 Japan – name: 5 Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Nankoku, 783–0093 Japan – name: 6 Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Yokohama 236–0001 Japan – name: 3 School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226–8501 Japan |
Author_xml | – sequence: 1 fullname: Morono, Yuki organization: Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science Technology (JAMSTEC) – sequence: 1 fullname: Nunoura, Takuro organization: Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Nishizawa, Manabu organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Hirai, Miho organization: Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Shimamura, Shigeru organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Inagaki, Fumio organization: Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science Technology (JAMSTEC) – sequence: 1 fullname: Takai, Ken organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Harnvoravongchai, Phurt organization: School of Life Science and Technology, Tokyo Institute of Technology – sequence: 1 fullname: Miyazaki, Junichi organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Takaki, Yoshihiro organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Koide, Osamu organization: Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) – sequence: 1 fullname: Fukui, Toshiaki organization: School of Life Science and Technology, Tokyo Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29806625$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctr3DAQh0VIyfvYazD0Wqd62LJ9KTSb9AG75JC95SBke7TWYktbSbuw_30Vr7s0hYCQZjTf_GaYuUSnxhpA6CPBd4Ty7MvaD0DvFo-kIFV2gi4Iy4o0y3B-Oto05YyQc3Tp_RpjxvKCnqFzWpWYc5pfoJeFbpytteyTB70D53XYJ9okz9DqAUzwiXJ2SEIHyb0NIZpWjd6sk30PZgUueQDYfB4_F9JpaWSydGCa7hp9ULL3cDO9V2j5_XE5-5nOn378mn2bpw3nVUgplhXlitZUlVS1VY0VbympS9xKVbGCtRxnNYeW8IxCgSvCCh796LUyB3aFvh5kN9t6gLaJXTvZi43Tg3R7YaUWbyNGd2Jld4JjRlhZRYFPk4Czv7fgg1jbrTOxZUFpFk9O8jJSt_-WOer_nWUE0gMQB-q9A3VECBavuxLjrsS0q8iz__hGBxm0fe1S9-9mzQ5Zax_kCo41pAu66WGiGRPjNWUdo00nnQDD_gCWi7D1 |
CitedBy_id | crossref_primary_10_1007_s13131_022_2043_z crossref_primary_10_1007_s42995_021_00110_1 crossref_primary_10_1093_femsec_fiaa223 crossref_primary_10_1016_j_chemgeo_2020_119742 crossref_primary_10_1080_14786419_2024_2412305 crossref_primary_10_1016_j_margen_2019_100699 crossref_primary_10_1007_s11802_020_4276_9 crossref_primary_10_1089_ast_2021_0120 crossref_primary_10_1016_j_scitotenv_2019_134884 crossref_primary_10_1264_jsme2_ME3402rh crossref_primary_10_1016_j_xinn_2021_100109 crossref_primary_10_1128_msystems_01358_21 crossref_primary_10_1264_jsme2_ME3404rh crossref_primary_10_1264_jsme2_ME18103 crossref_primary_10_3389_fmicb_2021_581124 crossref_primary_10_1038_s41396_019_0564_z crossref_primary_10_1016_j_dsr_2019_03_011 crossref_primary_10_1186_s40793_023_00522_9 crossref_primary_10_1038_s41467_024_46897_2 crossref_primary_10_3389_fmicb_2020_01521 crossref_primary_10_1007_s00253_022_11893_3 crossref_primary_10_3390_microorganisms10010151 crossref_primary_10_1038_s41396_020_0662_y crossref_primary_10_1016_j_phytol_2022_03_010 crossref_primary_10_1107_S1600576721008554 crossref_primary_10_5194_bg_19_1395_2022 crossref_primary_10_7717_peerj_6961 crossref_primary_10_1128_spectrum_01112_23 crossref_primary_10_1186_s40793_022_00413_5 crossref_primary_10_1038_s41467_022_29144_4 crossref_primary_10_1099_ijsem_0_003297 crossref_primary_10_1128_msystems_00243_24 crossref_primary_10_3389_fmicb_2020_01041 crossref_primary_10_1016_j_rsma_2021_102112 crossref_primary_10_1016_j_ygeno_2022_110524 crossref_primary_10_3389_fmars_2019_00108 crossref_primary_10_3389_fmicb_2019_02609 crossref_primary_10_1089_ast_2020_2352 crossref_primary_10_1111_mec_15937 crossref_primary_10_3389_fmicb_2019_00347 crossref_primary_10_3389_fmicb_2019_01952 crossref_primary_10_3390_jmse13020294 crossref_primary_10_1016_j_tetlet_2024_154935 crossref_primary_10_1038_s41396_021_00962_6 crossref_primary_10_1186_s40168_022_01403_y crossref_primary_10_1007_s42995_023_00212_y crossref_primary_10_1016_j_pocean_2019_102175 crossref_primary_10_1073_pnas_2104529118 crossref_primary_10_1016_j_chemgeo_2022_120959 crossref_primary_10_1007_s42995_021_00105_y crossref_primary_10_1155_2021_9109132 crossref_primary_10_1264_jsme2_ME3403rh crossref_primary_10_1111_1462_2920_70018 crossref_primary_10_1111_1462_2920_15363 crossref_primary_10_1038_s41579_022_00687_z crossref_primary_10_1128_spectrum_01988_21 crossref_primary_10_1038_s43705_023_00341_6 crossref_primary_10_1111_1758_2229_13314 crossref_primary_10_3389_fmicb_2022_1051999 crossref_primary_10_3389_fmars_2019_00241 crossref_primary_10_3389_feart_2021_653742 crossref_primary_10_1111_1462_2920_14518 crossref_primary_10_1038_s43705_023_00230_y crossref_primary_10_1039_C8RA10142F crossref_primary_10_1007_s42995_024_00224_2 crossref_primary_10_3389_fmicb_2023_1268790 crossref_primary_10_1186_s13059_021_02408_w |
Cites_doi | 10.1016/j.gca.2013.03.027 10.4319/lo.2009.55.2.0753 10.1007/s00792-005-0482-z 10.1007/s007920050024 10.1371/journal.pone.0027310 10.1021/ac020113w 10.1038/ismej.2009.1 10.1038/nmeth.1361 10.1007/s10872-005-0053-z 10.1016/0012-821X(76)90078-9 10.1128/AEM.01541-09 10.1016/S0016-7037(01)00554-3 10.1128/AEM.65.1.95-101.1999 10.3389/fmicb.2016.00665 10.1016/j.dsr.2015.01.010 10.1126/science.1105407 10.1038/ismej.2007.45 10.1111/1758-2229.12370 10.1128/AEM.02090-13 10.1038/ismej.2007.118 10.1111/1462-2920.13789 10.1016/j.syapm.2012.06.006 10.1038/nmeth.f.303 10.1111/j.1462-2920.2009.01929.x 10.1371/journal.pone.0057271 10.4319/lo.2008.53.6.2533 10.1093/bioinformatics/bts252 10.1093/bioinformatics/btr381 10.5194/bg-10-101-2013 10.1093/nar/gkt1209 10.1029/93GB01444 10.1093/bioinformatics/btm404 10.1073/pnas.1421816112 10.5194/bg-12-7483-2015 10.3389/fmicb.2016.01261 10.1264/jsme2.ME12032 10.1111/1462-2920.13096 10.1021/ac010088e 10.1111/j.1574-6941.2008.00451.x 10.1038/318455a0 10.1128/AEM.64.4.1510-1513.1998 10.2973/odp.proc.sr.202.207.2006 10.1038/ngeo1773 10.4031/MTSJ.43.5.5 10.1099/ijs.0.64133-0 10.1073/pnas.89.12.5685 10.4031/MTSJ.43.5.31 10.1016/0146-6291(78)90004-8 10.1128/AEM.00250-16 10.4319/lo.2010.55.3.1064 10.1038/ngeo1745 10.1017/CBO9781139061384 10.1007/s007920050035 10.1073/pnas.0506625102 10.1007/s007920050085 10.1128/AEM.07113-11 10.1128/AEM.04150-13 10.1002/rcm.4307 10.1073/pnas.1112005109 10.1128/AEM.66.11.5066-5072.2000 10.1016/j.dsr.2016.08.013 10.1099/ijs.0.64132-0 10.1111/j.1574-6968.1997.tb10440.x 10.1099/ijsem.0.001671 10.1016/j.gca.2009.10.044 10.1007/s00792-004-0394-3 10.1186/1471-2105-7-57 10.1111/1462-2920.12152 10.1111/j.1462-2920.2012.02801.x |
ContentType | Journal Article |
Copyright | 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. Copyright Japan Science and Technology Agency 2018 Copyright © 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2018 |
Copyright_xml | – notice: 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. – notice: Copyright Japan Science and Technology Agency 2018 – notice: Copyright © 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2018 |
DBID | AAYXX CITATION NPM 7QL C1K F1W H95 L.G M7N 5PM |
DOI | 10.1264/jsme2.ME17194 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
EISSN | 1347-4405 |
EndPage | 194 |
ExternalDocumentID | PMC6031389 29806625 10_1264_jsme2_ME17194 article_jsme2_33_2_33_ME17194_article_char_en |
Genre | Journal Article |
GroupedDBID | 123 2WC 53G ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z HYE JSF JSH KQ8 M48 OK1 PGMZT RJT RPM RZJ TKC TR2 WBO ~02 AAYXX CITATION NPM 7QL C1K F1W H95 L.G M7N 5PM |
ID | FETCH-LOGICAL-c669t-20a926f2b2f82fd9b0f6d21b80daf9373d604b6ed1642e7091376b6e642da5e3 |
IEDL.DBID | M48 |
ISSN | 1342-6311 |
IngestDate | Thu Aug 21 18:15:31 EDT 2025 Mon Jun 30 08:36:54 EDT 2025 Thu Apr 03 07:11:57 EDT 2025 Tue Jul 01 03:52:12 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Wed Sep 03 06:09:16 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | Hadal nitrogen cycle Mariana Trench nitrification |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c669t-20a926f2b2f82fd9b0f6d21b80daf9373d604b6ed1642e7091376b6e642da5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 Present address: Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1264/jsme2.ME17194 |
PMID | 29806625 |
PQID | 2242245158 |
PQPubID | 1976392 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031389 proquest_journals_2242245158 pubmed_primary_29806625 crossref_primary_10_1264_jsme2_ME17194 crossref_citationtrail_10_1264_jsme2_ME17194 jstage_primary_article_jsme2_33_2_33_ME17194_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-00-00 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Miyagi |
PublicationTitle | Microbes and Environments |
PublicationTitleAlternate | Microbes Environ. |
PublicationYear | 2018 |
Publisher | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles Japan Science and Technology Agency the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
Publisher_xml | – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles – name: Japan Science and Technology Agency – name: the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI) |
References | 34. Morono, Y., T. Terada, N. Masui, and F. Inagaki. 2009. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J. 3:503-511. 33. Morita, R.Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, p.279-298. In R.G. Gray, and J.R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge. 64. Tarn, J., L.M. Peoples, K. Hardy, J. Cameron, and D.H. Bartlett. 2016. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front Microbiol. 7:7608. 49. Prokopenko, M.G., D.E. Hammond, and L. Stott. 2006. Lack of isotopic fractionation of 15N of organic matter during long-term diagenesis in marine sediments; ODP Leg 202–Sites 1234 and 1235, p.1-22. In R. Tiedemann, A.C. Mix, C. Richter, and W.F. Ruddiman (ed.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 202. Ocean Drilling Program, College Station. 47. Pathom-aree, W., Y. Nogi, I.C. Sutcliffe, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 56:1233-1237. 44. Ohara, Y., M.K. Reagan, K. Fujikura, et al. 2012. A serpentinite-hosted ecosystem in the Southern Mariana Forearc. Proc Natl Acad Sci USA. 109:2831-2835. 25. Kobayashi, H., Y. Takaki, K. Kobata, H. Takami, and A. Inoue. 1998. Characterization of α-maltotetraohydrolase produced by Pseudomonas sp. MS300 isolated from the deepest site of the Mariana Trench. Extremophiles. 2:401-407. 53. Schloss, P.D., S.L. Westcott, T. Ryabin, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75:7537-7541. 60. Takai, K., and K. Horikoshi. 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 66:5066-5072. 56. Sintes, E., K. Bergauer, D. De Corte, T. Yokokawa, and G.J. Herndl. 2013. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol. 15:1647-1658. 66. Todo, Y., H. Kitazato, J. Hashimoto, and A.J. Gooday. 2005. Simple foraminifera flourish at the ocean’s deepest point. Science. 307:689. 29. Larkin, M.A., G. Blackshields, N.P. Brown, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23:2947-2948. 37. Nishizawa, M., S. Sakai, U. Konno, et al. 2016. Nitrogen and oxygen isotope effects of ammonia oxidation by thermophilic Thaumarchaeota from a geothermal water stream. Appl Environ Microbiol. 82:4492-4504. 30. León-Zayas, R., L. Peoples, J.F. Biddle, S. Podell, M. Novotny, J. Cameron, R.S. Lasken, and D.H. Bartlett. 2017. The metabolic potential of the single cell genomes obtained from the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Environ Microbiol. 19:2769-2784. 3. Buchwald, C., and K.L. Casciotti. 2010. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol Oceanogr. 55:1064-1074. 57. Stephen, J.R., Y.J. Chang, S.J. Macnaughton, G.A. Kowalchuk, K.T. Leung, C.A. Flemming, and D.C. White. 1999. Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol. 65:95-101. 40. Nunoura, T., M. Nishizawa, T. Kikuchi, et al. 2013. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ Microbiol. 15:3087-3107. 48. Pathom-aree, W., J.E.M. Stach, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles. 10:181-189. 4. Buchwald, C., and K.L. Casciotti. 2013. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nat Geosci. 6:308-313. 27. Kusube, M., T.S. Kyaw, K. Tanikawa, R.A. Chastain, K.M. Hardy, J. Cameron, and D.H. Bartlett. 2017. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 67:824-831. 38. Nunoura, T., H. Oida, J. Miyazaki, A. Miyashita, H. Imachi, and K. Takai. 2008. Quantification of mcrA by fluorescent PCR in methanogenic and anaerobic methanotrophic microbial communities. FEMS Microbiol Ecol. 64:240-247. 6. Casciotti, K.L., D.M. Sigman, M.G. Hastings, J.K. Böhlke, and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem. 74:4905-4912. 20. Ichino, M.C., M.R. Clark, J.C. Drazen, et al. 2015. The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res, Part I. 100:21-33. 65. Tesdal, J.E., E.D. Galbraith, and M. Kienast. 2013. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences. 10:101-118. 14. Granger, J., D.M. Sigman, M.F. Lehmann, and P.D. Tortell. 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 53:3033-2545. 41. Nunoura, T., Y. Takaki, M. Hirai, et al. 2015. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA. 112:E1230-E1236. 8. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 89:5685-5689. 31. Lloyd, K.G., M.K. May, R.T. Kevorkian, and A.D. Steen. 2013. Meta-analysis of quantification methods shows that Archaea and Bacteria have similar abundances in the subseafloor. Appl Environ Microbiol. 79:7790-7799. 45. Ortiz-Alvarez, R., and E.O. Casamayor. 2016. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 8:210-217. 19. Hsui, A.T., and S. Youngquist. 1985. A dynamic model of the curvature of the Mariana Trench. Nature. 318:455-457. 10. Francis, C.A., K.J. Roberts, J.M. Beman, A.E. Santoro, and B.B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 102:15383-15388. 24. Kiddon, J., M.L. Bender, J. Orchardo, D.A. Caron, J.C. Goldman, and M. Dennett. 1993. Isotopic fractionation of oxygen by respiring marine organisms. Global Biogeochem Cycles. 7:679-694. 26. Kroopnick, P., and H. Craig. 1976. Oxygen isotope fractionation in dissolved oxygen in the deep sea. Earth Planet Sci Lett. 32:375-388. 18. Hoshino, T., and F. Inagaki. 2012. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol. 35:390-395. 52. Schattenhofer, M., B.M. Fuchs, R. Amann, M.V. Zubkov, G.A Tarran, and J. Pernthaler. 2009. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol. 11:2078-2093. 23. Kato, C., L. Li, Y. Nogi, Y. Nakamura, J. Tamaoka, and K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol. 64:1510-1513. 1. Bartlett, D.H. 2009. Microbial life in the trenches. Mar Technol Soc J. 50:128-131. 51. Quince, C., A. Lanzén, T.P. Curtis, R.J. Davenport, N. Hall, I.M. Head, L.F. Read, and W.T. Sloan. 2009. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods. 6:639-641. 55. Sigman, D.M., K.L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J.K. Böhlke. 2001. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal Chem. 73:4145-4153. 58. Taira, K., D. Yanagimoto, and S. Kitagawa. 2005. Deep CTD Casts in the Challenger Deep, Mariana Trench. J Oceanogr. 61:447-454. 21. Jamieson, A. 2015. The Hadal Zone Life in the Deepest Oceans. Cambridge University Press, Cambridge. 32. Mantyla, A.W., and J.L. Reid. 1978. Measurements of water characteristics at depths greater than 10 km in the Marianas Trench. Deep-Sea Res. 25:169-173. 72. Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics. 7:57. 62. Takami, H., S. Nishi, J. Lu, S. Shimamura, and Y. Takaki. 2004. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles. 8:351-356. 12. Glud, R.N., F. Wenzhöfer, M. Middelboe, K. Oguri, R. Turnewitsch, D.E. Canfield, and H. Kitazato. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 6:284-288. 67. Wankel, S.D., C. Buchwald, W. Ziebis, C.B. Wenk, and M.F. Lehmann. 2015. Nitrogen cycling in the deep sedimentary biosphere: nitrate isotopes in porewaters underlying the oligotrophic North Atlantic. Biogeosciences. 12:7483-7502. 70. Yoshida, H., S. Ishibashi, Y. Watanabe, T. Inoue, J. Tahara, T. Sawa, and H. Osawa. 2009. The ABISMO mud and water sampling ROV for surveys at 11,000 m depth. Mar Technol Soc J. 50:87-96. 46. Pathom-aree, W., Y. Nogi, I.C. Sutcliffe, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 56:1123-1126. 36. Nishizawa, M., K. Koba, A. Makabe, et al. 2013. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream. Geochim Cosmochim Acta. 113:152-173. 2. Beman, J.M., B.N. Popp, and C.A. Francis. 2008. Molecular and bioge 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 67 24 68 25 69 26 27 28 29 70 71 72 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 58. Taira, K., D. Yanagimoto, and S. Kitagawa. 2005. Deep CTD Casts in the Challenger Deep, Mariana Trench. J Oceanogr. 61:447-454. – reference: 40. Nunoura, T., M. Nishizawa, T. Kikuchi, et al. 2013. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ Microbiol. 15:3087-3107. – reference: 28. Lane, D.J. 1985. 16S-23S rRNA sequencing, p.115-175. In E. Stackebrandt, and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York. – reference: 52. Schattenhofer, M., B.M. Fuchs, R. Amann, M.V. Zubkov, G.A Tarran, and J. Pernthaler. 2009. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol. 11:2078-2093. – reference: 4. Buchwald, C., and K.L. Casciotti. 2013. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nat Geosci. 6:308-313. – reference: 34. Morono, Y., T. Terada, N. Masui, and F. Inagaki. 2009. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J. 3:503-511. – reference: 46. Pathom-aree, W., Y. Nogi, I.C. Sutcliffe, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 56:1123-1126. – reference: 53. Schloss, P.D., S.L. Westcott, T. Ryabin, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75:7537-7541. – reference: 29. Larkin, M.A., G. Blackshields, N.P. Brown, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23:2947-2948. – reference: 11. Freudenthal, T., T. Wagner, F. Wenzhöfer, M. Zabel, and G. Wefer. 2001. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. NatGeochim Cosmochim Acta. 65:1795-1808. – reference: 70. Yoshida, H., S. Ishibashi, Y. Watanabe, T. Inoue, J. Tahara, T. Sawa, and H. Osawa. 2009. The ABISMO mud and water sampling ROV for surveys at 11,000 m depth. Mar Technol Soc J. 50:87-96. – reference: 2. Beman, J.M., B.N. Popp, and C.A. Francis. 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J. 2:429-441. – reference: 9. Edgar, R.C., B.J. Haas, J.C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194-2200. – reference: 54. Schloss, P.D., D. Gevers, and S.L. Westcott. 2011. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One. 6:e27310. – reference: 44. Ohara, Y., M.K. Reagan, K. Fujikura, et al. 2012. A serpentinite-hosted ecosystem in the Southern Mariana Forearc. Proc Natl Acad Sci USA. 109:2831-2835. – reference: 27. Kusube, M., T.S. Kyaw, K. Tanikawa, R.A. Chastain, K.M. Hardy, J. Cameron, and D.H. Bartlett. 2017. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 67:824-831. – reference: 64. Tarn, J., L.M. Peoples, K. Hardy, J. Cameron, and D.H. Bartlett. 2016. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front Microbiol. 7:7608. – reference: 20. Ichino, M.C., M.R. Clark, J.C. Drazen, et al. 2015. The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res, Part I. 100:21-33. – reference: 43. Nunoura, T., Y. Takaki, S. Shimamura, et al. 2016. Variance and potential niche separation of microbial communities in subseafloor sediments off Shimokita Peninsula, Japan. Environ Microbiol. 18:1889-1906. – reference: 68. Wenzhöfer, F., K. Oguri, M. Middelboe, R. Turnewitsch, T. Toyofuku, H. Kitazato, and R.N. Glud. 2016. Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements. Deep Sea Res, Part I. 116:276-286. – reference: 59. Takai, K., A. Inoue, and K. Horikoshi. 1999. Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Evol Microbiol. 49:619-628. – reference: 69. Yilmaz, P., L.W. Parfrey, P. Yarza, et al. 2013. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl Acids Res. 42:D650-D648. – reference: 5. Caporaso, J.G., J. Kuczynski, J. Stombaugh, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7:335-336. – reference: 45. Ortiz-Alvarez, R., and E.O. Casamayor. 2016. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 8:210-217. – reference: 3. Buchwald, C., and K.L. Casciotti. 2010. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol Oceanogr. 55:1064-1074. – reference: 30. León-Zayas, R., L. Peoples, J.F. Biddle, S. Podell, M. Novotny, J. Cameron, R.S. Lasken, and D.H. Bartlett. 2017. The metabolic potential of the single cell genomes obtained from the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Environ Microbiol. 19:2769-2784. – reference: 22. Kato, C., L. Li, J. Tamaoka, and K. Horikoshi. 1997. Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles. 1:117-123. – reference: 50. Pruesse, E., J. Peplies, and F.O. Glöckner. 2012. SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 28:1823-1829. – reference: 17. Harhangi, H.R., M. Le Roy, T. van Alen, et al. 2012. Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl Environ Microbiol. 78:752-758. – reference: 25. Kobayashi, H., Y. Takaki, K. Kobata, H. Takami, and A. Inoue. 1998. Characterization of α-maltotetraohydrolase produced by Pseudomonas sp. MS300 isolated from the deepest site of the Mariana Trench. Extremophiles. 2:401-407. – reference: 26. Kroopnick, P., and H. Craig. 1976. Oxygen isotope fractionation in dissolved oxygen in the deep sea. Earth Planet Sci Lett. 32:375-388. – reference: 71. Yoshida, M., Y. Takaki, M. Eitoku, T. Nunoura, and K. Takai. 2013. Metagenomic analysis of viral communities in (hado)pelagic sediments. PLoS One. 8:e57271. – reference: 6. Casciotti, K.L., D.M. Sigman, M.G. Hastings, J.K. Böhlke, and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem. 74:4905-4912. – reference: 42. Nunoura, T., M. Hirai, Y. Yoshida-Takashima, et al. 2016. Distribution and niche separation of planktonic microbial communities in the water columns from the surface to the hadal waters of the Japan Trench under the eutrophic ocean. Front Microbiol. 7:1261. – reference: 47. Pathom-aree, W., Y. Nogi, I.C. Sutcliffe, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 56:1233-1237. – reference: 10. Francis, C.A., K.J. Roberts, J.M. Beman, A.E. Santoro, and B.B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 102:15383-15388. – reference: 32. Mantyla, A.W., and J.L. Reid. 1978. Measurements of water characteristics at depths greater than 10 km in the Marianas Trench. Deep-Sea Res. 25:169-173. – reference: 14. Granger, J., D.M. Sigman, M.F. Lehmann, and P.D. Tortell. 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 53:3033-2545. – reference: 39. Nunoura, T., Y. Takaki, H. Kazama, M. Hirai, J. Ashi, H. Imachi, and K. Takai. 2012. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ. 27:382-390. – reference: 21. Jamieson, A. 2015. The Hadal Zone Life in the Deepest Oceans. Cambridge University Press, Cambridge. – reference: 60. Takai, K., and K. Horikoshi. 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 66:5066-5072. – reference: 7. Casciotti, K.L., M. McIlvin, and C. Buchwald. 2010. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol Oceanogr. 55:753-762. – reference: 33. Morita, R.Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, p.279-298. In R.G. Gray, and J.R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge. – reference: 36. Nishizawa, M., K. Koba, A. Makabe, et al. 2013. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream. Geochim Cosmochim Acta. 113:152-173. – reference: 51. Quince, C., A. Lanzén, T.P. Curtis, R.J. Davenport, N. Hall, I.M. Head, L.F. Read, and W.T. Sloan. 2009. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods. 6:639-641. – reference: 61. Takami, H., A. Inoue, F. Fuji, and K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett. 152:279-285. – reference: 13. Graham, D.W., C.W. Knapp, E.S. van Vleck, K. Bloor, T.B. Lane, and C.E. Graham. 2007. Experimental demonstration of chaotic instability in biological nitrification. ISME J. 1:385-393. – reference: 38. Nunoura, T., H. Oida, J. Miyazaki, A. Miyashita, H. Imachi, and K. Takai. 2008. Quantification of mcrA by fluorescent PCR in methanogenic and anaerobic methanotrophic microbial communities. FEMS Microbiol Ecol. 64:240-247. – reference: 67. Wankel, S.D., C. Buchwald, W. Ziebis, C.B. Wenk, and M.F. Lehmann. 2015. Nitrogen cycling in the deep sedimentary biosphere: nitrate isotopes in porewaters underlying the oligotrophic North Atlantic. Biogeosciences. 12:7483-7502. – reference: 48. Pathom-aree, W., J.E.M. Stach, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles. 10:181-189. – reference: 35. Morono, Y., T. Terada, T. Hoshino, and F. Inagaki. 2014. Hot-alkaline DNA extraction method for deep-subseafloor archaeal communities. Appl Environ Microbiol. 80:1985-1994. – reference: 8. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 89:5685-5689. – reference: 23. Kato, C., L. Li, Y. Nogi, Y. Nakamura, J. Tamaoka, and K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol. 64:1510-1513. – reference: 56. Sintes, E., K. Bergauer, D. De Corte, T. Yokokawa, and G.J. Herndl. 2013. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol. 15:1647-1658. – reference: 63. Tamegai, H., L. Li, N. Masui, and C. Kato. 1997. A denitrifying bacterium from the deep sea at 11 000-m depth. Extremophiles. 1:207-211. – reference: 65. Tesdal, J.E., E.D. Galbraith, and M. Kienast. 2013. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences. 10:101-118. – reference: 41. Nunoura, T., Y. Takaki, M. Hirai, et al. 2015. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA. 112:E1230-E1236. – reference: 49. Prokopenko, M.G., D.E. Hammond, and L. Stott. 2006. Lack of isotopic fractionation of 15N of organic matter during long-term diagenesis in marine sediments; ODP Leg 202–Sites 1234 and 1235, p.1-22. In R. Tiedemann, A.C. Mix, C. Richter, and W.F. Ruddiman (ed.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 202. Ocean Drilling Program, College Station. – reference: 24. Kiddon, J., M.L. Bender, J. Orchardo, D.A. Caron, J.C. Goldman, and M. Dennett. 1993. Isotopic fractionation of oxygen by respiring marine organisms. Global Biogeochem Cycles. 7:679-694. – reference: 72. Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics. 7:57. – reference: 12. Glud, R.N., F. Wenzhöfer, M. Middelboe, K. Oguri, R. Turnewitsch, D.E. Canfield, and H. Kitazato. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 6:284-288. – reference: 31. Lloyd, K.G., M.K. May, R.T. Kevorkian, and A.D. Steen. 2013. Meta-analysis of quantification methods shows that Archaea and Bacteria have similar abundances in the subseafloor. Appl Environ Microbiol. 79:7790-7799. – reference: 16. Granger, J., D.M. Sigman, M.M. Rohde, M.T. Maldonado, and P.D. Tortell. 2010. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. NatGeochim CosmochimGeochim Cosmochim Acta. 74:1030-1040. – reference: 19. Hsui, A.T., and S. Youngquist. 1985. A dynamic model of the curvature of the Mariana Trench. Nature. 318:455-457. – reference: 1. Bartlett, D.H. 2009. Microbial life in the trenches. Mar Technol Soc J. 50:128-131. – reference: 18. Hoshino, T., and F. Inagaki. 2012. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol. 35:390-395. – reference: 15. Granger, J., and D.M. Sigman. 2009. Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun Mass Spectrom. 23:3753-3762. – reference: 55. Sigman, D.M., K.L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J.K. Böhlke. 2001. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal Chem. 73:4145-4153. – reference: 57. Stephen, J.R., Y.J. Chang, S.J. Macnaughton, G.A. Kowalchuk, K.T. Leung, C.A. Flemming, and D.C. White. 1999. Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol. 65:95-101. – reference: 37. Nishizawa, M., S. Sakai, U. Konno, et al. 2016. Nitrogen and oxygen isotope effects of ammonia oxidation by thermophilic Thaumarchaeota from a geothermal water stream. Appl Environ Microbiol. 82:4492-4504. – reference: 66. Todo, Y., H. Kitazato, J. Hashimoto, and A.J. Gooday. 2005. Simple foraminifera flourish at the ocean’s deepest point. Science. 307:689. – reference: 62. Takami, H., S. Nishi, J. Lu, S. Shimamura, and Y. Takaki. 2004. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles. 8:351-356. – ident: 36 doi: 10.1016/j.gca.2013.03.027 – ident: 7 doi: 10.4319/lo.2009.55.2.0753 – ident: 48 doi: 10.1007/s00792-005-0482-z – ident: 22 doi: 10.1007/s007920050024 – ident: 54 doi: 10.1371/journal.pone.0027310 – ident: 6 doi: 10.1021/ac020113w – ident: 34 doi: 10.1038/ismej.2009.1 – ident: 51 doi: 10.1038/nmeth.1361 – ident: 58 doi: 10.1007/s10872-005-0053-z – ident: 26 doi: 10.1016/0012-821X(76)90078-9 – ident: 53 doi: 10.1128/AEM.01541-09 – ident: 11 doi: 10.1016/S0016-7037(01)00554-3 – ident: 57 doi: 10.1128/AEM.65.1.95-101.1999 – ident: 64 doi: 10.3389/fmicb.2016.00665 – ident: 20 doi: 10.1016/j.dsr.2015.01.010 – ident: 66 doi: 10.1126/science.1105407 – ident: 13 doi: 10.1038/ismej.2007.45 – ident: 45 doi: 10.1111/1758-2229.12370 – ident: 31 doi: 10.1128/AEM.02090-13 – ident: 59 – ident: 2 doi: 10.1038/ismej.2007.118 – ident: 30 doi: 10.1111/1462-2920.13789 – ident: 18 doi: 10.1016/j.syapm.2012.06.006 – ident: 5 doi: 10.1038/nmeth.f.303 – ident: 52 doi: 10.1111/j.1462-2920.2009.01929.x – ident: 71 doi: 10.1371/journal.pone.0057271 – ident: 14 doi: 10.4319/lo.2008.53.6.2533 – ident: 50 doi: 10.1093/bioinformatics/bts252 – ident: 9 doi: 10.1093/bioinformatics/btr381 – ident: 65 doi: 10.5194/bg-10-101-2013 – ident: 69 doi: 10.1093/nar/gkt1209 – ident: 24 doi: 10.1029/93GB01444 – ident: 29 doi: 10.1093/bioinformatics/btm404 – ident: 41 doi: 10.1073/pnas.1421816112 – ident: 67 doi: 10.5194/bg-12-7483-2015 – ident: 42 doi: 10.3389/fmicb.2016.01261 – ident: 39 doi: 10.1264/jsme2.ME12032 – ident: 43 doi: 10.1111/1462-2920.13096 – ident: 55 doi: 10.1021/ac010088e – ident: 33 – ident: 38 doi: 10.1111/j.1574-6941.2008.00451.x – ident: 19 doi: 10.1038/318455a0 – ident: 28 – ident: 23 doi: 10.1128/AEM.64.4.1510-1513.1998 – ident: 49 doi: 10.2973/odp.proc.sr.202.207.2006 – ident: 12 doi: 10.1038/ngeo1773 – ident: 1 doi: 10.4031/MTSJ.43.5.5 – ident: 47 doi: 10.1099/ijs.0.64133-0 – ident: 8 doi: 10.1073/pnas.89.12.5685 – ident: 70 doi: 10.4031/MTSJ.43.5.31 – ident: 32 doi: 10.1016/0146-6291(78)90004-8 – ident: 37 doi: 10.1128/AEM.00250-16 – ident: 3 doi: 10.4319/lo.2010.55.3.1064 – ident: 4 doi: 10.1038/ngeo1745 – ident: 21 doi: 10.1017/CBO9781139061384 – ident: 63 doi: 10.1007/s007920050035 – ident: 10 doi: 10.1073/pnas.0506625102 – ident: 25 doi: 10.1007/s007920050085 – ident: 17 doi: 10.1128/AEM.07113-11 – ident: 35 doi: 10.1128/AEM.04150-13 – ident: 15 doi: 10.1002/rcm.4307 – ident: 44 doi: 10.1073/pnas.1112005109 – ident: 60 doi: 10.1128/AEM.66.11.5066-5072.2000 – ident: 68 doi: 10.1016/j.dsr.2016.08.013 – ident: 46 doi: 10.1099/ijs.0.64132-0 – ident: 61 doi: 10.1111/j.1574-6968.1997.tb10440.x – ident: 27 doi: 10.1099/ijsem.0.001671 – ident: 16 doi: 10.1016/j.gca.2009.10.044 – ident: 62 doi: 10.1007/s00792-004-0394-3 – ident: 72 doi: 10.1186/1471-2105-7-57 – ident: 40 doi: 10.1111/1462-2920.12152 – ident: 56 doi: 10.1111/j.1462-2920.2012.02801.x |
SSID | ssj0033572 |
Score | 2.3941214 |
Snippet | The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 186 |
SubjectTerms | Bacteria Bottom sediments Deep sea Deep water Denitrification DNA Earth Gene sequencing Geochemical cycle Geochemical cycles Geochemistry Hadal Hydrothermal plumes Mariana Trench Microorganisms Nitrification nitrogen cycle Nucleotide sequence Oceanic trenches PCR Pore water rRNA Sediment Sediments Subgroups |
Title | Microbial Diversity in Sediments from the Bottom of the Challenger Deep, the Mariana Trench |
URI | https://www.jstage.jst.go.jp/article/jsme2/33/2/33_ME17194/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/29806625 https://www.proquest.com/docview/2242245158 https://pubmed.ncbi.nlm.nih.gov/PMC6031389 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Microbes and Environments, 2018, Vol.33(2), pp.186-194 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS90wFD5Mp7CXsc0f6-YkD7InrzZJmzawMTa9IkJFUEHwoSS3iV7RXr12MP_7naRp3d3ck1BK05yWck6S8500-Q7AhuLaWIXITZhEDhItLI6DVg6w8WD7GGUyrtzUQHEo9k-Tg7P07JFSKCjw_snQzuWTOp1eb_26e_iGHf6r50YQyfbV_Y1hW8WQZhiRz8FLdErCxWFF0v9Q4Dz1eZwoT_CzOKWBbvOfx2fc08IVIrQL8xT4_HsN5R9Oae8NvA5oknxvzf8WXpj6HSwOPRP1wxKcF2PPs4Qiu936CzKuyTF6LL-1jbjdJQQxIPkxaRq8nFhf2ulSrEzJrjG3m_5mgWG1qhVxy2hHl8twsjc82dkfhGwKg5EQssHuoCQTlmlmc2YrqWMrKkZ1HlfKIkjhlYjRVqbCAIqZzPGFZgLLWKpUavgKzNeT2rwHkqEhM6ozIxGLoOeTVWwYVVpRplOpaASbnQ7LUWAadwkvrksXcaDKS6_yMqg8gs-9-G1LsfE_wS-tQXqx0LuCGOelPwXxvtbtX8NBIIK1zoxl185KRDB4IKjLI1htLdq_ncnc8eOnEWQztu4FHDX3bE09vvQU3S53N0LBD8_74o_wCvFZ3s74rMF8M_1pPiEGavS6b914Pjwq1v0U1W-qJwmw |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Diversity+in+Sediments+from+the+Bottom+of+the+Challenger+Deep%2C+the+Mariana+Trench&rft.jtitle=Microbes+and+Environments&rft.au=Morono%2C+Yuki&rft.au=Nunoura%2C+Takuro&rft.au=Nishizawa%2C+Manabu&rft.au=Hirai%2C+Miho&rft.date=2018&rft.pub=Japanese+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Soil+Microbiology+%2F+Taiwan+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Plant+Microbe+Interactions+%2F+Japanese+Society+for+Extremophiles&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=33&rft.issue=2&rft.spage=186&rft.epage=194&rft_id=info:doi/10.1264%2Fjsme2.ME17194&rft.externalDocID=article_jsme2_33_2_33_ME17194_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon |