Microbial Diversity in Sediments from the Bottom of the Challenger Deep, the Mariana Trench

The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the trench bottom sediments of the Challenger Deep, the Mariana Trench. The SSU rRNA gene communities found in trench bottom sediments were dominate...

Full description

Saved in:
Bibliographic Details
Published inMicrobes and Environments Vol. 33; no. 2; pp. 186 - 194
Main Authors Morono, Yuki, Nunoura, Takuro, Nishizawa, Manabu, Hirai, Miho, Shimamura, Shigeru, Inagaki, Fumio, Takai, Ken, Harnvoravongchai, Phurt, Miyazaki, Junichi, Takaki, Yoshihiro, Koide, Osamu, Fukui, Toshiaki
Format Journal Article
LanguageEnglish
Published Japan Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2018
Japan Science and Technology Agency
the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI)
Subjects
Online AccessGet full text
ISSN1342-6311
1347-4405
DOI10.1264/jsme2.ME17194

Cover

Abstract The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the trench bottom sediments of the Challenger Deep, the Mariana Trench. The SSU rRNA gene communities found in trench bottom sediments were dominated by the bacteria Chloroflexi (SAR202 and other lineages), Bacteroidetes, Planctomycetes, “Ca. Marinimicrobia” (SAR406), and Gemmatimonadetes and by the archaeal α subgroup of MGI Thaumarchaeota and “Ca. Woesearchaeota” (Deep-sea Hydrothermal Vent Euryarchaeotic Group 6). The SSU rRNA gene sequencing analysis indicated that the dominant populations of the thaumarchaeal α group in hadal water and sediments were similar to each other at the species or genus level. In addition, the co-occurrence of nitrification and denitrification was revealed by the combination of pore water geochemical analyses and quantitative PCR for nitrifiers.
AbstractList The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the trench bottom sediments of the Challenger Deep, the Mariana Trench. The SSU rRNA gene communities found in trench bottom sediments were dominated by the bacteria Chloroflexi (SAR202 and other lineages), Bacteroidetes , Planctomycetes , “ Ca. Marinimicrobia” (SAR406), and Gemmatimonadetes and by the archaeal α subgroup of MGI Thaumarchaeota and “ Ca. Woesearchaeota” (Deep-sea Hydrothermal Vent Euryarchaeotic Group 6). The SSU rRNA gene sequencing analysis indicated that the dominant populations of the thaumarchaeal α group in hadal water and sediments were similar to each other at the species or genus level. In addition, the co-occurrence of nitrification and denitrification was revealed by the combination of pore water geochemical analyses and quantitative PCR for nitrifiers.
The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the trench bottom sediments of the Challenger Deep, the Mariana Trench. The SSU rRNA gene communities found in trench bottom sediments were dominated by the bacteria Chloroflexi (SAR202 and other lineages), Bacteroidetes, Planctomycetes, “Ca. Marinimicrobia” (SAR406), and Gemmatimonadetes and by the archaeal α subgroup of MGI Thaumarchaeota and “Ca. Woesearchaeota” (Deep-sea Hydrothermal Vent Euryarchaeotic Group 6). The SSU rRNA gene sequencing analysis indicated that the dominant populations of the thaumarchaeal α group in hadal water and sediments were similar to each other at the species or genus level. In addition, the co-occurrence of nitrification and denitrification was revealed by the combination of pore water geochemical analyses and quantitative PCR for nitrifiers.
Author Nishizawa, Manabu
Fukui, Toshiaki
Takai, Ken
Hirai, Miho
Shimamura, Shigeru
Koide, Osamu
Nunoura, Takuro
Harnvoravongchai, Phurt
Inagaki, Fumio
Miyazaki, Junichi
Morono, Yuki
Takaki, Yoshihiro
AuthorAffiliation 4 Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Nankoku, 783–0093 Japan
2 Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2–15 Natsushima-cho, Yokosuka 237–0061 Japan
1 Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2–15 Natsushima-cho, Yokosuka 237–0061 Japan
5 Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Nankoku, 783–0093 Japan
6 Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Yokohama 236–0001 Japan
3 School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226–8501 Japan
AuthorAffiliation_xml – name: 1 Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2–15 Natsushima-cho, Yokosuka 237–0061 Japan
– name: 2 Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 2–15 Natsushima-cho, Yokosuka 237–0061 Japan
– name: 4 Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Nankoku, 783–0093 Japan
– name: 5 Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Nankoku, 783–0093 Japan
– name: 6 Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science Technology (JAMSTEC) Yokohama 236–0001 Japan
– name: 3 School of Life Science and Technology, Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama 226–8501 Japan
Author_xml – sequence: 1
  fullname: Morono, Yuki
  organization: Geobiotechnology Group, Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science Technology (JAMSTEC)
– sequence: 1
  fullname: Nunoura, Takuro
  organization: Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Nishizawa, Manabu
  organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Hirai, Miho
  organization: Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Shimamura, Shigeru
  organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Inagaki, Fumio
  organization: Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science Technology (JAMSTEC)
– sequence: 1
  fullname: Takai, Ken
  organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Harnvoravongchai, Phurt
  organization: School of Life Science and Technology, Tokyo Institute of Technology
– sequence: 1
  fullname: Miyazaki, Junichi
  organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Takaki, Yoshihiro
  organization: Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Koide, Osamu
  organization: Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)
– sequence: 1
  fullname: Fukui, Toshiaki
  organization: School of Life Science and Technology, Tokyo Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29806625$$D View this record in MEDLINE/PubMed
BookMark eNp1kctr3DAQh0VIyfvYazD0Wqd62LJ9KTSb9AG75JC95SBke7TWYktbSbuw_30Vr7s0hYCQZjTf_GaYuUSnxhpA6CPBd4Ty7MvaD0DvFo-kIFV2gi4Iy4o0y3B-Oto05YyQc3Tp_RpjxvKCnqFzWpWYc5pfoJeFbpytteyTB70D53XYJ9okz9DqAUzwiXJ2SEIHyb0NIZpWjd6sk30PZgUueQDYfB4_F9JpaWSydGCa7hp9ULL3cDO9V2j5_XE5-5nOn378mn2bpw3nVUgplhXlitZUlVS1VY0VbympS9xKVbGCtRxnNYeW8IxCgSvCCh796LUyB3aFvh5kN9t6gLaJXTvZi43Tg3R7YaUWbyNGd2Jld4JjRlhZRYFPk4Czv7fgg1jbrTOxZUFpFk9O8jJSt_-WOer_nWUE0gMQB-q9A3VECBavuxLjrsS0q8iz__hGBxm0fe1S9-9mzQ5Zax_kCo41pAu66WGiGRPjNWUdo00nnQDD_gCWi7D1
CitedBy_id crossref_primary_10_1007_s13131_022_2043_z
crossref_primary_10_1007_s42995_021_00110_1
crossref_primary_10_1093_femsec_fiaa223
crossref_primary_10_1016_j_chemgeo_2020_119742
crossref_primary_10_1080_14786419_2024_2412305
crossref_primary_10_1016_j_margen_2019_100699
crossref_primary_10_1007_s11802_020_4276_9
crossref_primary_10_1089_ast_2021_0120
crossref_primary_10_1016_j_scitotenv_2019_134884
crossref_primary_10_1264_jsme2_ME3402rh
crossref_primary_10_1016_j_xinn_2021_100109
crossref_primary_10_1128_msystems_01358_21
crossref_primary_10_1264_jsme2_ME3404rh
crossref_primary_10_1264_jsme2_ME18103
crossref_primary_10_3389_fmicb_2021_581124
crossref_primary_10_1038_s41396_019_0564_z
crossref_primary_10_1016_j_dsr_2019_03_011
crossref_primary_10_1186_s40793_023_00522_9
crossref_primary_10_1038_s41467_024_46897_2
crossref_primary_10_3389_fmicb_2020_01521
crossref_primary_10_1007_s00253_022_11893_3
crossref_primary_10_3390_microorganisms10010151
crossref_primary_10_1038_s41396_020_0662_y
crossref_primary_10_1016_j_phytol_2022_03_010
crossref_primary_10_1107_S1600576721008554
crossref_primary_10_5194_bg_19_1395_2022
crossref_primary_10_7717_peerj_6961
crossref_primary_10_1128_spectrum_01112_23
crossref_primary_10_1186_s40793_022_00413_5
crossref_primary_10_1038_s41467_022_29144_4
crossref_primary_10_1099_ijsem_0_003297
crossref_primary_10_1128_msystems_00243_24
crossref_primary_10_3389_fmicb_2020_01041
crossref_primary_10_1016_j_rsma_2021_102112
crossref_primary_10_1016_j_ygeno_2022_110524
crossref_primary_10_3389_fmars_2019_00108
crossref_primary_10_3389_fmicb_2019_02609
crossref_primary_10_1089_ast_2020_2352
crossref_primary_10_1111_mec_15937
crossref_primary_10_3389_fmicb_2019_00347
crossref_primary_10_3389_fmicb_2019_01952
crossref_primary_10_3390_jmse13020294
crossref_primary_10_1016_j_tetlet_2024_154935
crossref_primary_10_1038_s41396_021_00962_6
crossref_primary_10_1186_s40168_022_01403_y
crossref_primary_10_1007_s42995_023_00212_y
crossref_primary_10_1016_j_pocean_2019_102175
crossref_primary_10_1073_pnas_2104529118
crossref_primary_10_1016_j_chemgeo_2022_120959
crossref_primary_10_1007_s42995_021_00105_y
crossref_primary_10_1155_2021_9109132
crossref_primary_10_1264_jsme2_ME3403rh
crossref_primary_10_1111_1462_2920_70018
crossref_primary_10_1111_1462_2920_15363
crossref_primary_10_1038_s41579_022_00687_z
crossref_primary_10_1128_spectrum_01988_21
crossref_primary_10_1038_s43705_023_00341_6
crossref_primary_10_1111_1758_2229_13314
crossref_primary_10_3389_fmicb_2022_1051999
crossref_primary_10_3389_fmars_2019_00241
crossref_primary_10_3389_feart_2021_653742
crossref_primary_10_1111_1462_2920_14518
crossref_primary_10_1038_s43705_023_00230_y
crossref_primary_10_1039_C8RA10142F
crossref_primary_10_1007_s42995_024_00224_2
crossref_primary_10_3389_fmicb_2023_1268790
crossref_primary_10_1186_s13059_021_02408_w
Cites_doi 10.1016/j.gca.2013.03.027
10.4319/lo.2009.55.2.0753
10.1007/s00792-005-0482-z
10.1007/s007920050024
10.1371/journal.pone.0027310
10.1021/ac020113w
10.1038/ismej.2009.1
10.1038/nmeth.1361
10.1007/s10872-005-0053-z
10.1016/0012-821X(76)90078-9
10.1128/AEM.01541-09
10.1016/S0016-7037(01)00554-3
10.1128/AEM.65.1.95-101.1999
10.3389/fmicb.2016.00665
10.1016/j.dsr.2015.01.010
10.1126/science.1105407
10.1038/ismej.2007.45
10.1111/1758-2229.12370
10.1128/AEM.02090-13
10.1038/ismej.2007.118
10.1111/1462-2920.13789
10.1016/j.syapm.2012.06.006
10.1038/nmeth.f.303
10.1111/j.1462-2920.2009.01929.x
10.1371/journal.pone.0057271
10.4319/lo.2008.53.6.2533
10.1093/bioinformatics/bts252
10.1093/bioinformatics/btr381
10.5194/bg-10-101-2013
10.1093/nar/gkt1209
10.1029/93GB01444
10.1093/bioinformatics/btm404
10.1073/pnas.1421816112
10.5194/bg-12-7483-2015
10.3389/fmicb.2016.01261
10.1264/jsme2.ME12032
10.1111/1462-2920.13096
10.1021/ac010088e
10.1111/j.1574-6941.2008.00451.x
10.1038/318455a0
10.1128/AEM.64.4.1510-1513.1998
10.2973/odp.proc.sr.202.207.2006
10.1038/ngeo1773
10.4031/MTSJ.43.5.5
10.1099/ijs.0.64133-0
10.1073/pnas.89.12.5685
10.4031/MTSJ.43.5.31
10.1016/0146-6291(78)90004-8
10.1128/AEM.00250-16
10.4319/lo.2010.55.3.1064
10.1038/ngeo1745
10.1017/CBO9781139061384
10.1007/s007920050035
10.1073/pnas.0506625102
10.1007/s007920050085
10.1128/AEM.07113-11
10.1128/AEM.04150-13
10.1002/rcm.4307
10.1073/pnas.1112005109
10.1128/AEM.66.11.5066-5072.2000
10.1016/j.dsr.2016.08.013
10.1099/ijs.0.64132-0
10.1111/j.1574-6968.1997.tb10440.x
10.1099/ijsem.0.001671
10.1016/j.gca.2009.10.044
10.1007/s00792-004-0394-3
10.1186/1471-2105-7-57
10.1111/1462-2920.12152
10.1111/j.1462-2920.2012.02801.x
ContentType Journal Article
Copyright 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions.
Copyright Japan Science and Technology Agency 2018
Copyright © 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2018
Copyright_xml – notice: 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions.
– notice: Copyright Japan Science and Technology Agency 2018
– notice: Copyright © 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions. 2018
DBID AAYXX
CITATION
NPM
7QL
C1K
F1W
H95
L.G
M7N
5PM
DOI 10.1264/jsme2.ME17194
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1347-4405
EndPage 194
ExternalDocumentID PMC6031389
29806625
10_1264_jsme2_ME17194
article_jsme2_33_2_33_ME17194_article_char_en
Genre Journal Article
GroupedDBID 123
2WC
53G
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
HYE
JSF
JSH
KQ8
M48
OK1
PGMZT
RJT
RPM
RZJ
TKC
TR2
WBO
~02
AAYXX
CITATION
NPM
7QL
C1K
F1W
H95
L.G
M7N
5PM
ID FETCH-LOGICAL-c669t-20a926f2b2f82fd9b0f6d21b80daf9373d604b6ed1642e7091376b6e642da5e3
IEDL.DBID M48
ISSN 1342-6311
IngestDate Thu Aug 21 18:15:31 EDT 2025
Mon Jun 30 08:36:54 EDT 2025
Thu Apr 03 07:11:57 EDT 2025
Tue Jul 01 03:52:12 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Sep 03 06:09:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Hadal
nitrogen cycle
Mariana Trench
nitrification
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669t-20a926f2b2f82fd9b0f6d21b80daf9373d604b6ed1642e7091376b6e642da5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
Present address: Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1264/jsme2.ME17194
PMID 29806625
PQID 2242245158
PQPubID 1976392
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031389
proquest_journals_2242245158
pubmed_primary_29806625
crossref_primary_10_1264_jsme2_ME17194
crossref_citationtrail_10_1264_jsme2_ME17194
jstage_primary_article_jsme2_33_2_33_ME17194_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-00-00
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Miyagi
PublicationTitle Microbes and Environments
PublicationTitleAlternate Microbes Environ.
PublicationYear 2018
Publisher Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
Japan Science and Technology Agency
the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI)
Publisher_xml – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
– name: Japan Science and Technology Agency
– name: the Japanese Society of Microbial Ecology (JSME)/the Japanese Society of Soil Microbiology (JSSM)/the Taiwan Society of Microbial Ecology (TSME)/the Japanese Society of Plant Microbe Interactions (JSPMI)
References 34. Morono, Y., T. Terada, N. Masui, and F. Inagaki. 2009. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J. 3:503-511.
33. Morita, R.Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, p.279-298. In R.G. Gray, and J.R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge.
64. Tarn, J., L.M. Peoples, K. Hardy, J. Cameron, and D.H. Bartlett. 2016. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front Microbiol. 7:7608.
49. Prokopenko, M.G., D.E. Hammond, and L. Stott. 2006. Lack of isotopic fractionation of 15N of organic matter during long-term diagenesis in marine sediments; ODP Leg 202–Sites 1234 and 1235, p.1-22. In R. Tiedemann, A.C. Mix, C. Richter, and W.F. Ruddiman (ed.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 202. Ocean Drilling Program, College Station.
47. Pathom-aree, W., Y. Nogi, I.C. Sutcliffe, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 56:1233-1237.
44. Ohara, Y., M.K. Reagan, K. Fujikura, et al. 2012. A serpentinite-hosted ecosystem in the Southern Mariana Forearc. Proc Natl Acad Sci USA. 109:2831-2835.
25. Kobayashi, H., Y. Takaki, K. Kobata, H. Takami, and A. Inoue. 1998. Characterization of α-maltotetraohydrolase produced by Pseudomonas sp. MS300 isolated from the deepest site of the Mariana Trench. Extremophiles. 2:401-407.
53. Schloss, P.D., S.L. Westcott, T. Ryabin, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75:7537-7541.
60. Takai, K., and K. Horikoshi. 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 66:5066-5072.
56. Sintes, E., K. Bergauer, D. De Corte, T. Yokokawa, and G.J. Herndl. 2013. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol. 15:1647-1658.
66. Todo, Y., H. Kitazato, J. Hashimoto, and A.J. Gooday. 2005. Simple foraminifera flourish at the ocean’s deepest point. Science. 307:689.
29. Larkin, M.A., G. Blackshields, N.P. Brown, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23:2947-2948.
37. Nishizawa, M., S. Sakai, U. Konno, et al. 2016. Nitrogen and oxygen isotope effects of ammonia oxidation by thermophilic Thaumarchaeota from a geothermal water stream. Appl Environ Microbiol. 82:4492-4504.
30. León-Zayas, R., L. Peoples, J.F. Biddle, S. Podell, M. Novotny, J. Cameron, R.S. Lasken, and D.H. Bartlett. 2017. The metabolic potential of the single cell genomes obtained from the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Environ Microbiol. 19:2769-2784.
3. Buchwald, C., and K.L. Casciotti. 2010. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol Oceanogr. 55:1064-1074.
57. Stephen, J.R., Y.J. Chang, S.J. Macnaughton, G.A. Kowalchuk, K.T. Leung, C.A. Flemming, and D.C. White. 1999. Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol. 65:95-101.
40. Nunoura, T., M. Nishizawa, T. Kikuchi, et al. 2013. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ Microbiol. 15:3087-3107.
48. Pathom-aree, W., J.E.M. Stach, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles. 10:181-189.
4. Buchwald, C., and K.L. Casciotti. 2013. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nat Geosci. 6:308-313.
27. Kusube, M., T.S. Kyaw, K. Tanikawa, R.A. Chastain, K.M. Hardy, J. Cameron, and D.H. Bartlett. 2017. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 67:824-831.
38. Nunoura, T., H. Oida, J. Miyazaki, A. Miyashita, H. Imachi, and K. Takai. 2008. Quantification of mcrA by fluorescent PCR in methanogenic and anaerobic methanotrophic microbial communities. FEMS Microbiol Ecol. 64:240-247.
6. Casciotti, K.L., D.M. Sigman, M.G. Hastings, J.K. Böhlke, and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem. 74:4905-4912.
20. Ichino, M.C., M.R. Clark, J.C. Drazen, et al. 2015. The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res, Part I. 100:21-33.
65. Tesdal, J.E., E.D. Galbraith, and M. Kienast. 2013. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences. 10:101-118.
14. Granger, J., D.M. Sigman, M.F. Lehmann, and P.D. Tortell. 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 53:3033-2545.
41. Nunoura, T., Y. Takaki, M. Hirai, et al. 2015. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA. 112:E1230-E1236.
8. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 89:5685-5689.
31. Lloyd, K.G., M.K. May, R.T. Kevorkian, and A.D. Steen. 2013. Meta-analysis of quantification methods shows that Archaea and Bacteria have similar abundances in the subseafloor. Appl Environ Microbiol. 79:7790-7799.
45. Ortiz-Alvarez, R., and E.O. Casamayor. 2016. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 8:210-217.
19. Hsui, A.T., and S. Youngquist. 1985. A dynamic model of the curvature of the Mariana Trench. Nature. 318:455-457.
10. Francis, C.A., K.J. Roberts, J.M. Beman, A.E. Santoro, and B.B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 102:15383-15388.
24. Kiddon, J., M.L. Bender, J. Orchardo, D.A. Caron, J.C. Goldman, and M. Dennett. 1993. Isotopic fractionation of oxygen by respiring marine organisms. Global Biogeochem Cycles. 7:679-694.
26. Kroopnick, P., and H. Craig. 1976. Oxygen isotope fractionation in dissolved oxygen in the deep sea. Earth Planet Sci Lett. 32:375-388.
18. Hoshino, T., and F. Inagaki. 2012. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol. 35:390-395.
52. Schattenhofer, M., B.M. Fuchs, R. Amann, M.V. Zubkov, G.A Tarran, and J. Pernthaler. 2009. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol. 11:2078-2093.
23. Kato, C., L. Li, Y. Nogi, Y. Nakamura, J. Tamaoka, and K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol. 64:1510-1513.
1. Bartlett, D.H. 2009. Microbial life in the trenches. Mar Technol Soc J. 50:128-131.
51. Quince, C., A. Lanzén, T.P. Curtis, R.J. Davenport, N. Hall, I.M. Head, L.F. Read, and W.T. Sloan. 2009. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods. 6:639-641.
55. Sigman, D.M., K.L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J.K. Böhlke. 2001. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal Chem. 73:4145-4153.
58. Taira, K., D. Yanagimoto, and S. Kitagawa. 2005. Deep CTD Casts in the Challenger Deep, Mariana Trench. J Oceanogr. 61:447-454.
21. Jamieson, A. 2015. The Hadal Zone Life in the Deepest Oceans. Cambridge University Press, Cambridge.
32. Mantyla, A.W., and J.L. Reid. 1978. Measurements of water characteristics at depths greater than 10 km in the Marianas Trench. Deep-Sea Res. 25:169-173.
72. Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics. 7:57.
62. Takami, H., S. Nishi, J. Lu, S. Shimamura, and Y. Takaki. 2004. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles. 8:351-356.
12. Glud, R.N., F. Wenzhöfer, M. Middelboe, K. Oguri, R. Turnewitsch, D.E. Canfield, and H. Kitazato. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 6:284-288.
67. Wankel, S.D., C. Buchwald, W. Ziebis, C.B. Wenk, and M.F. Lehmann. 2015. Nitrogen cycling in the deep sedimentary biosphere: nitrate isotopes in porewaters underlying the oligotrophic North Atlantic. Biogeosciences. 12:7483-7502.
70. Yoshida, H., S. Ishibashi, Y. Watanabe, T. Inoue, J. Tahara, T. Sawa, and H. Osawa. 2009. The ABISMO mud and water sampling ROV for surveys at 11,000 m depth. Mar Technol Soc J. 50:87-96.
46. Pathom-aree, W., Y. Nogi, I.C. Sutcliffe, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 56:1123-1126.
36. Nishizawa, M., K. Koba, A. Makabe, et al. 2013. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream. Geochim Cosmochim Acta. 113:152-173.
2. Beman, J.M., B.N. Popp, and C.A. Francis. 2008. Molecular and bioge
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
67
24
68
25
69
26
27
28
29
70
71
72
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 58. Taira, K., D. Yanagimoto, and S. Kitagawa. 2005. Deep CTD Casts in the Challenger Deep, Mariana Trench. J Oceanogr. 61:447-454.
– reference: 40. Nunoura, T., M. Nishizawa, T. Kikuchi, et al. 2013. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ Microbiol. 15:3087-3107.
– reference: 28. Lane, D.J. 1985. 16S-23S rRNA sequencing, p.115-175. In E. Stackebrandt, and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley and Sons, New York.
– reference: 52. Schattenhofer, M., B.M. Fuchs, R. Amann, M.V. Zubkov, G.A Tarran, and J. Pernthaler. 2009. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean. Environ Microbiol. 11:2078-2093.
– reference: 4. Buchwald, C., and K.L. Casciotti. 2013. Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite. Nat Geosci. 6:308-313.
– reference: 34. Morono, Y., T. Terada, N. Masui, and F. Inagaki. 2009. Discriminative detection and enumeration of microbial life in marine subsurface sediments. ISME J. 3:503-511.
– reference: 46. Pathom-aree, W., Y. Nogi, I.C. Sutcliffe, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Williamsia marianensis sp. nov., a novel actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 56:1123-1126.
– reference: 53. Schloss, P.D., S.L. Westcott, T. Ryabin, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75:7537-7541.
– reference: 29. Larkin, M.A., G. Blackshields, N.P. Brown, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics. 23:2947-2948.
– reference: 11. Freudenthal, T., T. Wagner, F. Wenzhöfer, M. Zabel, and G. Wefer. 2001. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. NatGeochim Cosmochim Acta. 65:1795-1808.
– reference: 70. Yoshida, H., S. Ishibashi, Y. Watanabe, T. Inoue, J. Tahara, T. Sawa, and H. Osawa. 2009. The ABISMO mud and water sampling ROV for surveys at 11,000 m depth. Mar Technol Soc J. 50:87-96.
– reference: 2. Beman, J.M., B.N. Popp, and C.A. Francis. 2008. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J. 2:429-441.
– reference: 9. Edgar, R.C., B.J. Haas, J.C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194-2200.
– reference: 54. Schloss, P.D., D. Gevers, and S.L. Westcott. 2011. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One. 6:e27310.
– reference: 44. Ohara, Y., M.K. Reagan, K. Fujikura, et al. 2012. A serpentinite-hosted ecosystem in the Southern Mariana Forearc. Proc Natl Acad Sci USA. 109:2831-2835.
– reference: 27. Kusube, M., T.S. Kyaw, K. Tanikawa, R.A. Chastain, K.M. Hardy, J. Cameron, and D.H. Bartlett. 2017. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 67:824-831.
– reference: 64. Tarn, J., L.M. Peoples, K. Hardy, J. Cameron, and D.H. Bartlett. 2016. Identification of free-living and particle-associated microbial communities present in hadal regions of the Mariana Trench. Front Microbiol. 7:7608.
– reference: 20. Ichino, M.C., M.R. Clark, J.C. Drazen, et al. 2015. The distribution of benthic biomass in hadal trenches: A modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res, Part I. 100:21-33.
– reference: 43. Nunoura, T., Y. Takaki, S. Shimamura, et al. 2016. Variance and potential niche separation of microbial communities in subseafloor sediments off Shimokita Peninsula, Japan. Environ Microbiol. 18:1889-1906.
– reference: 68. Wenzhöfer, F., K. Oguri, M. Middelboe, R. Turnewitsch, T. Toyofuku, H. Kitazato, and R.N. Glud. 2016. Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements. Deep Sea Res, Part I. 116:276-286.
– reference: 59. Takai, K., A. Inoue, and K. Horikoshi. 1999. Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Evol Microbiol. 49:619-628.
– reference: 69. Yilmaz, P., L.W. Parfrey, P. Yarza, et al. 2013. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl Acids Res. 42:D650-D648.
– reference: 5. Caporaso, J.G., J. Kuczynski, J. Stombaugh, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 7:335-336.
– reference: 45. Ortiz-Alvarez, R., and E.O. Casamayor. 2016. High occurrence of Pacearchaeota and Woesearchaeota (Archaea superphylum DPANN) in the surface waters of oligotrophic high-altitude lakes. Environ Microbiol Rep. 8:210-217.
– reference: 3. Buchwald, C., and K.L. Casciotti. 2010. Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnol Oceanogr. 55:1064-1074.
– reference: 30. León-Zayas, R., L. Peoples, J.F. Biddle, S. Podell, M. Novotny, J. Cameron, R.S. Lasken, and D.H. Bartlett. 2017. The metabolic potential of the single cell genomes obtained from the Challenger Deep, Mariana Trench within the candidate superphylum Parcubacteria (OD1). Environ Microbiol. 19:2769-2784.
– reference: 22. Kato, C., L. Li, J. Tamaoka, and K. Horikoshi. 1997. Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles. 1:117-123.
– reference: 50. Pruesse, E., J. Peplies, and F.O. Glöckner. 2012. SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 28:1823-1829.
– reference: 17. Harhangi, H.R., M. Le Roy, T. van Alen, et al. 2012. Hydrazine synthase, a unique phylomarker with which to study the presence and biodiversity of anammox bacteria. Appl Environ Microbiol. 78:752-758.
– reference: 25. Kobayashi, H., Y. Takaki, K. Kobata, H. Takami, and A. Inoue. 1998. Characterization of α-maltotetraohydrolase produced by Pseudomonas sp. MS300 isolated from the deepest site of the Mariana Trench. Extremophiles. 2:401-407.
– reference: 26. Kroopnick, P., and H. Craig. 1976. Oxygen isotope fractionation in dissolved oxygen in the deep sea. Earth Planet Sci Lett. 32:375-388.
– reference: 71. Yoshida, M., Y. Takaki, M. Eitoku, T. Nunoura, and K. Takai. 2013. Metagenomic analysis of viral communities in (hado)pelagic sediments. PLoS One. 8:e57271.
– reference: 6. Casciotti, K.L., D.M. Sigman, M.G. Hastings, J.K. Böhlke, and A. Hilkert. 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem. 74:4905-4912.
– reference: 42. Nunoura, T., M. Hirai, Y. Yoshida-Takashima, et al. 2016. Distribution and niche separation of planktonic microbial communities in the water columns from the surface to the hadal waters of the Japan Trench under the eutrophic ocean. Front Microbiol. 7:1261.
– reference: 47. Pathom-aree, W., Y. Nogi, I.C. Sutcliffe, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 56:1233-1237.
– reference: 10. Francis, C.A., K.J. Roberts, J.M. Beman, A.E. Santoro, and B.B. Oakley. 2005. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA. 102:15383-15388.
– reference: 32. Mantyla, A.W., and J.L. Reid. 1978. Measurements of water characteristics at depths greater than 10 km in the Marianas Trench. Deep-Sea Res. 25:169-173.
– reference: 14. Granger, J., D.M. Sigman, M.F. Lehmann, and P.D. Tortell. 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr. 53:3033-2545.
– reference: 39. Nunoura, T., Y. Takaki, H. Kazama, M. Hirai, J. Ashi, H. Imachi, and K. Takai. 2012. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ. 27:382-390.
– reference: 21. Jamieson, A. 2015. The Hadal Zone Life in the Deepest Oceans. Cambridge University Press, Cambridge.
– reference: 60. Takai, K., and K. Horikoshi. 2000. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 66:5066-5072.
– reference: 7. Casciotti, K.L., M. McIlvin, and C. Buchwald. 2010. Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol Oceanogr. 55:753-762.
– reference: 33. Morita, R.Y. 1976. Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria, p.279-298. In R.G. Gray, and J.R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge.
– reference: 36. Nishizawa, M., K. Koba, A. Makabe, et al. 2013. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream. Geochim Cosmochim Acta. 113:152-173.
– reference: 51. Quince, C., A. Lanzén, T.P. Curtis, R.J. Davenport, N. Hall, I.M. Head, L.F. Read, and W.T. Sloan. 2009. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods. 6:639-641.
– reference: 61. Takami, H., A. Inoue, F. Fuji, and K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol Lett. 152:279-285.
– reference: 13. Graham, D.W., C.W. Knapp, E.S. van Vleck, K. Bloor, T.B. Lane, and C.E. Graham. 2007. Experimental demonstration of chaotic instability in biological nitrification. ISME J. 1:385-393.
– reference: 38. Nunoura, T., H. Oida, J. Miyazaki, A. Miyashita, H. Imachi, and K. Takai. 2008. Quantification of mcrA by fluorescent PCR in methanogenic and anaerobic methanotrophic microbial communities. FEMS Microbiol Ecol. 64:240-247.
– reference: 67. Wankel, S.D., C. Buchwald, W. Ziebis, C.B. Wenk, and M.F. Lehmann. 2015. Nitrogen cycling in the deep sedimentary biosphere: nitrate isotopes in porewaters underlying the oligotrophic North Atlantic. Biogeosciences. 12:7483-7502.
– reference: 48. Pathom-aree, W., J.E.M. Stach, A.C. Ward, K. Horikoshi, A.T. Bull, and M. Goodfellow. 2006. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles. 10:181-189.
– reference: 35. Morono, Y., T. Terada, T. Hoshino, and F. Inagaki. 2014. Hot-alkaline DNA extraction method for deep-subseafloor archaeal communities. Appl Environ Microbiol. 80:1985-1994.
– reference: 8. DeLong, E.F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 89:5685-5689.
– reference: 23. Kato, C., L. Li, Y. Nogi, Y. Nakamura, J. Tamaoka, and K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol. 64:1510-1513.
– reference: 56. Sintes, E., K. Bergauer, D. De Corte, T. Yokokawa, and G.J. Herndl. 2013. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol. 15:1647-1658.
– reference: 63. Tamegai, H., L. Li, N. Masui, and C. Kato. 1997. A denitrifying bacterium from the deep sea at 11 000-m depth. Extremophiles. 1:207-211.
– reference: 65. Tesdal, J.E., E.D. Galbraith, and M. Kienast. 2013. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences. 10:101-118.
– reference: 41. Nunoura, T., Y. Takaki, M. Hirai, et al. 2015. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA. 112:E1230-E1236.
– reference: 49. Prokopenko, M.G., D.E. Hammond, and L. Stott. 2006. Lack of isotopic fractionation of 15N of organic matter during long-term diagenesis in marine sediments; ODP Leg 202–Sites 1234 and 1235, p.1-22. In R. Tiedemann, A.C. Mix, C. Richter, and W.F. Ruddiman (ed.), Proceedings of the Ocean Drilling Program, Scientific Results, vol. 202. Ocean Drilling Program, College Station.
– reference: 24. Kiddon, J., M.L. Bender, J. Orchardo, D.A. Caron, J.C. Goldman, and M. Dennett. 1993. Isotopic fractionation of oxygen by respiring marine organisms. Global Biogeochem Cycles. 7:679-694.
– reference: 72. Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer. 2006. FastGroupII: a web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics. 7:57.
– reference: 12. Glud, R.N., F. Wenzhöfer, M. Middelboe, K. Oguri, R. Turnewitsch, D.E. Canfield, and H. Kitazato. 2013. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 6:284-288.
– reference: 31. Lloyd, K.G., M.K. May, R.T. Kevorkian, and A.D. Steen. 2013. Meta-analysis of quantification methods shows that Archaea and Bacteria have similar abundances in the subseafloor. Appl Environ Microbiol. 79:7790-7799.
– reference: 16. Granger, J., D.M. Sigman, M.M. Rohde, M.T. Maldonado, and P.D. Tortell. 2010. N and O isotope effects during nitrate assimilation by unicellular prokaryotic and eukaryotic plankton cultures. NatGeochim CosmochimGeochim Cosmochim Acta. 74:1030-1040.
– reference: 19. Hsui, A.T., and S. Youngquist. 1985. A dynamic model of the curvature of the Mariana Trench. Nature. 318:455-457.
– reference: 1. Bartlett, D.H. 2009. Microbial life in the trenches. Mar Technol Soc J. 50:128-131.
– reference: 18. Hoshino, T., and F. Inagaki. 2012. Molecular quantification of environmental DNA using microfluidics and digital PCR. Syst Appl Microbiol. 35:390-395.
– reference: 15. Granger, J., and D.M. Sigman. 2009. Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the denitrifier method. Rapid Commun Mass Spectrom. 23:3753-3762.
– reference: 55. Sigman, D.M., K.L. Casciotti, M. Andreani, C. Barford, M. Galanter, and J.K. Böhlke. 2001. A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater. Anal Chem. 73:4145-4153.
– reference: 57. Stephen, J.R., Y.J. Chang, S.J. Macnaughton, G.A. Kowalchuk, K.T. Leung, C.A. Flemming, and D.C. White. 1999. Effect of toxic metals on indigenous soil beta-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol. 65:95-101.
– reference: 37. Nishizawa, M., S. Sakai, U. Konno, et al. 2016. Nitrogen and oxygen isotope effects of ammonia oxidation by thermophilic Thaumarchaeota from a geothermal water stream. Appl Environ Microbiol. 82:4492-4504.
– reference: 66. Todo, Y., H. Kitazato, J. Hashimoto, and A.J. Gooday. 2005. Simple foraminifera flourish at the ocean’s deepest point. Science. 307:689.
– reference: 62. Takami, H., S. Nishi, J. Lu, S. Shimamura, and Y. Takaki. 2004. Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles. 8:351-356.
– ident: 36
  doi: 10.1016/j.gca.2013.03.027
– ident: 7
  doi: 10.4319/lo.2009.55.2.0753
– ident: 48
  doi: 10.1007/s00792-005-0482-z
– ident: 22
  doi: 10.1007/s007920050024
– ident: 54
  doi: 10.1371/journal.pone.0027310
– ident: 6
  doi: 10.1021/ac020113w
– ident: 34
  doi: 10.1038/ismej.2009.1
– ident: 51
  doi: 10.1038/nmeth.1361
– ident: 58
  doi: 10.1007/s10872-005-0053-z
– ident: 26
  doi: 10.1016/0012-821X(76)90078-9
– ident: 53
  doi: 10.1128/AEM.01541-09
– ident: 11
  doi: 10.1016/S0016-7037(01)00554-3
– ident: 57
  doi: 10.1128/AEM.65.1.95-101.1999
– ident: 64
  doi: 10.3389/fmicb.2016.00665
– ident: 20
  doi: 10.1016/j.dsr.2015.01.010
– ident: 66
  doi: 10.1126/science.1105407
– ident: 13
  doi: 10.1038/ismej.2007.45
– ident: 45
  doi: 10.1111/1758-2229.12370
– ident: 31
  doi: 10.1128/AEM.02090-13
– ident: 59
– ident: 2
  doi: 10.1038/ismej.2007.118
– ident: 30
  doi: 10.1111/1462-2920.13789
– ident: 18
  doi: 10.1016/j.syapm.2012.06.006
– ident: 5
  doi: 10.1038/nmeth.f.303
– ident: 52
  doi: 10.1111/j.1462-2920.2009.01929.x
– ident: 71
  doi: 10.1371/journal.pone.0057271
– ident: 14
  doi: 10.4319/lo.2008.53.6.2533
– ident: 50
  doi: 10.1093/bioinformatics/bts252
– ident: 9
  doi: 10.1093/bioinformatics/btr381
– ident: 65
  doi: 10.5194/bg-10-101-2013
– ident: 69
  doi: 10.1093/nar/gkt1209
– ident: 24
  doi: 10.1029/93GB01444
– ident: 29
  doi: 10.1093/bioinformatics/btm404
– ident: 41
  doi: 10.1073/pnas.1421816112
– ident: 67
  doi: 10.5194/bg-12-7483-2015
– ident: 42
  doi: 10.3389/fmicb.2016.01261
– ident: 39
  doi: 10.1264/jsme2.ME12032
– ident: 43
  doi: 10.1111/1462-2920.13096
– ident: 55
  doi: 10.1021/ac010088e
– ident: 33
– ident: 38
  doi: 10.1111/j.1574-6941.2008.00451.x
– ident: 19
  doi: 10.1038/318455a0
– ident: 28
– ident: 23
  doi: 10.1128/AEM.64.4.1510-1513.1998
– ident: 49
  doi: 10.2973/odp.proc.sr.202.207.2006
– ident: 12
  doi: 10.1038/ngeo1773
– ident: 1
  doi: 10.4031/MTSJ.43.5.5
– ident: 47
  doi: 10.1099/ijs.0.64133-0
– ident: 8
  doi: 10.1073/pnas.89.12.5685
– ident: 70
  doi: 10.4031/MTSJ.43.5.31
– ident: 32
  doi: 10.1016/0146-6291(78)90004-8
– ident: 37
  doi: 10.1128/AEM.00250-16
– ident: 3
  doi: 10.4319/lo.2010.55.3.1064
– ident: 4
  doi: 10.1038/ngeo1745
– ident: 21
  doi: 10.1017/CBO9781139061384
– ident: 63
  doi: 10.1007/s007920050035
– ident: 10
  doi: 10.1073/pnas.0506625102
– ident: 25
  doi: 10.1007/s007920050085
– ident: 17
  doi: 10.1128/AEM.07113-11
– ident: 35
  doi: 10.1128/AEM.04150-13
– ident: 15
  doi: 10.1002/rcm.4307
– ident: 44
  doi: 10.1073/pnas.1112005109
– ident: 60
  doi: 10.1128/AEM.66.11.5066-5072.2000
– ident: 68
  doi: 10.1016/j.dsr.2016.08.013
– ident: 46
  doi: 10.1099/ijs.0.64132-0
– ident: 61
  doi: 10.1111/j.1574-6968.1997.tb10440.x
– ident: 27
  doi: 10.1099/ijsem.0.001671
– ident: 16
  doi: 10.1016/j.gca.2009.10.044
– ident: 62
  doi: 10.1007/s00792-004-0394-3
– ident: 72
  doi: 10.1186/1471-2105-7-57
– ident: 40
  doi: 10.1111/1462-2920.12152
– ident: 56
  doi: 10.1111/j.1462-2920.2012.02801.x
SSID ssj0033572
Score 2.3941214
Snippet The Challenger Deep is the deepest ocean on Earth. The present study investigated microbial community structures and geochemical cycles associated with the...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 186
SubjectTerms Bacteria
Bottom sediments
Deep sea
Deep water
Denitrification
DNA
Earth
Gene sequencing
Geochemical cycle
Geochemical cycles
Geochemistry
Hadal
Hydrothermal plumes
Mariana Trench
Microorganisms
Nitrification
nitrogen cycle
Nucleotide sequence
Oceanic trenches
PCR
Pore water
rRNA
Sediment
Sediments
Subgroups
Title Microbial Diversity in Sediments from the Bottom of the Challenger Deep, the Mariana Trench
URI https://www.jstage.jst.go.jp/article/jsme2/33/2/33_ME17194/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/29806625
https://www.proquest.com/docview/2242245158
https://pubmed.ncbi.nlm.nih.gov/PMC6031389
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Microbes and Environments, 2018, Vol.33(2), pp.186-194
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS90wFD5Mp7CXsc0f6-YkD7InrzZJmzawMTa9IkJFUEHwoSS3iV7RXr12MP_7naRp3d3ck1BK05yWck6S8500-Q7AhuLaWIXITZhEDhItLI6DVg6w8WD7GGUyrtzUQHEo9k-Tg7P07JFSKCjw_snQzuWTOp1eb_26e_iGHf6r50YQyfbV_Y1hW8WQZhiRz8FLdErCxWFF0v9Q4Dz1eZwoT_CzOKWBbvOfx2fc08IVIrQL8xT4_HsN5R9Oae8NvA5oknxvzf8WXpj6HSwOPRP1wxKcF2PPs4Qiu936CzKuyTF6LL-1jbjdJQQxIPkxaRq8nFhf2ulSrEzJrjG3m_5mgWG1qhVxy2hHl8twsjc82dkfhGwKg5EQssHuoCQTlmlmc2YrqWMrKkZ1HlfKIkjhlYjRVqbCAIqZzPGFZgLLWKpUavgKzNeT2rwHkqEhM6ozIxGLoOeTVWwYVVpRplOpaASbnQ7LUWAadwkvrksXcaDKS6_yMqg8gs-9-G1LsfE_wS-tQXqx0LuCGOelPwXxvtbtX8NBIIK1zoxl185KRDB4IKjLI1htLdq_ncnc8eOnEWQztu4FHDX3bE09vvQU3S53N0LBD8_74o_wCvFZ3s74rMF8M_1pPiEGavS6b914Pjwq1v0U1W-qJwmw
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+Diversity+in+Sediments+from+the+Bottom+of+the+Challenger+Deep%2C+the+Mariana+Trench&rft.jtitle=Microbes+and+Environments&rft.au=Morono%2C+Yuki&rft.au=Nunoura%2C+Takuro&rft.au=Nishizawa%2C+Manabu&rft.au=Hirai%2C+Miho&rft.date=2018&rft.pub=Japanese+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Soil+Microbiology+%2F+Taiwan+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Plant+Microbe+Interactions+%2F+Japanese+Society+for+Extremophiles&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=33&rft.issue=2&rft.spage=186&rft.epage=194&rft_id=info:doi/10.1264%2Fjsme2.ME17194&rft.externalDocID=article_jsme2_33_2_33_ME17194_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon