Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a d-octapeptide derivative inhibitor
Summary Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ∼ 1.89 × 106 member d‐octapeptide combinatorial library that concentrates library members at the yeast cell surf...
Saved in:
Published in | Molecular microbiology Vol. 85; no. 4; pp. 747 - 767 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2012
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ∼ 1.89 × 106 member d‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d‐octapeptide d‐NH2‐FFKWQRRR‐CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3. |
---|---|
AbstractList | Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~1.89 × 10(6) member D-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the D-octapeptide D-NH(2) -FFKWQRRR-CONH(2) , as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization-resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3. Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~ 1.89 x 10^sup 6^ member D-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the D-octapeptide D-NH2-FFKWQRRR-CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization-resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3. [PUBLICATION ABSTRACT] Over-expression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~1.89 × 10 6 member d -octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the d -octapeptide d -NH 2 -FFKWQRRR-CONH 2 , as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains over-expressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates over-expressing CaCDR1 to FLC, even when CaCDR2 was over-expressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or Cdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3. Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ∼ 1.89 × 10 6 member d ‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d ‐octapeptide d ‐NH 2 ‐FFKWQRRR‐CONH 2 , as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3. Summary Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ∼ 1.89 × 106 member d‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d‐octapeptide d‐NH2‐FFKWQRRR‐CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3. Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a similar to 1.89106 member d-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the d-octapeptide d-NH2-FFKWQRRR-CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C.albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C.albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization-resistant suppressor mutants of S.cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin alpha 11 and milbemycin beta 9 have modes of action similar to RC21v3. |
Author | Cannon, Richard D. Monk, Brian C. Tyndall, Joel D. A. Harding, David R. K. Niimi, Kyoko Holmes, Ann R. Niimi, Masakazu Lamping, Erwin |
AuthorAffiliation | 3 Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo, Japan 2 The Centre for Separation Science, Massey University, Palmerston North, New Zealand 4 National School of Pharmacy, University of Otago, Dunedin, New Zealand 1 The Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand |
AuthorAffiliation_xml | – name: 1 The Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand – name: 4 National School of Pharmacy, University of Otago, Dunedin, New Zealand – name: 2 The Centre for Separation Science, Massey University, Palmerston North, New Zealand – name: 3 Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo, Japan |
Author_xml | – sequence: 1 givenname: Kyoko surname: Niimi fullname: Niimi, Kyoko organization: The Sir John Walsh Research Institute – sequence: 2 givenname: David R. K. surname: Harding fullname: Harding, David R. K. organization: The Centre for Separation Science, Massey University, Palmerston North, New Zealand – sequence: 3 givenname: Ann R. surname: Holmes fullname: Holmes, Ann R. organization: The Sir John Walsh Research Institute – sequence: 4 givenname: Erwin surname: Lamping fullname: Lamping, Erwin organization: The Sir John Walsh Research Institute – sequence: 5 givenname: Masakazu surname: Niimi fullname: Niimi, Masakazu organization: The Sir John Walsh Research Institute – sequence: 6 givenname: Joel D. A. surname: Tyndall fullname: Tyndall, Joel D. A. organization: National School of Pharmacy, University of Otago, Dunedin, New Zealand – sequence: 7 givenname: Richard D. surname: Cannon fullname: Cannon, Richard D. organization: The Sir John Walsh Research Institute – sequence: 8 givenname: Brian C. surname: Monk fullname: Monk, Brian C. email: brian.monk@otago.ac.nz organization: The Sir John Walsh Research Institute |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26211954$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22788839$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVtvEzEQhS1URNPCX0CWEFJfNtjrvdgPILURpEUtCAEKb5ZjzxKHzXqxnTSV-PH1khAuT_hlLM13xmd8TtBR5zpACFMypum8WI4pq8osFyUf54TmY8JpQcbbB2h0aByhERElyRjPvxyjkxCWhFBGKvYIHed5zTlnYoR-fOxB28ZqbLsIXuloXRfwHOItQIfjAvBEdcYahVU7t1ql5vnFBEefbr3zSYMnxtMeg47OuJWyHU4CrLDJnI6qhz5aA9iAtxsV7QbSSws7t9H5x-hho9oAT_b1FH1-8_rT5DK7fj-9mpxfZ7qqBMmKsmBUN7oROVEqr0tohioKXQMrtGkK1himeSmYIrymdckN8LmoldJFqQw7Ra92c_v1fAVGQ5fst7L3dqX8nXTKyr87nV3Ir24jWUHTL4k04Gw_wLvvawhRrmzQ0LaqA7cOkpJKUFETQRP67B906da-S-sliiXTuSBFoviO0t6F4KE5mKFEDhHLpRySlEOScohY_oxYbpP06Z_LHIS_Mk3A8z2gglZtk5LSNvzmqpxSUQ4eXu64W9vC3X8bkDc3V8Mt6bOd3oYI24Ne-W-yqlldytm7qWRTcTGbibfyA7sHsQjVVQ |
CitedBy_id | crossref_primary_10_1128_EC_00137_15 crossref_primary_10_1128_AAC_01748_21 crossref_primary_10_1590_2175_7860202172052 crossref_primary_10_3390_jof7020068 crossref_primary_10_1074_jbc_M113_467159 crossref_primary_10_1021_acs_jafc_6b03413 crossref_primary_10_1016_j_fgb_2019_103252 crossref_primary_10_1016_j_bbapap_2019_02_008 crossref_primary_10_1038_srep11211 crossref_primary_10_1093_femsyr_foz048 crossref_primary_10_1186_1475_2859_12_74 crossref_primary_10_1590_0037_8682_0473_2018 crossref_primary_10_4155_fmc_2018_0479 crossref_primary_10_1007_s12033_023_01017_1 crossref_primary_10_1016_j_bbamem_2019_183131 crossref_primary_10_1371_journal_pone_0126350 crossref_primary_10_1074_jbc_M113_488353 crossref_primary_10_1016_j_lfs_2022_120391 crossref_primary_10_1038_srep27132 crossref_primary_10_1128_AAC_00863_19 crossref_primary_10_3389_fphar_2014_00202 crossref_primary_10_3389_fmicb_2016_00261 crossref_primary_10_1042_EBC20160067 crossref_primary_10_1016_j_drup_2019_02_002 crossref_primary_10_1080_21505594_2016_1216283 crossref_primary_10_3390_jof7070535 crossref_primary_10_1128_mSphere_01318_20 crossref_primary_10_4155_fmc_2016_0050 crossref_primary_10_1016_j_colsurfb_2013_06_033 crossref_primary_10_2174_0929867329666220209103538 crossref_primary_10_1128_AAC_02114_18 crossref_primary_10_1016_j_mycmed_2019_07_004 crossref_primary_10_1002_yea_3356 crossref_primary_10_1093_femsyr_fov036 crossref_primary_10_1128_AAC_01146_18 crossref_primary_10_1111_nyas_13739 crossref_primary_10_3390_jof7110897 |
Cites_doi | 10.1016/S0924-8579(03)00213-9 10.1111/j.1365-2958.2006.05357.x 10.1515/bc.2011.011 10.1016/j.bbamem.2009.04.009 10.1128/AAC.45.12.3366-3374.2001 10.1074/jbc.M210908200 10.1099/00221287-143-2-405 10.1021/bi0519147 10.1128/CMR.00051-08 10.1007/BF02110333 10.1016/j.bmcl.2004.07.071 10.1046/j.1365-2958.2000.01798.x 10.1074/jbc.271.49.31543 10.1126/science.1071142 10.1128/AAC.00926-08 10.1271/bbb.65.1589 10.1016/j.bbrc.2007.02.011 10.1074/jbc.273.20.12612 10.1074/jbc.M207817200 10.1016/0005-2728(94)90102-3 10.1556/AMicr.54.2007.4.4 10.1111/j.1365-2958.2007.05792.x 10.1093/jac/47.5.527 10.1016/j.jsb.2010.10.012 10.1111/j.1574-6968.2011.02490.x 10.1128/AAC.40.10.2300 10.1007/BF00352101 10.1128/AAC.49.1.57-70.2005 10.1111/j.1365-2958.2011.07820.x 10.1016/j.febslet.2007.01.073 10.1016/S0076-6879(05)00026-1 10.1016/j.bmcl.2004.07.070 10.1126/science.1168750 10.1128/AAC.40.12.2835 10.1021/bi0502994 10.1093/genetics/134.3.717 10.1128/AAC.00463-08 10.1093/genetics/116.4.541 10.1038/nature05155 10.1111/j.1742-4658.2009.07485.x 10.1016/j.fgb.2009.10.007 10.1074/jbc.M408252200 10.1016/j.bbrc.2007.10.110 10.1128/AAC.48.4.1256-1271.2004 10.1042/bj3260039 10.1002/0471250953.bi0506s15 10.1128/EC.00091-07 10.1091/mbc.9.2.523 10.1016/S0014-827X(01)01002-3 |
ContentType | Journal Article |
Copyright | 2012 Blackwell Publishing Ltd 2015 INIST-CNRS 2012 Blackwell Publishing Ltd. Copyright Blackwell Publishing Ltd. Aug 2012 |
Copyright_xml | – notice: 2012 Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2012 Blackwell Publishing Ltd. – notice: Copyright Blackwell Publishing Ltd. Aug 2012 |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1111/j.1365-2958.2012.08140.x |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | MEDLINE Virology and AIDS Abstracts CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2958 |
EndPage | 767 |
ExternalDocumentID | 2732935851 10_1111_j_1365_2958_2012_08140_x 22788839 26211954 MMI8140 ark_67375_WNG_3G9BWW9J_Q |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIDCR NIH HHS grantid: R01 DE016885 – fundername: NIDCR NIH HHS grantid: R21 DE015075 – fundername: NIDCR NIH HHS grantid: DE016885 – fundername: NIDCR NIH HHS grantid: DE015075 |
GroupedDBID | --- -DZ .3N .55 .GA .GJ .HR .Y3 05W 0R~ 10A 123 1OB 1OC 24P 29M 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FSRTE FZ0 G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBC OBS OEB OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXSBR WYISQ X7M XG1 Y6R YFH YUY ZGI ZXP ZY4 ZZTAW ~IA ~KM ~WT AAJUZ AAPBV AAUGY ABCVL ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS AKALU IQODW XFK CGR CUY CVF ECM EIF NPM AAMNL AAYXX ACRPL ACYXJ CITATION 7QL 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c6690-45431cfcf920aa275ef0aa294c7e34cdf43fd3c8593a0871758de8b97aac45ad3 |
IEDL.DBID | DR2 |
ISSN | 0950-382X |
IngestDate | Tue Sep 17 21:15:35 EDT 2024 Wed Dec 04 09:23:18 EST 2024 Tue Nov 19 04:11:01 EST 2024 Fri Dec 06 04:42:00 EST 2024 Sat Sep 28 07:52:13 EDT 2024 Sun Oct 22 16:04:26 EDT 2023 Sat Aug 24 01:01:40 EDT 2024 Wed Oct 30 09:50:27 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Fungi Candida albicans Octapeptide Yeast Fungi Imperfecti ABC transporter |
Language | English |
License | CC BY 4.0 2012 Blackwell Publishing Ltd. http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6690-45431cfcf920aa275ef0aa294c7e34cdf43fd3c8593a0871758de8b97aac45ad3 |
Notes | Supporting info item ark:/67375/WNG-3G9BWW9J-Q istex:516EC5F02186E46AFED628DF3882E90A50FAD713 ArticleID:MMI8140 Dr K. Niimi and Dr B.C. Monk contributed equally to this research. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2012.08140.x |
PMID | 22788839 |
PQID | 1032942904 |
PQPubID | 35968 |
PageCount | 21 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3418399 proquest_miscellaneous_1069197091 proquest_journals_1032942904 crossref_primary_10_1111_j_1365_2958_2012_08140_x pubmed_primary_22788839 pascalfrancis_primary_26211954 wiley_primary_10_1111_j_1365_2958_2012_08140_x_MMI8140 istex_primary_ark_67375_WNG_3G9BWW9J_Q |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Molecular microbiology |
PublicationTitleAlternate | Mol Microbiol |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Holmes, A.R., Tsao, S., Ong, S.W., Lamping, E., Niimi, K., Monk, B.C., et al. (2006) Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol Microbiol 62: 170-186. Puri, N., Gaur, M., Sharma, M., Shukla, S., Ambudkar, S.V., and Prasad, R. (2009) The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of Candida albicans are involved in substrate specificity and drug transport. Biochim Biophys Acta 1788: 1752-1761. Dawson, R.J., and Locher, K.P. (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581: 935-938. Locher, K.P., Lee, A.T., and Rees, D.C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296: 1091-1098. Prasad, R., De Wergifosse, P., Goffeau, A., and Balzi, E. (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27: 320-329. Lamping, E., Monk, B.C., Niimi, K., Holmes, A.R., Tsao, S., Tanabe, K., et al. (2007) Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6: 1150-1165. Maebashi, K., Niimi, M., Kudoh, M., Fischer, F.J., Makimura, K., Niimi, K., et al. (2001) Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. J Antimicrob Chemother 47: 527-536. Mishra, N.N., Prasad, T., Sharma, N., Lattif, A.A., Prasad, R., and Gupta, D.K. (2007) Membrane fluidity and lipid composition in clinical isolates of Candida albicans isolated from AIDS/HIV patients. Acta Microbiol Immunol Hung 54: 367-377. Egner, R., Bauer, B.E., and Kuchler, K. (2000) The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol 35: 1255-1263. Alani, E., Cao, L., and Kleckner, N. (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541-545. Lemoine, R.C., Glinka, T.W., Watkins, W.J., Cho, A., Yang, J., Iqbal, N., et al. (2004) Quinazolinone-based fungal efflux pump inhibitors. Part 1: Discovery of an (N-methylpiperazine)-containing derivative with activity in clinically relevant Candida spp. Bioorg Med Chem Lett 14: 5127-5131. Monk, B.C., Niimi, K., Lin, S., Knight, A., Kardos, T.B., Cannon, R.D., et al. (2005) Surface-active fungicidal d-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49: 57-70. Wada, S., Niimi, M., Niimi, K., Holmes, A.R., Monk, B.C., Cannon, R.D., and Uehara, Y. (2002) Candida glabrata ATP-binding cassette transporters Cdr1p and Pdh1p expressed in a Saccharomyces cerevisiae strain deficient in membrane transporters show phosphorylation-dependent pumping properties. J Biol Chem 277: 46809-46821. Shukla, S., Rai, V., Banerjee, D., and Prasad, R. (2006) Characterization of Cdr1p, a major multidrug efflux protein of Candida albicans: purified protein is amenable to intrinsic fluorescence analysis. Biochemistry 45: 2425-2435. Hanson, L., May, L., Tuma, P., Keeven, J., Mehl, P., Ferenz, M., et al. (2005) The role of hydrogen bond acceptor groups in the interaction of substrates with Pdr5p, a major yeast drug transporter. Biochemistry 44: 9703-9713. Hiraga, K., Wanigasekera, A., Sugi, H., Hamanaka, N., and Oda, K. (2001) A novel screening for inhibitors of a pleiotropic drug resistant pump, Pdr5, in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 65: 1589-1595. Holmes, A.R., Lin, Y.H., Niimi, K., Lamping, E., Keniya, M., Niimi, M., et al. (2008) ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 52: 3851-3862. Niimi, K., Harding, D.R., Parshot, R., King, A., Lun, D.J., Decottignies, A., et al. (2004) Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a d-octapeptide derivative. Antimicrob Agents Chemother 48: 1256-1271. Schuetzer-Muehlbauer, M., Willinger, B., Egner, R., Ecker, G., and Kuchler, K. (2003) Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents 22: 291-300. Cannon, R.D., Lamping, E., Holmes, A.R., Niimi, K., Baret, P.V., Keniya, M.V., et al. (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22: 291-321. Lamping, E., Baret, P.V., Holmes, A.R., Monk, B.C., Goffeau, A., and Cannon, R.D. (2010) Fungal PDR transporters: phylogeny, topology, motifs and function. Fungal Genet Biol 47: 127-142. Helmerhorst, E.J., Van't Hof, W., Veerman, E.C., Simoons-Smit, I., and Nieuw Amerongen, A.V. (1997) Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J 326: 39-45. Albertson, G.D., Niimi, M., Cannon, R.D., and Jenkinson, H.F. (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40: 2835-2841. Dawson, R.J., and Locher, K.P. (2006) Structure of a bacterial multidrug ABC transporter. Nature 443: 180-185. Balzi, E., and Goffeau, A. (1995) Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr 27: 71-76. Kolaczkowski, M., van der Rest, M., Cybularz-Kolaczkowska, A., Soumillion, J., Konings, W.N., and Goffeau, A. (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J Biol Chem 271: 31543-31548. Balzi, E., and Goffeau, A. (1994) Genetics and biochemistry of yeast multidrug resistance. Biochim Biophys Acta 1187: 152-162. Sanglard, D., Ischer, F., Monod, M., and Bille, J. (1996) Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40: 2300-2305. Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., et al. (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5: Unit 5.6. Gupta, R.P., Kueppers, P., Schmitt, L., and Ernst, R. (2011) The multidrug transporter Pdr5: a molecular diode? Biol Chem 392: 53-60. Egner, R., Rosenthal, F.E., Kralli, A., Sanglard, D., and Kuchler, K. (1998) Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter. Mol Biol Cell 9: 523-543. Tanabe, K., Lamping, E., Adachi, K., Takano, Y., Kawabata, K., Shizuri, Y., et al. (2007) Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium. Biochem Biophys Res Commun 364: 990-995. Sanglard, D., Ischer, F., Monod, M., and Bille, J. (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143: 405-416. Aller, S.G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718-1722. Watkins, W.J., Lemoine, R.C., Chong, L., Cho, A., Renau, T.E., Kuo, B., et al. (2004) Quinazolinone fungal efflux pump inhibitors. Part 2: In vitro structure-activity relationships of (N-methyl-piperazinyl)-containing derivatives. Bioorg Med Chem Lett 14: 5133-5137. Ernst, R., Klemm, R., Schmitt, L., and Kuchler, K. (2005) Yeast ATP-binding cassette transporters: cellular cleaning pumps. Methods Enzymol 400: 460-484. Ernst, R., Kueppers, P., Stindt, J., Kuchler, K., and Schmitt, L. (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps - first come, first served? FEBS J 277: 540-549. Tanabe, K., Lamping, E., Nagi, M., Okawada, A., Holmes, A.R., Miyazaki, Y., et al. (2011) Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. Mol Microbiol 82: 416-433. Tsao, S., Rahkhoodaee, F., and Raymond, M. (2009) Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53: 1344-1352. Golin, J., Ambudkar, S.V., Gottesman, M.M., Habib, A.D., Sczepanski, J., Ziccardi, W., and May, L. (2003) Studies with novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux. J Biol Chem 278: 5963-5969. Fonzi, W.A., and Irwin, M.Y. (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717-728. Golin, J., Ambudkar, S.V., and May, L. (2007) The yeast Pdr5p multidrug transporter: how does it recognize so many substrates? Biochem Biophys Res Commun 356: 1-5. Lee, M.D., Galazzo, J.L., Staley, A.L., Lee, J.C., Warren, M.S., Fuernkranz, H., et al. (2001) Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 56: 81-85. Decottignies, A., Grant, A.M., Nichols, J.W., de Wet, H., McIntosh, D.B., and Goffeau, A. (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273: 12612-12622. Dawson, R.J., Hollenstein, K., and Locher, K. (2007) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65: 250-257. Hayama, K., Ishibashi, H., Ishijima, S.A., Niimi, K., Tansho, S., Ono, Y., et al. (2012) A d-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiol Lett 328: 130-137. Wada, S., Tanabe, K., Yamazaki, A., Niimi, M., Uehara, Y., Niimi, K., et al. (2005) Phosphorylation of Candida glabrata ATP-binding cassette transporter Cdr1p regulates drug efflux activity and ATPase stability. J Biol Chem 280: 94-103. Rutledge, R.M., Esser, L., Ma, J., and Xia, D. (2010) Towa 2009; 22 2009; 1788 2002; 296 2011; 82 2004; 48 2007; 364 2007; 581 2002; 277 2006 2008; 52 2007; 54 2005; 49 2001; 45 2003; 278 2011; 392 2001; 47 2005; 44 1994; 1187 2012; 328 1998; 273 2001; 65 2007; 356 2005; 280 1997; 326 2010; 47 2006; 62 2009; 53 1987; 116 2006; 45 1995; 27 2000; 35 2005; 400 2004; 14 1997; 143 2010; 277 1996; 271 2007; 6 1996; 40 2010; 173 2007; 65 2001; 56 2009; 323 1998; 9 1993; 134 2003; 22 2006; 443 8349105 - Genetics. 1993 Jul;134(3):717-28 9337848 - Biochem J. 1997 Aug 15;326 ( Pt 1):39-45 9575223 - J Biol Chem. 1998 May 15;273(20):12612-22 19393219 - Biochim Biophys Acta. 2009 Sep;1788(9):1752-61 10712705 - Mol Microbiol. 2000 Mar;35(5):1255-63 9450972 - Mol Biol Cell. 1998 Feb;9(2):523-43 16399365 - Methods Enzymol. 2005;400:460-84 19857594 - Fungal Genet Biol. 2010 Feb;47(2):127-42 19325113 - Science. 2009 Mar 27;323(5922):1718-22 9043118 - Microbiology. 1997 Feb;143 ( Pt 2):405-16 18088010 - Acta Microbiol Immunol Hung. 2007 Dec;54(4):367-77 13678837 - Int J Antimicrob Agents. 2003 Sep;22(3):291-300 19223631 - Antimicrob Agents Chemother. 2009 Apr;53(4):1344-52 22211961 - FEMS Microbiol Lett. 2012 Mar;328(2):130-7 17578454 - Mol Microbiol. 2007 Jul;65(2):250-7 15380214 - Bioorg Med Chem Lett. 2004 Oct 18;14(20):5133-7 17303126 - FEBS Lett. 2007 Mar 6;581(5):935-8 11515543 - Biosci Biotechnol Biochem. 2001 Jul;65(7):1589-95 9124851 - Antimicrob Agents Chemother. 1996 Dec;40(12):2835-41 11328762 - J Antimicrob Chemother. 2001 May;47(5):527-36 17316560 - Biochem Biophys Res Commun. 2007 Apr 27;356(1):1-5 15616276 - Antimicrob Agents Chemother. 2005 Jan;49(1):57-70 11347972 - Farmaco. 2001 Jan-Feb;56(1-2):81-5 12004122 - Science. 2002 May 10;296(5570):1091-8 16475832 - Biochemistry. 2006 Feb 21;45(7):2425-35 12496287 - J Biol Chem. 2003 Feb 21;278(8):5963-9 21034832 - J Struct Biol. 2011 Feb;173(2):333-44 16942600 - Mol Microbiol. 2006 Oct;62(1):170-86 19366916 - Clin Microbiol Rev. 2009 Apr;22(2):291-321, Table of Contents 21194365 - Biol Chem. 2011 Jan;392(1-2):53-60 8075109 - Biochim Biophys Acta. 1994 Aug 30;1187(2):152-62 18710914 - Antimicrob Agents Chemother. 2008 Nov;52(11):3851-62 19961541 - FEBS J. 2010 Feb;277(3):540-9 8891134 - Antimicrob Agents Chemother. 1996 Oct;40(10):2300-5 15047528 - Antimicrob Agents Chemother. 2004 Apr;48(4):1256-71 16008355 - Biochemistry. 2005 Jul 19;44(28):9703-13 7614555 - Curr Genet. 1995 Mar;27(4):320-9 21895791 - Mol Microbiol. 2011 Oct;82(2):416-33 15498768 - J Biol Chem. 2005 Jan 7;280(1):94-103 16943773 - Nature. 2006 Sep 14;443(7108):180-5 7629054 - J Bioenerg Biomembr. 1995 Feb;27(1):71-6 8940170 - J Biol Chem. 1996 Dec 6;271(49):31543-8 17513564 - Eukaryot Cell. 2007 Jul;6(7):1150-65 17967417 - Biochem Biophys Res Commun. 2007 Dec 28;364(4):990-5 18428767 - Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit 5.6 15380213 - Bioorg Med Chem Lett. 2004 Oct 18;14(20):5127-31 3305158 - Genetics. 1987 Aug;116(4):541-5 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 82 start-page: 416 year: 2011 end-page: 433 article-title: Chimeras of Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function publication-title: Mol Microbiol – volume: 273 start-page: 12612 year: 1998 end-page: 12622 article-title: ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p publication-title: J Biol Chem – volume: 277 start-page: 540 year: 2010 end-page: 549 article-title: Multidrug efflux pumps: substrate selection in ATP‐binding cassette multidrug efflux pumps – first come, first served? publication-title: FEBS J – volume: 62 start-page: 170 year: 2006 end-page: 186 article-title: Heterozygosity and functional allelic variation in the efflux pump genes and publication-title: Mol Microbiol – volume: 134 start-page: 717 year: 1993 end-page: 728 article-title: Isogenic strain construction and gene mapping in publication-title: Genetics – volume: 40 start-page: 2300 year: 1996 end-page: 2305 article-title: Susceptibilities of multidrug transporter mutants to various antifungal agents and other metabolic inhibitors publication-title: Antimicrob Agents Chemother – volume: 6 start-page: 1150 year: 2007 end-page: 1165 article-title: Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in publication-title: Eukaryot Cell – volume: 116 start-page: 541 year: 1987 end-page: 545 article-title: A method for gene disruption that allows repeated use of selection in the construction of multiply disrupted yeast strains publication-title: Genetics – volume: 45 start-page: 3366 year: 2001 end-page: 3374 article-title: Functional expression of drug efflux pump Cdr1p in a strain deficient in membrane transporters publication-title: Antimicrob Agents Chemother – volume: 40 start-page: 2835 year: 1996 end-page: 2841 article-title: Multiple efflux mechanisms are involved in fluconazole resistance publication-title: Antimicrob Agents Chemother – volume: 47 start-page: 527 year: 2001 end-page: 536 article-title: Mechanisms of fluconazole resistance in isolates from Japanese AIDS patients publication-title: J Antimicrob Chemother – volume: 328 start-page: 130 year: 2012 end-page: 137 article-title: A d‐octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model publication-title: FEMS Microbiol Lett – volume: 143 start-page: 405 year: 1997 end-page: 416 article-title: Cloning of genes conferring resistance to azole antifungal agents: characterization of , a new multidrug ABC transporter gene publication-title: Microbiology – volume: 581 start-page: 935 year: 2007 end-page: 938 article-title: Structure of the multidrug ABC transporter Sav1866 from in complex with AMP‐PNP publication-title: FEBS Lett – volume: 277 start-page: 46809 year: 2002 end-page: 46821 article-title: ATP‐binding cassette transporters Cdr1p and Pdh1p expressed in a strain deficient in membrane transporters show phosphorylation‐dependent pumping properties publication-title: J Biol Chem – volume: 400 start-page: 460 year: 2005 end-page: 484 article-title: Yeast ATP‐binding cassette transporters: cellular cleaning pumps publication-title: Methods Enzymol – volume: 323 start-page: 1718 year: 2009 end-page: 1722 article-title: Structure of P‐glycoprotein reveals a molecular basis for poly‐specific drug binding publication-title: Science – volume: 1788 start-page: 1752 year: 2009 end-page: 1761 article-title: The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of are involved in substrate specificity and drug transport publication-title: Biochim Biophys Acta – volume: 65 start-page: 250 year: 2007 end-page: 257 article-title: Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism publication-title: Mol Microbiol – volume: 14 start-page: 5133 year: 2004 end-page: 5137 article-title: Quinazolinone fungal efflux pump inhibitors. Part 2: structure–activity relationships of (N‐methyl‐piperazinyl)‐containing derivatives publication-title: Bioorg Med Chem Lett – volume: 326 start-page: 39 year: 1997 end-page: 45 article-title: Synthetic histatin analogues with broad‐spectrum antimicrobial activity publication-title: Biochem J – volume: 392 start-page: 53 year: 2011 end-page: 60 article-title: The multidrug transporter Pdr5: a molecular diode? publication-title: Biol Chem – volume: 52 start-page: 3851 year: 2008 end-page: 3862 article-title: ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole‐resistant clinical isolates publication-title: Antimicrob Agents Chemother – year: 2006 article-title: Comparative protein structure modeling using Modeller publication-title: Curr Protoc Bioinformatics – volume: 14 start-page: 5127 year: 2004 end-page: 5131 article-title: Quinazolinone‐based fungal efflux pump inhibitors. Part 1: Discovery of an (N‐methylpiperazine)‐containing derivative with activity in clinically relevant spp publication-title: Bioorg Med Chem Lett – volume: 443 start-page: 180 year: 2006 end-page: 185 article-title: Structure of a bacterial multidrug ABC transporter publication-title: Nature – volume: 271 start-page: 31543 year: 1996 end-page: 31548 article-title: Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p publication-title: J Biol Chem – volume: 278 start-page: 5963 year: 2003 end-page: 5969 article-title: Studies with novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux publication-title: J Biol Chem – volume: 22 start-page: 291 year: 2009 end-page: 321 article-title: Efflux‐mediated antifungal drug resistance publication-title: Clin Microbiol Rev – volume: 56 start-page: 81 year: 2001 end-page: 85 article-title: Microbial fermentation‐derived inhibitors of efflux‐pump‐mediated drug resistance publication-title: Farmaco – volume: 47 start-page: 127 year: 2010 end-page: 142 article-title: Fungal PDR transporters: phylogeny, topology, motifs and function publication-title: Fungal Genet Biol – volume: 173 start-page: 333 year: 2010 end-page: 344 article-title: Toward understanding the mechanism of action of the yeast multidrug resistance transporter Pdr5p: a molecular modeling study publication-title: J Struct Biol – volume: 356 start-page: 1 year: 2007 end-page: 5 article-title: The yeast Pdr5p multidrug transporter: how does it recognize so many substrates? publication-title: Biochem Biophys Res Commun – volume: 65 start-page: 1589 year: 2001 end-page: 1595 article-title: A novel screening for inhibitors of a pleiotropic drug resistant pump, Pdr5, in publication-title: Biosci Biotechnol Biochem – volume: 1187 start-page: 152 year: 1994 end-page: 162 article-title: Genetics and biochemistry of yeast multidrug resistance publication-title: Biochim Biophys Acta – volume: 53 start-page: 1344 year: 2009 end-page: 1352 article-title: Relative contributions of the ABC transporters Cdr1p and Cdr2p to clinical azole resistance publication-title: Antimicrob Agents Chemother – volume: 49 start-page: 57 year: 2005 end-page: 70 article-title: Surface‐active fungicidal d‐peptide inhibitors of the plasma membrane proton pump that block azole resistance publication-title: Antimicrob Agents Chemother – volume: 44 start-page: 9703 year: 2005 end-page: 9713 article-title: The role of hydrogen bond acceptor groups in the interaction of substrates with Pdr5p, a major yeast drug transporter publication-title: Biochemistry – volume: 27 start-page: 320 year: 1995 end-page: 329 article-title: Molecular cloning and characterization of a novel gene of , conferring multiple resistance to drugs and antifungals publication-title: Curr Genet – volume: 364 start-page: 990 year: 2007 end-page: 995 article-title: Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium publication-title: Biochem Biophys Res Commun – volume: 45 start-page: 2425 year: 2006 end-page: 2435 article-title: Characterization of Cdr1p, a major multidrug efflux protein of : purified protein is amenable to intrinsic fluorescence analysis publication-title: Biochemistry – volume: 54 start-page: 367 year: 2007 end-page: 377 article-title: Membrane fluidity and lipid composition in clinical isolates of isolated from AIDS/HIV patients publication-title: Acta Microbiol Immunol Hung – volume: 296 start-page: 1091 year: 2002 end-page: 1098 article-title: The BtuCD structure: a framework for ABC transporter architecture and mechanism publication-title: Science – volume: 280 start-page: 94 year: 2005 end-page: 103 article-title: Phosphorylation of ATP‐binding cassette transporter Cdr1p regulates drug efflux activity and ATPase stability publication-title: J Biol Chem – volume: 48 start-page: 1256 year: 2004 end-page: 1271 article-title: Chemosensitization of fluconazole resistance in and pathogenic fungi by a d‐octapeptide derivative publication-title: Antimicrob Agents Chemother – volume: 9 start-page: 523 year: 1998 end-page: 543 article-title: Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP‐binding cassette multidrug resistance transporter publication-title: Mol Biol Cell – volume: 35 start-page: 1255 year: 2000 end-page: 1263 article-title: The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility publication-title: Mol Microbiol – volume: 27 start-page: 71 year: 1995 end-page: 76 article-title: Yeast multidrug resistance: the PDR network publication-title: J Bioenerg Biomembr – volume: 22 start-page: 291 year: 2003 end-page: 300 article-title: Reversal of antifungal resistance mediated by ABC efflux pumps from functionally expressed in yeast publication-title: Int J Antimicrob Agents – ident: e_1_2_6_43_1 doi: 10.1016/S0924-8579(03)00213-9 – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-2958.2006.05357.x – ident: e_1_2_6_20_1 doi: 10.1515/bc.2011.011 – ident: e_1_2_6_39_1 doi: 10.1016/j.bbamem.2009.04.009 – ident: e_1_2_6_36_1 doi: 10.1128/AAC.45.12.3366-3374.2001 – ident: e_1_2_6_18_1 doi: 10.1074/jbc.M210908200 – ident: e_1_2_6_42_1 doi: 10.1099/00221287-143-2-405 – ident: e_1_2_6_44_1 doi: 10.1021/bi0519147 – ident: e_1_2_6_7_1 doi: 10.1128/CMR.00051-08 – ident: e_1_2_6_6_1 doi: 10.1007/BF02110333 – ident: e_1_2_6_50_1 doi: 10.1016/j.bmcl.2004.07.071 – ident: e_1_2_6_13_1 doi: 10.1046/j.1365-2958.2000.01798.x – ident: e_1_2_6_27_1 doi: 10.1074/jbc.271.49.31543 – ident: e_1_2_6_32_1 doi: 10.1126/science.1071142 – ident: e_1_2_6_47_1 doi: 10.1128/AAC.00926-08 – ident: e_1_2_6_24_1 doi: 10.1271/bbb.65.1589 – ident: e_1_2_6_19_1 doi: 10.1016/j.bbrc.2007.02.011 – ident: e_1_2_6_11_1 doi: 10.1074/jbc.273.20.12612 – ident: e_1_2_6_48_1 doi: 10.1074/jbc.M207817200 – ident: e_1_2_6_5_1 doi: 10.1016/0005-2728(94)90102-3 – ident: e_1_2_6_34_1 doi: 10.1556/AMicr.54.2007.4.4 – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2958.2007.05792.x – ident: e_1_2_6_33_1 doi: 10.1093/jac/47.5.527 – ident: e_1_2_6_40_1 doi: 10.1016/j.jsb.2010.10.012 – ident: e_1_2_6_22_1 doi: 10.1111/j.1574-6968.2011.02490.x – ident: e_1_2_6_41_1 doi: 10.1128/AAC.40.10.2300 – ident: e_1_2_6_38_1 doi: 10.1007/BF00352101 – ident: e_1_2_6_35_1 doi: 10.1128/AAC.49.1.57-70.2005 – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-2958.2011.07820.x – ident: e_1_2_6_9_1 doi: 10.1016/j.febslet.2007.01.073 – ident: e_1_2_6_14_1 doi: 10.1016/S0076-6879(05)00026-1 – ident: e_1_2_6_31_1 doi: 10.1016/j.bmcl.2004.07.070 – ident: e_1_2_6_4_1 doi: 10.1126/science.1168750 – ident: e_1_2_6_3_1 doi: 10.1128/AAC.40.12.2835 – ident: e_1_2_6_21_1 doi: 10.1021/bi0502994 – ident: e_1_2_6_17_1 doi: 10.1093/genetics/134.3.717 – ident: e_1_2_6_26_1 doi: 10.1128/AAC.00463-08 – ident: e_1_2_6_2_1 doi: 10.1093/genetics/116.4.541 – ident: e_1_2_6_8_1 doi: 10.1038/nature05155 – ident: e_1_2_6_15_1 doi: 10.1111/j.1742-4658.2009.07485.x – ident: e_1_2_6_29_1 doi: 10.1016/j.fgb.2009.10.007 – ident: e_1_2_6_49_1 doi: 10.1074/jbc.M408252200 – ident: e_1_2_6_45_1 doi: 10.1016/j.bbrc.2007.10.110 – ident: e_1_2_6_37_1 doi: 10.1128/AAC.48.4.1256-1271.2004 – ident: e_1_2_6_23_1 doi: 10.1042/bj3260039 – ident: e_1_2_6_16_1 doi: 10.1002/0471250953.bi0506s15 – ident: e_1_2_6_28_1 doi: 10.1128/EC.00091-07 – ident: e_1_2_6_12_1 doi: 10.1091/mbc.9.2.523 – ident: e_1_2_6_30_1 doi: 10.1016/S0014-827X(01)01002-3 |
SSID | ssj0013063 |
Score | 2.3169289 |
Snippet | Summary
Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including... Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole... Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole... Over-expression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 747 |
SubjectTerms | ABC transporters Biological and medical sciences Candida albicans Candida albicans - enzymology Drug Resistance, Fungal Enzyme Inhibitors - metabolism Fundamental and applied biological sciences. Psychology Fungal Proteins - antagonists & inhibitors Fungal Proteins - genetics Fungal Proteins - metabolism Fungi Inhibitor drugs Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Microbial Sensitivity Tests Microbiology Miscellaneous Models, Molecular Mutation Mycology Oligopeptides - metabolism Protein Binding Protein Conformation Saccharomyces cerevisiae Suppression, Genetic Yeast |
Title | Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a d-octapeptide derivative inhibitor |
URI | https://api.istex.fr/ark:/67375/WNG-3G9BWW9J-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2012.08140.x https://www.ncbi.nlm.nih.gov/pubmed/22788839 https://www.proquest.com/docview/1032942904 https://search.proquest.com/docview/1069197091 https://pubmed.ncbi.nlm.nih.gov/PMC3418399 |
Volume | 85 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hIiQuvB-GUi0S4ubI9vq1xzbQlEqpBKJKbqt9WY1SnMh2UOGA-An8Rn4JM2vHraEHhLjEkddjy-OZ2dndb78h5FVhM8VypfwoM9yPE6Z8GbLUj4s8t8Zgj4pTA9OT9Og0Pp4n8w7_hHthWn6IfsINPcPFa3RwqeqhkzuEFk8cQisaBUjeNMJ8MmQZovvefIguFxS6omo8QTrZaD4E9Vx7o0FPdROVfoHISVmD8oq26sV1aemf6MqrWa_rtg7vkuX2hVu0ynK0adRIf_2NC_L_aOQeudNlt3S_Ncf75IYtH5Bbbb3LLw_JN1ftvlhoiiwVVbunoqYdVoxCLkrHuM3GSCrPFQbomu4fjGnTM7BXdGyqcE1xrcGsPslFSUGASmp-fv-x0o1cI0rHWGrAsz47UnN41tlCQeCqHpHTw7cfx0d-VwDC1ymM2pGPnYW60AWPAimjLLEFHnmsM8tibYqYFYZppGyTAYz8YOxjbK54JqWOE2nYY7JTrkr7lNAcd-QWGiIOrmBHMo9VaAKT2MykIKg8Em4_tli3PB_iyvgI9CpQrwL1KpxexYVHXjur6AVktUScXJaI2clEsAk_mM34sXjvkb2B2fQCURo5yj2P7G7tSHQxpBZIdcghXQig-WXfDN6PSzqytKsNXpPykGeQ9HnkSWt2lzePcHqDcY9kA4PsL0Bm8WFLuThzDOOQ2oAgSKbO3v5aI2I6fYf_nv2r4HNyG0-3CMtdstNUG_sCsr5G7Tl_ht_JPPwFP6hMYQ |
link.rule.ids | 230,314,780,784,885,1375,27924,27925,46294,46718 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwQX3o9AKUZC3LLaOE8f24V2W7orgVrt3iy_oq5asqtsFhUOiJ_Ab-SXMONk0wZ6QIhTItmTKJOZ8dj-_A0hr3ObqjBTymep4X4Uh8qXQZj4UZ5l1hgcUXFpYDROhifR4TSeNuWA8CxMzQ_RLrihZ7h4jQ6OC9JdL3cQLR47iBbr9ZG9qQcJ5SZ4f4D4rrcf2eWWQlNWjcdIKMumXVjPtU_qjFWbqPYLxE7KJagvr-teXJeY_omvvJr3uoFr7y45X39yjVc5660q1dNff2OD_E86uUfuNAku3akt8j65YYsH5GZd8vLLQ_LNFbzPZ5oiUUVZH6tY0gYuRiEdpQM8aWMklecKY_SS7uwOaNWSsJd0YMpgQXG7wcw_yVlBQYBKan5-_zHXlVwgUMdYasC5Pjtec3jX6UxB7CofkZO9d8eDod_UgPB1AhN3pGQPA53rnLO-lCyNbY5XHunUhpE2eRTmJtTI2ib7MPmD6Y-xmeKplDqKpQkfk41iXtinhGZ4KDfXEHRwE5vJLFKB6ZvYpgbMJVUeCdZ_Wyxqqg9xZYoEehWoV4F6FU6v4sIjb5xZtAKyPEOoXBqLyXhfhPt8dzLhh-KDR7Y7dtMKsIQ51j2PbK0NSTRhZCmQ7ZBDxtCH5ldtMwQA3NWRhZ2vsE_CA55C3ueRJ7XdXT6c4QpHyD2Sdiyy7YDk4t2WYnbqSMYhuwFBkEycwf21RsRodIB3z_5V8CW5NTweHYmjg_H75-Q2dqkBl1tkoypX9gUkgZXads79CyZxT5E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKxAXyrOklGIkxC2rxHn62G7ZPmBXgKh2b5af6mohu8pmUeGA-An8Rn4JHiebNtADQpwSyZ5EmcyMx_bnbxB6YXQmolwIn2SK-nESCZ-HUerHJs-1UjCiwtLAcJQen8Wnk2TS4J_gLEzND9EuuIFnuHgNDr5QpuvkDqFFE4fQIr0AyJt6Np_cjFNCgUf_8D253FFoqqrRBPhkyaSL6rn2SZ2hahO0fgHQSb602jN12Yvr8tI_4ZVX0143bg220Gz9xTVcZdZbVaInv_5GBvl_VHIX3WnSW7xf2-M9dEMX99HNuuDllwfomyt3b6YSA01FWR-qWOIGLIZtMor7cM5Gccw_CojQS7x_0MdVS8Fe4r4qwwWGzQY1_8SnBbYCmGP18_uPuaz4AmA6SmNlXeuzYzW37zqfChu5yofobPDqQ__YbypA-DK103YgZI9CaaShJOCcZIk2cKWxzHQUS2XiyKhIAmcbD-zUz05-lM4FzTiXccJV9AhtFPNCP0Y4hyO5RtqQA1vYhOexCFWgEp2p1AoKD4Xrn80WNdEHuzJBsnploFcGemVOr-zCQy-dVbQCvJwBUC5L2Hh0xKIjejAe01P2zkN7HbNpBUhKHOeeh3bXdsSaILJkwHVIbb4Q2ObnbbN1f9jT4YWer6BPSkOa2azPQ9u12V0-nMD6RkQ9lHUMsu0A1OLdlmJ67ijGbW5jBa1k6uztrzXChsMTuNv5V8Fn6NbbwwF7czJ6_QTdhh412nIXbVTlSj-1GWAl9pxr_wLxSk5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+interactions+between+the+Candida+albicans+ABC+transporter+Cdr1p+ectodomain+and+a+D-octapeptide+derivative+inhibitor&rft.jtitle=Molecular+microbiology&rft.au=Niimi%2C+Kyoko&rft.au=Harding%2C+David+R+K&rft.au=Holmes%2C+Ann+R&rft.au=Lamping%2C+Erwin&rft.date=2012-08-01&rft.eissn=1365-2958&rft.volume=85&rft.issue=4&rft.spage=747&rft_id=info:doi/10.1111%2Fj.1365-2958.2012.08140.x&rft_id=info%3Apmid%2F22788839&rft.externalDocID=22788839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon |