Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a d-octapeptide derivative inhibitor

Summary Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ∼ 1.89 × 106 member d‐octapeptide combinatorial library that concentrates library members at the yeast cell surf...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 85; no. 4; pp. 747 - 767
Main Authors Niimi, Kyoko, Harding, David R. K., Holmes, Ann R., Lamping, Erwin, Niimi, Masakazu, Tyndall, Joel D. A., Cannon, Richard D., Monk, Brian C.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2012
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ∼ 1.89 × 106 member d‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d‐octapeptide d‐NH2‐FFKWQRRR‐CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.
AbstractList Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~1.89 × 10(6) member D-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the D-octapeptide D-NH(2) -FFKWQRRR-CONH(2) , as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization-resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.
Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~ 1.89 x 10^sup 6^ member D-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the D-octapeptide D-NH2-FFKWQRRR-CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization-resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3. [PUBLICATION ABSTRACT]
Over-expression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ~1.89 × 10 6 member d -octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the d -octapeptide d -NH 2 -FFKWQRRR-CONH 2 , as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains over-expressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates over-expressing CaCDR1 to FLC, even when CaCDR2 was over-expressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or Cdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.
Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ∼ 1.89 × 10 6 member d ‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d ‐octapeptide d ‐NH 2 ‐FFKWQRRR‐CONH 2 , as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.
Summary Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a ∼ 1.89 × 106 member d‐octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4‐methoxy‐2,3,6‐trimethylbenzenesulphonyl derivative of the d‐octapeptide d‐NH2‐FFKWQRRR‐CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C. albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C. albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization‐resistant suppressor mutants of S. cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug‐like CaCdr1p inhibitors FK506, enniatin, milbemycin α11 and milbemycin β9 have modes of action similar to RC21v3.
Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole (FLC). Screening of a similar to 1.89106 member d-octapeptide combinatorial library that concentrates library members at the yeast cell surface identified RC21v3, a 4-methoxy-2,3,6-trimethylbenzenesulphonyl derivative of the d-octapeptide d-NH2-FFKWQRRR-CONH2, as a potent and stereospecific inhibitor of CaCdr1p. RC21v3 chemosensitized Saccharomyces cerevisiae strains overexpressing CaCdr1p but not other fungal ABC transporters, the C.albicans MFS transporter CaMdr1p or the azole target enzyme CaErg11p, to FLC. RC21v3 also chemosensitized clinical C.albicans isolates overexpressing CaCDR1 to FLC, even when CaCDR2 was overexpressed. Specific targeting of CaCdr1p by RC21v3 was confirmed by spontaneous RC21v3 chemosensitization-resistant suppressor mutants of S.cerevisiae expressing CaCdr1p. The suppressor mutations introduced a positive charge beside, or within, extracellular loops 1, 3, 4 and 6 of CaCdr1p or an aromatic residue near the extracytoplasmic end of transmembrane segment 5. The mutations did not affect CaCdr1p localization or CaCdr1p ATPase activity but some increased susceptibility to the CaCdr1p substrates FLC, rhodamine 6G, rhodamine 123 and cycloheximide. The suppressor mutations showed that the drug-like CaCdr1p inhibitors FK506, enniatin, milbemycin alpha 11 and milbemycin beta 9 have modes of action similar to RC21v3.
Author Cannon, Richard D.
Monk, Brian C.
Tyndall, Joel D. A.
Harding, David R. K.
Niimi, Kyoko
Holmes, Ann R.
Niimi, Masakazu
Lamping, Erwin
AuthorAffiliation 3 Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo, Japan
2 The Centre for Separation Science, Massey University, Palmerston North, New Zealand
4 National School of Pharmacy, University of Otago, Dunedin, New Zealand
1 The Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
AuthorAffiliation_xml – name: 1 The Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
– name: 4 National School of Pharmacy, University of Otago, Dunedin, New Zealand
– name: 2 The Centre for Separation Science, Massey University, Palmerston North, New Zealand
– name: 3 Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo, Japan
Author_xml – sequence: 1
  givenname: Kyoko
  surname: Niimi
  fullname: Niimi, Kyoko
  organization: The Sir John Walsh Research Institute
– sequence: 2
  givenname: David R. K.
  surname: Harding
  fullname: Harding, David R. K.
  organization: The Centre for Separation Science, Massey University, Palmerston North, New Zealand
– sequence: 3
  givenname: Ann R.
  surname: Holmes
  fullname: Holmes, Ann R.
  organization: The Sir John Walsh Research Institute
– sequence: 4
  givenname: Erwin
  surname: Lamping
  fullname: Lamping, Erwin
  organization: The Sir John Walsh Research Institute
– sequence: 5
  givenname: Masakazu
  surname: Niimi
  fullname: Niimi, Masakazu
  organization: The Sir John Walsh Research Institute
– sequence: 6
  givenname: Joel D. A.
  surname: Tyndall
  fullname: Tyndall, Joel D. A.
  organization: National School of Pharmacy, University of Otago, Dunedin, New Zealand
– sequence: 7
  givenname: Richard D.
  surname: Cannon
  fullname: Cannon, Richard D.
  organization: The Sir John Walsh Research Institute
– sequence: 8
  givenname: Brian C.
  surname: Monk
  fullname: Monk, Brian C.
  email: brian.monk@otago.ac.nz
  organization: The Sir John Walsh Research Institute
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26211954$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22788839$$D View this record in MEDLINE/PubMed
BookMark eNqNkVtvEzEQhS1URNPCX0CWEFJfNtjrvdgPILURpEUtCAEKb5ZjzxKHzXqxnTSV-PH1khAuT_hlLM13xmd8TtBR5zpACFMypum8WI4pq8osFyUf54TmY8JpQcbbB2h0aByhERElyRjPvxyjkxCWhFBGKvYIHed5zTlnYoR-fOxB28ZqbLsIXuloXRfwHOItQIfjAvBEdcYahVU7t1ql5vnFBEefbr3zSYMnxtMeg47OuJWyHU4CrLDJnI6qhz5aA9iAtxsV7QbSSws7t9H5x-hho9oAT_b1FH1-8_rT5DK7fj-9mpxfZ7qqBMmKsmBUN7oROVEqr0tohioKXQMrtGkK1himeSmYIrymdckN8LmoldJFqQw7Ra92c_v1fAVGQ5fst7L3dqX8nXTKyr87nV3Ir24jWUHTL4k04Gw_wLvvawhRrmzQ0LaqA7cOkpJKUFETQRP67B906da-S-sliiXTuSBFoviO0t6F4KE5mKFEDhHLpRySlEOScohY_oxYbpP06Z_LHIS_Mk3A8z2gglZtk5LSNvzmqpxSUQ4eXu64W9vC3X8bkDc3V8Mt6bOd3oYI24Ne-W-yqlldytm7qWRTcTGbibfyA7sHsQjVVQ
CitedBy_id crossref_primary_10_1128_EC_00137_15
crossref_primary_10_1128_AAC_01748_21
crossref_primary_10_1590_2175_7860202172052
crossref_primary_10_3390_jof7020068
crossref_primary_10_1074_jbc_M113_467159
crossref_primary_10_1021_acs_jafc_6b03413
crossref_primary_10_1016_j_fgb_2019_103252
crossref_primary_10_1016_j_bbapap_2019_02_008
crossref_primary_10_1038_srep11211
crossref_primary_10_1093_femsyr_foz048
crossref_primary_10_1186_1475_2859_12_74
crossref_primary_10_1590_0037_8682_0473_2018
crossref_primary_10_4155_fmc_2018_0479
crossref_primary_10_1007_s12033_023_01017_1
crossref_primary_10_1016_j_bbamem_2019_183131
crossref_primary_10_1371_journal_pone_0126350
crossref_primary_10_1074_jbc_M113_488353
crossref_primary_10_1016_j_lfs_2022_120391
crossref_primary_10_1038_srep27132
crossref_primary_10_1128_AAC_00863_19
crossref_primary_10_3389_fphar_2014_00202
crossref_primary_10_3389_fmicb_2016_00261
crossref_primary_10_1042_EBC20160067
crossref_primary_10_1016_j_drup_2019_02_002
crossref_primary_10_1080_21505594_2016_1216283
crossref_primary_10_3390_jof7070535
crossref_primary_10_1128_mSphere_01318_20
crossref_primary_10_4155_fmc_2016_0050
crossref_primary_10_1016_j_colsurfb_2013_06_033
crossref_primary_10_2174_0929867329666220209103538
crossref_primary_10_1128_AAC_02114_18
crossref_primary_10_1016_j_mycmed_2019_07_004
crossref_primary_10_1002_yea_3356
crossref_primary_10_1093_femsyr_fov036
crossref_primary_10_1128_AAC_01146_18
crossref_primary_10_1111_nyas_13739
crossref_primary_10_3390_jof7110897
Cites_doi 10.1016/S0924-8579(03)00213-9
10.1111/j.1365-2958.2006.05357.x
10.1515/bc.2011.011
10.1016/j.bbamem.2009.04.009
10.1128/AAC.45.12.3366-3374.2001
10.1074/jbc.M210908200
10.1099/00221287-143-2-405
10.1021/bi0519147
10.1128/CMR.00051-08
10.1007/BF02110333
10.1016/j.bmcl.2004.07.071
10.1046/j.1365-2958.2000.01798.x
10.1074/jbc.271.49.31543
10.1126/science.1071142
10.1128/AAC.00926-08
10.1271/bbb.65.1589
10.1016/j.bbrc.2007.02.011
10.1074/jbc.273.20.12612
10.1074/jbc.M207817200
10.1016/0005-2728(94)90102-3
10.1556/AMicr.54.2007.4.4
10.1111/j.1365-2958.2007.05792.x
10.1093/jac/47.5.527
10.1016/j.jsb.2010.10.012
10.1111/j.1574-6968.2011.02490.x
10.1128/AAC.40.10.2300
10.1007/BF00352101
10.1128/AAC.49.1.57-70.2005
10.1111/j.1365-2958.2011.07820.x
10.1016/j.febslet.2007.01.073
10.1016/S0076-6879(05)00026-1
10.1016/j.bmcl.2004.07.070
10.1126/science.1168750
10.1128/AAC.40.12.2835
10.1021/bi0502994
10.1093/genetics/134.3.717
10.1128/AAC.00463-08
10.1093/genetics/116.4.541
10.1038/nature05155
10.1111/j.1742-4658.2009.07485.x
10.1016/j.fgb.2009.10.007
10.1074/jbc.M408252200
10.1016/j.bbrc.2007.10.110
10.1128/AAC.48.4.1256-1271.2004
10.1042/bj3260039
10.1002/0471250953.bi0506s15
10.1128/EC.00091-07
10.1091/mbc.9.2.523
10.1016/S0014-827X(01)01002-3
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd
2015 INIST-CNRS
2012 Blackwell Publishing Ltd.
Copyright Blackwell Publishing Ltd. Aug 2012
Copyright_xml – notice: 2012 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2012 Blackwell Publishing Ltd.
– notice: Copyright Blackwell Publishing Ltd. Aug 2012
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1111/j.1365-2958.2012.08140.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList MEDLINE
Virology and AIDS Abstracts

CrossRef

Algology Mycology and Protozoology Abstracts (Microbiology C)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 767
ExternalDocumentID 2732935851
10_1111_j_1365_2958_2012_08140_x
22788839
26211954
MMI8140
ark_67375_WNG_3G9BWW9J_Q
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIDCR NIH HHS
  grantid: R01 DE016885
– fundername: NIDCR NIH HHS
  grantid: R21 DE015075
– fundername: NIDCR NIH HHS
  grantid: DE016885
– fundername: NIDCR NIH HHS
  grantid: DE015075
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAJUZ
AAPBV
AAUGY
ABCVL
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
IQODW
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c6690-45431cfcf920aa275ef0aa294c7e34cdf43fd3c8593a0871758de8b97aac45ad3
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Tue Sep 17 21:15:35 EDT 2024
Wed Dec 04 09:23:18 EST 2024
Tue Nov 19 04:11:01 EST 2024
Fri Dec 06 04:42:00 EST 2024
Sat Sep 28 07:52:13 EDT 2024
Sun Oct 22 16:04:26 EDT 2023
Sat Aug 24 01:01:40 EDT 2024
Wed Oct 30 09:50:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Fungi
Candida albicans
Octapeptide
Yeast
Fungi Imperfecti
ABC transporter
Language English
License CC BY 4.0
2012 Blackwell Publishing Ltd.
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6690-45431cfcf920aa275ef0aa294c7e34cdf43fd3c8593a0871758de8b97aac45ad3
Notes Supporting info item
ark:/67375/WNG-3G9BWW9J-Q
istex:516EC5F02186E46AFED628DF3882E90A50FAD713
ArticleID:MMI8140
Dr K. Niimi and Dr B.C. Monk contributed equally to this research.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-2958.2012.08140.x
PMID 22788839
PQID 1032942904
PQPubID 35968
PageCount 21
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3418399
proquest_miscellaneous_1069197091
proquest_journals_1032942904
crossref_primary_10_1111_j_1365_2958_2012_08140_x
pubmed_primary_22788839
pascalfrancis_primary_26211954
wiley_primary_10_1111_j_1365_2958_2012_08140_x_MMI8140
istex_primary_ark_67375_WNG_3G9BWW9J_Q
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Holmes, A.R., Tsao, S., Ong, S.W., Lamping, E., Niimi, K., Monk, B.C., et al. (2006) Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2. Mol Microbiol 62: 170-186.
Puri, N., Gaur, M., Sharma, M., Shukla, S., Ambudkar, S.V., and Prasad, R. (2009) The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of Candida albicans are involved in substrate specificity and drug transport. Biochim Biophys Acta 1788: 1752-1761.
Dawson, R.J., and Locher, K.P. (2007) Structure of the multidrug ABC transporter Sav1866 from Staphylococcus aureus in complex with AMP-PNP. FEBS Lett 581: 935-938.
Locher, K.P., Lee, A.T., and Rees, D.C. (2002) The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296: 1091-1098.
Prasad, R., De Wergifosse, P., Goffeau, A., and Balzi, E. (1995) Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27: 320-329.
Lamping, E., Monk, B.C., Niimi, K., Holmes, A.R., Tsao, S., Tanabe, K., et al. (2007) Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in Saccharomyces cerevisiae. Eukaryot Cell 6: 1150-1165.
Maebashi, K., Niimi, M., Kudoh, M., Fischer, F.J., Makimura, K., Niimi, K., et al. (2001) Mechanisms of fluconazole resistance in Candida albicans isolates from Japanese AIDS patients. J Antimicrob Chemother 47: 527-536.
Mishra, N.N., Prasad, T., Sharma, N., Lattif, A.A., Prasad, R., and Gupta, D.K. (2007) Membrane fluidity and lipid composition in clinical isolates of Candida albicans isolated from AIDS/HIV patients. Acta Microbiol Immunol Hung 54: 367-377.
Egner, R., Bauer, B.E., and Kuchler, K. (2000) The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility. Mol Microbiol 35: 1255-1263.
Alani, E., Cao, L., and Kleckner, N. (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541-545.
Lemoine, R.C., Glinka, T.W., Watkins, W.J., Cho, A., Yang, J., Iqbal, N., et al. (2004) Quinazolinone-based fungal efflux pump inhibitors. Part 1: Discovery of an (N-methylpiperazine)-containing derivative with activity in clinically relevant Candida spp. Bioorg Med Chem Lett 14: 5127-5131.
Monk, B.C., Niimi, K., Lin, S., Knight, A., Kardos, T.B., Cannon, R.D., et al. (2005) Surface-active fungicidal d-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49: 57-70.
Wada, S., Niimi, M., Niimi, K., Holmes, A.R., Monk, B.C., Cannon, R.D., and Uehara, Y. (2002) Candida glabrata ATP-binding cassette transporters Cdr1p and Pdh1p expressed in a Saccharomyces cerevisiae strain deficient in membrane transporters show phosphorylation-dependent pumping properties. J Biol Chem 277: 46809-46821.
Shukla, S., Rai, V., Banerjee, D., and Prasad, R. (2006) Characterization of Cdr1p, a major multidrug efflux protein of Candida albicans: purified protein is amenable to intrinsic fluorescence analysis. Biochemistry 45: 2425-2435.
Hanson, L., May, L., Tuma, P., Keeven, J., Mehl, P., Ferenz, M., et al. (2005) The role of hydrogen bond acceptor groups in the interaction of substrates with Pdr5p, a major yeast drug transporter. Biochemistry 44: 9703-9713.
Hiraga, K., Wanigasekera, A., Sugi, H., Hamanaka, N., and Oda, K. (2001) A novel screening for inhibitors of a pleiotropic drug resistant pump, Pdr5, in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 65: 1589-1595.
Holmes, A.R., Lin, Y.H., Niimi, K., Lamping, E., Keniya, M., Niimi, M., et al. (2008) ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates. Antimicrob Agents Chemother 52: 3851-3862.
Niimi, K., Harding, D.R., Parshot, R., King, A., Lun, D.J., Decottignies, A., et al. (2004) Chemosensitization of fluconazole resistance in Saccharomyces cerevisiae and pathogenic fungi by a d-octapeptide derivative. Antimicrob Agents Chemother 48: 1256-1271.
Schuetzer-Muehlbauer, M., Willinger, B., Egner, R., Ecker, G., and Kuchler, K. (2003) Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Agents 22: 291-300.
Cannon, R.D., Lamping, E., Holmes, A.R., Niimi, K., Baret, P.V., Keniya, M.V., et al. (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22: 291-321.
Lamping, E., Baret, P.V., Holmes, A.R., Monk, B.C., Goffeau, A., and Cannon, R.D. (2010) Fungal PDR transporters: phylogeny, topology, motifs and function. Fungal Genet Biol 47: 127-142.
Helmerhorst, E.J., Van't Hof, W., Veerman, E.C., Simoons-Smit, I., and Nieuw Amerongen, A.V. (1997) Synthetic histatin analogues with broad-spectrum antimicrobial activity. Biochem J 326: 39-45.
Albertson, G.D., Niimi, M., Cannon, R.D., and Jenkinson, H.F. (1996) Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 40: 2835-2841.
Dawson, R.J., and Locher, K.P. (2006) Structure of a bacterial multidrug ABC transporter. Nature 443: 180-185.
Balzi, E., and Goffeau, A. (1995) Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr 27: 71-76.
Kolaczkowski, M., van der Rest, M., Cybularz-Kolaczkowska, A., Soumillion, J., Konings, W.N., and Goffeau, A. (1996) Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p. J Biol Chem 271: 31543-31548.
Balzi, E., and Goffeau, A. (1994) Genetics and biochemistry of yeast multidrug resistance. Biochim Biophys Acta 1187: 152-162.
Sanglard, D., Ischer, F., Monod, M., and Bille, J. (1996) Susceptibilities of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 40: 2300-2305.
Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M.S., Eramian, D., Shen, M.Y., et al. (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5: Unit 5.6.
Gupta, R.P., Kueppers, P., Schmitt, L., and Ernst, R. (2011) The multidrug transporter Pdr5: a molecular diode? Biol Chem 392: 53-60.
Egner, R., Rosenthal, F.E., Kralli, A., Sanglard, D., and Kuchler, K. (1998) Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP-binding cassette multidrug resistance transporter. Mol Biol Cell 9: 523-543.
Tanabe, K., Lamping, E., Adachi, K., Takano, Y., Kawabata, K., Shizuri, Y., et al. (2007) Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium. Biochem Biophys Res Commun 364: 990-995.
Sanglard, D., Ischer, F., Monod, M., and Bille, J. (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143: 405-416.
Aller, S.G., Yu, J., Ward, A., Weng, Y., Chittaboina, S., Zhuo, R., et al. (2009) Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 323: 1718-1722.
Watkins, W.J., Lemoine, R.C., Chong, L., Cho, A., Renau, T.E., Kuo, B., et al. (2004) Quinazolinone fungal efflux pump inhibitors. Part 2: In vitro structure-activity relationships of (N-methyl-piperazinyl)-containing derivatives. Bioorg Med Chem Lett 14: 5133-5137.
Ernst, R., Klemm, R., Schmitt, L., and Kuchler, K. (2005) Yeast ATP-binding cassette transporters: cellular cleaning pumps. Methods Enzymol 400: 460-484.
Ernst, R., Kueppers, P., Stindt, J., Kuchler, K., and Schmitt, L. (2010) Multidrug efflux pumps: substrate selection in ATP-binding cassette multidrug efflux pumps - first come, first served? FEBS J 277: 540-549.
Tanabe, K., Lamping, E., Nagi, M., Okawada, A., Holmes, A.R., Miyazaki, Y., et al. (2011) Chimeras of Candida albicans Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function. Mol Microbiol 82: 416-433.
Tsao, S., Rahkhoodaee, F., and Raymond, M. (2009) Relative contributions of the Candida albicans ABC transporters Cdr1p and Cdr2p to clinical azole resistance. Antimicrob Agents Chemother 53: 1344-1352.
Golin, J., Ambudkar, S.V., Gottesman, M.M., Habib, A.D., Sczepanski, J., Ziccardi, W., and May, L. (2003) Studies with novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux. J Biol Chem 278: 5963-5969.
Fonzi, W.A., and Irwin, M.Y. (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717-728.
Golin, J., Ambudkar, S.V., and May, L. (2007) The yeast Pdr5p multidrug transporter: how does it recognize so many substrates? Biochem Biophys Res Commun 356: 1-5.
Lee, M.D., Galazzo, J.L., Staley, A.L., Lee, J.C., Warren, M.S., Fuernkranz, H., et al. (2001) Microbial fermentation-derived inhibitors of efflux-pump-mediated drug resistance. Farmaco 56: 81-85.
Decottignies, A., Grant, A.M., Nichols, J.W., de Wet, H., McIntosh, D.B., and Goffeau, A. (1998) ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 273: 12612-12622.
Dawson, R.J., Hollenstein, K., and Locher, K. (2007) Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism. Mol Microbiol 65: 250-257.
Hayama, K., Ishibashi, H., Ishijima, S.A., Niimi, K., Tansho, S., Ono, Y., et al. (2012) A d-octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model. FEMS Microbiol Lett 328: 130-137.
Wada, S., Tanabe, K., Yamazaki, A., Niimi, M., Uehara, Y., Niimi, K., et al. (2005) Phosphorylation of Candida glabrata ATP-binding cassette transporter Cdr1p regulates drug efflux activity and ATPase stability. J Biol Chem 280: 94-103.
Rutledge, R.M., Esser, L., Ma, J., and Xia, D. (2010) Towa
2009; 22
2009; 1788
2002; 296
2011; 82
2004; 48
2007; 364
2007; 581
2002; 277
2006
2008; 52
2007; 54
2005; 49
2001; 45
2003; 278
2011; 392
2001; 47
2005; 44
1994; 1187
2012; 328
1998; 273
2001; 65
2007; 356
2005; 280
1997; 326
2010; 47
2006; 62
2009; 53
1987; 116
2006; 45
1995; 27
2000; 35
2005; 400
2004; 14
1997; 143
2010; 277
1996; 271
2007; 6
1996; 40
2010; 173
2007; 65
2001; 56
2009; 323
1998; 9
1993; 134
2003; 22
2006; 443
8349105 - Genetics. 1993 Jul;134(3):717-28
9337848 - Biochem J. 1997 Aug 15;326 ( Pt 1):39-45
9575223 - J Biol Chem. 1998 May 15;273(20):12612-22
19393219 - Biochim Biophys Acta. 2009 Sep;1788(9):1752-61
10712705 - Mol Microbiol. 2000 Mar;35(5):1255-63
9450972 - Mol Biol Cell. 1998 Feb;9(2):523-43
16399365 - Methods Enzymol. 2005;400:460-84
19857594 - Fungal Genet Biol. 2010 Feb;47(2):127-42
19325113 - Science. 2009 Mar 27;323(5922):1718-22
9043118 - Microbiology. 1997 Feb;143 ( Pt 2):405-16
18088010 - Acta Microbiol Immunol Hung. 2007 Dec;54(4):367-77
13678837 - Int J Antimicrob Agents. 2003 Sep;22(3):291-300
19223631 - Antimicrob Agents Chemother. 2009 Apr;53(4):1344-52
22211961 - FEMS Microbiol Lett. 2012 Mar;328(2):130-7
17578454 - Mol Microbiol. 2007 Jul;65(2):250-7
15380214 - Bioorg Med Chem Lett. 2004 Oct 18;14(20):5133-7
17303126 - FEBS Lett. 2007 Mar 6;581(5):935-8
11515543 - Biosci Biotechnol Biochem. 2001 Jul;65(7):1589-95
9124851 - Antimicrob Agents Chemother. 1996 Dec;40(12):2835-41
11328762 - J Antimicrob Chemother. 2001 May;47(5):527-36
17316560 - Biochem Biophys Res Commun. 2007 Apr 27;356(1):1-5
15616276 - Antimicrob Agents Chemother. 2005 Jan;49(1):57-70
11347972 - Farmaco. 2001 Jan-Feb;56(1-2):81-5
12004122 - Science. 2002 May 10;296(5570):1091-8
16475832 - Biochemistry. 2006 Feb 21;45(7):2425-35
12496287 - J Biol Chem. 2003 Feb 21;278(8):5963-9
21034832 - J Struct Biol. 2011 Feb;173(2):333-44
16942600 - Mol Microbiol. 2006 Oct;62(1):170-86
19366916 - Clin Microbiol Rev. 2009 Apr;22(2):291-321, Table of Contents
21194365 - Biol Chem. 2011 Jan;392(1-2):53-60
8075109 - Biochim Biophys Acta. 1994 Aug 30;1187(2):152-62
18710914 - Antimicrob Agents Chemother. 2008 Nov;52(11):3851-62
19961541 - FEBS J. 2010 Feb;277(3):540-9
8891134 - Antimicrob Agents Chemother. 1996 Oct;40(10):2300-5
15047528 - Antimicrob Agents Chemother. 2004 Apr;48(4):1256-71
16008355 - Biochemistry. 2005 Jul 19;44(28):9703-13
7614555 - Curr Genet. 1995 Mar;27(4):320-9
21895791 - Mol Microbiol. 2011 Oct;82(2):416-33
15498768 - J Biol Chem. 2005 Jan 7;280(1):94-103
16943773 - Nature. 2006 Sep 14;443(7108):180-5
7629054 - J Bioenerg Biomembr. 1995 Feb;27(1):71-6
8940170 - J Biol Chem. 1996 Dec 6;271(49):31543-8
17513564 - Eukaryot Cell. 2007 Jul;6(7):1150-65
17967417 - Biochem Biophys Res Commun. 2007 Dec 28;364(4):990-5
18428767 - Curr Protoc Bioinformatics. 2006 Oct;Chapter 5:Unit 5.6
15380213 - Bioorg Med Chem Lett. 2004 Oct 18;14(20):5127-31
3305158 - Genetics. 1987 Aug;116(4):541-5
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 82
  start-page: 416
  year: 2011
  end-page: 433
  article-title: Chimeras of Cdr1p and Cdr2p reveal features of pleiotropic drug resistance transporter structure and function
  publication-title: Mol Microbiol
– volume: 273
  start-page: 12612
  year: 1998
  end-page: 12622
  article-title: ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p
  publication-title: J Biol Chem
– volume: 277
  start-page: 540
  year: 2010
  end-page: 549
  article-title: Multidrug efflux pumps: substrate selection in ATP‐binding cassette multidrug efflux pumps – first come, first served?
  publication-title: FEBS J
– volume: 62
  start-page: 170
  year: 2006
  end-page: 186
  article-title: Heterozygosity and functional allelic variation in the efflux pump genes and
  publication-title: Mol Microbiol
– volume: 134
  start-page: 717
  year: 1993
  end-page: 728
  article-title: Isogenic strain construction and gene mapping in
  publication-title: Genetics
– volume: 40
  start-page: 2300
  year: 1996
  end-page: 2305
  article-title: Susceptibilities of multidrug transporter mutants to various antifungal agents and other metabolic inhibitors
  publication-title: Antimicrob Agents Chemother
– volume: 6
  start-page: 1150
  year: 2007
  end-page: 1165
  article-title: Characterization of three classes of membrane proteins involved in fungal azole resistance by functional hyperexpression in
  publication-title: Eukaryot Cell
– volume: 116
  start-page: 541
  year: 1987
  end-page: 545
  article-title: A method for gene disruption that allows repeated use of selection in the construction of multiply disrupted yeast strains
  publication-title: Genetics
– volume: 45
  start-page: 3366
  year: 2001
  end-page: 3374
  article-title: Functional expression of drug efflux pump Cdr1p in a strain deficient in membrane transporters
  publication-title: Antimicrob Agents Chemother
– volume: 40
  start-page: 2835
  year: 1996
  end-page: 2841
  article-title: Multiple efflux mechanisms are involved in fluconazole resistance
  publication-title: Antimicrob Agents Chemother
– volume: 47
  start-page: 527
  year: 2001
  end-page: 536
  article-title: Mechanisms of fluconazole resistance in isolates from Japanese AIDS patients
  publication-title: J Antimicrob Chemother
– volume: 328
  start-page: 130
  year: 2012
  end-page: 137
  article-title: A d‐octapeptide drug efflux pump inhibitor acts synergistically with azoles in a murine oral candidiasis infection model
  publication-title: FEMS Microbiol Lett
– volume: 143
  start-page: 405
  year: 1997
  end-page: 416
  article-title: Cloning of genes conferring resistance to azole antifungal agents: characterization of , a new multidrug ABC transporter gene
  publication-title: Microbiology
– volume: 581
  start-page: 935
  year: 2007
  end-page: 938
  article-title: Structure of the multidrug ABC transporter Sav1866 from in complex with AMP‐PNP
  publication-title: FEBS Lett
– volume: 277
  start-page: 46809
  year: 2002
  end-page: 46821
  article-title: ATP‐binding cassette transporters Cdr1p and Pdh1p expressed in a strain deficient in membrane transporters show phosphorylation‐dependent pumping properties
  publication-title: J Biol Chem
– volume: 400
  start-page: 460
  year: 2005
  end-page: 484
  article-title: Yeast ATP‐binding cassette transporters: cellular cleaning pumps
  publication-title: Methods Enzymol
– volume: 323
  start-page: 1718
  year: 2009
  end-page: 1722
  article-title: Structure of P‐glycoprotein reveals a molecular basis for poly‐specific drug binding
  publication-title: Science
– volume: 1788
  start-page: 1752
  year: 2009
  end-page: 1761
  article-title: The amino acid residues of transmembrane helix 5 of multidrug resistance protein CaCdr1p of are involved in substrate specificity and drug transport
  publication-title: Biochim Biophys Acta
– volume: 65
  start-page: 250
  year: 2007
  end-page: 257
  article-title: Uptake or extrusion: crystal structures of full ABC transporters suggest a common mechanism
  publication-title: Mol Microbiol
– volume: 14
  start-page: 5133
  year: 2004
  end-page: 5137
  article-title: Quinazolinone fungal efflux pump inhibitors. Part 2: structure–activity relationships of (N‐methyl‐piperazinyl)‐containing derivatives
  publication-title: Bioorg Med Chem Lett
– volume: 326
  start-page: 39
  year: 1997
  end-page: 45
  article-title: Synthetic histatin analogues with broad‐spectrum antimicrobial activity
  publication-title: Biochem J
– volume: 392
  start-page: 53
  year: 2011
  end-page: 60
  article-title: The multidrug transporter Pdr5: a molecular diode?
  publication-title: Biol Chem
– volume: 52
  start-page: 3851
  year: 2008
  end-page: 3862
  article-title: ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole‐resistant clinical isolates
  publication-title: Antimicrob Agents Chemother
– year: 2006
  article-title: Comparative protein structure modeling using Modeller
  publication-title: Curr Protoc Bioinformatics
– volume: 14
  start-page: 5127
  year: 2004
  end-page: 5131
  article-title: Quinazolinone‐based fungal efflux pump inhibitors. Part 1: Discovery of an (N‐methylpiperazine)‐containing derivative with activity in clinically relevant spp
  publication-title: Bioorg Med Chem Lett
– volume: 443
  start-page: 180
  year: 2006
  end-page: 185
  article-title: Structure of a bacterial multidrug ABC transporter
  publication-title: Nature
– volume: 271
  start-page: 31543
  year: 1996
  end-page: 31548
  article-title: Anticancer drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p
  publication-title: J Biol Chem
– volume: 278
  start-page: 5963
  year: 2003
  end-page: 5969
  article-title: Studies with novel Pdr5p substrates demonstrate a strong size dependence for xenobiotic efflux
  publication-title: J Biol Chem
– volume: 22
  start-page: 291
  year: 2009
  end-page: 321
  article-title: Efflux‐mediated antifungal drug resistance
  publication-title: Clin Microbiol Rev
– volume: 56
  start-page: 81
  year: 2001
  end-page: 85
  article-title: Microbial fermentation‐derived inhibitors of efflux‐pump‐mediated drug resistance
  publication-title: Farmaco
– volume: 47
  start-page: 127
  year: 2010
  end-page: 142
  article-title: Fungal PDR transporters: phylogeny, topology, motifs and function
  publication-title: Fungal Genet Biol
– volume: 173
  start-page: 333
  year: 2010
  end-page: 344
  article-title: Toward understanding the mechanism of action of the yeast multidrug resistance transporter Pdr5p: a molecular modeling study
  publication-title: J Struct Biol
– volume: 356
  start-page: 1
  year: 2007
  end-page: 5
  article-title: The yeast Pdr5p multidrug transporter: how does it recognize so many substrates?
  publication-title: Biochem Biophys Res Commun
– volume: 65
  start-page: 1589
  year: 2001
  end-page: 1595
  article-title: A novel screening for inhibitors of a pleiotropic drug resistant pump, Pdr5, in
  publication-title: Biosci Biotechnol Biochem
– volume: 1187
  start-page: 152
  year: 1994
  end-page: 162
  article-title: Genetics and biochemistry of yeast multidrug resistance
  publication-title: Biochim Biophys Acta
– volume: 53
  start-page: 1344
  year: 2009
  end-page: 1352
  article-title: Relative contributions of the ABC transporters Cdr1p and Cdr2p to clinical azole resistance
  publication-title: Antimicrob Agents Chemother
– volume: 49
  start-page: 57
  year: 2005
  end-page: 70
  article-title: Surface‐active fungicidal d‐peptide inhibitors of the plasma membrane proton pump that block azole resistance
  publication-title: Antimicrob Agents Chemother
– volume: 44
  start-page: 9703
  year: 2005
  end-page: 9713
  article-title: The role of hydrogen bond acceptor groups in the interaction of substrates with Pdr5p, a major yeast drug transporter
  publication-title: Biochemistry
– volume: 27
  start-page: 320
  year: 1995
  end-page: 329
  article-title: Molecular cloning and characterization of a novel gene of , conferring multiple resistance to drugs and antifungals
  publication-title: Curr Genet
– volume: 364
  start-page: 990
  year: 2007
  end-page: 995
  article-title: Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium
  publication-title: Biochem Biophys Res Commun
– volume: 45
  start-page: 2425
  year: 2006
  end-page: 2435
  article-title: Characterization of Cdr1p, a major multidrug efflux protein of : purified protein is amenable to intrinsic fluorescence analysis
  publication-title: Biochemistry
– volume: 54
  start-page: 367
  year: 2007
  end-page: 377
  article-title: Membrane fluidity and lipid composition in clinical isolates of isolated from AIDS/HIV patients
  publication-title: Acta Microbiol Immunol Hung
– volume: 296
  start-page: 1091
  year: 2002
  end-page: 1098
  article-title: The BtuCD structure: a framework for ABC transporter architecture and mechanism
  publication-title: Science
– volume: 280
  start-page: 94
  year: 2005
  end-page: 103
  article-title: Phosphorylation of ATP‐binding cassette transporter Cdr1p regulates drug efflux activity and ATPase stability
  publication-title: J Biol Chem
– volume: 48
  start-page: 1256
  year: 2004
  end-page: 1271
  article-title: Chemosensitization of fluconazole resistance in and pathogenic fungi by a d‐octapeptide derivative
  publication-title: Antimicrob Agents Chemother
– volume: 9
  start-page: 523
  year: 1998
  end-page: 543
  article-title: Genetic separation of FK506 susceptibility and drug transport in the yeast Pdr5 ATP‐binding cassette multidrug resistance transporter
  publication-title: Mol Biol Cell
– volume: 35
  start-page: 1255
  year: 2000
  end-page: 1263
  article-title: The transmembrane domain 10 of the yeast Pdr5p ABC antifungal efflux pump determines both substrate specificity and inhibitor susceptibility
  publication-title: Mol Microbiol
– volume: 27
  start-page: 71
  year: 1995
  end-page: 76
  article-title: Yeast multidrug resistance: the PDR network
  publication-title: J Bioenerg Biomembr
– volume: 22
  start-page: 291
  year: 2003
  end-page: 300
  article-title: Reversal of antifungal resistance mediated by ABC efflux pumps from functionally expressed in yeast
  publication-title: Int J Antimicrob Agents
– ident: e_1_2_6_43_1
  doi: 10.1016/S0924-8579(03)00213-9
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2958.2006.05357.x
– ident: e_1_2_6_20_1
  doi: 10.1515/bc.2011.011
– ident: e_1_2_6_39_1
  doi: 10.1016/j.bbamem.2009.04.009
– ident: e_1_2_6_36_1
  doi: 10.1128/AAC.45.12.3366-3374.2001
– ident: e_1_2_6_18_1
  doi: 10.1074/jbc.M210908200
– ident: e_1_2_6_42_1
  doi: 10.1099/00221287-143-2-405
– ident: e_1_2_6_44_1
  doi: 10.1021/bi0519147
– ident: e_1_2_6_7_1
  doi: 10.1128/CMR.00051-08
– ident: e_1_2_6_6_1
  doi: 10.1007/BF02110333
– ident: e_1_2_6_50_1
  doi: 10.1016/j.bmcl.2004.07.071
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1365-2958.2000.01798.x
– ident: e_1_2_6_27_1
  doi: 10.1074/jbc.271.49.31543
– ident: e_1_2_6_32_1
  doi: 10.1126/science.1071142
– ident: e_1_2_6_47_1
  doi: 10.1128/AAC.00926-08
– ident: e_1_2_6_24_1
  doi: 10.1271/bbb.65.1589
– ident: e_1_2_6_19_1
  doi: 10.1016/j.bbrc.2007.02.011
– ident: e_1_2_6_11_1
  doi: 10.1074/jbc.273.20.12612
– ident: e_1_2_6_48_1
  doi: 10.1074/jbc.M207817200
– ident: e_1_2_6_5_1
  doi: 10.1016/0005-2728(94)90102-3
– ident: e_1_2_6_34_1
  doi: 10.1556/AMicr.54.2007.4.4
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2958.2007.05792.x
– ident: e_1_2_6_33_1
  doi: 10.1093/jac/47.5.527
– ident: e_1_2_6_40_1
  doi: 10.1016/j.jsb.2010.10.012
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1574-6968.2011.02490.x
– ident: e_1_2_6_41_1
  doi: 10.1128/AAC.40.10.2300
– ident: e_1_2_6_38_1
  doi: 10.1007/BF00352101
– ident: e_1_2_6_35_1
  doi: 10.1128/AAC.49.1.57-70.2005
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-2958.2011.07820.x
– ident: e_1_2_6_9_1
  doi: 10.1016/j.febslet.2007.01.073
– ident: e_1_2_6_14_1
  doi: 10.1016/S0076-6879(05)00026-1
– ident: e_1_2_6_31_1
  doi: 10.1016/j.bmcl.2004.07.070
– ident: e_1_2_6_4_1
  doi: 10.1126/science.1168750
– ident: e_1_2_6_3_1
  doi: 10.1128/AAC.40.12.2835
– ident: e_1_2_6_21_1
  doi: 10.1021/bi0502994
– ident: e_1_2_6_17_1
  doi: 10.1093/genetics/134.3.717
– ident: e_1_2_6_26_1
  doi: 10.1128/AAC.00463-08
– ident: e_1_2_6_2_1
  doi: 10.1093/genetics/116.4.541
– ident: e_1_2_6_8_1
  doi: 10.1038/nature05155
– ident: e_1_2_6_15_1
  doi: 10.1111/j.1742-4658.2009.07485.x
– ident: e_1_2_6_29_1
  doi: 10.1016/j.fgb.2009.10.007
– ident: e_1_2_6_49_1
  doi: 10.1074/jbc.M408252200
– ident: e_1_2_6_45_1
  doi: 10.1016/j.bbrc.2007.10.110
– ident: e_1_2_6_37_1
  doi: 10.1128/AAC.48.4.1256-1271.2004
– ident: e_1_2_6_23_1
  doi: 10.1042/bj3260039
– ident: e_1_2_6_16_1
  doi: 10.1002/0471250953.bi0506s15
– ident: e_1_2_6_28_1
  doi: 10.1128/EC.00091-07
– ident: e_1_2_6_12_1
  doi: 10.1091/mbc.9.2.523
– ident: e_1_2_6_30_1
  doi: 10.1016/S0014-827X(01)01002-3
SSID ssj0013063
Score 2.3169289
Snippet Summary Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including...
Overexpression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole...
Overexpression of the Candida albicans ATP‐binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole...
Over-expression of the Candida albicans ATP-binding cassette transporter CaCdr1p causes clinically significant resistance to azole drugs including fluconazole...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 747
SubjectTerms ABC transporters
Biological and medical sciences
Candida albicans
Candida albicans - enzymology
Drug Resistance, Fungal
Enzyme Inhibitors - metabolism
Fundamental and applied biological sciences. Psychology
Fungal Proteins - antagonists & inhibitors
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungi
Inhibitor drugs
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Microbial Sensitivity Tests
Microbiology
Miscellaneous
Models, Molecular
Mutation
Mycology
Oligopeptides - metabolism
Protein Binding
Protein Conformation
Saccharomyces cerevisiae
Suppression, Genetic
Yeast
Title Specific interactions between the Candida albicans ABC transporter Cdr1p ectodomain and a d-octapeptide derivative inhibitor
URI https://api.istex.fr/ark:/67375/WNG-3G9BWW9J-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2012.08140.x
https://www.ncbi.nlm.nih.gov/pubmed/22788839
https://www.proquest.com/docview/1032942904
https://search.proquest.com/docview/1069197091
https://pubmed.ncbi.nlm.nih.gov/PMC3418399
Volume 85
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hIiQuvB-GUi0S4ubI9vq1xzbQlEqpBKJKbqt9WY1SnMh2UOGA-An8Rn4JM2vHraEHhLjEkddjy-OZ2dndb78h5FVhM8VypfwoM9yPE6Z8GbLUj4s8t8Zgj4pTA9OT9Og0Pp4n8w7_hHthWn6IfsINPcPFa3RwqeqhkzuEFk8cQisaBUjeNMJ8MmQZovvefIguFxS6omo8QTrZaD4E9Vx7o0FPdROVfoHISVmD8oq26sV1aemf6MqrWa_rtg7vkuX2hVu0ynK0adRIf_2NC_L_aOQeudNlt3S_Ncf75IYtH5Bbbb3LLw_JN1ftvlhoiiwVVbunoqYdVoxCLkrHuM3GSCrPFQbomu4fjGnTM7BXdGyqcE1xrcGsPslFSUGASmp-fv-x0o1cI0rHWGrAsz47UnN41tlCQeCqHpHTw7cfx0d-VwDC1ymM2pGPnYW60AWPAimjLLEFHnmsM8tibYqYFYZppGyTAYz8YOxjbK54JqWOE2nYY7JTrkr7lNAcd-QWGiIOrmBHMo9VaAKT2MykIKg8Em4_tli3PB_iyvgI9CpQrwL1KpxexYVHXjur6AVktUScXJaI2clEsAk_mM34sXjvkb2B2fQCURo5yj2P7G7tSHQxpBZIdcghXQig-WXfDN6PSzqytKsNXpPykGeQ9HnkSWt2lzePcHqDcY9kA4PsL0Bm8WFLuThzDOOQ2oAgSKbO3v5aI2I6fYf_nv2r4HNyG0-3CMtdstNUG_sCsr5G7Tl_ht_JPPwFP6hMYQ
link.rule.ids 230,314,780,784,885,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKwQX3o9AKUZC3LLaOE8f24V2W7orgVrt3iy_oq5asqtsFhUOiJ_Ab-SXMONk0wZ6QIhTItmTKJOZ8dj-_A0hr3ObqjBTymep4X4Uh8qXQZj4UZ5l1hgcUXFpYDROhifR4TSeNuWA8CxMzQ_RLrihZ7h4jQ6OC9JdL3cQLR47iBbr9ZG9qQcJ5SZ4f4D4rrcf2eWWQlNWjcdIKMumXVjPtU_qjFWbqPYLxE7KJagvr-teXJeY_omvvJr3uoFr7y45X39yjVc5660q1dNff2OD_E86uUfuNAku3akt8j65YYsH5GZd8vLLQ_LNFbzPZ5oiUUVZH6tY0gYuRiEdpQM8aWMklecKY_SS7uwOaNWSsJd0YMpgQXG7wcw_yVlBQYBKan5-_zHXlVwgUMdYasC5Pjtec3jX6UxB7CofkZO9d8eDod_UgPB1AhN3pGQPA53rnLO-lCyNbY5XHunUhpE2eRTmJtTI2ib7MPmD6Y-xmeKplDqKpQkfk41iXtinhGZ4KDfXEHRwE5vJLFKB6ZvYpgbMJVUeCdZ_Wyxqqg9xZYoEehWoV4F6FU6v4sIjb5xZtAKyPEOoXBqLyXhfhPt8dzLhh-KDR7Y7dtMKsIQ51j2PbK0NSTRhZCmQ7ZBDxtCH5ldtMwQA3NWRhZ2vsE_CA55C3ueRJ7XdXT6c4QpHyD2Sdiyy7YDk4t2WYnbqSMYhuwFBkEycwf21RsRodIB3z_5V8CW5NTweHYmjg_H75-Q2dqkBl1tkoypX9gUkgZXads79CyZxT5E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQKxAXyrOklGIkxC2rxHn62G7ZPmBXgKh2b5af6mohu8pmUeGA-An8Rn4JHiebNtADQpwSyZ5EmcyMx_bnbxB6YXQmolwIn2SK-nESCZ-HUerHJs-1UjCiwtLAcJQen8Wnk2TS4J_gLEzND9EuuIFnuHgNDr5QpuvkDqFFE4fQIr0AyJt6Np_cjFNCgUf_8D253FFoqqrRBPhkyaSL6rn2SZ2hahO0fgHQSb602jN12Yvr8tI_4ZVX0143bg220Gz9xTVcZdZbVaInv_5GBvl_VHIX3WnSW7xf2-M9dEMX99HNuuDllwfomyt3b6YSA01FWR-qWOIGLIZtMor7cM5Gccw_CojQS7x_0MdVS8Fe4r4qwwWGzQY1_8SnBbYCmGP18_uPuaz4AmA6SmNlXeuzYzW37zqfChu5yofobPDqQ__YbypA-DK103YgZI9CaaShJOCcZIk2cKWxzHQUS2XiyKhIAmcbD-zUz05-lM4FzTiXccJV9AhtFPNCP0Y4hyO5RtqQA1vYhOexCFWgEp2p1AoKD4Xrn80WNdEHuzJBsnploFcGemVOr-zCQy-dVbQCvJwBUC5L2Hh0xKIjejAe01P2zkN7HbNpBUhKHOeeh3bXdsSaILJkwHVIbb4Q2ObnbbN1f9jT4YWer6BPSkOa2azPQ9u12V0-nMD6RkQ9lHUMsu0A1OLdlmJ67ijGbW5jBa1k6uztrzXChsMTuNv5V8Fn6NbbwwF7czJ6_QTdhh412nIXbVTlSj-1GWAl9pxr_wLxSk5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specific+interactions+between+the+Candida+albicans+ABC+transporter+Cdr1p+ectodomain+and+a+D-octapeptide+derivative+inhibitor&rft.jtitle=Molecular+microbiology&rft.au=Niimi%2C+Kyoko&rft.au=Harding%2C+David+R+K&rft.au=Holmes%2C+Ann+R&rft.au=Lamping%2C+Erwin&rft.date=2012-08-01&rft.eissn=1365-2958&rft.volume=85&rft.issue=4&rft.spage=747&rft_id=info:doi/10.1111%2Fj.1365-2958.2012.08140.x&rft_id=info%3Apmid%2F22788839&rft.externalDocID=22788839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon