In Vivo Lifetime Imaging of the Internal O 2 Dynamics in Corals with near-Infrared-Emitting Sensor Nanoparticles

Mapping of O with luminescent sensors within intact animals is challenging due to attenuation of excitation and emission light caused by tissue absorption and scattering as well as interfering background fluorescence. Here we show the application of luminescent O sensor nanoparticles (∼50-70 nm) com...

Full description

Saved in:
Bibliographic Details
Published inACS sensors Vol. 9; no. 9; pp. 4671 - 4679
Main Authors Kühl, Michael, Nielsen, Daniel Aagren, Borisov, Sergey M
Format Journal Article
LanguageEnglish
Published United States 27.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mapping of O with luminescent sensors within intact animals is challenging due to attenuation of excitation and emission light caused by tissue absorption and scattering as well as interfering background fluorescence. Here we show the application of luminescent O sensor nanoparticles (∼50-70 nm) composed of the O indicator platinum(II) tetra(4-fluoro)phenyltetrabenzoporphyrin (PtTPTBPF) immobilized in poly(methyl methacrylate- -methacrylic acid) (PMMA-MA). We injected the sensor nanoparticles into the gastrovascular system of intact colony fractions of reef-building tropical corals that harbor photosynthetic microalgae in their tissues. The sensor nanoparticles are excited by red LED light (617 nm) and emit in the near-infrared (780 nm), which enhances the transmission of excitation and emission light through biological materials. This enabled us to map the internal O concentration via time-domain luminescence lifetime imaging through the outer tissue layers across several coral polyps in flowing seawater. After injection, nanoparticles dispersed within the coral tissue for several hours. While luminescence intensity imaging showed some local aggregation of sensor particles, lifetime imaging showed a more homogeneous O distribution across a larger area of the coral colony. Local stimulation of symbiont photosynthesis in corals induced oxygenation of illuminated tissue areas and formation of lateral O gradients toward surrounding respiring tissues, which were dissipated rapidly after the onset of darkness. Such measurements are key to improving our understanding of how corals regulate their internal chemical microenvironment and metabolic activity, and how they are affected by environmental stress such as ocean warming, acidification, and deoxygenation. Our experimental approach can also be adapted for O imaging in other natural systems such as biofilms, plant and animal tissues, as well as in organoids and other cell constructs, where imaging internal O conditions are relevant and challenging due to high optical density and background fluorescence.
AbstractList Mapping of O with luminescent sensors within intact animals is challenging due to attenuation of excitation and emission light caused by tissue absorption and scattering as well as interfering background fluorescence. Here we show the application of luminescent O sensor nanoparticles (∼50-70 nm) composed of the O indicator platinum(II) tetra(4-fluoro)phenyltetrabenzoporphyrin (PtTPTBPF) immobilized in poly(methyl methacrylate- -methacrylic acid) (PMMA-MA). We injected the sensor nanoparticles into the gastrovascular system of intact colony fractions of reef-building tropical corals that harbor photosynthetic microalgae in their tissues. The sensor nanoparticles are excited by red LED light (617 nm) and emit in the near-infrared (780 nm), which enhances the transmission of excitation and emission light through biological materials. This enabled us to map the internal O concentration via time-domain luminescence lifetime imaging through the outer tissue layers across several coral polyps in flowing seawater. After injection, nanoparticles dispersed within the coral tissue for several hours. While luminescence intensity imaging showed some local aggregation of sensor particles, lifetime imaging showed a more homogeneous O distribution across a larger area of the coral colony. Local stimulation of symbiont photosynthesis in corals induced oxygenation of illuminated tissue areas and formation of lateral O gradients toward surrounding respiring tissues, which were dissipated rapidly after the onset of darkness. Such measurements are key to improving our understanding of how corals regulate their internal chemical microenvironment and metabolic activity, and how they are affected by environmental stress such as ocean warming, acidification, and deoxygenation. Our experimental approach can also be adapted for O imaging in other natural systems such as biofilms, plant and animal tissues, as well as in organoids and other cell constructs, where imaging internal O conditions are relevant and challenging due to high optical density and background fluorescence.
Author Kühl, Michael
Nielsen, Daniel Aagren
Borisov, Sergey M
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-1792-4790
  surname: Kühl
  fullname: Kühl, Michael
  organization: Climate Change Cluster, University of Technology Sydney, Broadway 2007, Australia
– sequence: 2
  givenname: Daniel Aagren
  surname: Nielsen
  fullname: Nielsen, Daniel Aagren
  organization: Climate Change Cluster, University of Technology Sydney, Broadway 2007, Australia
– sequence: 3
  givenname: Sergey M
  orcidid: 0000-0001-9318-8273
  surname: Borisov
  fullname: Borisov, Sergey M
  organization: Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39179239$$D View this record in MEDLINE/PubMed
BookMark eNpNkF1PwjAUhhuDEUT-gBemf2DYrt1GLw2iLiFyIfF26dpTqGHd0lYN_94h-HF1PpLnzTnPJRq41gFC15RMKUnprVQhgAutD1OuSL8SZ2iUskIkLBd88K8fokkIb4QQmuVpNiMXaMgELUTKxAh1pcOv9qPFS2sg2gZw2ciNdRvcGhy3_egieCd3eIVTfL93srEqYOvwvPVyF_CnjVvsQPqkdMZLDzpZNDbGQ8TL94H4Wbq2kz5atYNwhc5Nz8HkVMdo_bBYz5-S5eqxnN8tE5XnIhGmSLP-KVJwXhMtqJCQM0qN5rNMK0pqLaCQteZGFXTGjMlqznOeQSZUYSQbo_QYq3wbggdTdd420u8rSqqDwOpPYHUS2EM3R6h7rxvQv8iPLvYFRiRxjg
Cites_doi 10.1111/tpj.15017
10.1021/ac00004a006
10.1016/j.jphotochem.2008.10.003
10.1021/acs.analchem.8b05869
10.1007/s00604-008-0047-9
10.1021/ma00199a020
10.1146/annurev.marine.010908.163855
10.1038/nm.2394
10.1021/ma00039a014
10.1021/am9001698
10.1371/journal.pone.0110814
10.1016/j.cub.2022.04.054
10.1016/j.zool.2013.06.001
10.1242/jeb.245834
10.1016/j.cub.2022.07.071
10.1002/lom3.10535
10.1016/j.snb.2016.05.147
10.1016/S0076-6879(05)97010-9
10.1038/s41558-023-01619-2
10.1038/s41579-022-00692-2
10.1016/j.marpolbul.2022.113722
10.1242/jcs.254763
10.1038/s41558-020-0737-9
10.1007/s00227-012-1920-y
10.1021/acsnano.3c12539
10.1039/9781782622208
10.1093/icb/32.4.566
10.1515/9780691213880
10.1007/s00604-018-3202-y
10.1039/9781788013451-00145
10.1016/j.talanta.2009.05.041
10.1038/nmeth.1490
10.1111/j.1469-185X.2008.00054.x
10.1002/adfm.201804411
10.1016/S0925-4005(98)00232-9
10.1016/j.jneumeth.2013.04.005
10.1039/b302174m
10.1016/j.tree.2022.04.008
10.1021/ac2022234
10.5194/bg-20-2425-2023
10.3354/meps117159
10.2307/1541469
10.1039/b805432k
10.1007/s00018-014-1673-5
10.1021/acsami.7b10669
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1021/acssensors.4c01029
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2379-3694
EndPage 4679
ExternalDocumentID 10_1021_acssensors_4c01029
39179239
Genre Journal Article
GroupedDBID 53G
ABJNI
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
NPM
VF5
VG9
W1F
AAYXX
CITATION
ID FETCH-LOGICAL-c669-9f7251020744b0d919ae6311fd485dc10bd9e7abd4fc7183ff5b44645e59c7fa3
IEDL.DBID ACS
ISSN 2379-3694
IngestDate Wed Oct 02 14:37:27 EDT 2024
Fri Oct 18 09:19:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords animal
respiration
photosynthesis
imaging
symbiosis
optode
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c669-9f7251020744b0d919ae6311fd485dc10bd9e7abd4fc7183ff5b44645e59c7fa3
ORCID 0000-0001-9318-8273
0000-0002-1792-4790
PMID 39179239
PageCount 9
ParticipantIDs crossref_primary_10_1021_acssensors_4c01029
pubmed_primary_39179239
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS sensors
PublicationTitleAlternate ACS Sens
PublicationYear 2024
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref42/cit42
Koren K. (ref15/cit15) 2018; 11
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
Denny M. W. (ref3/cit3) 1993
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1111/tpj.15017
– ident: ref35/cit35
  doi: 10.1021/ac00004a006
– ident: ref28/cit28
  doi: 10.1016/j.jphotochem.2008.10.003
– ident: ref32/cit32
  doi: 10.1021/acs.analchem.8b05869
– ident: ref26/cit26
  doi: 10.1007/s00604-008-0047-9
– ident: ref39/cit39
  doi: 10.1021/ma00199a020
– ident: ref4/cit4
  doi: 10.1146/annurev.marine.010908.163855
– ident: ref25/cit25
  doi: 10.1038/nm.2394
– ident: ref40/cit40
  doi: 10.1021/ma00039a014
– ident: ref22/cit22
  doi: 10.1021/am9001698
– ident: ref46/cit46
  doi: 10.1371/journal.pone.0110814
– ident: ref14/cit14
  doi: 10.1016/j.cub.2022.04.054
– ident: ref42/cit42
  doi: 10.1016/j.zool.2013.06.001
– ident: ref43/cit43
  doi: 10.1242/jeb.245834
– ident: ref13/cit13
  doi: 10.1016/j.cub.2022.07.071
– ident: ref36/cit36
  doi: 10.1002/lom3.10535
– ident: ref18/cit18
  doi: 10.1016/j.snb.2016.05.147
– ident: ref11/cit11
  doi: 10.1016/S0076-6879(05)97010-9
– ident: ref7/cit7
  doi: 10.1038/s41558-023-01619-2
– ident: ref2/cit2
  doi: 10.1038/s41579-022-00692-2
– ident: ref8/cit8
  doi: 10.1016/j.marpolbul.2022.113722
– ident: ref45/cit45
  doi: 10.1242/jcs.254763
– ident: ref6/cit6
  doi: 10.1038/s41558-020-0737-9
– ident: ref17/cit17
  doi: 10.1007/s00227-012-1920-y
– ident: ref30/cit30
  doi: 10.1021/acsnano.3c12539
– ident: ref41/cit41
  doi: 10.1039/9781782622208
– ident: ref9/cit9
  doi: 10.1093/icb/32.4.566
– volume-title: Air and Water: The Biology and Physics of Life’s Media
  year: 1993
  ident: ref3/cit3
  doi: 10.1515/9780691213880
  contributor:
    fullname: Denny M. W.
– ident: ref16/cit16
  doi: 10.1007/s00604-018-3202-y
– volume: 11
  start-page: 145
  volume-title: Quenched-Phosphorescence Detection of Molecular Oxygen: Applications in Life Sciences
  year: 2018
  ident: ref15/cit15
  doi: 10.1039/9781788013451-00145
  contributor:
    fullname: Koren K.
– ident: ref27/cit27
  doi: 10.1016/j.talanta.2009.05.041
– ident: ref23/cit23
  doi: 10.1038/nmeth.1490
– ident: ref1/cit1
  doi: 10.1111/j.1469-185X.2008.00054.x
– ident: ref38/cit38
  doi: 10.1002/adfm.201804411
– ident: ref31/cit31
  doi: 10.1016/S0925-4005(98)00232-9
– ident: ref34/cit34
  doi: 10.1016/j.jneumeth.2013.04.005
– ident: ref20/cit20
  doi: 10.1039/b302174m
– ident: ref12/cit12
  doi: 10.1016/j.tree.2022.04.008
– ident: ref29/cit29
  doi: 10.1016/j.jphotochem.2008.10.003
– ident: ref24/cit24
  doi: 10.1021/ac2022234
– ident: ref5/cit5
  doi: 10.5194/bg-20-2425-2023
– ident: ref10/cit10
  doi: 10.3354/meps117159
– ident: ref44/cit44
  doi: 10.2307/1541469
– ident: ref21/cit21
  doi: 10.1039/b805432k
– ident: ref37/cit37
  doi: 10.1007/s00018-014-1673-5
– ident: ref33/cit33
  doi: 10.1021/acsami.7b10669
SSID ssj0001562580
Score 2.3229523
Snippet Mapping of O with luminescent sensors within intact animals is challenging due to attenuation of excitation and emission light caused by tissue absorption and...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 4671
Title In Vivo Lifetime Imaging of the Internal O 2 Dynamics in Corals with near-Infrared-Emitting Sensor Nanoparticles
URI https://www.ncbi.nlm.nih.gov/pubmed/39179239
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LT8IwHG4IJz34fuArv4M3La5dt9GjQQkY0QNouC1r1yaLshEGHvzrbbchEjXRe9M0fX3f7_khdK6kwR2DLNihqmUMFCKwEDzATGrtaC0Ei61roP_gd5_Y3cgb1dDlLxF8Sq4imefGosumeZNJ2wGtqNYzwGZ5UHuwdKhYKl8opVE34Nj1OauKZH6eZQWIVihlAS2dTdRfFOiUGSUvzflMNOX7936Nf1r1FtqoOCZcl5diG9VUuoPWv3Qe3EWTXgrPyVsG94lWVl8eeuNCrwgyDYYTQuUpfIVHoHBTytbnkKTQtiX9OVj_LaTmmeBeqqc2ix3fjpMiiRoGxZLAfNzGIq8S7_bQsHM7bHdxJb6Ape9zzHVgmI_hkgFjwok54ZHyXUJ0zFpeLIkjYq6CSMRMSwNvrtaeYDZKqjwuAx25-6ieZqk6REBc5UdCxJS1IkYcVzhaak4jImzzN8Ib6GJxEOGkbLERFqFxSsLlNobVNjbQQXlWn2NdY3EamsqP_jXPMVqjhp_Y1A8anKD6bDpXp4ZfzMRZca8-ACrwzi4
link.rule.ids 315,786,790,2782,27955,27956
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Vivo+Lifetime+Imaging+of+the+Internal+O+2+Dynamics+in+Corals+with+near-Infrared-Emitting+Sensor+Nanoparticles&rft.jtitle=ACS+sensors&rft.au=K%C3%BChl%2C+Michael&rft.au=Nielsen%2C+Daniel+Aagren&rft.au=Borisov%2C+Sergey+M&rft.date=2024-09-27&rft.eissn=2379-3694&rft_id=info:doi/10.1021%2Facssensors.4c01029&rft_id=info%3Apmid%2F39179239&rft.externalDocID=39179239
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-3694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-3694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-3694&client=summon