Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review
The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvemen...
Saved in:
Published in | Biotechnology for biofuels Vol. 13; no. 1; p. 58 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
23.03.2020
BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the “high-solids effect” (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the “high-solids effect” will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The “high-solids effect” will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes’ unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts. |
---|---|
AbstractList | Abstract The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the “high-solids effect” (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the “high-solids effect” will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The “high-solids effect” will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes’ unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts. The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts. The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts.The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts. The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings (i.e., with over 15% solids [w/w] in the reaction mixture). Such conditions result in sugar syrups with increased concentrations and in improvements in both capital and operational costs, making the process more economically feasible. However, this approach still poses several technical hindrances that impact the process efficiency, known as the "high-solids effect" (i.e., the decrease in glucan conversion yields as solids load increases). The purpose of this review was to present the findings on the main limitations and advances in high-solids enzymatic hydrolysis in an updated and comprehensive manner. The causes for the rheological limitations at the onset of the high-solids operation as well as those influencing the "high-solids effect" will be discussed. The subject of water constraint, which results in a highly viscous system and impairs mixing, and by extension, mass and heat transfer, will be analyzed under the perspective of the limitations imposed to the action of the cellulolytic enzymes. The "high-solids effect" will be further discussed vis-à-vis enzymes end-product inhibition and the inhibitory effect of compounds formed during the biomass pretreatment as well as the enzymes' unproductive adsorption to lignin. This review also presents the scientific and technological advances being introduced to lessen high-solids hydrolysis hindrances, such as the development of more efficient enzyme formulations, biomass and enzyme feeding strategies, reactor and impeller designs as well as process strategies to alleviate the end-product inhibition. We surveyed the academic literature in the form of scientific papers as well as patents to showcase the efforts on technological development and industrial implementation of the use of lignocellulosic materials as renewable feedstocks. Using a critical approach, we expect that this review will aid in the identification of areas with higher demand for scientific and technological efforts. Keywords: Lignocellulosic biomass, High solids loading, Enzymatic hydrolysis, Water constraint, Cellulases inhibition, Fed-batch strategy, Enzymatic hydrolysis reactors, Biomass sugar syrups, Biorefinery, Cellulosic ethanol |
ArticleNumber | 58 |
Audience | Academic |
Author | da Silva, Ayla Sant’Ana Espinheira, Roberta Pereira Bon, Elba P. S. de Souza, Marcella Fernandes Ferreira-Leitão, Viridiana Teixeira, Ricardo Sposina Sobral |
Author_xml | – sequence: 1 givenname: Ayla Sant’Ana surname: da Silva fullname: da Silva, Ayla Sant’Ana – sequence: 2 givenname: Roberta Pereira surname: Espinheira fullname: Espinheira, Roberta Pereira – sequence: 3 givenname: Ricardo Sposina Sobral surname: Teixeira fullname: Teixeira, Ricardo Sposina Sobral – sequence: 4 givenname: Marcella Fernandes surname: de Souza fullname: de Souza, Marcella Fernandes – sequence: 5 givenname: Viridiana surname: Ferreira-Leitão fullname: Ferreira-Leitão, Viridiana – sequence: 6 givenname: Elba P. S. orcidid: 0000-0002-0385-5448 surname: Bon fullname: Bon, Elba P. S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32211072$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktv3CAUha0qVfNo_0AXlaVu2oVTLtiAu4gUjfoYKVKlNnuEAXsY2ZCCPdPpry8zTqNMFq1YgOA7R5ejc56dOO9Mlr0GdAnA6YcIBFFeIIwKBLRmxfZZdgasKgvKSXny6Hyance4RogCQ-xFdkowBkAMn2XrhXdxDNK6MebS6VzqjXTKxNy6fGW7VRF9b3XMjfu9G-RoVb7a6eD7XbQx923e2855Zfp-6n1Mr431g4zxYy5zFWziZZ8Hs7Fm-zJ73so-mlf3-0V2-_nT7eJrcfPty3JxfVMoSvlYKKUqrUuJgDUMYWpII-sWVS0ztORlU0Ep64YarSVBTVtiRZDRTEmMqhpjcpEtZ1vt5VrcBTvIsBNeWnG48KETMqS5eiN0YzSlUnMMqARNawqkVZSkcFNOvE1eV7PX3dQMRivjUlT9kenxi7Mr0fmNYKjGFVTJ4N29QfA_JxNHMdi4T0s646cocFlzTABq_n-UcFKhmh6--PYJuvZTcCnURNVQQlnVLFGXM9XJ9FfrWp9GVGlpM1iVqtTadH9NgRPGAEMSvD8SJGY0v8ZOTjGK5Y_vx-ybx8k8RPK3WQnAM6CCjzGY9gEBJPb1FXN9RaqvONRXbJOIPxEpO6bS-X26tv-X9A-ebfSe |
CitedBy_id | crossref_primary_10_1016_j_ijft_2025_101175 crossref_primary_10_1016_j_renene_2021_07_146 crossref_primary_10_1016_j_biortech_2023_129498 crossref_primary_10_1016_j_biortech_2023_129895 crossref_primary_10_1016_j_ijbiomac_2024_133739 crossref_primary_10_1080_07388551_2022_2151409 crossref_primary_10_1016_j_enconman_2024_119225 crossref_primary_10_1016_j_biortech_2021_126264 crossref_primary_10_1002_cjce_24150 crossref_primary_10_1007_s12155_021_10294_0 crossref_primary_10_1016_j_bej_2024_109368 crossref_primary_10_1016_j_bcab_2025_103551 crossref_primary_10_1016_j_fbp_2020_08_005 crossref_primary_10_1016_j_carbpol_2022_120388 crossref_primary_10_3390_catal12060615 crossref_primary_10_1016_j_jclepro_2023_136699 crossref_primary_10_1016_j_jclepro_2022_133340 crossref_primary_10_1002_jsf2_145 crossref_primary_10_1016_j_indcrop_2024_119039 crossref_primary_10_3390_jof8010084 crossref_primary_10_1016_j_rser_2024_114395 crossref_primary_10_1016_j_bej_2023_109111 crossref_primary_10_1016_j_biortech_2021_126550 crossref_primary_10_3390_fermentation10090490 crossref_primary_10_1007_s13399_022_02694_9 crossref_primary_10_1016_j_rser_2021_111620 crossref_primary_10_1080_10942912_2023_2233707 crossref_primary_10_1016_j_biortech_2022_127986 crossref_primary_10_1016_j_rser_2021_111622 crossref_primary_10_1007_s13399_021_01544_4 crossref_primary_10_1111_1751_7915_13886 crossref_primary_10_1016_j_jbc_2021_101256 crossref_primary_10_1016_j_biortech_2021_124768 crossref_primary_10_1016_j_ijbiomac_2025_140957 crossref_primary_10_3390_polym15091991 crossref_primary_10_1016_j_indcrop_2024_118236 crossref_primary_10_1016_j_ijbiomac_2023_125051 crossref_primary_10_1016_j_heliyon_2024_e38776 crossref_primary_10_1016_j_indcrop_2024_119175 crossref_primary_10_1155_2021_5543104 crossref_primary_10_1002_jctb_6950 crossref_primary_10_3390_su152416726 crossref_primary_10_3389_fenrg_2022_788534 crossref_primary_10_1186_s10086_025_02185_1 crossref_primary_10_1016_j_jclepro_2025_145042 crossref_primary_10_1080_07388551_2021_1973363 crossref_primary_10_1016_j_indcrop_2022_115732 crossref_primary_10_1016_j_indcrop_2023_116502 crossref_primary_10_1016_j_fbp_2023_11_008 crossref_primary_10_1007_s12155_024_10740_9 crossref_primary_10_1007_s12155_024_10744_5 crossref_primary_10_1016_j_bej_2021_108284 crossref_primary_10_3390_en13174432 crossref_primary_10_1007_s12010_022_04200_3 crossref_primary_10_1016_j_biortech_2022_127083 crossref_primary_10_1021_acssusresmgt_4c00208 crossref_primary_10_1007_s12257_022_0217_3 crossref_primary_10_1016_j_rser_2024_114692 crossref_primary_10_1016_j_biortech_2021_125042 crossref_primary_10_3389_fbioe_2023_1248441 crossref_primary_10_1016_j_biortech_2022_128334 crossref_primary_10_1186_s13068_024_02553_x crossref_primary_10_1021_acssuschemeng_2c00063 crossref_primary_10_1007_s13399_023_05055_2 crossref_primary_10_1016_j_procbio_2024_09_016 crossref_primary_10_1016_j_bej_2022_108632 crossref_primary_10_1016_j_biortech_2022_127517 crossref_primary_10_1007_s00253_024_13217_z crossref_primary_10_1016_j_jenvman_2021_113833 crossref_primary_10_1016_j_ibiod_2023_105631 crossref_primary_10_1007_s12155_022_10508_z crossref_primary_10_1016_j_bej_2022_108472 crossref_primary_10_1016_j_energy_2024_133263 crossref_primary_10_1515_ijcre_2024_0074 crossref_primary_10_1016_j_biortech_2023_129178 crossref_primary_10_1016_j_jclepro_2024_142305 crossref_primary_10_3390_pr9020206 crossref_primary_10_1016_j_biombioe_2024_107067 crossref_primary_10_1016_j_biortech_2023_130163 crossref_primary_10_1007_s00449_024_03098_x crossref_primary_10_1016_j_biortech_2022_128002 crossref_primary_10_3390_fermentation9030241 crossref_primary_10_1016_j_fuel_2023_129842 crossref_primary_10_1016_j_biortech_2021_125773 crossref_primary_10_1016_j_cej_2024_154183 crossref_primary_10_7841_ksbbj_2023_38_3_162 crossref_primary_10_1016_j_bej_2021_108107 crossref_primary_10_1016_j_enzmictec_2023_110347 crossref_primary_10_1080_02773813_2021_1976797 crossref_primary_10_1016_j_jece_2021_105960 crossref_primary_10_1016_j_ijbiomac_2025_141437 crossref_primary_10_1016_j_bcab_2022_102414 crossref_primary_10_1016_j_indcrop_2024_118269 crossref_primary_10_1007_s42452_021_04870_4 crossref_primary_10_1016_j_biotechadv_2022_108044 crossref_primary_10_1007_s10570_023_05271_z crossref_primary_10_1016_j_indcrop_2024_119994 crossref_primary_10_3390_biomass4030041 crossref_primary_10_3390_molecules27238180 crossref_primary_10_1016_j_crmicr_2024_100281 crossref_primary_10_1016_j_jclepro_2024_141844 crossref_primary_10_1016_j_biortech_2022_127781 crossref_primary_10_1007_s12649_024_02623_z crossref_primary_10_1016_j_cej_2024_150268 crossref_primary_10_1007_s42770_023_01171_3 crossref_primary_10_1016_j_biortech_2023_129105 crossref_primary_10_1186_s13068_024_02552_y crossref_primary_10_3390_fermentation9030259 crossref_primary_10_1016_j_biortech_2022_127428 crossref_primary_10_3389_fmicb_2024_1519060 crossref_primary_10_3390_applbiosci3040036 crossref_primary_10_1016_j_rser_2020_110442 crossref_primary_10_1016_j_rser_2023_113605 crossref_primary_10_1007_s10570_024_06004_6 crossref_primary_10_1016_j_biotechadv_2022_108059 crossref_primary_10_1021_acssuschemeng_3c02691 crossref_primary_10_1007_s11356_023_28501_0 crossref_primary_10_1186_s13068_024_02485_6 crossref_primary_10_3390_en15072600 crossref_primary_10_1016_j_cej_2024_149032 crossref_primary_10_1021_acssuschemeng_4c03693 crossref_primary_10_1021_acs_energyfuels_3c00015 crossref_primary_10_1007_s13399_022_03568_w crossref_primary_10_1016_j_ccr_2023_215329 crossref_primary_10_1016_j_carbpol_2024_122029 crossref_primary_10_3390_foods11223711 crossref_primary_10_1016_j_bcab_2021_102123 crossref_primary_10_1016_j_biortech_2022_128389 crossref_primary_10_1016_j_envres_2022_114291 crossref_primary_10_1007_s12155_022_10500_7 crossref_primary_10_1016_j_renene_2022_01_062 crossref_primary_10_1016_j_ijhydene_2021_10_122 crossref_primary_10_1016_j_bej_2022_108448 crossref_primary_10_1016_j_biortech_2021_125505 crossref_primary_10_1016_j_ijbiomac_2024_136863 crossref_primary_10_1016_j_eti_2023_103082 crossref_primary_10_3390_molecules27248717 crossref_primary_10_1016_j_enzmictec_2024_110403 crossref_primary_10_1039_D3CS00195D crossref_primary_10_1016_j_biortech_2025_132333 crossref_primary_10_1021_acsfoodscitech_2c00401 crossref_primary_10_1016_j_ijhydene_2021_08_198 crossref_primary_10_1038_s41467_024_45662_9 crossref_primary_10_1016_j_ijbiomac_2024_132708 crossref_primary_10_1016_j_biortech_2024_130358 crossref_primary_10_1016_j_cej_2024_150407 crossref_primary_10_1016_j_biortech_2021_126292 crossref_primary_10_1016_j_envres_2022_115135 crossref_primary_10_1186_s13068_022_02133_x crossref_primary_10_1016_j_biortech_2022_127044 crossref_primary_10_1016_j_biortech_2024_130518 crossref_primary_10_1016_j_bej_2021_108258 crossref_primary_10_1016_j_rser_2021_111206 crossref_primary_10_1016_j_procbio_2024_12_024 crossref_primary_10_1016_j_lwt_2023_115093 crossref_primary_10_1016_j_procbio_2024_12_026 crossref_primary_10_1007_s13399_024_05289_8 crossref_primary_10_3390_fermentation9100906 crossref_primary_10_1016_j_cej_2025_160332 crossref_primary_10_2298_CICEQ201202030P crossref_primary_10_1016_j_scitotenv_2022_160260 crossref_primary_10_1007_s12155_024_10719_6 |
Cites_doi | 10.1002/bit.22203 10.1186/s13068-019-1476-x 10.1016/j.jbiotec.2015.11.004 10.1021/acssuschemeng.8b01972 10.1016/j.biortech.2012.09.074 10.1016/j.indcrop.2019.111559 10.1021/ef800434u 10.1186/1754-6834-2-28 10.1006/jmrb.1993.1041 10.1021/ma60048a011 10.1002/btpr.1617 10.1186/s13068-018-1145-5 10.1186/1754-6834-4-2 10.3390/molecules23020309 10.1016/j.biortech.2020.122784 10.1039/b922014c 10.3389/fenrg.2018.00001 10.1186/s13068-019-1526-4 10.1016/j.biortech.2017.11.049 10.1016/j.biombioe.2013.05.031 10.1016/j.biortech.2016.01.037 10.1186/s13068-018-1339-x 10.1016/j.jbiotec.2006.02.021 10.1016/j.biortech.2008.05.015 10.18331/BRJ2016.3.2.7 10.1007/s10570-011-9509-z 10.1016/j.enzmictec.2011.01.007 10.1016/j.enzmictec.2007.12.005 10.1186/s13068-014-0159-x 10.1007/s10570-014-0301-8 10.1016/j.biortech.2010.12.047 10.1016/S1369-703X(99)00045-5 10.1016/j.biortech.2010.06.137 10.1016/j.renene.2017.07.045 10.1002/btpr.441 10.1021/ie401085k 10.1002/bit.25218 10.1016/j.fuel.2014.01.024 10.3390/app9214523 10.1007/BF02950778 10.1016/j.biortech.2019.121993 10.1016/j.biortech.2011.06.069 10.1016/j.biortech.2017.01.011 10.1016/j.biortech.2017.12.006 10.1186/1754-6834-7-1 10.1002/bit.26229 10.1016/j.jbiotec.2015.06.422 10.1016/j.biortech.2013.09.019 10.1002/bit.21115 10.1016/j.biortech.2011.09.091 10.1021/bm061215p 10.1007/s10529-013-1258-7 10.1186/1754-6834-2-11 10.1016/j.indcrop.2018.09.005 10.1002/bit.25098 10.1021/bm700980b 10.1016/j.biortech.2010.09.012 10.3390/su11113005 10.1016/j.biortech.2015.09.042 10.1039/C0EE00378F 10.1002/bit.22626 10.1074/jbc.M116.741173 10.1002/bbb.323 10.1016/j.tibtech.2013.10.003 10.1016/j.biortech.2011.08.085 10.1007/s12010-008-8217-0 10.1016/j.biortech.2014.10.087 10.1016/j.biombioe.2018.09.020 10.1007/s12010-011-9200-8 10.1016/j.biortech.2007.05.058 10.1016/j.biortech.2011.04.003 10.1016/j.biortech.2018.06.031 10.1016/j.molcatb.2011.05.010 10.1007/10_2015_323 10.1002/bit.22593 10.1016/j.biortech.2015.03.055 10.1016/j.ces.2004.09.069 10.1186/1754-6834-5-57 10.1016/j.indcrop.2019.01.032 10.1016/j.procbio.2016.07.018 10.1038/s41598-018-19848-3 10.1002/ese3.394 10.1016/j.biortech.2014.05.034 10.1039/c3gc40352a 10.1186/s13068-017-0761-9 10.1002/bit.20222 10.1002/bit.24744 10.1002/bit.22068 10.1021/jf5012962 10.1038/nbt0208-169 10.1186/s13068-014-0179-6 10.1007/s12010-016-2385-0 10.1007/s00397-009-0382-8 10.1186/1754-6834-6-93 10.1186/s13068-016-0485-2 10.1002/9780470975831.ch12 10.1016/j.bej.2016.01.024 10.1007/s00449-010-0413-y 10.1021/acssuschemeng.5b01303 10.1016/j.biortech.2010.01.026 10.1021/sc300032j 10.1002/bit.10838 10.1016/j.biortech.2012.07.010 10.1007/s00253-015-6595-0 10.1016/j.btre.2015.12.005 10.1186/s13068-018-1085-0 10.1002/btpr.2217 10.1186/s13068-015-0423-8 10.1016/j.biortech.2012.04.037 10.1186/s13068-016-0693-9 10.1016/j.biortech.2016.05.042 10.1385/ABAB:115:1-3:1115 10.1016/j.apenergy.2013.07.036 10.1186/s13068-019-1529-1 10.1016/j.copbio.2017.03.008 10.1021/acssuschemeng.8b05391 10.1016/j.biombioe.2017.12.005 10.1007/s12010-009-8606-z 10.1016/j.enzmictec.2015.07.005 10.1016/j.biortech.2013.06.091 10.1016/0141-0229(82)90090-4 10.1016/j.biortech.2010.05.008 10.1002/app.1987.070330408 10.1533/9781845699611.2.159 10.1186/s13068-019-1439-2 10.1002/btpr.508 10.1016/j.biortech.2013.05.053 10.1002/btpr.102 10.1016/j.enzmictec.2010.09.006 10.1016/j.enzmictec.2010.11.004 10.1016/j.biortech.2015.09.019 10.1002/bit.23020 10.1016/j.biortech.2015.03.067 10.1007/s00253-017-8134-7 10.1016/j.biombioe.2016.06.022 10.1126/science.1192231 10.1016/j.bej.2015.12.004 10.3390/pr7100642 10.1016/j.biortech.2015.09.001 10.3389/fenrg.2018.00053 10.1016/j.enzmictec.2009.11.001 10.1007/978-3-319-95480-6_7 10.1016/j.biortech.2009.06.082 10.1021/acsomega.8b00381 10.1039/C8GC00353J 10.1007/s00449-013-0983-6 10.1002/btpr.1893 10.1016/j.biortech.2008.06.070 10.1186/1754-6834-5-26 10.1016/j.biortech.2018.08.119 10.1016/j.biortech.2017.07.066 10.1016/j.biortech.2011.03.085 10.1002/bit.20750 10.1007/s12010-013-0607-2 10.1016/j.indcrop.2018.01.046 10.1007/s00253-015-7173-1 10.1186/1754-6834-3-4 10.1016/j.biortech.2014.05.122 10.1186/1754-6834-6-135 10.1016/j.biortech.2015.07.054 10.1007/s10570-008-9222-8 10.1021/ef100746q 10.1002/bbb.1436 10.1016/j.biotechadv.2010.02.005 10.1007/s12010-007-0028-1 10.1016/j.biortech.2009.12.013 10.1002/bit.260340211 10.1016/j.renene.2018.07.038 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. COPYRIGHT 2020 BioMed Central Ltd. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2020 |
Copyright_xml | – notice: The Author(s) 2020. – notice: COPYRIGHT 2020 BioMed Central Ltd. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2020 |
DBID | AAYXX CITATION NPM ISR 3V. 7QO 7SP 7ST 7TB 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V L7M LK8 M0S M7P M7S P5Z P62 P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS SOI 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13068-020-01697-w |
DatabaseName | CrossRef PubMed Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-6834 2731-3654 |
EndPage | 58 |
ExternalDocumentID | oai_doaj_org_article_dbed66ad821041d69613fc631867078f PMC7092515 A618377121 32211072 10_1186_s13068_020_01697_w |
Genre | Journal Article Review |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GrantInformation_xml | – fundername: ; grantid: 423807/2016-1; 311147/2018-6 – fundername: ; grantid: 01.09.0566.03/1421/08 |
GroupedDBID | 23N 2WC 2XV 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 E3Z EBS ECGQY ESX F5P FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE I-F IAG IAO IEA IEP ISR ITC KQ8 L6V L8X LK8 M48 M7P M7S ML0 M~E O5R O5S OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RBZ RNS ROL RPM RVI SCM TR2 TUS UKHRP ~8M -A0 2VQ 3V. 4.4 ADINQ AHSBF BMC C1A C24 C6C EJD H13 IHR IPNFZ NPM OK1 RIG RSV SOJ PMFND 0R~ 7QO 7SP 7ST 7TB 7XB 8FD 8FK AAJSJ AASML ADUKV AZQEC C1K DWQXO EBLON FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQGLB PQUKI PRINS SOI 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c668t-ccc5dd4a017b7026e3ba9f05f7e6484b514a9b6edda30bf42c30ed7ca2059223 |
IEDL.DBID | DOA |
ISSN | 1754-6834 |
IngestDate | Wed Aug 27 01:18:33 EDT 2025 Thu Aug 21 18:23:29 EDT 2025 Fri Jul 11 04:18:07 EDT 2025 Fri Jul 11 04:14:16 EDT 2025 Sat Aug 23 13:08:17 EDT 2025 Tue Jun 10 20:13:08 EDT 2025 Fri Jun 27 04:22:53 EDT 2025 Thu Jan 02 22:58:31 EST 2025 Tue Jul 01 04:18:54 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Cellulosic ethanol Biomass sugar syrups Cellulases inhibition Fed-batch strategy Enzymatic hydrolysis Water constraint Biorefinery Enzymatic hydrolysis reactors Lignocellulosic biomass High solids loading |
Language | English |
License | The Author(s) 2020. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c668t-ccc5dd4a017b7026e3ba9f05f7e6484b514a9b6edda30bf42c30ed7ca2059223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0385-5448 |
OpenAccessLink | https://doaj.org/article/dbed66ad821041d69613fc631867078f |
PMID | 32211072 |
PQID | 2391414597 |
PQPubID | 55236 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dbed66ad821041d69613fc631867078f pubmedcentral_primary_oai_pubmedcentral_nih_gov_7092515 proquest_miscellaneous_2498231198 proquest_miscellaneous_2383509622 proquest_journals_2391414597 gale_infotracacademiconefile_A618377121 gale_incontextgauss_ISR_A618377121 pubmed_primary_32211072 crossref_primary_10_1186_s13068_020_01697_w crossref_citationtrail_10_1186_s13068_020_01697_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-23 |
PublicationDateYYYYMMDD | 2020-03-23 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Biotechnology for biofuels |
PublicationTitleAlternate | Biotechnol Biofuels |
PublicationYear | 2020 |
Publisher | BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | AS Silva (1697_CR124) 2013; 15 M Wiman (1697_CR102) 2011; 108 Y Liu (1697_CR149) 2015; 211 G Zacchi (1697_CR21) 1989; 34 Y Kim (1697_CR60) 2011; 48 K Liu (1697_CR171) 2015; 196 X Meng (1697_CR44) 2013; 144 RP Chandra (1697_CR86) 2016; 199 M Jin (1697_CR91) 2017; 114 AS Silva (1697_CR32) 2010; 101 O Rosales-Calderon (1697_CR5) 2019; 12 PA Skovgaard (1697_CR105) 2014; 30 D Humbird (1697_CR13) 2010; 26 A Berlin (1697_CR89) 2006; 125 F Battista (1697_CR167) 2018; 250 A Mohagheghi (1697_CR20) 1992; 33 R Kont (1697_CR64) 2013; 6 JK Kim (1697_CR57) 2019; 12 S Nakagame (1697_CR90) 2010; 105 MR Ehrhardt (1697_CR114) 2010; 160 A González Quiroga (1697_CR111) 2010; 33 S Xue (1697_CR62) 2015; 8 M Gruno (1697_CR54) 2004; 86 CC Hsieh (1697_CR52) 2014; 62 A Tejirian (1697_CR83) 2011; 48 JJ Stickel (1697_CR107) 2009; 48 RSS Teixeira (1697_CR92) 2013; 149 H Lou (1697_CR162) 2018; 249 ZH Liu (1697_CR39) 2016; 93 K Gourlay (1697_CR134) 2013; 142 E Viola (1697_CR120) 2016; 9 P Sannigrahi (1697_CR95) 2011; 4 SD Shinde (1697_CR98) 2018; 20 VAL Rocha (1697_CR129) 2016; 32 CM Roche (1697_CR164) 2009; 2 K Ganesh (1697_CR152) 2000; 4 V Balan (1697_CR11) 2013; 7 J He (1697_CR101) 2018; 113 W Sui (1697_CR46) 2016; 199 M Eibinger (1697_CR130) 2016; 9 MH Cheng (1697_CR14) 2019; 7 ND Weiss (1697_CR48) 2019; 12 V Reyes-Ortiz (1697_CR37) 2013; 6 TC Nguyen (1697_CR109) 2015 S Bhagia (1697_CR138) 2018; 8 CE Wyman (1697_CR7) 2011; 102 1697_CR1 M Padella (1697_CR9) 2019; 9 J Yang (1697_CR76) 2011; 102 C Felby (1697_CR38) 2008; 15 1697_CR131 V Arantes (1697_CR35) 2010; 3 JU Hernández-Beltrán (1697_CR150) 2018; 119 D Cannella (1697_CR78) 2014; 111 L Rosgaard (1697_CR154) 2007; 143 R Kumar (1697_CR34) 2009; 25 K Raj (1697_CR128) 2019; 131 D Cannella (1697_CR77) 2012; 5 AR Ferrari (1697_CR79) 2016; 291 A Wingren (1697_CR18) 2008; 99 W Wang (1697_CR73) 2011; 164 R Zhai (1697_CR63) 2018; 258 A Hildebrand (1697_CR82) 2016; 109 W Hou (1697_CR110) 2016; 107 AA Modenbach (1697_CR15) 2013; 56 X Zhang (1697_CR168) 2009; 100 SI Mhlongo (1697_CR70) 2015; 81 D Ludwig (1697_CR117) 2014; 172 J Shi (1697_CR122) 2011; 102 R Kumar (1697_CR100) 2013; 110 B Yang (1697_CR141) 2006; 94 J Hu (1697_CR75) 2015; 186 P Josefsson (1697_CR36) 2008; 9 LR Lynd (1697_CR10) 2017; 45 AS Silva (1697_CR123) 2011; 102 P Dixit (1697_CR80) 2019; 12 V Khatri (1697_CR125) 2018; 11 JK Ko (1697_CR69) 2015; 99 MJ Cardona (1697_CR74) 2015; 198 S Oladi (1697_CR140) 2018; 109 LP Ramos (1697_CR126) 2015; 175 M Yang (1697_CR72) 2010; 101 RS Menon (1697_CR51) 1987; 33 L Caspeta (1697_CR163) 2014; 113 DB Hodge (1697_CR26) 2008; 99 DT Djajadi (1697_CR88) 2018; 11 Q Qing (1697_CR59) 2010; 101 RK Dasari (1697_CR103) 2009; 23 S Wilkinson (1697_CR155) 2016; 3 1697_CR17 B Palmqvist (1697_CR115) 2012; 5 N Szijártó (1697_CR132) 2011; 102 Y Gao (1697_CR144) 2014; 167 Y Huang (1697_CR94) 2017; 10 J Du (1697_CR104) 2017; 229 P Andrić (1697_CR55) 2010; 28 D Kim (1697_CR27) 2018; 23 R Kumar (1697_CR119) 2009; 102 JC López-Linares (1697_CR158) 2014; 122 P Coffman (1697_CR93) 2018; 6 CE Wyman (1697_CR8) 2013 S Viamajala (1697_CR113) 2009; 100 S Di Risio (1697_CR67) 2011; 5 M Pääkkö (1697_CR133) 2007; 8 P Unrean (1697_CR157) 2016; 100 JB Kristensen (1697_CR24) 2009; 2 X Hao (1697_CR31) 2019; 139 F Battista (1697_CR165) 2019; 131 MJ Selig (1697_CR45) 2012; 28 S Bhagia (1697_CR139) 2019; 12 MH Kim (1697_CR143) 1982; 4 A Gaona (1697_CR170) 2019; 7 S Farzad (1697_CR3) 2017; 10 JS Knutsen (1697_CR112) 2010; 24 H Jørgensen (1697_CR23) 2007; 96 VR Pallapolu (1697_CR121) 2011; 102 C Xu (1697_CR127) 2019; 292 A Oliva-Taravilla (1697_CR135) 2016; 218 H Zhou (1697_CR142) 2013; 52 M Wojtusik (1697_CR106) 2016; 216 JJ Bozell (1697_CR6) 2010; 12 ZH Liu (1697_CR156) 2016; 205 F Hu (1697_CR99) 2013; 1 I Boukari (1697_CR84) 2011; 72 AS Silva (1697_CR56) 2016; 51 X Lu (1697_CR30) 2018; 267 W Geng (1697_CR145) 2015; 187 X Chen (1697_CR108) 2019; 7 ZH Liu (1697_CR16) 2016; 4 YA Chen (1697_CR137) 2018; 269 N Karuna (1697_CR42) 2014 1697_CR179 DB Hodge (1697_CR159) 2009; 152 H Li (1697_CR43) 2014; 7 LR Lynd (1697_CR4) 2008; 26 I Aarum (1697_CR97) 2018; 3 1697_CR173 E Varga (1697_CR22) 2004; 88 Y Xu (1697_CR169) 2017; 114 1697_CR174 1697_CR172 1697_CR177 R Agrawal (1697_CR147) 2018; 6 1697_CR178 1697_CR175 1697_CR176 E Ximenes (1697_CR66) 2010; 46 MF Froix (1697_CR50) 1975; 8 1697_CR180 E Gawel (1697_CR2) 2019; 11 1697_CR181 MR Mukasekuru (1697_CR118) 2018; 6 R Kumar (1697_CR28) 2009; 102 J Zhang (1697_CR160) 2010; 105 J Du (1697_CR68) 2014; 21 R Kumar (1697_CR29) 2014; 111 X Zhao (1697_CR146) 2013; 135 1697_CR33 KM Roberts (1697_CR25) 2011; 18 JE Tsuchida (1697_CR47) 2014; 7 L Qin (1697_CR71) 2016; 9 CG Yoo (1697_CR87) 2020; 301 1697_CR184 G Vaaje-Kolstad (1697_CR136) 2010; 330 1697_CR185 F Hu (1697_CR96) 2012; 117 1697_CR182 J Zhang (1697_CR61) 2012; 121 1697_CR183 YH Jung (1697_CR151) 2017; 182 1697_CR188 1697_CR189 1697_CR186 MJ Selig (1697_CR41) 2013; 35 RS Ghadge (1697_CR161) 2005; 60 1697_CR187 Z Xiao (1697_CR53) 2004; 113–116 RP Chandra (1697_CR153) 2011; 27 MSR dos Santos-Rocha (1697_CR148) 2018; 125 S Peng (1697_CR81) 2017; 101 L Kumar (1697_CR85) 2012; 103 J Du (1697_CR166) 2014; 37 E Ximenes (1697_CR65) 2011; 48 MJ Selig (1697_CR40) 2014; 7 R Kumar (1697_CR58) 2008; 42 R Koppram (1697_CR12) 2014; 32 CD Araujo (1697_CR49) 1993; 101 P Unrean (1697_CR19) 2018 JQ Wan (1697_CR116) 2010; 101 |
References_xml | – volume: 102 start-page: 1544 year: 2009 ident: 1697_CR119 publication-title: Biotechnol Bioeng doi: 10.1002/bit.22203 – volume: 12 start-page: 1 year: 2019 ident: 1697_CR57 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1476-x – volume: 218 start-page: 94 year: 2016 ident: 1697_CR135 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2015.11.004 – volume: 6 start-page: 12787 year: 2018 ident: 1697_CR118 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b01972 – ident: 1697_CR173 – volume: 135 start-page: 350 year: 2013 ident: 1697_CR146 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.09.074 – ident: 1697_CR1 – volume: 139 start-page: 111559 year: 2019 ident: 1697_CR31 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2019.111559 – volume: 23 start-page: 492 year: 2009 ident: 1697_CR103 publication-title: Energy Fuels doi: 10.1021/ef800434u – volume: 2 start-page: 1 year: 2009 ident: 1697_CR164 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-2-28 – volume: 101 start-page: 248 year: 1993 ident: 1697_CR49 publication-title: J Magn Reson Ser B doi: 10.1006/jmrb.1993.1041 – volume: 8 start-page: 726 year: 1975 ident: 1697_CR50 publication-title: Macromolecules doi: 10.1021/ma60048a011 – volume: 28 start-page: 1478 year: 2012 ident: 1697_CR45 publication-title: Biotechnol Prog doi: 10.1002/btpr.1617 – volume: 11 start-page: 1 year: 2018 ident: 1697_CR125 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1145-5 – ident: 1697_CR131 doi: 10.1186/1754-6834-4-2 – ident: 1697_CR187 – volume: 23 start-page: 309 year: 2018 ident: 1697_CR27 publication-title: Molecules doi: 10.3390/molecules23020309 – volume: 301 start-page: 122784 year: 2020 ident: 1697_CR87 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2020.122784 – volume: 12 start-page: 539 year: 2010 ident: 1697_CR6 publication-title: Green Chem doi: 10.1039/b922014c – volume: 6 start-page: 1 year: 2018 ident: 1697_CR147 publication-title: Front Energy Res doi: 10.3389/fenrg.2018.00001 – ident: 1697_CR17 – volume: 12 start-page: 1 year: 2019 ident: 1697_CR80 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1526-4 – volume: 250 start-page: 191 year: 2018 ident: 1697_CR167 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.11.049 – volume: 56 start-page: 526 year: 2013 ident: 1697_CR15 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2013.05.031 – volume: 205 start-page: 142 year: 2016 ident: 1697_CR156 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.01.037 – volume: 12 start-page: 1 year: 2019 ident: 1697_CR48 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1339-x – volume: 125 start-page: 198 year: 2006 ident: 1697_CR89 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2006.02.021 – volume: 99 start-page: 8940 year: 2008 ident: 1697_CR26 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.05.015 – volume: 3 start-page: 417 year: 2016 ident: 1697_CR155 publication-title: Biofuel Res J doi: 10.18331/BRJ2016.3.2.7 – ident: 1697_CR178 – volume: 18 start-page: 759 year: 2011 ident: 1697_CR25 publication-title: Cellulose doi: 10.1007/s10570-011-9509-z – volume: 48 start-page: 408 year: 2011 ident: 1697_CR60 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2011.01.007 – volume: 42 start-page: 426 year: 2008 ident: 1697_CR58 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2007.12.005 – volume: 7 start-page: 1 year: 2014 ident: 1697_CR40 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-014-0159-x – ident: 1697_CR184 – volume: 21 start-page: 2409 year: 2014 ident: 1697_CR68 publication-title: Cellulose doi: 10.1007/s10570-014-0301-8 – volume: 102 start-page: 4905 year: 2011 ident: 1697_CR76 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.12.047 – volume: 4 start-page: 137 year: 2000 ident: 1697_CR152 publication-title: Biochem Eng J doi: 10.1016/S1369-703X(99)00045-5 – volume: 101 start-page: 9624 year: 2010 ident: 1697_CR59 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.06.137 – volume: 114 start-page: 351 year: 2017 ident: 1697_CR169 publication-title: Renew Energy doi: 10.1016/j.renene.2017.07.045 – volume: 26 start-page: 1245 year: 2010 ident: 1697_CR13 publication-title: Biotechnol Prog doi: 10.1002/btpr.441 – volume: 52 start-page: 8464 year: 2013 ident: 1697_CR142 publication-title: Ind Eng Chem Res doi: 10.1021/ie401085k – volume: 111 start-page: 1341 year: 2014 ident: 1697_CR29 publication-title: Biotechnol Bioeng doi: 10.1002/bit.25218 – volume: 122 start-page: 112 year: 2014 ident: 1697_CR158 publication-title: Fuel doi: 10.1016/j.fuel.2014.01.024 – volume: 9 start-page: 4523 year: 2019 ident: 1697_CR9 publication-title: Appl Sci doi: 10.3390/app9214523 – volume: 33 start-page: 67 year: 1992 ident: 1697_CR20 publication-title: Appl Biochem Biotechnol Part A Enzym Eng Biotechnol doi: 10.1007/BF02950778 – volume: 292 start-page: 121993 year: 2019 ident: 1697_CR127 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2019.121993 – volume: 102 start-page: 11052 year: 2011 ident: 1697_CR7 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.06.069 – volume: 229 start-page: 88 year: 2017 ident: 1697_CR104 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.01.011 – volume: 258 start-page: 79 year: 2018 ident: 1697_CR63 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.12.006 – volume: 7 start-page: 1 year: 2014 ident: 1697_CR43 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-7-1 – volume: 114 start-page: 980 year: 2017 ident: 1697_CR91 publication-title: Biotechnol Bioeng doi: 10.1002/bit.26229 – volume: 211 start-page: 5 year: 2015 ident: 1697_CR149 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2015.06.422 – volume: 149 start-page: 551 year: 2013 ident: 1697_CR92 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.09.019 – volume: 96 start-page: 862 year: 2007 ident: 1697_CR23 publication-title: Biotechnol Bioeng doi: 10.1002/bit.21115 – volume: 103 start-page: 201 year: 2012 ident: 1697_CR85 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.09.091 – volume: 8 start-page: 1934 year: 2007 ident: 1697_CR133 publication-title: Biomacromolecules doi: 10.1021/bm061215p – volume: 35 start-page: 1599 year: 2013 ident: 1697_CR41 publication-title: Biotechnol Lett doi: 10.1007/s10529-013-1258-7 – volume: 2 start-page: 11 year: 2009 ident: 1697_CR24 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-2-11 – volume: 125 start-page: 293 year: 2018 ident: 1697_CR148 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2018.09.005 – ident: 1697_CR179 – volume: 111 start-page: 59 year: 2014 ident: 1697_CR78 publication-title: Biotechnol Bioeng doi: 10.1002/bit.25098 – volume: 9 start-page: 249 year: 2008 ident: 1697_CR36 publication-title: Biomacromolecules doi: 10.1021/bm700980b – volume: 102 start-page: 1968 year: 2011 ident: 1697_CR132 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.09.012 – volume: 11 start-page: 1 year: 2019 ident: 1697_CR2 publication-title: Sustainability doi: 10.3390/su11113005 – volume: 198 start-page: 488 year: 2015 ident: 1697_CR74 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.09.042 – volume: 4 start-page: 1306 year: 2011 ident: 1697_CR95 publication-title: Energy Environ Sci doi: 10.1039/C0EE00378F – ident: 1697_CR185 – volume: 105 start-page: 871 year: 2010 ident: 1697_CR90 publication-title: Biotechnol Bioeng doi: 10.1002/bit.22626 – volume: 291 start-page: 23709 year: 2016 ident: 1697_CR79 publication-title: J Biol Chem doi: 10.1074/jbc.M116.741173 – volume: 5 start-page: 609 year: 2011 ident: 1697_CR67 publication-title: Biofuels Bioprod Biorefin doi: 10.1002/bbb.323 – volume: 32 start-page: 46 year: 2014 ident: 1697_CR12 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2013.10.003 – volume: 102 start-page: 10505 year: 2011 ident: 1697_CR123 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.08.085 – volume: 152 start-page: 88 year: 2009 ident: 1697_CR159 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-008-8217-0 – volume: 175 start-page: 195 year: 2015 ident: 1697_CR126 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.10.087 – volume: 119 start-page: 191 year: 2018 ident: 1697_CR150 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2018.09.020 – volume: 164 start-page: 1139 year: 2011 ident: 1697_CR73 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-011-9200-8 – volume: 99 start-page: 2121 year: 2008 ident: 1697_CR18 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2007.05.058 – volume: 102 start-page: 11080 year: 2011 ident: 1697_CR122 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.04.003 – ident: 1697_CR176 – volume: 267 start-page: 110 year: 2018 ident: 1697_CR30 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.06.031 – volume: 72 start-page: 130 year: 2011 ident: 1697_CR84 publication-title: J Mol Catal B Enzym doi: 10.1016/j.molcatb.2011.05.010 – year: 2015 ident: 1697_CR109 publication-title: Adv Biochem Eng Biotechnol doi: 10.1007/10_2015_323 – volume: 105 start-page: 718 year: 2010 ident: 1697_CR160 publication-title: Biotechnol Bioeng doi: 10.1002/bit.22593 – volume: 186 start-page: 149 year: 2015 ident: 1697_CR75 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.03.055 – volume: 60 start-page: 1067 year: 2005 ident: 1697_CR161 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2004.09.069 – volume: 5 start-page: 1 year: 2012 ident: 1697_CR115 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-5-57 – volume: 131 start-page: 32 year: 2019 ident: 1697_CR128 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2019.01.032 – volume: 51 start-page: 1561 year: 2016 ident: 1697_CR56 publication-title: Process Biochem doi: 10.1016/j.procbio.2016.07.018 – ident: 1697_CR182 – volume: 8 start-page: 1 year: 2018 ident: 1697_CR138 publication-title: Sci Rep doi: 10.1038/s41598-018-19848-3 – volume: 7 start-page: 1823 year: 2019 ident: 1697_CR170 publication-title: Energy Sci Eng doi: 10.1002/ese3.394 – volume: 167 start-page: 41 year: 2014 ident: 1697_CR144 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.05.034 – volume: 15 start-page: 1991 year: 2013 ident: 1697_CR124 publication-title: Green Chem doi: 10.1039/c3gc40352a – volume: 10 start-page: 1 year: 2017 ident: 1697_CR3 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-017-0761-9 – volume: 88 start-page: 567 year: 2004 ident: 1697_CR22 publication-title: Biotechnol Bioeng doi: 10.1002/bit.20222 – volume: 110 start-page: 737 year: 2013 ident: 1697_CR100 publication-title: Biotechnol Bioeng doi: 10.1002/bit.24744 – ident: 1697_CR177 – volume: 102 start-page: 457 year: 2009 ident: 1697_CR28 publication-title: Biotechnol Bioeng doi: 10.1002/bit.22068 – volume: 62 start-page: 3800 year: 2014 ident: 1697_CR52 publication-title: J Agric Food Chem doi: 10.1021/jf5012962 – volume: 26 start-page: 169 year: 2008 ident: 1697_CR4 publication-title: Nat Biotechnol doi: 10.1038/nbt0208-169 – volume: 8 start-page: 1 year: 2015 ident: 1697_CR62 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-014-0179-6 – volume: 182 start-page: 1108 year: 2017 ident: 1697_CR151 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-016-2385-0 – ident: 1697_CR183 – volume: 48 start-page: 1005 year: 2009 ident: 1697_CR107 publication-title: Rheol Acta doi: 10.1007/s00397-009-0382-8 – volume: 6 start-page: 1 year: 2013 ident: 1697_CR37 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-6-93 – volume: 9 start-page: 1 year: 2016 ident: 1697_CR71 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-016-0485-2 – start-page: 239 volume-title: Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals year: 2013 ident: 1697_CR8 doi: 10.1002/9780470975831.ch12 – volume: 109 start-page: 236 year: 2016 ident: 1697_CR82 publication-title: Biochem Eng J doi: 10.1016/j.bej.2016.01.024 – volume: 33 start-page: 901 year: 2010 ident: 1697_CR111 publication-title: Bioprocess Biosyst Eng doi: 10.1007/s00449-010-0413-y – volume: 4 start-page: 1274 year: 2016 ident: 1697_CR16 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.5b01303 – volume: 101 start-page: 4577 year: 2010 ident: 1697_CR116 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.01.026 – volume: 1 start-page: 62 year: 2013 ident: 1697_CR99 publication-title: ACS Sustain Chem Eng doi: 10.1021/sc300032j – volume: 86 start-page: 503 year: 2004 ident: 1697_CR54 publication-title: Biotechnol Bioeng doi: 10.1002/bit.10838 – volume: 121 start-page: 8 year: 2012 ident: 1697_CR61 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.07.010 – ident: 1697_CR174 – volume: 99 start-page: 4201 year: 2015 ident: 1697_CR69 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-6595-0 – volume: 9 start-page: 38 year: 2016 ident: 1697_CR120 publication-title: Biotechnol Rep doi: 10.1016/j.btre.2015.12.005 – volume: 11 start-page: 1 year: 2018 ident: 1697_CR88 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1085-0 – volume: 32 start-page: 327 year: 2016 ident: 1697_CR129 publication-title: Biotechnol Prog doi: 10.1002/btpr.2217 – volume: 9 start-page: 1 year: 2016 ident: 1697_CR130 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-015-0423-8 – volume: 117 start-page: 7 year: 2012 ident: 1697_CR96 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2012.04.037 – volume: 10 start-page: 1 year: 2017 ident: 1697_CR94 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-016-0693-9 – ident: 1697_CR180 – volume: 216 start-page: 28 year: 2016 ident: 1697_CR106 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2016.05.042 – volume: 113–116 start-page: 1115 year: 2004 ident: 1697_CR53 publication-title: Appl Biochem Biotechnol doi: 10.1385/ABAB:115:1-3:1115 – ident: 1697_CR188 – volume: 113 start-page: 277 year: 2014 ident: 1697_CR163 publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.07.036 – volume: 12 year: 2019 ident: 1697_CR5 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1529-1 – volume: 45 start-page: 202 year: 2017 ident: 1697_CR10 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2017.03.008 – volume: 7 start-page: 1633 year: 2019 ident: 1697_CR108 publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.8b05391 – volume: 109 start-page: 221 year: 2018 ident: 1697_CR140 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.12.005 – volume: 160 start-page: 1102 year: 2010 ident: 1697_CR114 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-009-8606-z – volume: 81 start-page: 16 year: 2015 ident: 1697_CR70 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2015.07.005 – volume: 144 start-page: 467 year: 2013 ident: 1697_CR44 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.06.091 – volume: 4 start-page: 99 year: 1982 ident: 1697_CR143 publication-title: Enzyme Microb Technol doi: 10.1016/0141-0229(82)90090-4 – volume: 101 start-page: 7402 year: 2010 ident: 1697_CR32 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.05.008 – volume: 33 start-page: 1141 year: 1987 ident: 1697_CR51 publication-title: J Appl Polym Sci doi: 10.1002/app.1987.070330408 – ident: 1697_CR33 doi: 10.1533/9781845699611.2.159 – volume: 12 start-page: 1 year: 2019 ident: 1697_CR139 publication-title: Biotechnol Biofuels doi: 10.1186/s13068-019-1439-2 – volume: 27 start-page: 77 year: 2011 ident: 1697_CR153 publication-title: Biotechnol Prog doi: 10.1002/btpr.508 – volume: 142 start-page: 498 year: 2013 ident: 1697_CR134 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.05.053 – ident: 1697_CR175 – volume: 7 start-page: 1 year: 2014 ident: 1697_CR47 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-7-1 – volume: 25 start-page: 302 year: 2009 ident: 1697_CR34 publication-title: Biotechnol Prog doi: 10.1002/btpr.102 – volume: 48 start-page: 54 year: 2011 ident: 1697_CR65 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2010.09.006 – volume: 48 start-page: 239 year: 2011 ident: 1697_CR83 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2010.11.004 – volume: 199 start-page: 135 year: 2016 ident: 1697_CR86 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.09.019 – volume: 108 start-page: 1031 year: 2011 ident: 1697_CR102 publication-title: Biotechnol Bioeng doi: 10.1002/bit.23020 – volume: 187 start-page: 43 year: 2015 ident: 1697_CR145 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.03.067 – ident: 1697_CR181 – volume: 101 start-page: 3627 year: 2017 ident: 1697_CR81 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-017-8134-7 – volume: 93 start-page: 13 year: 2016 ident: 1697_CR39 publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2016.06.022 – volume: 330 start-page: 219 year: 2010 ident: 1697_CR136 publication-title: Science (80−) doi: 10.1126/science.1192231 – ident: 1697_CR189 – volume: 107 start-page: 61 year: 2016 ident: 1697_CR110 publication-title: Biochem Eng J doi: 10.1016/j.bej.2015.12.004 – volume: 7 start-page: 642 year: 2019 ident: 1697_CR14 publication-title: Processes doi: 10.3390/pr7100642 – volume: 199 start-page: 155 year: 2016 ident: 1697_CR46 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.09.001 – volume: 6 start-page: 1 year: 2018 ident: 1697_CR93 publication-title: Front Energy Res doi: 10.3389/fenrg.2018.00053 – ident: 1697_CR172 – volume: 46 start-page: 170 year: 2010 ident: 1697_CR66 publication-title: Enzyme Microb Technol doi: 10.1016/j.enzmictec.2009.11.001 – start-page: 177 volume-title: Sustainable biotechnology-enzymatic resources of renewable energy year: 2018 ident: 1697_CR19 doi: 10.1007/978-3-319-95480-6_7 – volume: 100 start-page: 5890 year: 2009 ident: 1697_CR168 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.06.082 – volume: 3 start-page: 4924 year: 2018 ident: 1697_CR97 publication-title: ACS Omega doi: 10.1021/acsomega.8b00381 – volume: 20 start-page: 2192 year: 2018 ident: 1697_CR98 publication-title: Green Chem doi: 10.1039/C8GC00353J – volume: 37 start-page: 173 year: 2014 ident: 1697_CR166 publication-title: Bioprocess Biosyst Eng doi: 10.1007/s00449-013-0983-6 – volume: 30 start-page: 923 year: 2014 ident: 1697_CR105 publication-title: Biotechnol Prog doi: 10.1002/btpr.1893 – volume: 100 start-page: 925 year: 2009 ident: 1697_CR113 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2008.06.070 – volume: 5 start-page: 26 year: 2012 ident: 1697_CR77 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-5-26 – volume: 269 start-page: 329 year: 2018 ident: 1697_CR137 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2018.08.119 – volume: 249 start-page: 1 year: 2018 ident: 1697_CR162 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2017.07.066 – volume: 102 start-page: 11115 year: 2011 ident: 1697_CR121 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2011.03.085 – volume: 94 start-page: 611 year: 2006 ident: 1697_CR141 publication-title: Biotechnol Bioeng doi: 10.1002/bit.20750 – volume: 172 start-page: 1699 year: 2014 ident: 1697_CR117 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-013-0607-2 – volume: 113 start-page: 368 year: 2018 ident: 1697_CR101 publication-title: Ind Crops Prod doi: 10.1016/j.indcrop.2018.01.046 – volume: 100 start-page: 2459 year: 2016 ident: 1697_CR157 publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-015-7173-1 – volume: 3 start-page: 1 year: 2010 ident: 1697_CR35 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-3-4 – year: 2014 ident: 1697_CR42 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2014.05.122 – volume: 6 start-page: 1 year: 2013 ident: 1697_CR64 publication-title: Biotechnol Biofuels doi: 10.1186/1754-6834-6-135 – volume: 196 start-page: 716 year: 2015 ident: 1697_CR171 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2015.07.054 – volume: 15 start-page: 703 year: 2008 ident: 1697_CR38 publication-title: Cellulose doi: 10.1007/s10570-008-9222-8 – volume: 24 start-page: 6506 year: 2010 ident: 1697_CR112 publication-title: Energy Fuels doi: 10.1021/ef100746q – ident: 1697_CR186 – volume: 7 start-page: 732 year: 2013 ident: 1697_CR11 publication-title: Biofuels Bioprod Biorefin doi: 10.1002/bbb.1436 – volume: 28 start-page: 407 year: 2010 ident: 1697_CR55 publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2010.02.005 – volume: 143 start-page: 27 year: 2007 ident: 1697_CR154 publication-title: Appl Biochem Biotechnol doi: 10.1007/s12010-007-0028-1 – volume: 101 start-page: 4884 year: 2010 ident: 1697_CR72 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2009.12.013 – volume: 34 start-page: 223 year: 1989 ident: 1697_CR21 publication-title: Biotechnol Bioeng doi: 10.1002/bit.260340211 – volume: 131 start-page: 152 year: 2019 ident: 1697_CR165 publication-title: Renew Energy doi: 10.1016/j.renene.2018.07.038 |
SSID | ssj0061707 ssj0002769473 |
Score | 2.6025498 |
SecondaryResourceType | review_article |
Snippet | The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids loadings... Abstract The industrial production of sugar syrups from lignocellulosic materials requires the conduction of the enzymatic hydrolysis step at high-solids... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 58 |
SubjectTerms | adsorption biofuels Biomass capital Cellulases inhibition Cellulolytic enzymes Cellulose Chemical properties Chemicals Conduction Costs economic feasibility Enzymatic hydrolysis Enzyme engineering Enzymes Ethanol Fed-batch strategy feedstocks Formulations Glucan glucans Glucose Heat transfer High solids loading Hydrolysis Impellers Industrial production Lignin Lignocellulose Lignocellulosic biomass Materials Methods NMR Nuclear magnetic resonance Plant biomass Pretreatment Product inhibition Production processes Review Rheological properties Scientific papers Solids Sugar sugars Syrups Water constraint |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgucAB8d7AggxC4oCsbRzHTrigBbFakOAAi9Sb5Ve6RVWyNK1Wy69nxnFLI6Rek7Fkex7-xo9vCHlteemCEw2zJXdMWKuYkaVgFfQafC_4wmKi-PWbPPspvkzLadpw69O1yk1MjIHadw73yI95UeciF4B_31_-Zlg1Ck9XUwmNm-QWUpfhlS41Vds9Fq5kLVSxeStTyeMeQrasGOZMSEOi2NVoPYq0_f8H553VaXxzcmcpOr1H7iYMSU8Gpd8nN0L7gNzZYRZ8SH5hIc5Y_mHVU9N6ms76ezpvKVIUM7C5ue9paP9cR9ZWenHtl10kKKFdQxfzWdvhrv560YEiKT7TB5z9jhrqUnUEOjx7eUTOTz-dfzxjqawCc1JWK-acK70XBnzRKkjBQmFN3UzKRgUpKmEBQpnayuC9KSa2EdwVk-CVMxygGKCJx-Sg7dpwSOgkOFs1AEIQCARuQBjggXdNDbgRcGBG8s3capcox3HoCx1Tj0rqQR8a9KGjPvRVRt5u21wOhBt7pT-gyraSSJYdP3TLmU6-p70NXkrjK0hvRe5lDRCmcbJALj9ASE1GXqHCNdJhtHjfZmbWfa8___iuTySEPKVynmfkTRJqOhiDM-n5AswEMmiNJI82hqNTQOj1P_PNyMvtb3Bl1KRpQ7dGGYDDkFJyvkdG1Hhwm9dVRp4MtrgdPMRmzOahtRpZ6Wh2xn_a-UWkFFcTUFhePt3f9WfkNo-uUzBeHJGD1XIdngMmW9kX0fH-AifwN0c priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKucAB8d1AQQYhcUCGjePYCRJCBVEVpHKAVurN8le2i1YJbHZVll_PjJONNqLqietmLMUz8-w36_gNIS8sz11womI2544JaxUzMhesgLcG7AWfWSwUj7_Ko1Px5Sw_2yGbdke9A9tLSzvsJ3W6mL_-_Wv9HgD_LgK-kG9aWIdlwbAQQm0RxS6ukeuwMykE6rEYThVQe1xtLs5cOm60OUUN_39X6q2tavwZ5da-dHib3OoJJT3oMuAO2Qn1XXJzS2bwHvmBXTljL4hlS03taX_w39JZTVGvmEECznxLQ_1nHSVc6fnaL5qoVkKbis5n07rBv_hX8waiSvHOPpDut9RQ17dKoN0dmPvk5PDTyccj1vdYYE7KYsmcc7n3wgAwrYJ6LGTWlNUkr1SQohAW-JQprQzem2xiK8FdNgleOcOBlwG1eEB266YOe4ROgrNFBYwEWUHgBozB495VJZBIIIUJSTe-1a7XH8epz3WsQwqpu3hoiIeO8dAXCXk1jPnZqW9caf0BQzZYonJ2_KFZTHUPRO1t8FIaX0CtK1IvS-AzlZMZCvsBXaoS8hwDrlEbo8aPb6Zm1bb68_dv-kDC-qdUytOEvOyNqgbm4Ex_lwE8gXJaI8v9TeLoTXJrnpWpSAXUcgl5NjwGXGMkTR2aFdoAN4b6kvMrbESJp7hpWSTkYZeLw-RhocbSHkarUZaOvDN-Us_Oo764mkDA0vzR_3DnY3KDR4BljGf7ZHe5WIUnQOOW9mnE5l-zSUa_ priority: 102 providerName: Scholars Portal |
Title | Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32211072 https://www.proquest.com/docview/2391414597 https://www.proquest.com/docview/2383509622 https://www.proquest.com/docview/2498231198 https://pubmed.ncbi.nlm.nih.gov/PMC7092515 https://doaj.org/article/dbed66ad821041d69613fc631867078f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-0vuiD-N1oPVYRfJCll81md-PbVXrWgxZpK_Rt2a-0J0cizR2l_vXOJLnjglBffEkgmUB2ZnbmN8nubwj54Hjuoxclczn3TDinmJW5YBreGuZeDJnDQvH4RB79ELOL_GKr1ReuCevogTvF7QcXg5Q2aKhNRBpkAfmn9DJDIjZIbyVGX8h562Kqi8HIMq7WW2S03G8gUkvNsFRC9hHFbgZpqGXr_zsmbyWl4YLJrQw0fUIe99CRTrpXfkruxeoZebRFKPic_MT-m23Xh2VDbRVo_4u_ofOKIjMxA1ebh4bG6vdtS9ZKr27Ddd3yktC6pIv5ZVXjx_zVogb7UdydD_D6M7XU900RaLfb5QU5nx6efzlifTcF5qXUS-a9z0MQFqagU1B5xczZohznpYpSaOEAOdnCyRiCzcauFNxn4xiUtxwQGICIl2Snqqu4S-g4eqdLwB6Y_yO3IAwaD74sAC4C_EtIutat8T3TOA59YdqKQ0vT2cOAPUxrD3OTkE-bZ351PBt3Sh-gyTaSyJHdXgDPMb3nmH95TkLeo8ENsmBUuMzm0q6axnw7OzUTCZFOqZSnCfnYC5U1jMHbftcCaAKJswaSe2vHMX0caAzPilSkAqq2hLzb3IYZjJa0VaxXKAMoGCpJzu-QEQX-r00LnZBXnS9uBg8hGYt4eFoNvHSgneGdan7VMomrMRgszV__D3W-IQ95O8EyxrM9srO8XsW3ANiWbkTuqwsFRz39OiIPJpPZ2QzOB4cn309H7byF47HQfwBSr0RP |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB5V5QAcEHsNBQYE4oBGjcfjsY2EUFlCQpcDBKm30WxOgyK7xImi8J_4j7znJSRC6q1X-1nyzNu-N8v3CHlpeGy9FTkzMbdMGJMwLWPBUvhr8D3vIoOF4smpHPwQX8_isx3yp7sLg8cqu5hYB2pXWlwjP-BRFopQAP59f_GLYdco3F3tWmg0ZnHkV0so2ap3w0-g31ec9z-PPg5Y21WAWSnTObPWxs4JDaZoEqhAfGR0lvfiPPFSpMIAgtCZkd45HfVMLriNet4lVnNAIhx5DiDiXxNRlKFDpf0v6yUdnshMJFF3NSeVBxVkCJkyLNGQ9SRhy630V3cJ-D8XbCTD7YOaG5mvf5vcaiErPWxs7A7Z8cVdcnODyPAe-Yl9P-tuE_OK6sLR9mhBRScFRUZkBiY-cRX1xe9VTRJLz1duVtZ8KLTM6XQyLkrcRFhMS7AbiqwAAOvfUk1t24yBNrds7pPRVcz3A7JblIXfI7TnrUlzwDyIOzzXIAxoxNk8A5gKsDMgYTe3yrYM5zj0qaornVSqRh8K9KFqfahlQN6sv7lo-D0ulf6AKltLIjd3_aCcjVXr6soZ76TULoVqWoROZoCYcisjpA4EQJYH5AUqXCH7RoHHe8Z6UVVq-P2bOpQQYZMk5GFAXrdCeQljsLq9LQEzgYRdW5L7neGoNv5U6p-3BOT5-jVEDtSkLny5QBlA31DBcn6JjMhwnzjM0oA8bGxxPXhIBbh4AF8nW1a6NTvbb4rJec1gnvRAYWH86PJff0auD0Ynx-p4eHr0mNzgtRtFjEf7ZHc-W_gnAAfn5mnthJSoK3b6v7audH8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constraints+and+advances+in+high-solids+enzymatic+hydrolysis+of+lignocellulosic+biomass%3A+a+critical+review&rft.jtitle=Biotechnology+for+biofuels&rft.au=Ayla+Sant%E2%80%99Ana+da+Silva&rft.au=Roberta+Pereira+Espinheira&rft.au=Ricardo+Sposina+Sobral+Teixeira&rft.au=Marcella+Fernandes+de+Souza&rft.date=2020-03-23&rft.pub=BMC&rft.eissn=1754-6834&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=28&rft_id=info:doi/10.1186%2Fs13068-020-01697-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dbed66ad821041d69613fc631867078f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-6834&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-6834&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-6834&client=summon |