Base editing: precision chemistry on the genome and transcriptome of living cells

RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems togeth...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Genetics Vol. 19; no. 12; pp. 770 - 788
Main Authors Rees, Holly A., Liu, David R.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.12.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications. Genome editing through direct editing of bases holds promise for achieving precise genomic changes at single-nucleotide resolution while minimizing the occurrence of potentially mutagenic double-strand DNA breaks. In this Review, Rees and Liu provide a comprehensive account of the state of the art of base editing of DNA and RNA, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings.
AbstractList RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications. Genome editing through direct editing of bases holds promise for achieving precise genomic changes at single-nucleotide resolution while minimizing the occurrence of potentially mutagenic double-strand DNA breaks. In this Review, Rees and Liu provide a comprehensive account of the state of the art of base editing of DNA and RNA, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings.
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications. Genome editing through direct editing of bases holds promise for achieving precise genomic changes at single-nucleotide resolution while minimizing the occurrence of potentially mutagenic double-strand DNA breaks. In this Review, Rees and Liu provide a comprehensive account of the state of the art of base editing of DNA and RNA, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings.
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks (DSBs). DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing byproducts. In this Review, we summarize base editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision, and in vivo delivery of base editors, and discuss limitations and future directions of base editing for research and therapeutic applications.
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.
Audience Academic
Author Rees, Holly A.
Liu, David R.
AuthorAffiliation 1 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
3 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
2 Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
AuthorAffiliation_xml – name: 1 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
– name: 2 Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
– name: 3 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
Author_xml – sequence: 1
  givenname: Holly A.
  surname: Rees
  fullname: Rees, Holly A.
  organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Howard Hughes Medical Institute, Harvard University, Department of Chemistry and Chemical Biology, Harvard University
– sequence: 2
  givenname: David R.
  surname: Liu
  fullname: Liu, David R.
  email: drliu@fas.harvard.edu
  organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Howard Hughes Medical Institute, Harvard University, Department of Chemistry and Chemical Biology, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30323312$$D View this record in MEDLINE/PubMed
BookMark eNp9kttu1DAQhiNURA_wANygSEgILlLsOLazXCCVikOlSkgFri2vM866ytqL7VT0bXgWnoyJtmybClAuHNvfP-P5Zw6LPR88FMVTSo4pYe3r1FAuRUVoWxHCFxV9UBzQRlLciWZv98_FfnGY0iUhVFDJHhX7jLCaMVofFBfvdIISOped79-UmwjGJRd8aVawdinH6xI3eQVlDz6sodS-K3PUPpnoNnk6CfbXz8Fdob40MAzpcfHQ6iHBk5v1qPj24f3X00_V-eePZ6cn55URos2VlkvedFzQpWwbWHDN2kUrNdVW6lZIwoTVtOFWCqSkqDvbtLLjlnFNgAFnR8XbbdzNuFxDZ8Djuwa1iW6t47UK2qn5jXcr1YcrJTjjtKUY4OVNgBi-j5CywoqnErSHMCZV05pIJOUC0ef30MswRo_lIcVYyxoi5S3V6wGU8zZgXjMFVSdcMmwWEVOs479Q-HXouMEOW4fnM8GrmQCZDD9yr8eU1NmXizn74g67Aj3kVQrDmLGnaQ4-u-vezrY_o4EA3QImhpQi2B1CiZrGT23HT-H4qWn81OSovKcxLuspN5bohv8q660yYRbfQ7w1-N-i3wPA61k
CitedBy_id crossref_primary_10_1038_s42003_022_04152_8
crossref_primary_10_1093_nar_gkaa764
crossref_primary_10_1016_j_ymthe_2024_03_009
crossref_primary_10_1093_hr_uhae293
crossref_primary_10_1146_annurev_genet_071719_030438
crossref_primary_10_1038_s44222_022_00013_5
crossref_primary_10_3389_fgene_2022_891098
crossref_primary_10_1007_s11626_023_00763_5
crossref_primary_10_3390_molecules25030735
crossref_primary_10_3390_ani15030422
crossref_primary_10_1007_s13237_024_00482_6
crossref_primary_10_1016_j_scib_2023_12_013
crossref_primary_10_1016_j_tibs_2020_06_003
crossref_primary_10_1016_j_ymthe_2021_05_007
crossref_primary_10_1016_j_jgg_2020_07_010
crossref_primary_10_1038_s41467_022_34784_7
crossref_primary_10_1038_s41587_023_01792_x
crossref_primary_10_1016_j_molcel_2019_12_016
crossref_primary_10_1186_s13059_020_02118_9
crossref_primary_10_1016_j_ymgme_2021_08_002
crossref_primary_10_1073_pnas_2013338118
crossref_primary_10_1016_j_dmpk_2022_100450
crossref_primary_10_13070_mm_en_9_2800
crossref_primary_10_1016_j_ymthe_2024_03_005
crossref_primary_10_1038_s41551_024_01220_8
crossref_primary_10_3389_fgene_2020_614688
crossref_primary_10_2174_0929867328666210527092456
crossref_primary_10_1038_s41586_021_03191_1
crossref_primary_10_1089_crispr_2024_0028
crossref_primary_10_3389_fimmu_2020_570672
crossref_primary_10_1055_s_0044_1791803
crossref_primary_10_1093_bib_bbad205
crossref_primary_10_1038_s41592_020_0832_x
crossref_primary_10_1016_j_gene_2022_147064
crossref_primary_10_1038_s12276_023_00938_w
crossref_primary_10_1038_s41467_021_26789_5
crossref_primary_10_1038_s12276_023_01057_2
crossref_primary_10_1534_genetics_119_302089
crossref_primary_10_1016_j_cell_2024_05_056
crossref_primary_10_3390_biologics3040014
crossref_primary_10_1016_j_trecan_2023_10_001
crossref_primary_10_1038_s41587_019_0236_6
crossref_primary_10_1021_acsnano_4c14041
crossref_primary_10_3389_fgene_2024_1364742
crossref_primary_10_1126_science_aax1827
crossref_primary_10_1038_s41589_023_01278_6
crossref_primary_10_3390_genes12111667
crossref_primary_10_1016_j_clim_2023_109854
crossref_primary_10_1007_s13238_020_00704_y
crossref_primary_10_1038_s41596_020_00423_y
crossref_primary_10_1016_j_xpro_2022_101148
crossref_primary_10_1126_scitranslmed_abn0449
crossref_primary_10_3389_fbioe_2023_1039315
crossref_primary_10_1016_j_omtn_2020_07_037
crossref_primary_10_1038_s41556_020_0521_0
crossref_primary_10_1007_s11816_024_00949_7
crossref_primary_10_1007_s12015_021_10324_6
crossref_primary_10_1016_j_ymben_2022_11_005
crossref_primary_10_1126_science_aav9973
crossref_primary_10_1089_crispr_2019_29054_mrw
crossref_primary_10_1093_nar_gkac742
crossref_primary_10_1128_mSystems_00350_20
crossref_primary_10_1080_07388551_2019_1709795
crossref_primary_10_3389_fcell_2023_1175849
crossref_primary_10_1021_acssynbio_0c00560
crossref_primary_10_1016_j_tig_2021_07_003
crossref_primary_10_1016_j_ymthe_2021_06_013
crossref_primary_10_7555_JBR_34_20200105
crossref_primary_10_1016_j_tibtech_2019_03_008
crossref_primary_10_1016_j_ymthe_2022_01_040
crossref_primary_10_3390_genes13050835
crossref_primary_10_1038_s41392_024_01750_2
crossref_primary_10_3390_cells9071690
crossref_primary_10_1093_nar_gkab427
crossref_primary_10_1038_s41551_024_01233_3
crossref_primary_10_1016_j_isci_2019_05_008
crossref_primary_10_1186_s12915_020_00849_6
crossref_primary_10_3389_fgeed_2023_1114996
crossref_primary_10_1080_13816810_2022_2113541
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1186_s40813_021_00196_0
crossref_primary_10_1021_acssynbio_0c00349
crossref_primary_10_1093_nar_gkac967
crossref_primary_10_1186_s12935_022_02831_4
crossref_primary_10_3389_fonc_2020_584404
crossref_primary_10_1063_5_0157193
crossref_primary_10_1007_s00761_019_0599_9
crossref_primary_10_3390_biom10101378
crossref_primary_10_3389_fgeed_2022_1030285
crossref_primary_10_3390_v16101565
crossref_primary_10_1172_jci_insight_185193
crossref_primary_10_3389_fbioe_2022_942440
crossref_primary_10_1016_j_exphem_2022_03_002
crossref_primary_10_3390_cells11172682
crossref_primary_10_1016_j_tcb_2020_01_004
crossref_primary_10_1038_s41467_021_21003_y
crossref_primary_10_1002_bies_202200032
crossref_primary_10_1016_j_celrep_2020_02_068
crossref_primary_10_1016_j_celrep_2023_112840
crossref_primary_10_1016_j_tig_2022_04_011
crossref_primary_10_3389_fgeed_2021_618406
crossref_primary_10_1186_s40659_024_00562_6
crossref_primary_10_1111_pbi_13774
crossref_primary_10_3389_fcell_2022_809922
crossref_primary_10_1038_s41467_020_15887_5
crossref_primary_10_3389_fbioe_2020_00882
crossref_primary_10_3389_fnmol_2020_00148
crossref_primary_10_1038_s41421_020_00195_5
crossref_primary_10_1038_s41467_021_25375_z
crossref_primary_10_1126_science_aay0339
crossref_primary_10_3389_fbioe_2022_939295
crossref_primary_10_1038_s41587_019_0193_0
crossref_primary_10_1016_j_isci_2025_111979
crossref_primary_10_1177_1535370220985808
crossref_primary_10_1016_j_semcdb_2022_03_012
crossref_primary_10_1093_nar_gkaa124
crossref_primary_10_1186_s43556_023_00115_5
crossref_primary_10_1016_j_omtm_2020_04_015
crossref_primary_10_1038_s41587_023_01915_4
crossref_primary_10_1038_s42003_021_02406_5
crossref_primary_10_15252_msb_20209475
crossref_primary_10_1182_blood_2022015825
crossref_primary_10_1002_biot_202300321
crossref_primary_10_1007_s12033_022_00639_1
crossref_primary_10_1111_pbi_13712
crossref_primary_10_1038_s41587_020_0561_9
crossref_primary_10_1038_s41467_019_09983_4
crossref_primary_10_1016_j_tig_2024_12_001
crossref_primary_10_1093_nar_gkac799
crossref_primary_10_1016_j_cobme_2023_100489
crossref_primary_10_1111_pbi_13716
crossref_primary_10_1021_acssynbio_3c00229
crossref_primary_10_1016_j_omtn_2023_02_011
crossref_primary_10_15252_embj_2019102169
crossref_primary_10_1038_s41576_024_00786_y
crossref_primary_10_1360_nso_20230030
crossref_primary_10_1038_s41587_021_00938_z
crossref_primary_10_1007_s11248_021_00238_x
crossref_primary_10_3390_ijms20236041
crossref_primary_10_1038_s41467_021_21559_9
crossref_primary_10_3390_ijms24055026
crossref_primary_10_1016_j_jcyt_2024_06_002
crossref_primary_10_1002_advs_202309004
crossref_primary_10_1074_jbc_REV120_014405
crossref_primary_10_1016_j_cobme_2023_100472
crossref_primary_10_1016_j_jgg_2024_10_006
crossref_primary_10_1038_s12276_020_0466_1
crossref_primary_10_1371_journal_pone_0257537
crossref_primary_10_1002_cbic_202000838
crossref_primary_10_1055_s_0044_1790558
crossref_primary_10_1016_j_cpcardiol_2023_101692
crossref_primary_10_3390_cells9040953
crossref_primary_10_1002_ange_201900788
crossref_primary_10_1038_s41588_021_00838_7
crossref_primary_10_1038_s41596_023_00837_4
crossref_primary_10_1016_j_sbi_2023_102628
crossref_primary_10_1007_s10142_024_01364_5
crossref_primary_10_1038_s41467_021_25190_6
crossref_primary_10_1016_j_neuron_2023_04_021
crossref_primary_10_1111_pbi_13732
crossref_primary_10_1080_10409238_2021_1937928
crossref_primary_10_1038_s41592_022_01399_1
crossref_primary_10_1002_1873_3468_13719
crossref_primary_10_1007_s10126_022_10125_z
crossref_primary_10_1016_j_drudis_2022_103375
crossref_primary_10_1021_acssynbio_4c00103
crossref_primary_10_1111_raq_12538
crossref_primary_10_1038_s41467_021_26518_y
crossref_primary_10_54133_ajms_v6i1_503
crossref_primary_10_1038_s41576_022_00459_8
crossref_primary_10_1126_science_add8643
crossref_primary_10_3390_genes13081327
crossref_primary_10_1038_s41589_022_01163_8
crossref_primary_10_1113_EP090436
crossref_primary_10_1039_D4PY00298A
crossref_primary_10_1016_j_cell_2021_12_021
crossref_primary_10_1038_s41467_023_40701_3
crossref_primary_10_1016_j_pharmthera_2024_108720
crossref_primary_10_1002_jcp_30064
crossref_primary_10_1016_j_jbc_2024_108113
crossref_primary_10_1016_j_vph_2019_02_004
crossref_primary_10_3390_ijms222111753
crossref_primary_10_1038_s41576_021_00382_4
crossref_primary_10_2174_1566523223666221118160932
crossref_primary_10_1016_j_omtm_2021_11_002
crossref_primary_10_1016_j_synbio_2020_08_003
crossref_primary_10_1016_j_ymthe_2021_10_001
crossref_primary_10_1016_j_ymthe_2021_10_002
crossref_primary_10_1093_procel_pwad014
crossref_primary_10_3390_cells9071608
crossref_primary_10_1038_s41587_021_01105_0
crossref_primary_10_1021_acschembio_2c00836
crossref_primary_10_1093_nar_gkad687
crossref_primary_10_1002_biot_202100239
crossref_primary_10_1007_s11627_021_10184_2
crossref_primary_10_1038_s41569_021_00669_3
crossref_primary_10_3390_ijms241814057
crossref_primary_10_1186_s12859_021_04034_6
crossref_primary_10_3390_cells12030440
crossref_primary_10_1021_acs_chemrev_3c00878
crossref_primary_10_3390_jcm10030513
crossref_primary_10_34133_2020_9350905
crossref_primary_10_1016_j_bbcan_2024_189233
crossref_primary_10_3390_diagnostics12010207
crossref_primary_10_1016_j_bioactmat_2025_02_007
crossref_primary_10_1016_j_sbi_2024_102952
crossref_primary_10_1111_raq_12591
crossref_primary_10_1093_nar_gkad456
crossref_primary_10_1016_j_addr_2020_10_014
crossref_primary_10_1128_spectrum_02321_21
crossref_primary_10_1172_JCI162809
crossref_primary_10_1038_s41467_020_15796_7
crossref_primary_10_1038_s41556_021_00671_4
crossref_primary_10_1016_j_cobme_2024_100550
crossref_primary_10_1007_s11864_023_01140_w
crossref_primary_10_1016_j_gde_2020_12_005
crossref_primary_10_1016_j_cell_2019_11_030
crossref_primary_10_1089_hum_2019_29101_trf
crossref_primary_10_1016_j_addr_2022_114562
crossref_primary_10_1016_j_cej_2022_134992
crossref_primary_10_1016_j_ymthe_2024_01_028
crossref_primary_10_1111_bcp_14918
crossref_primary_10_1016_j_biotechadv_2021_107732
crossref_primary_10_1021_acssynbio_3c00299
crossref_primary_10_1002_adma_202307499
crossref_primary_10_1016_j_ymeth_2021_03_015
crossref_primary_10_1016_j_hemonc_2021_02_001
crossref_primary_10_1016_j_ymeth_2021_03_014
crossref_primary_10_1016_j_ymeth_2021_03_013
crossref_primary_10_1016_j_jconrel_2021_11_032
crossref_primary_10_3390_ijms22189872
crossref_primary_10_1021_acs_biochem_9b00573
crossref_primary_10_1016_j_ymthe_2021_04_003
crossref_primary_10_1038_s41573_020_0084_6
crossref_primary_10_3390_genes16010077
crossref_primary_10_1016_j_omtm_2021_11_010
crossref_primary_10_1101_gr_277261_122
crossref_primary_10_1016_j_tplants_2019_09_006
crossref_primary_10_7554_eLife_89782_2
crossref_primary_10_1016_j_gpb_2022_06_005
crossref_primary_10_1021_acssynbio_3c00045
crossref_primary_10_1038_s41580_020_0243_y
crossref_primary_10_1073_pnas_2113747118
crossref_primary_10_1016_j_cbpa_2021_03_004
crossref_primary_10_3389_fpls_2020_00056
crossref_primary_10_1093_nar_gkad1125
crossref_primary_10_1016_j_biotechadv_2024_108473
crossref_primary_10_1523_ENEURO_0419_19_2020
crossref_primary_10_1016_j_ymthe_2020_07_021
crossref_primary_10_1098_rsob_190229
crossref_primary_10_1063_5_0244026
crossref_primary_10_1002_2211_5463_13292
crossref_primary_10_1016_j_blre_2024_101185
crossref_primary_10_1016_j_jmb_2024_168836
crossref_primary_10_1089_crispr_2023_0078
crossref_primary_10_3390_ijms21249604
crossref_primary_10_1038_s42003_024_07078_5
crossref_primary_10_1080_13816810_2023_2270554
crossref_primary_10_1016_j_addr_2024_115359
crossref_primary_10_1007_s42994_019_00010_0
crossref_primary_10_1016_j_ymthe_2022_11_014
crossref_primary_10_3390_genes14040908
crossref_primary_10_3389_fgene_2023_1273994
crossref_primary_10_3389_fbioe_2020_00905
crossref_primary_10_1515_hsz_2023_0174
crossref_primary_10_1186_s13059_019_1839_4
crossref_primary_10_1016_j_jgg_2021_05_001
crossref_primary_10_3389_fanim_2024_1368155
crossref_primary_10_7555_JBR_34_20200096
crossref_primary_10_1016_j_biomaterials_2021_121252
crossref_primary_10_1159_000520965
crossref_primary_10_1002_cbic_202000408
crossref_primary_10_1186_s13059_024_03358_9
crossref_primary_10_3390_ijms21113903
crossref_primary_10_1002_nadc_20204100164
crossref_primary_10_1002_advs_202309767
crossref_primary_10_1016_j_addr_2024_115346
crossref_primary_10_1002_jgm_3377
crossref_primary_10_1002_wrna_1731
crossref_primary_10_1089_hum_2024_073
crossref_primary_10_1182_blood_2022016629
crossref_primary_10_1038_s41598_023_42174_2
crossref_primary_10_1038_s41467_022_30780_z
crossref_primary_10_1089_hum_2023_059
crossref_primary_10_1096_fj_202001065RRR
crossref_primary_10_1016_j_stem_2019_05_008
crossref_primary_10_1016_j_synbio_2025_02_001
crossref_primary_10_1089_hum_2023_055
crossref_primary_10_1038_s41556_019_0424_0
crossref_primary_10_1038_s42003_022_04258_z
crossref_primary_10_3389_fpls_2024_1477894
crossref_primary_10_1038_s41569_022_00804_8
crossref_primary_10_2174_1574888X18666230307115326
crossref_primary_10_2217_pgs_2020_0104
crossref_primary_10_1016_j_tig_2021_04_013
crossref_primary_10_1093_nar_gkaa194
crossref_primary_10_1038_s41467_019_11562_6
crossref_primary_10_1080_15476286_2021_1983288
crossref_primary_10_1186_s12284_019_0355_1
crossref_primary_10_1038_s41467_022_28300_0
crossref_primary_10_3390_ijms23179862
crossref_primary_10_1038_s41467_024_45909_5
crossref_primary_10_1038_s41477_019_0461_5
crossref_primary_10_1016_j_bios_2022_114712
crossref_primary_10_1126_sciadv_abc2315
crossref_primary_10_1038_s41556_020_0518_8
crossref_primary_10_3389_fimmu_2020_611638
crossref_primary_10_3389_fgeed_2020_00002
crossref_primary_10_1016_j_crbiot_2023_100127
crossref_primary_10_1186_s13287_023_03394_5
crossref_primary_10_1038_s41589_022_01034_2
crossref_primary_10_1016_j_nmd_2022_08_001
crossref_primary_10_1002_mco2_672
crossref_primary_10_1093_nar_gkab052
crossref_primary_10_1016_j_imlet_2022_03_005
crossref_primary_10_1038_s41598_020_62723_3
crossref_primary_10_1016_j_tins_2023_02_005
crossref_primary_10_1038_s41576_020_00298_5
crossref_primary_10_1042_ETLS20180148
crossref_primary_10_1042_ETLS20180147
crossref_primary_10_1016_j_omtn_2024_102257
crossref_primary_10_37489_2588_0527_2024_2_29_36
crossref_primary_10_1101_cshperspect_a041229
crossref_primary_10_1007_s13311_021_01081_y
crossref_primary_10_1042_ETLS20180144
crossref_primary_10_1089_crispr_2019_29079_mji
crossref_primary_10_1038_s41467_022_29365_7
crossref_primary_10_1002_jimd_12270
crossref_primary_10_1007_s13205_023_03901_8
crossref_primary_10_1016_j_lssr_2022_08_006
crossref_primary_10_1016_j_mmm_2020_10_001
crossref_primary_10_1016_j_omtn_2020_03_005
crossref_primary_10_1038_s41568_020_0275_9
crossref_primary_10_1089_hum_2024_043
crossref_primary_10_1016_j_stem_2020_01_019
crossref_primary_10_1016_j_bbcan_2020_188378
crossref_primary_10_1038_s41525_024_00397_w
crossref_primary_10_1038_s41467_023_36004_2
crossref_primary_10_7554_eLife_55780
crossref_primary_10_1186_s40364_024_00618_5
crossref_primary_10_1016_j_jhep_2021_05_013
crossref_primary_10_1038_s41467_020_19690_0
crossref_primary_10_1016_j_tig_2020_09_001
crossref_primary_10_1186_s13578_023_01021_7
crossref_primary_10_1016_j_addr_2020_11_002
crossref_primary_10_1038_s41433_020_1105_8
crossref_primary_10_1038_s41587_019_0134_y
crossref_primary_10_1016_j_ymthe_2020_06_029
crossref_primary_10_1016_j_ymthe_2023_06_007
crossref_primary_10_3389_fgeed_2023_1272678
crossref_primary_10_1038_s41588_024_01682_1
crossref_primary_10_1016_j_stemcr_2021_02_013
crossref_primary_10_1038_s41576_021_00327_x
crossref_primary_10_1002_1878_0261_13272
crossref_primary_10_3389_fimmu_2022_966084
crossref_primary_10_1038_s41467_020_20810_z
crossref_primary_10_1038_s41587_023_01994_3
crossref_primary_10_3389_fgeed_2020_612137
crossref_primary_10_1016_j_omtn_2021_11_023
crossref_primary_10_1021_acs_biochem_9b00046
crossref_primary_10_1016_j_isci_2020_101478
crossref_primary_10_1186_s13073_021_00857_3
crossref_primary_10_1016_j_engmed_2024_100035
crossref_primary_10_7554_eLife_95514
crossref_primary_10_1038_s41576_021_00436_7
crossref_primary_10_1007_s12298_024_01534_6
crossref_primary_10_1038_s41467_022_29550_8
crossref_primary_10_1093_nar_gkad266
crossref_primary_10_1016_j_xjidi_2023_100191
crossref_primary_10_1002_adtp_202100040
crossref_primary_10_1016_j_ymthe_2020_05_001
crossref_primary_10_51847_Usni3JotHd
crossref_primary_10_3389_fgene_2023_1087267
crossref_primary_10_2147_TCRM_S386923
crossref_primary_10_1007_s00294_021_01211_1
crossref_primary_10_1007_s12038_020_00094_7
crossref_primary_10_1002_cbf_70044
crossref_primary_10_61186_JCT_14_3_241
crossref_primary_10_3390_v13112258
crossref_primary_10_1080_14712598_2020_1817375
crossref_primary_10_1126_sciadv_abg4910
crossref_primary_10_1038_s43856_023_00286_w
crossref_primary_10_3390_genes10110837
crossref_primary_10_1007_s00125_019_4908_z
crossref_primary_10_1021_acs_nanolett_1c01973
crossref_primary_10_1161_CIRCRESAHA_122_320496
crossref_primary_10_1038_s41467_020_14620_6
crossref_primary_10_3390_ijms252312514
crossref_primary_10_5483_BMBRep_2023_0086
crossref_primary_10_3389_fgene_2023_1204585
crossref_primary_10_1038_s41467_020_16632_8
crossref_primary_10_1002_cbin_11972
crossref_primary_10_1177_0023677221993895
crossref_primary_10_3390_agriculture13020298
crossref_primary_10_1038_s41573_019_0012_9
crossref_primary_10_1016_j_ajhg_2024_03_004
crossref_primary_10_1080_13816810_2019_1692359
crossref_primary_10_34133_2021_9898769
crossref_primary_10_1038_s41592_021_01172_w
crossref_primary_10_1093_nar_gkae174
crossref_primary_10_1002_wnan_1938
crossref_primary_10_1186_s12929_024_01054_1
crossref_primary_10_2174_1566523220666201214115024
crossref_primary_10_1038_s41467_020_16643_5
crossref_primary_10_1016_j_jconrel_2020_09_003
crossref_primary_10_1038_s41587_023_01821_9
crossref_primary_10_1016_j_ymthe_2020_09_025
crossref_primary_10_1038_s41434_020_0181_5
crossref_primary_10_3390_biology10060530
crossref_primary_10_1038_s41467_023_39632_w
crossref_primary_10_1016_j_omtn_2024_102201
crossref_primary_10_1094_PHYTO_08_20_0322_IA
crossref_primary_10_1016_j_omtn_2025_102501
crossref_primary_10_1093_hmg_ddad105
crossref_primary_10_15835_nbha50312388
crossref_primary_10_1016_j_cell_2022_03_045
crossref_primary_10_1002_ame2_12080
crossref_primary_10_1038_s41587_023_01758_z
crossref_primary_10_3390_genes10030235
crossref_primary_10_1016_j_xpro_2024_103189
crossref_primary_10_1111_pbi_13399
crossref_primary_10_1002_advs_201902312
crossref_primary_10_1038_s41596_021_00552_y
crossref_primary_10_3390_agronomy12030565
crossref_primary_10_3389_fmed_2021_774618
crossref_primary_10_1126_science_aaw7166
crossref_primary_10_1089_hum_2021_283
crossref_primary_10_3390_cells13141214
crossref_primary_10_1007_s11248_021_00253_y
crossref_primary_10_1016_j_pbi_2021_102006
crossref_primary_10_3389_fgeed_2023_1034720
crossref_primary_10_1002_eji_202048712
crossref_primary_10_1021_acssynbio_9b00297
crossref_primary_10_3389_fonc_2023_1236038
crossref_primary_10_1016_j_omtn_2022_04_032
crossref_primary_10_1038_s41589_021_00880_w
crossref_primary_10_3390_biom10050734
crossref_primary_10_1007_s00281_021_00902_8
crossref_primary_10_1039_D2CC03664A
crossref_primary_10_1089_crispr_2021_0124
crossref_primary_10_1016_j_csbj_2022_12_055
crossref_primary_10_1016_j_omtn_2022_04_033
crossref_primary_10_1038_s41433_024_03441_2
crossref_primary_10_1093_icb_icaa023
crossref_primary_10_3389_fimmu_2022_960348
crossref_primary_10_1016_j_tibtech_2020_06_010
crossref_primary_10_1038_s41576_020_0261_9
crossref_primary_10_1038_s41589_023_01531_y
crossref_primary_10_3389_fpls_2022_860281
crossref_primary_10_1089_hum_2022_090
crossref_primary_10_1002_advs_202305311
crossref_primary_10_3389_fpls_2020_577980
crossref_primary_10_1016_j_jmb_2023_168120
crossref_primary_10_1016_j_omtm_2024_101250
crossref_primary_10_1016_j_mec_2020_e00135
crossref_primary_10_1021_acscentsci_3c00289
crossref_primary_10_1016_j_lfs_2022_121204
crossref_primary_10_1146_annurev_genet_030723_120717
crossref_primary_10_1515_revneuro_2020_0152
crossref_primary_10_1097_JBR_0000000000000060
crossref_primary_10_3390_genes11090976
crossref_primary_10_1016_j_jbior_2023_100993
crossref_primary_10_1038_s41467_024_48111_9
crossref_primary_10_1038_s41587_020_0412_8
crossref_primary_10_3390_plants11081052
crossref_primary_10_1007_s13237_024_00473_7
crossref_primary_10_1038_s41591_020_0790_y
crossref_primary_10_1016_j_celrep_2024_114313
crossref_primary_10_1242_dmm_050088
crossref_primary_10_1038_s41467_020_19136_7
crossref_primary_10_1089_crispr_2021_0143
crossref_primary_10_1016_j_ymthe_2023_02_001
crossref_primary_10_1089_crispr_2023_0033
crossref_primary_10_1007_s12038_023_00413_8
crossref_primary_10_1038_s41596_020_00431_y
crossref_primary_10_1089_nat_2022_0037
crossref_primary_10_3390_jcm11041061
crossref_primary_10_1016_j_jgg_2023_08_001
crossref_primary_10_1038_s41596_023_00877_w
crossref_primary_10_1016_j_cels_2023_03_007
crossref_primary_10_3389_fcvm_2022_889519
crossref_primary_10_1002_ijch_202300152
crossref_primary_10_3389_fgene_2023_1085024
crossref_primary_10_1161_CIRCRESAHA_120_318674
crossref_primary_10_1089_crispr_2023_0026
crossref_primary_10_1080_14712598_2022_2049229
crossref_primary_10_3390_pharmaceutics12080767
crossref_primary_10_1016_j_tibtech_2020_06_008
crossref_primary_10_1016_j_apsb_2022_12_013
crossref_primary_10_3389_fgeed_2022_852867
crossref_primary_10_1016_j_synbio_2025_03_007
crossref_primary_10_1038_s41586_019_1161_z
crossref_primary_10_1186_s43170_022_00111_9
crossref_primary_10_1016_j_bbiosy_2023_100073
crossref_primary_10_1038_s41580_023_00697_6
crossref_primary_10_5483_BMBRep_2020_53_7_070
crossref_primary_10_1186_s13059_023_02987_w
crossref_primary_10_1016_j_molcel_2023_10_033
crossref_primary_10_1002_chem_202101985
crossref_primary_10_1007_s40257_021_00626_3
crossref_primary_10_1038_s41587_024_02430_w
crossref_primary_10_1089_hum_2021_013
crossref_primary_10_1016_j_yexcr_2021_112844
crossref_primary_10_1002_advs_202410237
crossref_primary_10_1007_s11816_022_00749_x
crossref_primary_10_1021_acs_jafc_2c08583
crossref_primary_10_1161_CIRCULATIONAHA_123_065624
crossref_primary_10_1021_acssynbio_0c00627
crossref_primary_10_1186_s12870_024_04786_2
crossref_primary_10_1089_hum_2020_231
crossref_primary_10_1021_acs_molpharmaceut_2c00653
crossref_primary_10_1128_aem_02455_24
crossref_primary_10_1186_s13578_024_01216_6
crossref_primary_10_1089_crispr_2023_0005
crossref_primary_10_1080_00207454_2020_1740218
crossref_primary_10_1089_crispr_2023_0002
crossref_primary_10_1038_s41587_023_01756_1
crossref_primary_10_3390_v13071288
crossref_primary_10_1007_s00299_024_03346_0
crossref_primary_10_1007_s11033_021_06479_7
crossref_primary_10_1089_cell_2023_0094
crossref_primary_10_15283_ijsc23030
crossref_primary_10_3390_ijms24065798
crossref_primary_10_1016_j_addr_2023_115026
crossref_primary_10_3389_fgeed_2021_737632
crossref_primary_10_1002_ame2_12069
crossref_primary_10_1016_j_cell_2023_03_035
crossref_primary_10_1038_s41392_023_01309_7
crossref_primary_10_1038_s41598_022_13688_y
crossref_primary_10_1016_j_tips_2021_10_012
crossref_primary_10_1089_crispr_2021_0063
crossref_primary_10_1038_s41587_022_01532_7
crossref_primary_10_1016_j_jid_2019_07_701
crossref_primary_10_1089_crispr_2021_0065
crossref_primary_10_1038_s41684_020_0510_8
crossref_primary_10_1016_j_biomaterials_2023_122328
crossref_primary_10_1093_nar_gkae1217
crossref_primary_10_3390_ijms241210266
crossref_primary_10_1016_j_theriogenology_2022_11_044
crossref_primary_10_1089_genbio_2022_0015
crossref_primary_10_1038_s41467_020_16542_9
crossref_primary_10_15283_ijsc22171
crossref_primary_10_7759_cureus_64324
crossref_primary_10_3389_fpls_2022_868027
crossref_primary_10_1038_s41586_021_03609_w
crossref_primary_10_1001_jamaophthalmol_2020_6418
crossref_primary_10_1093_plcell_koab099
crossref_primary_10_1038_s41467_022_31322_3
crossref_primary_10_1038_s41573_023_00809_z
crossref_primary_10_1097_WCO_0000000000000978
crossref_primary_10_3389_fimmu_2020_01965
crossref_primary_10_1021_jacs_1c11269
crossref_primary_10_1038_d41586_019_03536_x
crossref_primary_10_1007_s44281_024_00053_4
crossref_primary_10_1038_s41576_019_0167_6
crossref_primary_10_1007_s00395_020_00839_3
crossref_primary_10_1038_s41467_024_45969_7
crossref_primary_10_1038_s41593_023_01499_x
crossref_primary_10_1038_s41467_019_12829_8
crossref_primary_10_1016_j_cell_2020_05_037
crossref_primary_10_1016_j_envpol_2023_122458
crossref_primary_10_3389_fgeed_2021_630600
crossref_primary_10_1089_crispr_2019_0001
crossref_primary_10_1242_dmm_039321
crossref_primary_10_3390_ijms232012375
crossref_primary_10_1089_hum_2020_166
crossref_primary_10_1079_cabireviews_2025_0003
crossref_primary_10_1016_j_ggedit_2021_100005
crossref_primary_10_1016_j_cobme_2023_100514
crossref_primary_10_1155_2020_2907623
crossref_primary_10_3390_ijms24108623
crossref_primary_10_1096_fj_201901587R
crossref_primary_10_3390_ijms22073327
crossref_primary_10_1016_j_cobme_2023_100506
crossref_primary_10_3390_cells9010112
crossref_primary_10_1186_s42483_024_00289_y
crossref_primary_10_1016_j_psj_2022_102174
crossref_primary_10_1016_j_preteyeres_2022_101065
crossref_primary_10_1016_j_ygeno_2021_09_001
crossref_primary_10_1016_j_ymthe_2022_07_010
crossref_primary_10_1016_j_jgg_2022_03_007
crossref_primary_10_1002_1873_3468_13668
crossref_primary_10_3390_ijms24119527
crossref_primary_10_1089_crispr_2021_0095
crossref_primary_10_1016_j_gfs_2024_100785
crossref_primary_10_1016_j_molcel_2020_08_009
crossref_primary_10_1007_s11427_023_2384_9
crossref_primary_10_1631_jzus_B2000282
crossref_primary_10_1002_bit_27121
crossref_primary_10_1016_j_molp_2019_06_009
crossref_primary_10_3390_ijms23042276
crossref_primary_10_1038_s41587_020_0527_y
crossref_primary_10_1038_s41467_020_19730_9
crossref_primary_10_1186_s12915_020_00879_0
crossref_primary_10_1038_s41598_021_87669_y
crossref_primary_10_1016_j_jgg_2019_11_003
crossref_primary_10_1590_1984_3143_ar2023_0089
crossref_primary_10_3390_ijms23031145
crossref_primary_10_1007_s13237_024_00470_w
crossref_primary_10_1038_s41467_024_49343_5
crossref_primary_10_1016_j_preteyeres_2020_100861
crossref_primary_10_3390_jcm10030482
crossref_primary_10_3389_fgeed_2022_937879
crossref_primary_10_1007_s42764_021_00035_0
crossref_primary_10_1038_s41419_020_2244_3
crossref_primary_10_1021_acssynbio_0c00445
crossref_primary_10_1146_annurev_neuro_030520_101844
crossref_primary_10_3389_fmed_2022_859930
crossref_primary_10_1038_s41587_024_02313_0
crossref_primary_10_3390_ijms22020857
crossref_primary_10_1089_hum_2021_191
crossref_primary_10_1038_s41587_020_0491_6
crossref_primary_10_1016_j_jgg_2019_11_005
crossref_primary_10_1016_j_sbi_2021_02_005
crossref_primary_10_1016_j_ymthe_2020_04_009
crossref_primary_10_3389_fgeed_2022_901444
crossref_primary_10_1016_j_addr_2020_05_001
crossref_primary_10_3389_fbioe_2022_924914
crossref_primary_10_3389_fnins_2020_579062
crossref_primary_10_1093_nar_gkab541
crossref_primary_10_1172_JCI136873
crossref_primary_10_1038_s41467_023_36887_1
crossref_primary_10_1084_jem_20190607
crossref_primary_10_3390_biomedicines12061284
crossref_primary_10_1093_jxb_eraa466
crossref_primary_10_1038_s41467_021_27183_x
crossref_primary_10_1038_s41467_021_22295_w
crossref_primary_10_1093_nar_gkaa215
crossref_primary_10_1021_acs_biochem_2c00340
crossref_primary_10_1016_j_celrep_2020_107723
crossref_primary_10_1021_acssynbio_4c00407
crossref_primary_10_1079_cabireviews202217039
crossref_primary_10_3390_plants11192494
crossref_primary_10_1186_s13059_021_02563_0
crossref_primary_10_1016_j_tplants_2021_06_015
crossref_primary_10_1016_j_molcel_2023_06_009
crossref_primary_10_1126_science_aax7063
crossref_primary_10_1021_acssynbio_0c00226
crossref_primary_10_1016_j_ymthe_2022_08_008
crossref_primary_10_3389_fbioe_2019_00026
crossref_primary_10_3389_fgeed_2021_673566
crossref_primary_10_1038_s41551_019_0501_5
crossref_primary_10_1038_s41576_019_0110_x
crossref_primary_10_1038_s41587_019_0119_x
crossref_primary_10_1093_humrep_dez162
crossref_primary_10_1186_s12943_022_01518_8
crossref_primary_10_1186_s12915_020_00866_5
crossref_primary_10_1016_j_ymthe_2023_01_028
crossref_primary_10_1038_s41551_021_00706_z
crossref_primary_10_1093_nsr_nwy150
crossref_primary_10_3390_ijms25020705
crossref_primary_10_3390_biom11040611
crossref_primary_10_1016_j_omtm_2024_101229
crossref_primary_10_3389_fimmu_2025_1544532
crossref_primary_10_1038_s41586_019_1711_4
crossref_primary_10_1038_s41587_024_02324_x
crossref_primary_10_1016_j_tig_2020_05_006
crossref_primary_10_1021_acs_jafc_1c00104
crossref_primary_10_1016_j_dnarep_2021_103257
crossref_primary_10_1016_j_ccr_2023_215172
crossref_primary_10_1128_spectrum_03760_22
crossref_primary_10_1098_rsif_2020_0154
crossref_primary_10_3389_fbioe_2019_00031
crossref_primary_10_1021_acs_biochem_4c00649
crossref_primary_10_1038_s41587_020_0414_6
crossref_primary_10_1038_s41563_019_0385_5
crossref_primary_10_1007_s00018_019_03205_2
crossref_primary_10_1016_j_gendis_2018_11_005
crossref_primary_10_1016_j_cell_2020_03_023
crossref_primary_10_1016_j_molcel_2021_02_007
crossref_primary_10_1016_j_ymthe_2020_11_009
crossref_primary_10_1016_j_cell_2023_01_026
crossref_primary_10_1007_s00281_021_00887_4
crossref_primary_10_1101_gr_250720_119
crossref_primary_10_1002_ijch_202200056
crossref_primary_10_1007_s00114_021_01782_6
crossref_primary_10_1007_s11684_023_1013_y
crossref_primary_10_1016_j_ymthe_2020_01_005
crossref_primary_10_1146_annurev_chembioeng_101420_014055
crossref_primary_10_3390_cimb45020059
crossref_primary_10_3390_ijms21103604
crossref_primary_10_1002_advs_202405628
crossref_primary_10_1007_s12038_021_00138_6
crossref_primary_10_1016_j_preteyeres_2021_100975
crossref_primary_10_1016_j_ymthe_2020_05_024
crossref_primary_10_1016_j_jdermsci_2021_11_004
crossref_primary_10_3389_fimmu_2021_642343
crossref_primary_10_1021_acssynbio_4c00686
crossref_primary_10_1038_s41573_020_0083_7
crossref_primary_10_1038_s41587_023_01927_0
crossref_primary_10_1111_imr_13305
crossref_primary_10_1093_nsr_nwad143
crossref_primary_10_1134_S0006297924060026
crossref_primary_10_3390_ijms21197353
crossref_primary_10_1007_s43538_022_00100_6
crossref_primary_10_1093_nar_gkac201
crossref_primary_10_1007_s11427_019_1572_7
crossref_primary_10_1089_crispr_2020_0035
crossref_primary_10_1002_advs_202102021
crossref_primary_10_1038_s41467_021_26461_y
crossref_primary_10_1007_s10265_022_01409_5
crossref_primary_10_1038_s41576_019_0191_6
crossref_primary_10_1089_crispr_2022_0084
crossref_primary_10_1073_pnas_2004831117
crossref_primary_10_7554_eLife_95514_3
crossref_primary_10_1089_hum_2024_020
crossref_primary_10_7554_eLife_89782
crossref_primary_10_1007_s12045_020_1088_6
crossref_primary_10_3389_fgene_2020_592623
crossref_primary_10_1016_j_drudis_2023_103793
crossref_primary_10_1007_s11010_022_04518_w
crossref_primary_10_1016_j_molcel_2021_12_026
crossref_primary_10_1016_j_tibtech_2021_03_010
crossref_primary_10_1002_ggn2_10038
crossref_primary_10_1007_s13238_022_00913_7
crossref_primary_10_1038_s41375_024_02444_y
crossref_primary_10_1093_nar_gkad995
crossref_primary_10_1016_j_eng_2024_10_019
crossref_primary_10_1002_mco2_155
crossref_primary_10_15835_nbha50212678
crossref_primary_10_3389_fncel_2020_00183
crossref_primary_10_1016_j_jbc_2022_102103
crossref_primary_10_1089_genbio_2021_0010
crossref_primary_10_1038_s41421_023_00624_1
crossref_primary_10_1038_s41467_024_48336_8
crossref_primary_10_1007_s00438_021_01769_y
crossref_primary_10_1515_medgen_2020_2021
crossref_primary_10_3390_cells11030460
crossref_primary_10_1038_s41587_024_02394_x
crossref_primary_10_1089_crispr_2020_0095
crossref_primary_10_1186_s12870_021_02907_9
crossref_primary_10_1016_j_lfs_2024_123144
crossref_primary_10_1080_17460441_2020_1718100
crossref_primary_10_1146_annurev_biochem_052521_013938
crossref_primary_10_1126_science_aba8853
crossref_primary_10_3389_fendo_2020_576632
crossref_primary_10_1126_sciadv_aba1773
crossref_primary_10_1016_j_jtha_2024_04_020
crossref_primary_10_1016_j_cell_2023_02_027
crossref_primary_10_1016_j_stemcr_2019_12_013
crossref_primary_10_3389_fcell_2023_1158373
crossref_primary_10_1016_j_transci_2021_103060
crossref_primary_10_1128_msphere_00594_22
crossref_primary_10_1038_s43586_021_00093_4
crossref_primary_10_1038_s41596_020_0361_1
crossref_primary_10_1038_s41551_019_0357_8
crossref_primary_10_1002_cpmb_129
crossref_primary_10_1007_s12519_024_00843_w
crossref_primary_10_1007_s40778_020_00173_3
crossref_primary_10_1021_acs_biochem_8b01202
crossref_primary_10_1038_s41587_024_02437_3
crossref_primary_10_1007_s00299_022_02830_9
crossref_primary_10_1016_j_molcel_2024_01_021
crossref_primary_10_3390_cells9081786
crossref_primary_10_3390_ijms23179809
crossref_primary_10_3390_ijms232315276
crossref_primary_10_3390_cells13171508
crossref_primary_10_1007_s11627_021_10187_z
crossref_primary_10_3390_v14010004
crossref_primary_10_1089_crispr_2019_0017
crossref_primary_10_3389_fpls_2021_664997
crossref_primary_10_1021_acs_chemrev_4c00761
crossref_primary_10_3390_v13010141
crossref_primary_10_1038_s41571_024_00959_y
crossref_primary_10_3389_fgene_2021_627714
crossref_primary_10_1007_s00439_022_02446_9
crossref_primary_10_1016_j_bja_2024_11_040
crossref_primary_10_1093_ckj_sfae119
crossref_primary_10_1016_j_chembiol_2023_05_006
crossref_primary_10_1016_j_jmb_2024_168714
crossref_primary_10_1016_j_ymeth_2019_02_022
crossref_primary_10_1016_j_cellin_2022_100067
crossref_primary_10_1007_s11033_021_06926_5
crossref_primary_10_1002_fbe2_70002
crossref_primary_10_1016_j_biotechadv_2020_107676
crossref_primary_10_1371_journal_pbio_3002071
crossref_primary_10_1186_s12915_020_00929_7
crossref_primary_10_1016_j_cobme_2020_100252
crossref_primary_10_1038_s41591_019_0346_1
crossref_primary_10_1016_j_ymthe_2021_09_027
crossref_primary_10_1186_s13059_021_02304_3
crossref_primary_10_1038_s41467_023_41048_5
crossref_primary_10_1016_j_stemcr_2024_08_003
crossref_primary_10_15212_bioi_2022_0018
crossref_primary_10_1021_acs_jafc_4c01650
crossref_primary_10_1182_blood_2021011993
crossref_primary_10_1016_j_ijbiomac_2024_132474
crossref_primary_10_1007_s11427_023_2468_y
crossref_primary_10_3389_fgene_2020_00731
crossref_primary_10_1038_s41576_024_00720_2
crossref_primary_10_3390_ijms24087029
crossref_primary_10_1101_gr_255414_119
crossref_primary_10_3390_ijms21030777
crossref_primary_10_1002_anie_201900788
crossref_primary_10_1158_0008_5472_CAN_21_2519
crossref_primary_10_1016_j_gendis_2023_101121
crossref_primary_10_1038_s41588_021_00861_8
crossref_primary_10_5483_BMBRep_2022_55_6_033
crossref_primary_10_1016_j_tig_2022_06_015
crossref_primary_10_1111_jipb_12793
crossref_primary_10_1016_j_omtn_2023_07_007
crossref_primary_10_1016_j_omtn_2019_06_024
crossref_primary_10_1021_acs_analchem_3c01809
crossref_primary_10_1038_s41596_021_00677_0
crossref_primary_10_1016_j_ymthe_2021_10_026
crossref_primary_10_1093_cvr_cvae136
crossref_primary_10_1186_s13287_022_03135_0
crossref_primary_10_1016_j_omtn_2024_102190
crossref_primary_10_1021_acs_chemrev_0c00928
crossref_primary_10_1007_s40778_022_00221_0
crossref_primary_10_1186_s12896_019_0504_z
crossref_primary_10_1016_j_biomaterials_2022_121419
crossref_primary_10_1021_acs_jafc_1c05389
crossref_primary_10_1021_jacs_2c02633
crossref_primary_10_1021_acs_chemrev_3c00215
crossref_primary_10_3389_fgene_2021_615491
crossref_primary_10_26508_lsa_202201538
crossref_primary_10_3390_ijms24098144
crossref_primary_10_1016_j_ymthe_2025_01_011
crossref_primary_10_4049_jimmunol_1901468
crossref_primary_10_1016_j_ymthe_2021_08_019
crossref_primary_10_3390_cells13070596
crossref_primary_10_1021_acs_jafc_4c09392
crossref_primary_10_1038_s41592_024_02256_z
crossref_primary_10_1038_s41576_022_00541_1
crossref_primary_10_1126_science_adn9409
crossref_primary_10_1016_j_jplph_2022_153740
crossref_primary_10_1016_j_molmed_2024_12_001
crossref_primary_10_1186_s43556_022_00095_y
crossref_primary_10_1038_s42003_024_06848_5
crossref_primary_10_3390_v14030609
crossref_primary_10_1038_s12276_021_00609_8
crossref_primary_10_1093_nar_gkad598
crossref_primary_10_3389_fonc_2020_01387
crossref_primary_10_1016_j_omtn_2024_102183
crossref_primary_10_1016_j_omtn_2025_102482
crossref_primary_10_1038_s12276_024_01212_3
crossref_primary_10_1016_j_omtn_2025_102486
crossref_primary_10_3349_ymj_2022_63_2_105
crossref_primary_10_1016_j_jbc_2021_100909
crossref_primary_10_1089_hum_2023_115
crossref_primary_10_1016_j_ymthe_2025_01_042
crossref_primary_10_1038_s41587_022_01595_6
crossref_primary_10_1073_pnas_2010650118
crossref_primary_10_3389_fgeed_2024_1304110
crossref_primary_10_3390_ijms23179749
crossref_primary_10_3389_fgene_2022_911429
crossref_primary_10_1053_j_seminhematol_2020_07_004
crossref_primary_10_1146_annurev_bioeng_122019_121602
crossref_primary_10_3389_fbioe_2023_1335901
crossref_primary_10_1002_adfm_202011068
crossref_primary_10_1016_j_ymthe_2022_04_005
crossref_primary_10_1016_j_omtn_2021_05_012
crossref_primary_10_1007_s15010_020_01554_w
crossref_primary_10_1126_scitranslmed_aay9101
crossref_primary_10_1038_s41573_022_00476_6
crossref_primary_10_15252_emmm_201809958
crossref_primary_10_3390_ijerph19116739
crossref_primary_10_3390_ijms242015310
crossref_primary_10_3390_ijms22010148
crossref_primary_10_1016_j_omtn_2024_102366
crossref_primary_10_3389_fgeed_2021_644319
crossref_primary_10_3390_genes10050387
crossref_primary_10_1016_j_ymthe_2025_01_031
crossref_primary_10_1016_j_tig_2023_02_014
crossref_primary_10_1038_s41467_024_45763_5
crossref_primary_10_1038_s41467_021_25217_y
crossref_primary_10_1038_s41477_021_00991_1
crossref_primary_10_1093_jxb_erad175
crossref_primary_10_3389_fgene_2020_00528
crossref_primary_10_1038_s41422_019_0188_x
crossref_primary_10_1007_s10530_019_02146_y
crossref_primary_10_3390_cells12121555
crossref_primary_10_1002_pdi3_16
crossref_primary_10_1038_s41587_020_0609_x
crossref_primary_10_3390_ijms25021267
crossref_primary_10_1007_s11427_023_2435_9
crossref_primary_10_1093_jxb_erae053
crossref_primary_10_1111_cpr_13808
crossref_primary_10_1097_JS9_0000000000001081
crossref_primary_10_1093_synbio_ysaa021
crossref_primary_10_2147_TACG_S273525
crossref_primary_10_1038_s41421_019_0128_4
crossref_primary_10_1016_j_isci_2021_102769
crossref_primary_10_1186_s12977_019_0486_x
crossref_primary_10_1515_mr_2022_0029
crossref_primary_10_1038_s12276_021_00579_x
crossref_primary_10_1080_19336934_2020_1832416
crossref_primary_10_1126_sciadv_aaz2309
crossref_primary_10_1016_j_addr_2024_115294
crossref_primary_10_3389_fmed_2021_649896
crossref_primary_10_1126_sciadv_abo0522
crossref_primary_10_1038_s41575_022_00729_0
crossref_primary_10_3390_cells11223615
crossref_primary_10_1182_bloodadvances_2020003702
crossref_primary_10_3390_ijms222010985
crossref_primary_10_1038_s41587_020_0509_0
crossref_primary_10_1038_s41596_020_00450_9
crossref_primary_10_1097_JBR_0000000000000140
crossref_primary_10_1002_adma_202414728
crossref_primary_10_1016_j_crmeth_2024_100776
crossref_primary_10_1111_joim_13055
crossref_primary_10_1038_s41587_020_0453_z
crossref_primary_10_3389_fcell_2020_590581
crossref_primary_10_1007_s11481_019_09849_y
crossref_primary_10_1016_j_molmed_2019_06_008
crossref_primary_10_1038_s41587_020_0573_5
crossref_primary_10_3390_cells11192964
crossref_primary_10_1038_s41588_024_01726_6
crossref_primary_10_1089_hum_2022_198
crossref_primary_10_1007_s11427_019_1559_y
crossref_primary_10_1016_j_tplants_2020_05_008
crossref_primary_10_1038_s41587_020_0535_y
crossref_primary_10_15252_emmm_202013228
crossref_primary_10_1016_j_molcel_2018_12_003
crossref_primary_10_1128_msphere_00523_24
crossref_primary_10_3389_fcell_2022_903812
crossref_primary_10_1186_s12864_022_08971_1
crossref_primary_10_1016_j_csbj_2022_07_046
crossref_primary_10_1016_j_omtn_2022_12_001
crossref_primary_10_1515_mr_2022_0044
crossref_primary_10_3389_fgeed_2021_745559
crossref_primary_10_1016_j_plaphy_2024_108511
crossref_primary_10_1016_j_preteyeres_2024_101323
crossref_primary_10_1038_s43018_020_00114_3
crossref_primary_10_1016_j_omtn_2023_102062
crossref_primary_10_1111_pbi_13278
crossref_primary_10_1186_s13059_020_01989_2
crossref_primary_10_1186_s13059_020_02137_6
crossref_primary_10_3389_fchem_2020_00178
crossref_primary_10_3389_fpls_2021_742932
crossref_primary_10_1038_s41467_020_18391_y
crossref_primary_10_1186_s13059_022_02618_w
crossref_primary_10_1016_j_preteyeres_2021_101038
crossref_primary_10_1261_rna_079519_122
crossref_primary_10_1038_s41467_023_35886_6
crossref_primary_10_1182_blood_2019003776
crossref_primary_10_1016_j_pbiomolbio_2022_05_001
crossref_primary_10_1038_s41525_021_00196_7
crossref_primary_10_3390_agronomy15030603
crossref_primary_10_1093_plphys_kiab591
crossref_primary_10_1186_s43042_024_00501_w
crossref_primary_10_1093_femsre_fuae020
crossref_primary_10_5858_arpa_2022_0410_CP
crossref_primary_10_1186_s13059_022_02836_2
crossref_primary_10_31857_S0320972524060023
crossref_primary_10_1038_s41467_024_49987_3
crossref_primary_10_1016_j_molcel_2020_06_012
crossref_primary_10_1016_j_cr_2019_08_001
crossref_primary_10_1038_s41551_022_00911_4
crossref_primary_10_1016_j_cub_2023_08_044
crossref_primary_10_1016_j_omtn_2022_12_020
crossref_primary_10_1007_s11427_020_1775_2
crossref_primary_10_1021_jacs_3c01145
crossref_primary_10_3390_ijms22115585
crossref_primary_10_1038_s41467_020_14465_z
crossref_primary_10_1042_BST20200550
crossref_primary_10_3390_ijms24087651
crossref_primary_10_1038_s41598_020_77379_2
crossref_primary_10_1016_j_aquaculture_2023_740487
crossref_primary_10_3390_ijms23042303
crossref_primary_10_1007_s12274_024_6729_8
crossref_primary_10_1093_nar_gkab1295
crossref_primary_10_3389_fpls_2022_865848
crossref_primary_10_1007_s11427_024_2712_5
crossref_primary_10_1073_pnas_2210104119
crossref_primary_10_3390_cells11060984
crossref_primary_10_1038_s42003_022_03188_0
crossref_primary_10_3389_fimmu_2023_1111777
crossref_primary_10_3390_jcm14062040
crossref_primary_10_3390_ijms232113256
crossref_primary_10_1261_rna_080334_124
crossref_primary_10_1038_s41586_020_2477_4
crossref_primary_10_3390_v13071373
crossref_primary_10_15252_embj_2023114760
crossref_primary_10_1007_s42976_024_00610_7
crossref_primary_10_1126_science_adn5876
crossref_primary_10_1016_j_cell_2021_02_036
crossref_primary_10_1096_fj_202100123R
crossref_primary_10_1016_j_omtn_2023_05_015
crossref_primary_10_1080_14737159_2019_1568242
crossref_primary_10_1038_s41587_023_01866_w
crossref_primary_10_1038_s41434_022_00342_5
crossref_primary_10_1016_j_genrep_2024_101979
crossref_primary_10_1016_j_ymthe_2022_02_010
crossref_primary_10_1038_s12276_019_0339_7
crossref_primary_10_1016_j_tvjl_2024_106142
crossref_primary_10_1016_j_dnarep_2024_103734
crossref_primary_10_1089_crispr_2021_0036
crossref_primary_10_1186_s43556_023_00120_8
crossref_primary_10_3389_fbioe_2020_00146
crossref_primary_10_1089_crispr_2021_0039
crossref_primary_10_1038_s41587_022_01527_4
crossref_primary_10_1146_annurev_med_052318_100741
crossref_primary_10_1038_s41467_023_41331_5
crossref_primary_10_1093_hr_uhad155
crossref_primary_10_1016_j_metabol_2020_154461
crossref_primary_10_1016_j_preteyeres_2022_101132
crossref_primary_10_1096_fj_201900476RR
crossref_primary_10_1016_j_neurot_2024_e00391
crossref_primary_10_1074_jbc_REV119_006132
crossref_primary_10_1111_pbi_13244
crossref_primary_10_15252_embj_2020104748
crossref_primary_10_3389_fnut_2021_751512
crossref_primary_10_1089_crispr_2018_0037
crossref_primary_10_1016_j_omtn_2022_11_021
crossref_primary_10_1038_s41570_024_00576_4
crossref_primary_10_3390_ijms26052357
crossref_primary_10_3390_ijms24043655
crossref_primary_10_1186_s13059_024_03399_0
crossref_primary_10_1002_smll_202411583
crossref_primary_10_1038_s41586_019_1314_0
crossref_primary_10_1016_j_stem_2020_10_014
crossref_primary_10_1074_jbc_RA119_011790
crossref_primary_10_1016_j_ymthe_2021_09_001
crossref_primary_10_1126_sciadv_abq6720
crossref_primary_10_1038_s41587_020_0566_4
crossref_primary_10_1016_j_omtn_2024_102302
crossref_primary_10_1038_s41589_024_01738_7
crossref_primary_10_1016_j_hoc_2022_05_002
crossref_primary_10_1101_gr_275770_121
crossref_primary_10_1038_s41580_023_00663_2
crossref_primary_10_3389_fgeed_2022_923718
crossref_primary_10_1038_s41587_022_01351_w
crossref_primary_10_1186_s12967_024_05957_3
crossref_primary_10_1007_s12015_024_10715_5
crossref_primary_10_1038_s41551_020_00632_6
crossref_primary_10_1007_s10709_021_00146_2
crossref_primary_10_18632_aging_102246
crossref_primary_10_15252_embj_2020104741
crossref_primary_10_1038_s41592_024_02502_4
crossref_primary_10_3389_fphar_2022_939090
crossref_primary_10_1016_j_molcel_2020_07_005
crossref_primary_10_1016_j_bbrc_2024_150942
crossref_primary_10_3390_cells13100800
crossref_primary_10_3389_fphar_2022_1015926
crossref_primary_10_3390_ijms21186925
crossref_primary_10_5483_BMBRep_2019_52_8_149
crossref_primary_10_3389_fcell_2023_1236553
Cites_doi 10.1126/science.1231143
10.1038/nbt.4198
10.1038/s41422-018-0052-4
10.1158/2159-8290.CD-16-0154
10.1016/j.jmb.2008.01.033
10.1126/science.aaq0180
10.1021/acssynbio.7b00113
10.1073/pnas.1520244113
10.1093/genetics/122.3.519
10.1038/nature17946
10.1038/nature11881
10.1038/s41592-018-0017-z
10.1038/nbt.4172
10.1038/cr.2013.122
10.1038/nsmb.3203
10.1101/gr.171322.113
10.1016/j.molp.2018.02.008
10.1016/j.sbi.2016.05.015
10.1038/nbt1153
10.1007/s13238-017-0458-7
10.1002/anie.201402634
10.1073/pnas.91.13.6064
10.1111/j.1476-5381.2009.00288.x
10.1038/mt.2016.8
10.1038/nbt.3803
10.1126/science.aat9249
10.1038/nbt.3117
10.1002/anie.201206489
10.1038/nature17664
10.1007/s13238-017-0475-6
10.1083/jcb.152.6.1279
10.1073/pnas.92.18.8483
10.1016/j.cell.2015.09.038
10.1038/nm.3793
10.1038/nbt.2477
10.1038/nsmb1047
10.1371/journal.pbio.0020391
10.1016/j.molcel.2015.02.032
10.1073/pnas.70.11.3240
10.1126/science.aaf8729
10.1172/JCI200113419
10.1161/ATVBAHA.117.309881
10.1038/nprot.2013.143
10.1038/nature25164
10.1089/hum.1996.7.17-2101
10.1016/j.molcel.2017.08.008
10.1016/j.cell.2014.05.010
10.1126/sciadv.aao4774
10.1016/j.cell.2014.09.039
10.1038/srep41478
10.1186/s13059-018-1482-5
10.1093/nar/gku662
10.1038/nbt765
10.1016/0092-8674(95)90467-0
10.1007/s13238-018-0568-x
10.1038/nmeth.4027
10.1371/journal.pbio.1001877
10.1038/nbt.2507
10.1128/MCB.14.12.8096
10.1093/nar/gkt1113
10.1126/science.1225829
10.1101/392217
10.1104/pp.15.01663
10.1016/S0959-4388(03)00062-X
10.1016/0092-8674(88)90253-X
10.1038/nbt.4148
10.1038/mt.2009.5
10.1038/nbt.4199
10.1038/mt.2015.218
10.1073/pnas.1212548109
10.1104/pp.15.00793
10.1038/nmeth.4327
10.1146/annurev.biochem.71.110601.135501
10.1038/nbt.4192
10.1016/S0022-2836(66)80022-0
10.1038/nbt.2675
10.1007/s13238-017-0418-2
10.1038/nplants.2017.107
10.1038/nbt.3816
10.1038/ncb2941
10.1046/j.1365-2958.2002.02839.x
10.1038/srep17886
10.1073/pnas.1306243110
10.1038/nature24644
10.1038/cr.2017.111
10.1084/jem.20030275
10.1038/nature00981
10.1016/S0921-8777(00)00040-9
10.1016/j.cell.2014.02.001
10.1038/s41591-018-0049-z
10.1016/j.ymthe.2018.08.007
10.1038/nbt.3596
10.1111/j.1365-2958.2008.06149.x
10.1038/nature20565
10.1101/gr.163394.113
10.1021/jacs.5b10216
10.1126/science.1232033
10.1016/j.cell.2016.10.044
10.1016/j.copbio.2018.08.006
10.1038/s41421-018-0047-9
10.1038/nbt.3852
10.1016/j.molcel.2012.07.029
10.1126/science.aas9129
10.1016/S0065-2660(08)60144-3
10.1101/263657
10.1146/annurev-biochem-060208-105251
10.1016/j.molcel.2017.09.029
10.1038/nbt.3583
10.1111/pbi.12993
10.1038/nature09523
10.1038/nbt.4102
10.1038/nrg1066
10.1038/s41477-018-0178-x
10.1038/nbt.3811
10.1038/362709a0
10.1093/nar/gkt1273
10.1038/374077a0
10.1073/pnas.1208507109
10.1038/nbt.3081
10.1016/j.molp.2018.02.007
10.1016/S0921-8777(00)00025-2
10.1021/bi001383g
10.1038/nature14592
10.1038/s41591-018-0050-6
10.1038/nmeth.4038
10.1038/nature26155
10.1038/nature14299
10.7554/eLife.00471
10.1016/S1097-2765(02)00742-6
10.1126/science.1258096
10.1073/pnas.211419898
10.1126/science.aap8992
10.1038/nbt.3833
10.1101/gr.164749.113
10.1073/pnas.97.25.13573
10.1038/nrg.2016.49
10.1038/nbt.3404
10.1093/nar/22.25.5649
10.1093/nar/gkt520
10.1007/s00018-009-8739-9
10.1093/nar/gkv1222
10.1002/cmdc.201402139
10.1038/nature16526
10.1128/JVI.74.8.3793-3803.2000
10.1038/sj.onc.1205996
ContentType Journal Article
Copyright Springer Nature Limited 2018
COPYRIGHT 2018 Nature Publishing Group
Copyright Nature Publishing Group Dec 2018
Copyright_xml – notice: Springer Nature Limited 2018
– notice: COPYRIGHT 2018 Nature Publishing Group
– notice: Copyright Nature Publishing Group Dec 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41576-018-0059-1
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic





ProQuest Central Student
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 788
ExternalDocumentID PMC6535181
A573157069
30323312
10_1038_s41576_018_0059_1
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118062
– fundername: NIGMS NIH HHS
  grantid: R01 GM065865
– fundername: NHGRI NIH HHS
  grantid: RM1 HG009490
– fundername: NIGMS NIH HHS
  grantid: R01 GM065400
– fundername: Howard Hughes Medical Institute
– fundername: NIBIB NIH HHS
  grantid: R01 EB022376
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c668t-a7b54d561b784e95a38987a1af7a867036fa145f764d5762df487d5f35a0e3e53
IEDL.DBID 7X7
ISSN 1471-0056
1471-0064
IngestDate Thu Aug 21 14:13:42 EDT 2025
Tue Aug 05 10:18:39 EDT 2025
Sat Aug 23 13:56:12 EDT 2025
Tue Jun 17 21:38:32 EDT 2025
Tue Jun 10 20:36:55 EDT 2025
Fri Jun 27 05:12:31 EDT 2025
Thu May 22 21:22:29 EDT 2025
Mon Jul 21 06:08:10 EDT 2025
Tue Jul 01 01:19:56 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c668t-a7b54d561b784e95a38987a1af7a867036fa145f764d5762df487d5f35a0e3e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Literature Review-3
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6535181
PMID 30323312
PQID 2133834077
PQPubID 44267
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6535181
proquest_miscellaneous_2120751879
proquest_journals_2133834077
gale_infotracmisc_A573157069
gale_infotracacademiconefile_A573157069
gale_incontextgauss_ISR_A573157069
gale_healthsolutions_A573157069
pubmed_primary_30323312
crossref_primary_10_1038_s41576_018_0059_1
crossref_citationtrail_10_1038_s41576_018_0059_1
springer_journals_10_1038_s41576_018_0059_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Nishikura (CR74) 2010; 79
Hsu, Lander, Zhang (CR9) 2014; 157
Kang (CR92) 2018; 4
Tanenbaum, Gilbert, Qi, Weissman, Vale (CR110) 2014; 159
Lau, Wyatt, Glassner, Samson, Ellenberger (CR87) 2000; 97
Chadwick, Wang, Musunuru (CR141) 2017; 37
Goodwin, McPherson, McCombie (CR26) 2016; 17
Zong (CR161) 2017; 35
Kuttan, Bass (CR69) 2012; 109
Bodles-Brakhop, Heller, Draghia-Akli (CR123) 2009; 17
Radany (CR81) 2000; 461
Zetsche (CR103) 2015; 163
CR156
Herbert, Rich (CR67) 2001; 98
Yan (CR85) 2018; 11
Schenk (CR139) 2001; 108
Montiel-Gonzalez, Vallecillo-Viejo, Yudowski, Rosenthal (CR40) 2013; 110
Haapaniemi, Botla, Persson, Schmierer, Taipale (CR146) 2018; 24
Harris, Petersen-Mahrt, Neuberger (CR50) 2002; 10
Billon (CR145) 2017; 67
Park (CR132) 2017; 40
Ihry (CR147) 2018; 24
Schneider, Wettengel, Hoffmann, Stafforst (CR66) 2014; 42
Fukuda (CR42) 2017; 7
Liang (CR135) 2017; 8
Rudin, Sugarman, Haber (CR20) 1989; 122
Nishida (CR34) 2016; 353
Liu (CR100) 2018; 9
Shin (CR30) 2017; 8
Roccio, Hahnewald, Perny, Senn (CR142) 2015; 5
Lukacsovich, Yang, Waldman (CR19) 1994; 22
Paquet (CR24) 2016; 533
Ran (CR102) 2015; 520
Lehmann, Bass (CR68) 2000; 39
Garneau (CR4) 2010; 468
Kume, Hino, Galipon, Ui-Tei (CR71) 2014; 42
Okazaki (CR98) 2003; 197
Midoux, Pichon, Yaouanc, Jaffres (CR122) 2009; 157
Pinello (CR117) 2016; 34
Tang, Hu, Liu (CR155) 2017; 8
Komor, Badran, Liu (CR10) 2017; 168
Wettengel, Reautschnig, Geisler, Kahle, Stafforst (CR43) 2017; 45
Matthews (CR61) 2016; 23
Yang, Sklar, Axel, Maniatis (CR73) 1995; 374
Dong, Fan, Frizzell (CR129) 1996; 7
Mol (CR53) 1995; 82
Tsai (CR31) 2015; 33
Hess (CR76) 2016; 13
Hu (CR86) 2018; 556
Rouet, Smih, Jasin (CR21) 1994; 91
Bass, Weintraub (CR60) 1988; 55
Ryu (CR83) 2018; 36
Yasui (CR57) 2008; 377
Farzadfard, Lu (CR154) 2018; 361
Rees (CR93) 2017; 8
Landrum (CR29) 2014; 42
Kleinstiver (CR108) 2015; 523
Hur (CR151) 2016; 34
Thomas, Ehrhardt, Kay (CR124) 2003; 4
Stafforst, Schneider (CR48) 2012; 51
Bikard (CR14) 2013; 41
Cheng (CR15) 2013; 23
Sung (CR153) 2014; 24
Suzuki (CR119) 2016; 540
Tanaka (CR138) 2018; 8
Losey, Ruthenburg, Verdine (CR58) 2006; 13
Li (CR134) 2017; 8
Liu (CR89) 2018; 9
Ran (CR143) 2013; 8
Lee (CR96) 2018; 9
Hess, Tycko, Yao, Bassik (CR82) 2017; 68
Zhang (CR137) 2017; 8
Li (CR163) 2018; 19
Kim, Kim, Cho, Kim, Kim (CR127) 2014; 24
Nishimasu (CR37) 2014; 156
Athanasiadis, Rich, Maas (CR75) 2004; 2
Burns (CR99) 2013; 494
Cox (CR39) 2017; 358
Sung (CR152) 2013; 31
Wang (CR126) 2016; 113
Di Noia, Neuberger (CR80) 2002; 419
Lin, Staahl, Alla, Doudna (CR25) 2014; 3
Kosicki, Tomberg, Bradley (CR27) 2018; 38
Gao (CR131) 2018; 553
Lindahl (CR56) 1993; 362
CR114
Cox, Platt, Zhang (CR23) 2015; 21
Yin, Gao, Qiu (CR157) 2017; 3
Vogel (CR49) 2018; 15
Yeh, Chiang, Rees, Edge, Liu (CR90) 2018; 9
Kim (CR109) 2017; 35
Zafra (CR121) 2018
Zeng, Li, Li, Huang, Yu, Zhang, Chen, Chen, Liu, Huang (CR140) 2018; 26
Gasiunas, Barrangou, Horvath, Siksnys (CR16) 2012; 109
Endo, Mikami, Toki (CR160) 2016; 170
CR118
Jansen, Embden, Gaastra, Schouls (CR3) 2002; 43
Muller (CR105) 2016; 24
Wang (CR116) 2018
Zuris (CR125) 2015; 33
Cho, Kim, Kim, Kim (CR5) 2013; 31
Wang (CR79) 2017; 27
Mali (CR13) 2013; 31
Li (CR38) 2018; 36
Zhang (CR32) 2015; 10
Gaudelli (CR35) 2017; 551
Cong (CR6) 2013; 339
Yu (CR62) 2001; 152
Kim, Bae, Hwang, Kim (CR112) 2017; 18
Shimatani (CR162) 2017; 35
Komor, Kim, Packer, Zuris, Liu (CR33) 2016; 533
Kouzminova, Kuzminov (CR88) 2008; 68
Gapinske (CR150) 2018; 19
Montiel-Gonzalez, Vallecillo-Viejo, Rosenthal (CR41) 2016; 44
Vogel, Schneider, Wettengel, Stafforst (CR47) 2014; 53
Kim (CR94) 2017; 35
Kim (CR104) 2017; 8
Jinek (CR2) 2012; 337
Crick (CR70) 1966; 19
Nishimasu, Shi, Ishiguro, Gao, Hirano, Okazaki, Noda, Abudayyeh, Gootenberg, Mori, Oura, Holmes, Tanaka, Seki, Hirano, Aburatani, Ishitani, Ikawa, Yachie, Zhang, Nureki (CR113) 2018; 361
Tang, Liu (CR54) 2018; 360
Seeburg, Hartner (CR72) 2003; 13
Svitashev (CR159) 2015; 169
Bass (CR63) 2002; 71
Roukos, Misteli (CR149) 2014; 16
Hua, Tao, Yuan, Wang, Zhu (CR84) 2018; 11
Yamanaka (CR97) 1995; 92
Keppler (CR65) 2003; 21
Doudna, Charpentier (CR11) 2014; 346
Rouet, Smih, Jasin (CR18) 1994; 14
Vogel, Stafforst (CR59) 2018; 55
Ma (CR78) 2016; 13
Lai (CR130) 2005; 23
Kunz, Saito, Schar (CR51) 2009; 66
Komor (CR36) 2017; 3
Koblan (CR91) 2018; 36
Sternberg, Doudna (CR12) 2015; 58
Krokan, Drablos, Slupphaug (CR55) 2002; 21
Aguirre (CR148) 2016; 6
Hanswillemenke, Kuzdere, Vogel, Jekely, Stafforst (CR45) 2015; 137
Vogel, Stafforst (CR46) 2014; 9
Yang (CR115) 2018; 9
Pearl (CR52) 2000; 460
Vogel, Hanswillemenke, Stafforst (CR44) 2017; 6
Bazak (CR64) 2014; 24
Mali (CR8) 2013; 339
Kuscu (CR144) 2017; 14
Kleinstiver (CR95) 2016; 529
Miao (CR128) 2000; 74
Lee, Cradick, Bao (CR106) 2016; 24
Voytas, Gao (CR158) 2014; 12
CR101
Ma (CR136) 2018; 4
Kim (CR77) 2017; 35
Kleinstiver (CR107) 2015; 33
Liang (CR133) 2017; 8
Jiang (CR111) 2018; 28
Wheeler, Lim, Marqusee, Harms (CR120) 2016; 38
Landrum (CR28) 2016; 44
Jeggo (CR17) 1998; 38
Cohen, Chang, Boyer, Helling (CR1) 1973; 70
Jinek (CR7) 2013; 2
Chapman, Taylor, Boulton (CR22) 2012; 47
BL Bass (59_CR63) 2002; 71
BP Kleinstiver (59_CR107) 2015; 33
F Farzadfard (59_CR154) 2018; 361
SH Sternberg (59_CR12) 2015; 58
B Zetsche (59_CR103) 2015; 163
JH Yang (59_CR73) 1995; 374
X Li (59_CR38) 2018; 36
AM Bodles-Brakhop (59_CR123) 2009; 17
RJ Ihry (59_CR147) 2018; 24
D Paquet (59_CR24) 2016; 533
RS Harris (59_CR50) 2002; 10
P Vogel (59_CR59) 2018; 55
A Athanasiadis (59_CR75) 2004; 2
A Keppler (59_CR65) 2003; 21
F Yan (59_CR85) 2018; 11
H Nishimasu (59_CR37) 2014; 156
FA Ran (59_CR102) 2015; 520
P Liang (59_CR133) 2017; 8
Y Zhang (59_CR137) 2017; 8
Z Shimatani (59_CR162) 2017; 35
59_CR101
SW Cho (59_CR5) 2013; 31
NM Gaudelli (59_CR35) 2017; 551
AC Komor (59_CR33) 2016; 533
C Li (59_CR163) 2018; 19
HA Rees (59_CR93) 2017; 8
Y Lai (59_CR130) 2005; 23
JR Chapman (59_CR22) 2012; 47
DB Cox (59_CR23) 2015; 21
P Rouet (59_CR21) 1994; 91
M Jinek (59_CR7) 2013; 2
AW Cheng (59_CR15) 2013; 23
DBT Cox (59_CR39) 2017; 358
M Roccio (59_CR142) 2015; 5
M Jinek (59_CR2) 2012; 337
N Rudin (59_CR20) 1989; 122
D Kim (59_CR94) 2017; 35
59_CR118
DS Park (59_CR132) 2017; 40
P Vogel (59_CR46) 2014; 9
GT Hess (59_CR76) 2016; 13
CM Lee (59_CR106) 2016; 24
HE Krokan (59_CR55) 2002; 21
59_CR114
R Jansen (59_CR3) 2002; 43
CD Mol (59_CR53) 1995; 82
IM Okazaki (59_CR98) 2003; 197
E Haapaniemi (59_CR146) 2018; 24
P Vogel (59_CR47) 2014; 53
P Liang (59_CR135) 2017; 8
CH Miao (59_CR128) 2000; 74
JY Dong (59_CR129) 1996; 7
S Yamanaka (59_CR97) 1995; 92
MF Montiel-Gonzalez (59_CR41) 2016; 44
AJ Aguirre (59_CR148) 2016; 6
T Lindahl (59_CR56) 1993; 362
S Svitashev (59_CR159) 2015; 169
Yanting Zeng (59_CR140) 2018; 26
LC Wheeler (59_CR120) 2016; 38
J Noia Di (59_CR80) 2002; 419
MF Montiel-Gonzalez (59_CR40) 2013; 110
MJ Landrum (59_CR29) 2014; 42
KA Lehmann (59_CR68) 2000; 39
K Nishida (59_CR34) 2016; 353
MP Zafra (59_CR121) 2018
X Gao (59_CR131) 2018; 553
Hiroshi Nishimasu (59_CR113) 2018; 361
AC Chadwick (59_CR141) 2017; 37
AY Lau (59_CR87) 2000; 97
LW Koblan (59_CR91) 2018; 36
P Midoux (59_CR122) 2009; 157
YH Sung (59_CR153) 2014; 24
YH Sung (59_CR152) 2013; 31
X Wang (59_CR116) 2018
Z Liu (59_CR100) 2018; 9
M Gapinske (59_CR150) 2018; 19
P Vogel (59_CR49) 2018; 15
EH Radany (59_CR81) 2000; 461
EA Kouzminova (59_CR88) 2008; 68
C Kunz (59_CR51) 2009; 66
G Li (59_CR134) 2017; 8
C Kuscu (59_CR144) 2017; 14
JA Doudna (59_CR11) 2014; 346
MM Matthews (59_CR61) 2016; 23
Y Zong (59_CR161) 2017; 35
G Gasiunas (59_CR16) 2012; 109
Z Liu (59_CR89) 2018; 9
L Yang (59_CR115) 2018; 9
JK Hur (59_CR151) 2016; 34
BP Kleinstiver (59_CR95) 2016; 529
BC Kang (59_CR92) 2018; 4
L Pinello (59_CR117) 2016; 34
SM Ryu (59_CR83) 2018; 36
L Bazak (59_CR64) 2014; 24
A Herbert (59_CR67) 2001; 98
S Goodwin (59_CR26) 2016; 17
JA Zuris (59_CR125) 2015; 33
B Schenk (59_CR139) 2001; 108
K Kim (59_CR77) 2017; 35
DF Voytas (59_CR158) 2014; 12
YT Yu (59_CR62) 2001; 152
JH Hu (59_CR86) 2018; 556
J Wettengel (59_CR43) 2017; 45
Y Ma (59_CR136) 2018; 4
CE Thomas (59_CR124) 2003; 4
BL Bass (59_CR60) 1988; 55
P Rouet (59_CR18) 1994; 14
D Bikard (59_CR14) 2013; 41
T Stafforst (59_CR48) 2012; 51
S Kim (59_CR112) 2017; 18
K Suzuki (59_CR119) 2016; 540
P Mali (59_CR13) 2013; 31
Y Ma (59_CR78) 2016; 13
PD Hsu (59_CR9) 2014; 157
59_CR156
W Jiang (59_CR111) 2018; 28
L Zhang (59_CR32) 2015; 10
AC Komor (59_CR36) 2017; 3
PA Jeggo (59_CR17) 1998; 38
E Kim (59_CR104) 2017; 8
MF Schneider (59_CR66) 2014; 42
JE Garneau (59_CR4) 2010; 468
M Endo (59_CR160) 2016; 170
M Kosicki (59_CR27) 2018; 38
L Wang (59_CR79) 2017; 27
WH Yeh (59_CR90) 2018; 9
MJ Landrum (59_CR28) 2016; 44
GT Hess (59_CR82) 2017; 68
L Cong (59_CR6) 2013; 339
A Kuttan (59_CR69) 2012; 109
LH Pearl (59_CR52) 2000; 460
AC Komor (59_CR10) 2017; 168
K Yin (59_CR157) 2017; 3
M Fukuda (59_CR42) 2017; 7
SN Cohen (59_CR1) 1973; 70
HC Losey (59_CR58) 2006; 13
K Hua (59_CR84) 2018; 11
SQ Tsai (59_CR31) 2015; 33
YB Kim (59_CR109) 2017; 35
T Lukacsovich (59_CR19) 1994; 22
P Vogel (59_CR44) 2017; 6
M Wang (59_CR126) 2016; 113
W Tang (59_CR54) 2018; 360
H Kume (59_CR71) 2014; 42
PH Seeburg (59_CR72) 2003; 13
P Billon (59_CR145) 2017; 67
S Lin (59_CR25) 2014; 3
V Roukos (59_CR149) 2014; 16
K Nishikura (59_CR74) 2010; 79
W Tang (59_CR155) 2017; 8
BP Kleinstiver (59_CR108) 2015; 523
JK Lee (59_CR96) 2018; 9
MB Burns (59_CR99) 2013; 494
S Tanaka (59_CR138) 2018; 8
P Mali (59_CR8) 2013; 339
HY Shin (59_CR30) 2017; 8
M Muller (59_CR105) 2016; 24
FA Ran (59_CR143) 2013; 8
A Hanswillemenke (59_CR45) 2015; 137
M Yasui (59_CR57) 2008; 377
FH Crick (59_CR70) 1966; 19
ME Tanenbaum (59_CR110) 2014; 159
S Kim (59_CR127) 2014; 24
30341440 - Nat Rev Genet. 2018 Dec;19(12):801. doi: 10.1038/s41576-018-0068-0.
References_xml – volume: 4
  start-page: 346
  year: 2003
  end-page: 358
  ident: CR124
  article-title: Progress and problems with the use of viral vectors for gene therapy
  publication-title: Nat. Rev. Genet.
– volume: 35
  start-page: 435
  year: 2017
  end-page: 437
  ident: CR77
  article-title: Highly efficient RNA-guided base editing in mouse embryos
  publication-title: Nat. Biotechnol.
– volume: 38
  start-page: 185
  year: 1998
  end-page: 218
  ident: CR17
  article-title: DNA breakage and repair
  publication-title: Adv. Genet.
– volume: 82
  start-page: 701
  year: 1995
  end-page: 708
  ident: CR53
  article-title: Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA
  publication-title: Cell
– volume: 9
  year: 2018
  ident: CR96
  article-title: Directed evolution of CRISPR-Cas9 to increase its specificity
  publication-title: Nat. Commun.
– volume: 152
  start-page: 1279
  year: 2001
  end-page: 1288
  ident: CR62
  article-title: Internal modification of U2 small nuclear (sn)RNA occurs in nucleoli of oocytes
  publication-title: J. Cell Biol.
– volume: 92
  start-page: 8483
  year: 1995
  end-page: 8487
  ident: CR97
  article-title: Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 55
  start-page: 1089
  year: 1988
  end-page: 1098
  ident: CR60
  article-title: An unwinding activity that covalently modifies its double-stranded RNA substrate
  publication-title: Cell
– volume: 520
  start-page: 186
  year: 2015
  end-page: 191
  ident: CR102
  article-title: In vivo genome editing using Cas9
  publication-title: Nature
– volume: 74
  start-page: 3793
  year: 2000
  end-page: 3803
  ident: CR128
  article-title: Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction
  publication-title: J. Virol.
– volume: 45
  start-page: 2797
  year: 2017
  end-page: 2808
  ident: CR43
  article-title: Harnessing human ADAR2 for RNA repair — recoding a PINK1 mutation rescues mitophagy
  publication-title: Nucleic Acids Res.
– volume: 551
  start-page: 464
  year: 2017
  end-page: 471
  ident: CR35
  article-title: Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage
  publication-title: Nature
– volume: 110
  start-page: 18285
  year: 2013
  end-page: 18290
  ident: CR40
  article-title: Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 66
  start-page: 1021
  year: 2009
  end-page: 1038
  ident: CR51
  article-title: DNA repair in mammalian cells — mismatched repair: variations on a theme
  publication-title: Cell. Mol. Life Sci.
– volume: 55
  start-page: 74
  year: 2018
  end-page: 80
  ident: CR59
  article-title: Critical review on engineering deaminases for site-directed RNA editing
  publication-title: Curr. Opin. Biotechnol.
– volume: 346
  start-page: 1258096
  year: 2014
  ident: CR11
  article-title: The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science
– ident: CR101
– start-page: 888
  year: 2018
  end-page: 893
  ident: CR121
  article-title: Optimized baseeditors enable efficient editing in cells, organoids and mice
  publication-title: Nat. Biotechnol.
– volume: 5
  year: 2015
  ident: CR142
  article-title: Cell cycle reactivation of cochlear progenitor cells in neonatal FUCCI mice by a GSK3 small molecule inhibitor
  publication-title: Sci. Rep.
– volume: 14
  start-page: 8096
  year: 1994
  end-page: 8106
  ident: CR18
  article-title: Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
  publication-title: Mol. Cell. Biol.
– volume: 11
  start-page: 627
  year: 2018
  end-page: 630
  ident: CR84
  article-title: Precise A·T to G·C base editing in the rice genome
  publication-title: Mol. Plant
– volume: 8
  year: 2017
  ident: CR104
  article-title: In vivo genome editing with a small Cas9 orthologue derived from
  publication-title: Nat. Commun.
– volume: 31
  start-page: 23
  year: 2013
  end-page: 24
  ident: CR152
  article-title: Knockout mice created by TALEN-mediated gene targeting
  publication-title: Nat. Biotechnol.
– volume: 461
  start-page: 41
  year: 2000
  end-page: 58
  ident: CR81
  article-title: Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase
  publication-title: Mutat. Res.
– volume: 9
  year: 2018
  ident: CR89
  article-title: Highly efficient RNA-guided base editing in rabbit
  publication-title: Nat. Commun.
– volume: 13
  start-page: 279
  year: 2003
  end-page: 283
  ident: CR72
  article-title: Regulation of ion channel/neurotransmitter receptor function by RNA editing
  publication-title: Curr. Opin. Neurobiol.
– volume: 109
  start-page: E3295
  year: 2012
  end-page: E3304
  ident: CR69
  article-title: Mechanistic insights into editing-site specificity of ADARs
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 137
  start-page: 15875
  year: 2015
  end-page: 15881
  ident: CR45
  article-title: Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein
  publication-title: J. Am. Chem. Soc.
– volume: 9
  year: 2018
  ident: CR100
  article-title: Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing
  publication-title: Nat. Commun.
– volume: 156
  start-page: 935
  year: 2014
  end-page: 949
  ident: CR37
  article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA
  publication-title: Cell
– volume: 36
  start-page: 536
  year: 2018
  end-page: 539
  ident: CR83
  article-title: Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy
  publication-title: Nat. Biotechnol.
– volume: 15
  start-page: 535
  year: 2018
  end-page: 538
  ident: CR49
  article-title: Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs
  publication-title: Nat. Methods
– volume: 91
  start-page: 6064
  year: 1994
  end-page: 6068
  ident: CR21
  article-title: Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 169
  start-page: 931
  year: 2015
  end-page: 945
  ident: CR159
  article-title: Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
  publication-title: Plant Physiol.
– volume: 529
  start-page: 490
  year: 2016
  end-page: 495
  ident: CR95
  article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
  publication-title: Nature
– volume: 24
  start-page: 939
  year: 2018
  end-page: 946
  ident: CR147
  article-title: p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells
  publication-title: Nat. Med.
– volume: 2
  year: 2004
  ident: CR75
  article-title: Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome
  publication-title: PLOS Biol.
– volume: 31
  start-page: 230
  year: 2013
  end-page: 232
  ident: CR5
  article-title: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
  publication-title: Nat. Biotechnol.
– volume: 21
  start-page: 86
  year: 2003
  end-page: 89
  ident: CR65
  article-title: A general method for the covalent labeling of fusion proteins with small molecules in vivo
  publication-title: Nat. Biotechnol.
– volume: 24
  start-page: 636
  year: 2016
  end-page: 644
  ident: CR105
  article-title: thermophilus CRISPR-Cas9 systems enable specific editing of the human genome
  publication-title: Mol. Ther.
– volume: 19
  start-page: 548
  year: 1966
  end-page: 555
  ident: CR70
  article-title: Codon—anticodon pairing: the wobble hypothesis
  publication-title: J. Mol. Biol.
– volume: 34
  start-page: 695
  year: 2016
  end-page: 697
  ident: CR117
  article-title: Analyzing CRISPR genome-editing experiments with CRISPResso
  publication-title: Nat. Biotechnol.
– volume: 24
  start-page: 927
  year: 2018
  end-page: 930
  ident: CR146
  article-title: CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response
  publication-title: Nat. Med.
– ident: CR156
– volume: 71
  start-page: 817
  year: 2002
  end-page: 846
  ident: CR63
  article-title: RNA editing by adenosine deaminases that act on RNA
  publication-title: Annu. Rev. Biochem.
– volume: 8
  start-page: 776
  year: 2017
  end-page: 779
  ident: CR134
  article-title: Highly efficient and precise base editing in discarded human tripronuclear embryos
  publication-title: Protein Cell
– volume: 33
  start-page: 187
  year: 2015
  end-page: 197
  ident: CR31
  article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
  publication-title: Nat. Biotechnol.
– volume: 494
  start-page: 366
  year: 2013
  end-page: 370
  ident: CR99
  article-title: APOBEC3B is an enzymatic source of mutation in breast cancer
  publication-title: Nature
– volume: 3
  year: 2014
  ident: CR25
  article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery
  publication-title: eLife
– volume: 24
  start-page: 1012
  year: 2014
  end-page: 1019
  ident: CR127
  article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  publication-title: Genome Res.
– volume: 33
  start-page: 73
  year: 2015
  end-page: 80
  ident: CR125
  article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo
  publication-title: Nat. Biotechnol.
– volume: 39
  start-page: 12875
  year: 2000
  end-page: 12884
  ident: CR68
  article-title: Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities
  publication-title: Biochemistry
– volume: 47
  start-page: 497
  year: 2012
  end-page: 510
  ident: CR22
  article-title: Playing the end game: DNA double-strand break repair pathway choice
  publication-title: Mol. Cell
– volume: 37
  start-page: 1741
  year: 2017
  end-page: 1747
  ident: CR141
  article-title: In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 163
  start-page: 759
  year: 2015
  end-page: 771
  ident: CR103
  article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
  publication-title: Cell
– volume: 533
  start-page: 125
  year: 2016
  end-page: 129
  ident: CR24
  article-title: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
  publication-title: Nature
– volume: 7
  year: 2017
  ident: CR42
  article-title: Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing
  publication-title: Sci. Rep.
– volume: 10
  start-page: 1247
  year: 2002
  end-page: 1253
  ident: CR50
  article-title: RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators
  publication-title: Mol. Cell
– volume: 67
  start-page: 1068
  year: 2017
  end-page: 1079
  ident: CR145
  article-title: CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons
  publication-title: Mol. Cell
– volume: 533
  start-page: 420
  year: 2016
  end-page: 424
  ident: CR33
  article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
  publication-title: Nature
– volume: 23
  start-page: 426
  year: 2016
  end-page: 433
  ident: CR61
  article-title: Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity
  publication-title: Nat. Struct. Mol. Biol.
– volume: 197
  start-page: 1173
  year: 2003
  end-page: 1181
  ident: CR98
  article-title: Constitutive expression of AID leads to tumorigenesis
  publication-title: J. Exp. Med.
– volume: 159
  start-page: 635
  year: 2014
  end-page: 646
  ident: CR110
  article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging
  publication-title: Cell
– volume: 556
  start-page: 57
  year: 2018
  end-page: 63
  ident: CR86
  article-title: Evolved Cas9 variants with broad PAM compatibility and high DNA specificity
  publication-title: Nature
– volume: 51
  start-page: 11166
  year: 2012
  end-page: 11169
  ident: CR48
  article-title: An RNA-deaminase conjugate selectively repairs point mutations
  publication-title: Angew. Chem. Int. Ed.
– volume: 361
  start-page: 1259
  issue: 6408
  year: 2018
  end-page: 1262
  ident: CR113
  article-title: Engineered CRISPR-Cas9 nuclease with expanded targeting space
  publication-title: Science
– volume: 3
  year: 2017
  ident: CR36
  article-title: Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity
  publication-title: Sci. Adv.
– ident: CR114
– volume: 40
  start-page: 823
  year: 2017
  end-page: 827
  ident: CR132
  article-title: Targeted base editing via RNA-guided cytidine deaminases in embryos
  publication-title: Mol. Cells
– volume: 27
  start-page: 1289
  year: 2017
  end-page: 1292
  ident: CR79
  article-title: Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor
  publication-title: Cell Res.
– volume: 8
  year: 2017
  ident: CR155
  article-title: Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation
  publication-title: Nat. Commun.
– volume: 4
  start-page: 427
  year: 2018
  end-page: 431
  ident: CR92
  article-title: Precision genome engineering through adenine base editing in plants
  publication-title: Nat. Plants
– volume: 157
  start-page: 1262
  year: 2014
  end-page: 1278
  ident: CR9
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell
– volume: 97
  start-page: 13573
  year: 2000
  end-page: 13578
  ident: CR87
  article-title: Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 33
  start-page: 1293
  year: 2015
  end-page: 1298
  ident: CR107
  article-title: Broadening the targeting range of CRISPR-Cas9 by modifying PAM recognition
  publication-title: Nat. Biotechnol.
– volume: 35
  start-page: 371
  year: 2017
  end-page: 376
  ident: CR109
  article-title: Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions
  publication-title: Nat. Biotechnol.
– volume: 28
  start-page: 855
  year: 2018
  end-page: 861
  ident: CR111
  article-title: BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity
  publication-title: Cell Res.
– volume: 168
  start-page: 20
  year: 2017
  end-page: 36
  ident: CR10
  article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes
  publication-title: Cell
– volume: 360
  year: 2018
  ident: CR54
  article-title: Rewritable multi-event analog recording in bacterial and mammalian cells
  publication-title: Science
– volume: 11
  start-page: 631
  year: 2018
  end-page: 634
  ident: CR85
  article-title: Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice
  publication-title: Mol. Plant
– volume: 16
  start-page: 293
  year: 2014
  end-page: 300
  ident: CR149
  article-title: The biogenesis of chromosome translocations
  publication-title: Nat. Cell Biol.
– volume: 44
  start-page: D862
  year: 2016
  end-page: D868
  ident: CR28
  article-title: ClinVar: public archive of interpretations of clinically relevant variants
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 125
  year: 2014
  end-page: 131
  ident: CR153
  article-title: Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases
  publication-title: Genome Res.
– volume: 98
  start-page: 12132
  year: 2001
  end-page: 12137
  ident: CR67
  article-title: The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 26
  start-page: 2631
  issue: 11
  year: 2018
  end-page: 2637
  ident: CR140
  article-title: Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos
  publication-title: Molecular Therapy
– volume: 42
  start-page: D980
  year: 2014
  end-page: D985
  ident: CR29
  article-title: ClinVar: public archive of relationships among sequence variation and human phenotype
  publication-title: Nucleic Acids Res.
– volume: 358
  start-page: 1019
  year: 2017
  end-page: 1027
  ident: CR39
  article-title: RNA editing with CRISPR-Cas13
  publication-title: Science
– volume: 17
  start-page: 333
  year: 2016
  end-page: 351
  ident: CR26
  article-title: Coming of age: ten years of next-generation sequencing technologies
  publication-title: Nat. Rev. Genet.
– volume: 38
  start-page: 765
  year: 2018
  end-page: 771
  ident: CR27
  article-title: Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements
  publication-title: Nat. Biotechnol.
– volume: 374
  start-page: 77
  year: 1995
  end-page: 81
  ident: CR73
  article-title: Editing of glutamate receptor subunit B pre-mRNA in vitro by site-specific deamination of adenosine
  publication-title: Nature
– volume: 122
  start-page: 519
  year: 1989
  end-page: 534
  ident: CR20
  article-title: Genetic and physical analysis of double-strand break repair and recombination in
  publication-title: Genetics
– volume: 10
  year: 2015
  ident: CR32
  article-title: Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9
  publication-title: PLOS ONE
– volume: 44
  year: 2016
  ident: CR41
  article-title: An efficient system for selectively altering genetic information within mRNAs
  publication-title: Nucleic Acids Res.
– volume: 353
  start-page: aaf8729
  year: 2016
  ident: CR34
  article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
  publication-title: Science
– volume: 553
  start-page: 217
  year: 2018
  end-page: 221
  ident: CR131
  article-title: Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents
  publication-title: Nature
– volume: 361
  start-page: 870
  year: 2018
  end-page: 875
  ident: CR154
  article-title: Emerging applications for DNA writers and molecular recorders
  publication-title: Science
– volume: 36
  start-page: 843
  year: 2018
  end-page: 846
  ident: CR91
  article-title: Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction
  publication-title: Nat. Biotechnol.
– volume: 68
  start-page: 26
  year: 2017
  end-page: 43
  ident: CR82
  article-title: Methods and applications of CRISPR-mediated base editing in eukaryotic genomes
  publication-title: Mol. Cell
– volume: 23
  start-page: 1163
  year: 2013
  end-page: 1171
  ident: CR15
  article-title: Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system
  publication-title: Cell Res.
– volume: 19
  year: 2018
  ident: CR150
  article-title: CRISPR-SKIP: programmable gene splicing with single base editors
  publication-title: Genome Biol.
– volume: 9
  year: 2018
  ident: CR90
  article-title: In vivo base editing of post-mitotic sensory cells
  publication-title: Nat. Commun.
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  ident: CR6
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 21
  start-page: 8935
  year: 2002
  end-page: 8948
  ident: CR55
  article-title: Uracil in DNA — occurrence, consequences and repair
  publication-title: Oncogene
– volume: 18
  year: 2017
  ident: CR112
  article-title: Rescue of high-specificity Cas9 variants using sgRNAs with matched 5’ nucleotides
  publication-title: Genome Biol.
– volume: 34
  start-page: 807
  year: 2016
  end-page: 808
  ident: CR151
  article-title: Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins
  publication-title: Nat. Biotechnol.
– volume: 70
  start-page: 3240
  year: 1973
  end-page: 3244
  ident: CR1
  article-title: Construction of biologically functional bacterial plasmids in vitro
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 53
  start-page: 6267
  year: 2014
  end-page: 6271
  ident: CR47
  article-title: Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA
  publication-title: Angew. Chem. Int. Ed.
– volume: 108
  start-page: 1687
  year: 2001
  end-page: 1695
  ident: CR139
  article-title: MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If
  publication-title: J. Clin. Invest.
– volume: 35
  start-page: 475
  year: 2017
  end-page: 480
  ident: CR94
  article-title: Genome-wide target specificities of CRISPR RNA-guided programmable deaminases
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 1036
  year: 2016
  end-page: 1042
  ident: CR76
  article-title: Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells
  publication-title: Nat. Methods
– year: 2018
  ident: CR116
  article-title: Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4198
– volume: 113
  start-page: 2868
  year: 2016
  end-page: 2873
  ident: CR126
  article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 23
  start-page: 1435
  year: 2005
  end-page: 1439
  ident: CR130
  article-title: Efficient in vivo gene expression by -splicing adeno-associated viral vectors
  publication-title: Nat. Biotechnol.
– volume: 170
  start-page: 667
  year: 2016
  end-page: 677
  ident: CR160
  article-title: Biallelic gene targeting in rice
  publication-title: Plant Physiol.
– volume: 42
  start-page: 10050
  year: 2014
  end-page: 10060
  ident: CR71
  article-title: A-To-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 2021
  year: 2014
  end-page: 2025
  ident: CR46
  article-title: Site-directed RNA editing with antagomir deaminases — a tool to study protein and RNA function
  publication-title: ChemMedChem
– volume: 8
  year: 2018
  ident: CR138
  article-title: In vivo targeted single-nucleotide editing in zebrafish
  publication-title: Sci. Rep.
– volume: 35
  start-page: 441
  year: 2017
  end-page: 443
  ident: CR162
  article-title: Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
  publication-title: Nat. Biotechnol.
– volume: 2
  year: 2013
  ident: CR7
  article-title: RNA-programmed genome editing in human cells
  publication-title: eLife
– volume: 6
  start-page: 1642
  year: 2017
  end-page: 1649
  ident: CR44
  article-title: Switching protein localization by site-directed RNA editing under control of light
  publication-title: ACS Synth. Biol.
– volume: 8
  year: 2017
  ident: CR93
  article-title: Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery
  publication-title: Nat. Commun.
– volume: 540
  start-page: 144
  year: 2016
  end-page: 149
  ident: CR119
  article-title: In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration
  publication-title: Nature
– volume: 12
  year: 2014
  ident: CR158
  article-title: Precision genome engineering and agriculture: opportunities and regulatory challenges
  publication-title: PLOS Biol.
– volume: 17
  start-page: 585
  year: 2009
  end-page: 592
  ident: CR123
  article-title: Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments
  publication-title: Mol. Ther.
– volume: 21
  start-page: 121
  year: 2015
  end-page: 131
  ident: CR23
  article-title: Therapeutic genome editing: prospects and challenges
  publication-title: Nat. Med.
– volume: 19
  year: 2018
  ident: CR163
  article-title: Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion
  publication-title: Genome Biol.
– volume: 419
  start-page: 43
  year: 2002
  end-page: 48
  ident: CR80
  article-title: Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase
  publication-title: Nature
– volume: 58
  start-page: 568
  year: 2015
  end-page: 574
  ident: CR12
  article-title: Expanding the biologist’s toolkit with CRISPR-Cas9
  publication-title: Mol. Cell
– volume: 157
  start-page: 166
  year: 2009
  end-page: 178
  ident: CR122
  article-title: Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers
  publication-title: Br. J. Pharmacol.
– volume: 36
  start-page: 324
  year: 2018
  end-page: 327
  ident: CR38
  article-title: Base editing with a Cpf1-cytidine deaminase fusion
  publication-title: Nat. Biotechnol.
– volume: 13
  start-page: 1029
  year: 2016
  end-page: 1035
  ident: CR78
  article-title: Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells
  publication-title: Nat. Methods
– volume: 8
  start-page: 811
  year: 2017
  end-page: 822
  ident: CR135
  article-title: Correction of beta-thalassemia mutant by base editor in human embryos
  publication-title: Protein Cell
– volume: 24
  start-page: 365
  year: 2014
  end-page: 376
  ident: CR64
  article-title: A-To-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes
  publication-title: Genome Res.
– volume: 8
  year: 2017
  ident: CR137
  article-title: Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system
  publication-title: Nat. Commun.
– volume: 14
  start-page: 710
  year: 2017
  end-page: 712
  ident: CR144
  article-title: CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations
  publication-title: Nat. Methods
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: CR2
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
– volume: 468
  start-page: 67
  year: 2010
  end-page: 71
  ident: CR4
  article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
  publication-title: Nature
– volume: 362
  start-page: 709
  year: 1993
  end-page: 715
  ident: CR56
  article-title: Instability and decay of the primary structure of DNA
  publication-title: Nature
– volume: 43
  start-page: 1565
  year: 2002
  end-page: 1575
  ident: CR3
  article-title: Identification of genes that are associated with DNA repeats in prokaryotes
  publication-title: Mol. Microbiol.
– volume: 339
  start-page: 823
  year: 2013
  end-page: 826
  ident: CR8
  article-title: RNA-guided human genome engineering via Cas9
  publication-title: Science
– volume: 41
  start-page: 7429
  year: 2013
  end-page: 7437
  ident: CR14
  article-title: Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: 601
  year: 2017
  end-page: 611
  ident: CR133
  article-title: Effective gene editing by high-fidelity base editor 2 in mouse zygotes
  publication-title: Protein Cell
– volume: 35
  start-page: 438
  year: 2017
  end-page: 440
  ident: CR161
  article-title: Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion
  publication-title: Nat. Biotechnol.
– volume: 79
  start-page: 321
  year: 2010
  end-page: 349
  ident: CR74
  article-title: Functions and regulation of RNA editing by ADAR deaminases
  publication-title: Annu. Rev. Biochem.
– volume: 38
  start-page: 37
  year: 2016
  end-page: 43
  ident: CR120
  article-title: The thermostability and specificity of ancient proteins
  publication-title: Curr. Opin. Struct. Biol.
– volume: 68
  start-page: 202
  year: 2008
  end-page: 215
  ident: CR88
  article-title: Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks
  publication-title: Mol. Microbiol.
– volume: 22
  start-page: 5649
  year: 1994
  end-page: 5657
  ident: CR19
  article-title: Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI
  publication-title: Nucleic Acids Res.
– volume: 8
  year: 2017
  ident: CR30
  article-title: CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome
  publication-title: Nat. Commun.
– volume: 9
  start-page: 814
  year: 2018
  end-page: 819
  ident: CR115
  article-title: Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants
  publication-title: Protein Cell
– volume: 7
  start-page: 2101
  year: 1996
  end-page: 2112
  ident: CR129
  article-title: Quantitative analysis of the packaging capacity of recombinant adeno-associated virus
  publication-title: Hum. Gene Ther.
– volume: 8
  start-page: 2281
  year: 2013
  end-page: 2308
  ident: CR143
  article-title: Genome engineering using the CRISPR-Cas9 system
  publication-title: Nat. Protoc.
– volume: 13
  start-page: 153
  year: 2006
  end-page: 159
  ident: CR58
  article-title: Crystal structure of tRNA adenosine deaminase TadA in complex with RNA
  publication-title: Nat. Struct. Mol. Biol.
– volume: 109
  start-page: E2579
  year: 2012
  end-page: E2586
  ident: CR16
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 24
  start-page: 645
  year: 2016
  end-page: 654
  ident: CR106
  article-title: The CRISPR-Cas9 system enables specific genome editing in mammalian cells
  publication-title: Mol. Ther.
– ident: CR118
– volume: 4
  start-page: 39
  year: 2018
  ident: CR136
  article-title: Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats
  publication-title: Cell Discov.
– volume: 460
  start-page: 165
  year: 2000
  end-page: 181
  ident: CR52
  article-title: Structure and function in the uracil-DNA glycosylase superfamily
  publication-title: Mutat. Res.
– volume: 42
  year: 2014
  ident: CR66
  article-title: Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 914
  year: 2016
  end-page: 929
  ident: CR148
  article-title: Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting
  publication-title: Cancer Discov.
– volume: 377
  start-page: 1015
  year: 2008
  end-page: 1023
  ident: CR57
  article-title: Miscoding properties of 2ʹ-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion synthesis catalyzed by human DNA polymerases
  publication-title: J. Mol. Biol.
– volume: 31
  start-page: 833
  year: 2013
  end-page: 838
  ident: CR13
  article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
  publication-title: Nat. Biotechnol.
– volume: 3
  start-page: 17107
  year: 2017
  ident: CR157
  article-title: Progress and prospects in plant genome editing
  publication-title: Nat. Plants
– volume: 523
  start-page: 481
  year: 2015
  end-page: 485
  ident: CR108
  article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities
  publication-title: Nature
– volume: 28
  start-page: 855
  year: 2018
  ident: 59_CR111
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0052-4
– volume: 6
  start-page: 914
  year: 2016
  ident: 59_CR148
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-16-0154
– volume: 9
  year: 2018
  ident: 59_CR96
  publication-title: Nat. Commun.
– volume: 377
  start-page: 1015
  year: 2008
  ident: 59_CR57
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.01.033
– volume: 358
  start-page: 1019
  year: 2017
  ident: 59_CR39
  publication-title: Science
  doi: 10.1126/science.aaq0180
– volume: 6
  start-page: 1642
  year: 2017
  ident: 59_CR44
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.7b00113
– volume: 113
  start-page: 2868
  year: 2016
  ident: 59_CR126
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1520244113
– volume: 122
  start-page: 519
  year: 1989
  ident: 59_CR20
  publication-title: Genetics
  doi: 10.1093/genetics/122.3.519
– volume: 533
  start-page: 420
  year: 2016
  ident: 59_CR33
  publication-title: Nature
  doi: 10.1038/nature17946
– volume: 494
  start-page: 366
  year: 2013
  ident: 59_CR99
  publication-title: Nature
  doi: 10.1038/nature11881
– volume: 15
  start-page: 535
  year: 2018
  ident: 59_CR49
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0017-z
– volume: 36
  start-page: 843
  year: 2018
  ident: 59_CR91
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4172
– volume: 23
  start-page: 1163
  year: 2013
  ident: 59_CR15
  publication-title: Cell Res.
  doi: 10.1038/cr.2013.122
– volume: 23
  start-page: 426
  year: 2016
  ident: 59_CR61
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3203
– volume: 24
  start-page: 1012
  year: 2014
  ident: 59_CR127
  publication-title: Genome Res.
  doi: 10.1101/gr.171322.113
– volume: 11
  start-page: 631
  year: 2018
  ident: 59_CR85
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.02.008
– volume: 38
  start-page: 37
  year: 2016
  ident: 59_CR120
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2016.05.015
– volume: 23
  start-page: 1435
  year: 2005
  ident: 59_CR130
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1153
– volume: 8
  start-page: 776
  year: 2017
  ident: 59_CR134
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0458-7
– volume: 8
  year: 2017
  ident: 59_CR104
  publication-title: Nat. Commun.
– volume: 53
  start-page: 6267
  year: 2014
  ident: 59_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402634
– volume: 91
  start-page: 6064
  year: 1994
  ident: 59_CR21
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.13.6064
– volume: 157
  start-page: 166
  year: 2009
  ident: 59_CR122
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2009.00288.x
– volume: 24
  start-page: 645
  year: 2016
  ident: 59_CR106
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2016.8
– volume: 35
  start-page: 371
  year: 2017
  ident: 59_CR109
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3803
– volume: 361
  start-page: 870
  year: 2018
  ident: 59_CR154
  publication-title: Science
  doi: 10.1126/science.aat9249
– volume: 33
  start-page: 187
  year: 2015
  ident: 59_CR31
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3117
– volume: 9
  year: 2018
  ident: 59_CR100
  publication-title: Nat. Commun.
– volume: 51
  start-page: 11166
  year: 2012
  ident: 59_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201206489
– volume: 18
  year: 2017
  ident: 59_CR112
  publication-title: Genome Biol.
– volume: 8
  year: 2017
  ident: 59_CR155
  publication-title: Nat. Commun.
– volume: 533
  start-page: 125
  year: 2016
  ident: 59_CR24
  publication-title: Nature
  doi: 10.1038/nature17664
– volume: 8
  start-page: 811
  year: 2017
  ident: 59_CR135
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0475-6
– volume: 152
  start-page: 1279
  year: 2001
  ident: 59_CR62
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.152.6.1279
– volume: 92
  start-page: 8483
  year: 1995
  ident: 59_CR97
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.92.18.8483
– volume: 163
  start-page: 759
  year: 2015
  ident: 59_CR103
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.038
– volume: 21
  start-page: 121
  year: 2015
  ident: 59_CR23
  publication-title: Nat. Med.
  doi: 10.1038/nm.3793
– volume: 31
  start-page: 23
  year: 2013
  ident: 59_CR152
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2477
– volume: 13
  start-page: 153
  year: 2006
  ident: 59_CR58
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb1047
– volume: 2
  year: 2004
  ident: 59_CR75
  publication-title: PLOS Biol.
  doi: 10.1371/journal.pbio.0020391
– start-page: 888
  volume-title: Nat. Biotechnol.
  year: 2018
  ident: 59_CR121
– volume: 58
  start-page: 568
  year: 2015
  ident: 59_CR12
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.02.032
– volume: 70
  start-page: 3240
  year: 1973
  ident: 59_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.70.11.3240
– volume: 353
  start-page: aaf8729
  year: 2016
  ident: 59_CR34
  publication-title: Science
  doi: 10.1126/science.aaf8729
– volume: 108
  start-page: 1687
  year: 2001
  ident: 59_CR139
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200113419
– volume: 37
  start-page: 1741
  year: 2017
  ident: 59_CR141
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.117.309881
– volume: 8
  start-page: 2281
  year: 2013
  ident: 59_CR143
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.143
– volume: 553
  start-page: 217
  year: 2018
  ident: 59_CR131
  publication-title: Nature
  doi: 10.1038/nature25164
– volume: 7
  start-page: 2101
  year: 1996
  ident: 59_CR129
  publication-title: Hum. Gene Ther.
  doi: 10.1089/hum.1996.7.17-2101
– volume: 67
  start-page: 1068
  year: 2017
  ident: 59_CR145
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.08.008
– volume: 157
  start-page: 1262
  year: 2014
  ident: 59_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.010
– volume: 3
  year: 2017
  ident: 59_CR36
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aao4774
– volume: 159
  start-page: 635
  year: 2014
  ident: 59_CR110
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.039
– volume: 7
  year: 2017
  ident: 59_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/srep41478
– volume: 19
  year: 2018
  ident: 59_CR150
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1482-5
– volume: 44
  year: 2016
  ident: 59_CR41
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 10050
  year: 2014
  ident: 59_CR71
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku662
– volume: 21
  start-page: 86
  year: 2003
  ident: 59_CR65
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt765
– volume: 40
  start-page: 823
  year: 2017
  ident: 59_CR132
  publication-title: Mol. Cells
– volume: 82
  start-page: 701
  year: 1995
  ident: 59_CR53
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90467-0
– volume: 9
  start-page: 814
  year: 2018
  ident: 59_CR115
  publication-title: Protein Cell
  doi: 10.1007/s13238-018-0568-x
– year: 2018
  ident: 59_CR116
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4198
– volume: 9
  year: 2018
  ident: 59_CR89
  publication-title: Nat. Commun.
– volume: 13
  start-page: 1029
  year: 2016
  ident: 59_CR78
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4027
– volume: 12
  year: 2014
  ident: 59_CR158
  publication-title: PLOS Biol.
  doi: 10.1371/journal.pbio.1001877
– volume: 8
  year: 2017
  ident: 59_CR30
  publication-title: Nat. Commun.
– volume: 31
  start-page: 230
  year: 2013
  ident: 59_CR5
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2507
– volume: 14
  start-page: 8096
  year: 1994
  ident: 59_CR18
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.14.12.8096
– volume: 42
  start-page: D980
  year: 2014
  ident: 59_CR29
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1113
– volume: 337
  start-page: 816
  year: 2012
  ident: 59_CR2
  publication-title: Science
  doi: 10.1126/science.1225829
– ident: 59_CR118
  doi: 10.1101/392217
– volume: 170
  start-page: 667
  year: 2016
  ident: 59_CR160
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.01663
– volume: 13
  start-page: 279
  year: 2003
  ident: 59_CR72
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(03)00062-X
– volume: 55
  start-page: 1089
  year: 1988
  ident: 59_CR60
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90253-X
– volume: 36
  start-page: 536
  year: 2018
  ident: 59_CR83
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4148
– volume: 17
  start-page: 585
  year: 2009
  ident: 59_CR123
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2009.5
– ident: 59_CR101
  doi: 10.1038/nbt.4199
– volume: 24
  start-page: 636
  year: 2016
  ident: 59_CR105
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2015.218
– volume: 109
  start-page: E3295
  year: 2012
  ident: 59_CR69
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1212548109
– volume: 169
  start-page: 931
  year: 2015
  ident: 59_CR159
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00793
– volume: 14
  start-page: 710
  year: 2017
  ident: 59_CR144
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4327
– volume: 71
  start-page: 817
  year: 2002
  ident: 59_CR63
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.71.110601.135501
– volume: 38
  start-page: 765
  year: 2018
  ident: 59_CR27
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4192
– volume: 10
  year: 2015
  ident: 59_CR32
  publication-title: PLOS ONE
– volume: 19
  year: 2018
  ident: 59_CR163
  publication-title: Genome Biol.
– volume: 19
  start-page: 548
  year: 1966
  ident: 59_CR70
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(66)80022-0
– volume: 31
  start-page: 833
  year: 2013
  ident: 59_CR13
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2675
– volume: 8
  start-page: 601
  year: 2017
  ident: 59_CR133
  publication-title: Protein Cell
  doi: 10.1007/s13238-017-0418-2
– volume: 3
  start-page: 17107
  year: 2017
  ident: 59_CR157
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2017.107
– volume: 35
  start-page: 435
  year: 2017
  ident: 59_CR77
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3816
– volume: 16
  start-page: 293
  year: 2014
  ident: 59_CR149
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2941
– volume: 43
  start-page: 1565
  year: 2002
  ident: 59_CR3
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.02839.x
– volume: 5
  year: 2015
  ident: 59_CR142
  publication-title: Sci. Rep.
  doi: 10.1038/srep17886
– volume: 110
  start-page: 18285
  year: 2013
  ident: 59_CR40
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1306243110
– volume: 551
  start-page: 464
  year: 2017
  ident: 59_CR35
  publication-title: Nature
  doi: 10.1038/nature24644
– volume: 27
  start-page: 1289
  year: 2017
  ident: 59_CR79
  publication-title: Cell Res.
  doi: 10.1038/cr.2017.111
– volume: 45
  start-page: 2797
  year: 2017
  ident: 59_CR43
  publication-title: Nucleic Acids Res.
– volume: 197
  start-page: 1173
  year: 2003
  ident: 59_CR98
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20030275
– volume: 419
  start-page: 43
  year: 2002
  ident: 59_CR80
  publication-title: Nature
  doi: 10.1038/nature00981
– volume: 461
  start-page: 41
  year: 2000
  ident: 59_CR81
  publication-title: Mutat. Res.
  doi: 10.1016/S0921-8777(00)00040-9
– volume: 156
  start-page: 935
  year: 2014
  ident: 59_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.001
– volume: 24
  start-page: 927
  year: 2018
  ident: 59_CR146
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0049-z
– volume: 26
  start-page: 2631
  issue: 11
  year: 2018
  ident: 59_CR140
  publication-title: Molecular Therapy
  doi: 10.1016/j.ymthe.2018.08.007
– volume: 34
  start-page: 807
  year: 2016
  ident: 59_CR151
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3596
– volume: 68
  start-page: 202
  year: 2008
  ident: 59_CR88
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2008.06149.x
– volume: 540
  start-page: 144
  year: 2016
  ident: 59_CR119
  publication-title: Nature
  doi: 10.1038/nature20565
– volume: 24
  start-page: 125
  year: 2014
  ident: 59_CR153
  publication-title: Genome Res.
  doi: 10.1101/gr.163394.113
– volume: 137
  start-page: 15875
  year: 2015
  ident: 59_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10216
– volume: 339
  start-page: 823
  year: 2013
  ident: 59_CR8
  publication-title: Science
  doi: 10.1126/science.1232033
– volume: 168
  start-page: 20
  year: 2017
  ident: 59_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2016.10.044
– volume: 55
  start-page: 74
  year: 2018
  ident: 59_CR59
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2018.08.006
– volume: 4
  start-page: 39
  year: 2018
  ident: 59_CR136
  publication-title: Cell Discov.
  doi: 10.1038/s41421-018-0047-9
– volume: 35
  start-page: 475
  year: 2017
  ident: 59_CR94
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3852
– volume: 47
  start-page: 497
  year: 2012
  ident: 59_CR22
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.07.029
– volume: 8
  year: 2017
  ident: 59_CR93
  publication-title: Nat. Commun.
– volume: 361
  start-page: 1259
  issue: 6408
  year: 2018
  ident: 59_CR113
  publication-title: Science
  doi: 10.1126/science.aas9129
– volume: 38
  start-page: 185
  year: 1998
  ident: 59_CR17
  publication-title: Adv. Genet.
  doi: 10.1016/S0065-2660(08)60144-3
– ident: 59_CR156
  doi: 10.1101/263657
– volume: 79
  start-page: 321
  year: 2010
  ident: 59_CR74
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060208-105251
– volume: 68
  start-page: 26
  year: 2017
  ident: 59_CR82
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.09.029
– volume: 34
  start-page: 695
  year: 2016
  ident: 59_CR117
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3583
– ident: 59_CR114
  doi: 10.1111/pbi.12993
– volume: 468
  start-page: 67
  year: 2010
  ident: 59_CR4
  publication-title: Nature
  doi: 10.1038/nature09523
– volume: 36
  start-page: 324
  year: 2018
  ident: 59_CR38
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4102
– volume: 3
  year: 2014
  ident: 59_CR25
  publication-title: eLife
– volume: 4
  start-page: 346
  year: 2003
  ident: 59_CR124
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1066
– volume: 4
  start-page: 427
  year: 2018
  ident: 59_CR92
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0178-x
– volume: 8
  year: 2017
  ident: 59_CR137
  publication-title: Nat. Commun.
– volume: 35
  start-page: 438
  year: 2017
  ident: 59_CR161
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3811
– volume: 339
  start-page: 819
  year: 2013
  ident: 59_CR6
  publication-title: Science
  doi: 10.1126/science.1231143
– volume: 362
  start-page: 709
  year: 1993
  ident: 59_CR56
  publication-title: Nature
  doi: 10.1038/362709a0
– volume: 42
  year: 2014
  ident: 59_CR66
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1273
– volume: 374
  start-page: 77
  year: 1995
  ident: 59_CR73
  publication-title: Nature
  doi: 10.1038/374077a0
– volume: 109
  start-page: E2579
  year: 2012
  ident: 59_CR16
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1208507109
– volume: 33
  start-page: 73
  year: 2015
  ident: 59_CR125
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3081
– volume: 11
  start-page: 627
  year: 2018
  ident: 59_CR84
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.02.007
– volume: 460
  start-page: 165
  year: 2000
  ident: 59_CR52
  publication-title: Mutat. Res.
  doi: 10.1016/S0921-8777(00)00025-2
– volume: 39
  start-page: 12875
  year: 2000
  ident: 59_CR68
  publication-title: Biochemistry
  doi: 10.1021/bi001383g
– volume: 523
  start-page: 481
  year: 2015
  ident: 59_CR108
  publication-title: Nature
  doi: 10.1038/nature14592
– volume: 24
  start-page: 939
  year: 2018
  ident: 59_CR147
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0050-6
– volume: 13
  start-page: 1036
  year: 2016
  ident: 59_CR76
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4038
– volume: 9
  year: 2018
  ident: 59_CR90
  publication-title: Nat. Commun.
– volume: 556
  start-page: 57
  year: 2018
  ident: 59_CR86
  publication-title: Nature
  doi: 10.1038/nature26155
– volume: 520
  start-page: 186
  year: 2015
  ident: 59_CR102
  publication-title: Nature
  doi: 10.1038/nature14299
– volume: 2
  year: 2013
  ident: 59_CR7
  publication-title: eLife
  doi: 10.7554/eLife.00471
– volume: 10
  start-page: 1247
  year: 2002
  ident: 59_CR50
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(02)00742-6
– volume: 346
  start-page: 1258096
  year: 2014
  ident: 59_CR11
  publication-title: Science
  doi: 10.1126/science.1258096
– volume: 8
  year: 2018
  ident: 59_CR138
  publication-title: Sci. Rep.
– volume: 98
  start-page: 12132
  year: 2001
  ident: 59_CR67
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.211419898
– volume: 360
  year: 2018
  ident: 59_CR54
  publication-title: Science
  doi: 10.1126/science.aap8992
– volume: 35
  start-page: 441
  year: 2017
  ident: 59_CR162
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3833
– volume: 24
  start-page: 365
  year: 2014
  ident: 59_CR64
  publication-title: Genome Res.
  doi: 10.1101/gr.164749.113
– volume: 97
  start-page: 13573
  year: 2000
  ident: 59_CR87
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.25.13573
– volume: 17
  start-page: 333
  year: 2016
  ident: 59_CR26
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.49
– volume: 33
  start-page: 1293
  year: 2015
  ident: 59_CR107
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3404
– volume: 22
  start-page: 5649
  year: 1994
  ident: 59_CR19
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/22.25.5649
– volume: 41
  start-page: 7429
  year: 2013
  ident: 59_CR14
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt520
– volume: 66
  start-page: 1021
  year: 2009
  ident: 59_CR51
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-009-8739-9
– volume: 44
  start-page: D862
  year: 2016
  ident: 59_CR28
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1222
– volume: 9
  start-page: 2021
  year: 2014
  ident: 59_CR46
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201402139
– volume: 529
  start-page: 490
  year: 2016
  ident: 59_CR95
  publication-title: Nature
  doi: 10.1038/nature16526
– volume: 74
  start-page: 3793
  year: 2000
  ident: 59_CR128
  publication-title: J. Virol.
  doi: 10.1128/JVI.74.8.3793-3803.2000
– volume: 21
  start-page: 8935
  year: 2002
  ident: 59_CR55
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205996
– reference: 30341440 - Nat Rev Genet. 2018 Dec;19(12):801. doi: 10.1038/s41576-018-0068-0.
SSID ssj0016173
Score 2.7088735
SecondaryResourceType review_article
Snippet RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 770
SubjectTerms 631/1647/1511
631/1647/1513
631/337/1645/1944
631/337/4041/3196
631/61/338
Agriculture
Animal Genetics and Genomics
Animals
Base sequence
Biomedical and Life Sciences
Biomedicine
Cancer Research
CRISPR
CRISPR-Cas Systems
Deoxyribonucleic acid
DNA
DNA binding proteins
DNA Breaks, Double-Stranded
DNA damage
DNA glycosylase
DNA sequencing
Double-stranded RNA
Editing
Editors
Endonucleases
Enzymes
Gene Editing - methods
Gene expression
Gene Function
Gene mutation
Genome editing
Genomes
Genomics
Human Genetics
Humans
Mutation
Nuclease
Nucleases
Nucleotide sequence
Review Article
Ribonucleic acid
RNA
RNA editing
Therapeutic applications
Transcription
Transcription (Genetics)
Transcriptome
Title Base editing: precision chemistry on the genome and transcriptome of living cells
URI https://link.springer.com/article/10.1038/s41576-018-0059-1
https://www.ncbi.nlm.nih.gov/pubmed/30323312
https://www.proquest.com/docview/2133834077
https://www.proquest.com/docview/2120751879
https://pubmed.ncbi.nlm.nih.gov/PMC6535181
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA-6Ifgy_LZzziiCoJS1TdO0e5FtbEzBodPBfQtpPtxga6_rvQ_-9zsnTTt7wb0U2pyG5vTkfCQnv0PI-8pkrsITPVaBBOdO13Fd1Elcm1zrPIOp7tH5v50Ux2f51xmfhQW3LqRVDjrRK2rTalwj38l8MAXhh_g8_xNj1SjcXQ0lNO6TdYQuw5QuMRsDLnTdfYI9KOAYMS-HXU1W7nRguATG0iW2VHE6sUur2vkf87SaOrmyf-rN0tEjshH8SbrXC8Bjcs82T8iDvsLk36fkxz5YKQoGCrObd-n8OpTUoXoo9EbhBpxAimCtV5aqxtAF2i-vTfBJ6-jlBS47UFzk756Rs6PDXwfHcaiiEOuiKBexEjXPDbhJtShzW3EFLkopVKqcUGWB-FtOpTl3ogAqUI3GQQxjuGNcJZZZzp6TtaZt7EtCrRZaM50rrGyT5NCxYc6VhUqEqozgEUkGHkodIMax0sWl9FvdrJQ92yWwXSLbZRqRj-Mr8x5f4y7iN_hjZH9EdJybco8LBqRJUUXknadAZIsGU2d-q2XXyS8_TydEHwKRa-HztAonEWCQCIY1odyaUMKP0dPmQUJkmPqdvBXUiLwdm_FNTGdrbLtEmizB_S4BXbzoBWocPfgUGWNpFhExEbWRAAHBpy3NxbkHBi84g06BTZ8Gobz9rP8ydfPuQbwiDzOcJT6DZ4usLa6X9jX4YYt62082uJYH6TZZ3z88-X56Azd-L1A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEG8ChRoEQgJFTWLHTpAQaqHVLm1XUFqpN-M4NlQqydLsCvVP8RuZyatkJXrrcddfrHg8nkdmPEPIizSPXIo3eqwGDubOZH4mssDPcm4Mj-Co19X596difMQ_HcfHK-RPdxcG0yo7mVgL6rw0-I18I6qdKXA_5PvZLx-7RmF0tWuh0bDFrj3_DS5b9W7yEfb3ZRTtbB9-GPttVwHfCJHMfS2zmOdgNmQy4TaNNajsROpQO6kTgfWonA557KQAFIiK3IFNn8eOxTqwzGKXCBD5q5yBKzMiq1vb088HfdxCNDHtEES-j1U2uzgqSzYqUJUSvfcER1I_HGjCZX3wj0JcTtZcitjWinDnFrnZWrB0s2G522TFFnfItaan5fld8mUL9CIFlYj51G_p7Kxt4kNN11qOwg8wOymWh_1pqS5yOkeNWcsv_Kd09PQEP3RQDCtU98jRlVD4PhkVZWEfEmqNNIYZrrGXTsBh4pw5lwgdSJ3mMvZI0NFQmbaoOfbWOFV1cJ0lqiG7ArIrJLsKPfK6f2TWVPS4DLyOG6OaS6m9NFCbsWQADUTqkec1AmtpFJis810vqkpNvh4MQK9akCvh9Yxu7z7AIrH81gC5NkDCxpjhcMchqhU2lbo4Gh551g_jk5hAV9hygZgowAibhCkeNAzVrx6smIixMPKIHLBaD8AS5MOR4uRHXYpcxAwmBTK96Zjy4rX-S9RHly9inVwfH-7vqb3JdPcxuRHhianzh9bIaH62sE_ACpxnT9ujR8m3qz7tfwHmamoe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ra9RAEF9Ki-KX4tvUaldRBCVcks1mE0GkWo-e1eKrcN-2m81uLdTk2twh_df865zZPGoO7Ld-vNtfQnYyz8zsDCHPsiKyGZ7oMQo4OLY69_MkD_y8iLWOIxB1153_836yexB_nPLpCvnTnYXBsspOJzpFXVQav5GPIhdMQfghRrYti_iyM347O_VxghRmWrtxGg2L7Jnz3xC-1W8mO_Cun0fR-MOP97t-O2HA10mSzn0lch4X4ELkIo1NxhWY71SoUFmh0gR7U1kVxtyKBFCgNgoL_n3BLeMqMMzgxAhQ_2uC8RBlTEz7YA_DBlfcD8rfx36bXUaVpaMajKbAOD7FlcwPBzZx2TL8YxqXyzaXcrfOJI5vkvXWl6XbDfPdIiumvE2uNdMtz--Qr-_AQlIwjlhZ_ZrOztpxPlR3Q-Yo_AAHlGKj2F-GqrKgc7SdTpPhP5WlJ8f4yYNigqG-Sw6uhL73yGpZleYBoUYLrZmOFU7VCWK4ccGsTRMVCJUVgnsk6GgoddveHKdsnEiXZmepbMgugewSyS5Dj7zsL5k1vT0uA2_hi5HN8dReL8htLhhAgyTzyFOHwK4aJfLnkVrUtZx8_zYAvWhBtoLH06o9BQGbxEZcA-TmAAkvRg-XOw6Rrdqp5YWQeORJv4xXYildaaoFYqIAc20CbnG_Yah-9-DPRIyFkUfEgNV6ADYjH66Uxz9dU_KEgxCkQKZXHVNePNZ_ibpx-Sa2yHWQcflpsr_3kNyIUGBcIdEmWZ2fLcwjcAfn-WMnd5QcXrWg_wX0Wmzu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Base+editing%3A+precision+chemistry+on+the+genome+and+transcriptome+of+living+cells&rft.jtitle=Nature+reviews.+Genetics&rft.au=Rees%2C+Holly+A&rft.au=Liu%2C+David+R&rft.date=2018-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0056&rft.volume=19&rft.issue=12&rft.spage=770&rft_id=info:doi/10.1038%2Fs41576-018-0059-1&rft.externalDocID=A573157069
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon