Base editing: precision chemistry on the genome and transcriptome of living cells
RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems togeth...
Saved in:
Published in | Nature reviews. Genetics Vol. 19; no. 12; pp. 770 - 788 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.
Genome editing through direct editing of bases holds promise for achieving precise genomic changes at single-nucleotide resolution while minimizing the occurrence of potentially mutagenic double-strand DNA breaks. In this Review, Rees and Liu provide a comprehensive account of the state of the art of base editing of DNA and RNA, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings. |
---|---|
AbstractList | RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications. Genome editing through direct editing of bases holds promise for achieving precise genomic changes at single-nucleotide resolution while minimizing the occurrence of potentially mutagenic double-strand DNA breaks. In this Review, Rees and Liu provide a comprehensive account of the state of the art of base editing of DNA and RNA, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings. RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications.RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications. RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications. Genome editing through direct editing of bases holds promise for achieving precise genomic changes at single-nucleotide resolution while minimizing the occurrence of potentially mutagenic double-strand DNA breaks. In this Review, Rees and Liu provide a comprehensive account of the state of the art of base editing of DNA and RNA, including the progressive improvements to methodologies, understanding and avoiding unintended edits, cellular and organismal delivery of editing reagents and diverse applications in research and therapeutic settings. RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications. RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks (DSBs). DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing byproducts. In this Review, we summarize base editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision, and in vivo delivery of base editors, and discuss limitations and future directions of base editing for research and therapeutic applications. RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes in DNA sequence or RNA transcript abundance. Base editing is a newer genome-editing approach that uses components from CRISPR systems together with other enzymes to directly install point mutations into cellular DNA or RNA without making double-stranded DNA breaks. DNA base editors comprise a catalytically disabled nuclease fused to a nucleobase deaminase enzyme and, in some cases, a DNA glycosylase inhibitor. RNA base editors achieve analogous changes using components that target RNA. Base editors directly convert one base or base pair into another, enabling the efficient installation of point mutations in non-dividing cells without generating excess undesired editing by-products. In this Review, we summarize base-editing strategies to generate specific and precise point mutations in genomic DNA and RNA, highlight recent developments that expand the scope, specificity, precision and in vivo delivery of base editors and discuss limitations and future directions of base editing for research and therapeutic applications. |
Audience | Academic |
Author | Rees, Holly A. Liu, David R. |
AuthorAffiliation | 1 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA 3 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA 2 Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA |
AuthorAffiliation_xml | – name: 1 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA – name: 2 Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA – name: 3 Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA |
Author_xml | – sequence: 1 givenname: Holly A. surname: Rees fullname: Rees, Holly A. organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Howard Hughes Medical Institute, Harvard University, Department of Chemistry and Chemical Biology, Harvard University – sequence: 2 givenname: David R. surname: Liu fullname: Liu, David R. email: drliu@fas.harvard.edu organization: Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Howard Hughes Medical Institute, Harvard University, Department of Chemistry and Chemical Biology, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30323312$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kttu1DAQhiNURA_wANygSEgILlLsOLazXCCVikOlSkgFri2vM866ytqL7VT0bXgWnoyJtmybClAuHNvfP-P5Zw6LPR88FMVTSo4pYe3r1FAuRUVoWxHCFxV9UBzQRlLciWZv98_FfnGY0iUhVFDJHhX7jLCaMVofFBfvdIISOped79-UmwjGJRd8aVawdinH6xI3eQVlDz6sodS-K3PUPpnoNnk6CfbXz8Fdob40MAzpcfHQ6iHBk5v1qPj24f3X00_V-eePZ6cn55URos2VlkvedFzQpWwbWHDN2kUrNdVW6lZIwoTVtOFWCqSkqDvbtLLjlnFNgAFnR8XbbdzNuFxDZ8Djuwa1iW6t47UK2qn5jXcr1YcrJTjjtKUY4OVNgBi-j5CywoqnErSHMCZV05pIJOUC0ef30MswRo_lIcVYyxoi5S3V6wGU8zZgXjMFVSdcMmwWEVOs479Q-HXouMEOW4fnM8GrmQCZDD9yr8eU1NmXizn74g67Aj3kVQrDmLGnaQ4-u-vezrY_o4EA3QImhpQi2B1CiZrGT23HT-H4qWn81OSovKcxLuspN5bohv8q660yYRbfQ7w1-N-i3wPA61k |
CitedBy_id | crossref_primary_10_1038_s42003_022_04152_8 crossref_primary_10_1093_nar_gkaa764 crossref_primary_10_1016_j_ymthe_2024_03_009 crossref_primary_10_1093_hr_uhae293 crossref_primary_10_1146_annurev_genet_071719_030438 crossref_primary_10_1038_s44222_022_00013_5 crossref_primary_10_3389_fgene_2022_891098 crossref_primary_10_1007_s11626_023_00763_5 crossref_primary_10_3390_molecules25030735 crossref_primary_10_3390_ani15030422 crossref_primary_10_1007_s13237_024_00482_6 crossref_primary_10_1016_j_scib_2023_12_013 crossref_primary_10_1016_j_tibs_2020_06_003 crossref_primary_10_1016_j_ymthe_2021_05_007 crossref_primary_10_1016_j_jgg_2020_07_010 crossref_primary_10_1038_s41467_022_34784_7 crossref_primary_10_1038_s41587_023_01792_x crossref_primary_10_1016_j_molcel_2019_12_016 crossref_primary_10_1186_s13059_020_02118_9 crossref_primary_10_1016_j_ymgme_2021_08_002 crossref_primary_10_1073_pnas_2013338118 crossref_primary_10_1016_j_dmpk_2022_100450 crossref_primary_10_13070_mm_en_9_2800 crossref_primary_10_1016_j_ymthe_2024_03_005 crossref_primary_10_1038_s41551_024_01220_8 crossref_primary_10_3389_fgene_2020_614688 crossref_primary_10_2174_0929867328666210527092456 crossref_primary_10_1038_s41586_021_03191_1 crossref_primary_10_1089_crispr_2024_0028 crossref_primary_10_3389_fimmu_2020_570672 crossref_primary_10_1055_s_0044_1791803 crossref_primary_10_1093_bib_bbad205 crossref_primary_10_1038_s41592_020_0832_x crossref_primary_10_1016_j_gene_2022_147064 crossref_primary_10_1038_s12276_023_00938_w crossref_primary_10_1038_s41467_021_26789_5 crossref_primary_10_1038_s12276_023_01057_2 crossref_primary_10_1534_genetics_119_302089 crossref_primary_10_1016_j_cell_2024_05_056 crossref_primary_10_3390_biologics3040014 crossref_primary_10_1016_j_trecan_2023_10_001 crossref_primary_10_1038_s41587_019_0236_6 crossref_primary_10_1021_acsnano_4c14041 crossref_primary_10_3389_fgene_2024_1364742 crossref_primary_10_1126_science_aax1827 crossref_primary_10_1038_s41589_023_01278_6 crossref_primary_10_3390_genes12111667 crossref_primary_10_1016_j_clim_2023_109854 crossref_primary_10_1007_s13238_020_00704_y crossref_primary_10_1038_s41596_020_00423_y crossref_primary_10_1016_j_xpro_2022_101148 crossref_primary_10_1126_scitranslmed_abn0449 crossref_primary_10_3389_fbioe_2023_1039315 crossref_primary_10_1016_j_omtn_2020_07_037 crossref_primary_10_1038_s41556_020_0521_0 crossref_primary_10_1007_s11816_024_00949_7 crossref_primary_10_1007_s12015_021_10324_6 crossref_primary_10_1016_j_ymben_2022_11_005 crossref_primary_10_1126_science_aav9973 crossref_primary_10_1089_crispr_2019_29054_mrw crossref_primary_10_1093_nar_gkac742 crossref_primary_10_1128_mSystems_00350_20 crossref_primary_10_1080_07388551_2019_1709795 crossref_primary_10_3389_fcell_2023_1175849 crossref_primary_10_1021_acssynbio_0c00560 crossref_primary_10_1016_j_tig_2021_07_003 crossref_primary_10_1016_j_ymthe_2021_06_013 crossref_primary_10_7555_JBR_34_20200105 crossref_primary_10_1016_j_tibtech_2019_03_008 crossref_primary_10_1016_j_ymthe_2022_01_040 crossref_primary_10_3390_genes13050835 crossref_primary_10_1038_s41392_024_01750_2 crossref_primary_10_3390_cells9071690 crossref_primary_10_1093_nar_gkab427 crossref_primary_10_1038_s41551_024_01233_3 crossref_primary_10_1016_j_isci_2019_05_008 crossref_primary_10_1186_s12915_020_00849_6 crossref_primary_10_3389_fgeed_2023_1114996 crossref_primary_10_1080_13816810_2022_2113541 crossref_primary_10_3389_fgene_2022_876987 crossref_primary_10_1186_s40813_021_00196_0 crossref_primary_10_1021_acssynbio_0c00349 crossref_primary_10_1093_nar_gkac967 crossref_primary_10_1186_s12935_022_02831_4 crossref_primary_10_3389_fonc_2020_584404 crossref_primary_10_1063_5_0157193 crossref_primary_10_1007_s00761_019_0599_9 crossref_primary_10_3390_biom10101378 crossref_primary_10_3389_fgeed_2022_1030285 crossref_primary_10_3390_v16101565 crossref_primary_10_1172_jci_insight_185193 crossref_primary_10_3389_fbioe_2022_942440 crossref_primary_10_1016_j_exphem_2022_03_002 crossref_primary_10_3390_cells11172682 crossref_primary_10_1016_j_tcb_2020_01_004 crossref_primary_10_1038_s41467_021_21003_y crossref_primary_10_1002_bies_202200032 crossref_primary_10_1016_j_celrep_2020_02_068 crossref_primary_10_1016_j_celrep_2023_112840 crossref_primary_10_1016_j_tig_2022_04_011 crossref_primary_10_3389_fgeed_2021_618406 crossref_primary_10_1186_s40659_024_00562_6 crossref_primary_10_1111_pbi_13774 crossref_primary_10_3389_fcell_2022_809922 crossref_primary_10_1038_s41467_020_15887_5 crossref_primary_10_3389_fbioe_2020_00882 crossref_primary_10_3389_fnmol_2020_00148 crossref_primary_10_1038_s41421_020_00195_5 crossref_primary_10_1038_s41467_021_25375_z crossref_primary_10_1126_science_aay0339 crossref_primary_10_3389_fbioe_2022_939295 crossref_primary_10_1038_s41587_019_0193_0 crossref_primary_10_1016_j_isci_2025_111979 crossref_primary_10_1177_1535370220985808 crossref_primary_10_1016_j_semcdb_2022_03_012 crossref_primary_10_1093_nar_gkaa124 crossref_primary_10_1186_s43556_023_00115_5 crossref_primary_10_1016_j_omtm_2020_04_015 crossref_primary_10_1038_s41587_023_01915_4 crossref_primary_10_1038_s42003_021_02406_5 crossref_primary_10_15252_msb_20209475 crossref_primary_10_1182_blood_2022015825 crossref_primary_10_1002_biot_202300321 crossref_primary_10_1007_s12033_022_00639_1 crossref_primary_10_1111_pbi_13712 crossref_primary_10_1038_s41587_020_0561_9 crossref_primary_10_1038_s41467_019_09983_4 crossref_primary_10_1016_j_tig_2024_12_001 crossref_primary_10_1093_nar_gkac799 crossref_primary_10_1016_j_cobme_2023_100489 crossref_primary_10_1111_pbi_13716 crossref_primary_10_1021_acssynbio_3c00229 crossref_primary_10_1016_j_omtn_2023_02_011 crossref_primary_10_15252_embj_2019102169 crossref_primary_10_1038_s41576_024_00786_y crossref_primary_10_1360_nso_20230030 crossref_primary_10_1038_s41587_021_00938_z crossref_primary_10_1007_s11248_021_00238_x crossref_primary_10_3390_ijms20236041 crossref_primary_10_1038_s41467_021_21559_9 crossref_primary_10_3390_ijms24055026 crossref_primary_10_1016_j_jcyt_2024_06_002 crossref_primary_10_1002_advs_202309004 crossref_primary_10_1074_jbc_REV120_014405 crossref_primary_10_1016_j_cobme_2023_100472 crossref_primary_10_1016_j_jgg_2024_10_006 crossref_primary_10_1038_s12276_020_0466_1 crossref_primary_10_1371_journal_pone_0257537 crossref_primary_10_1002_cbic_202000838 crossref_primary_10_1055_s_0044_1790558 crossref_primary_10_1016_j_cpcardiol_2023_101692 crossref_primary_10_3390_cells9040953 crossref_primary_10_1002_ange_201900788 crossref_primary_10_1038_s41588_021_00838_7 crossref_primary_10_1038_s41596_023_00837_4 crossref_primary_10_1016_j_sbi_2023_102628 crossref_primary_10_1007_s10142_024_01364_5 crossref_primary_10_1038_s41467_021_25190_6 crossref_primary_10_1016_j_neuron_2023_04_021 crossref_primary_10_1111_pbi_13732 crossref_primary_10_1080_10409238_2021_1937928 crossref_primary_10_1038_s41592_022_01399_1 crossref_primary_10_1002_1873_3468_13719 crossref_primary_10_1007_s10126_022_10125_z crossref_primary_10_1016_j_drudis_2022_103375 crossref_primary_10_1021_acssynbio_4c00103 crossref_primary_10_1111_raq_12538 crossref_primary_10_1038_s41467_021_26518_y crossref_primary_10_54133_ajms_v6i1_503 crossref_primary_10_1038_s41576_022_00459_8 crossref_primary_10_1126_science_add8643 crossref_primary_10_3390_genes13081327 crossref_primary_10_1038_s41589_022_01163_8 crossref_primary_10_1113_EP090436 crossref_primary_10_1039_D4PY00298A crossref_primary_10_1016_j_cell_2021_12_021 crossref_primary_10_1038_s41467_023_40701_3 crossref_primary_10_1016_j_pharmthera_2024_108720 crossref_primary_10_1002_jcp_30064 crossref_primary_10_1016_j_jbc_2024_108113 crossref_primary_10_1016_j_vph_2019_02_004 crossref_primary_10_3390_ijms222111753 crossref_primary_10_1038_s41576_021_00382_4 crossref_primary_10_2174_1566523223666221118160932 crossref_primary_10_1016_j_omtm_2021_11_002 crossref_primary_10_1016_j_synbio_2020_08_003 crossref_primary_10_1016_j_ymthe_2021_10_001 crossref_primary_10_1016_j_ymthe_2021_10_002 crossref_primary_10_1093_procel_pwad014 crossref_primary_10_3390_cells9071608 crossref_primary_10_1038_s41587_021_01105_0 crossref_primary_10_1021_acschembio_2c00836 crossref_primary_10_1093_nar_gkad687 crossref_primary_10_1002_biot_202100239 crossref_primary_10_1007_s11627_021_10184_2 crossref_primary_10_1038_s41569_021_00669_3 crossref_primary_10_3390_ijms241814057 crossref_primary_10_1186_s12859_021_04034_6 crossref_primary_10_3390_cells12030440 crossref_primary_10_1021_acs_chemrev_3c00878 crossref_primary_10_3390_jcm10030513 crossref_primary_10_34133_2020_9350905 crossref_primary_10_1016_j_bbcan_2024_189233 crossref_primary_10_3390_diagnostics12010207 crossref_primary_10_1016_j_bioactmat_2025_02_007 crossref_primary_10_1016_j_sbi_2024_102952 crossref_primary_10_1111_raq_12591 crossref_primary_10_1093_nar_gkad456 crossref_primary_10_1016_j_addr_2020_10_014 crossref_primary_10_1128_spectrum_02321_21 crossref_primary_10_1172_JCI162809 crossref_primary_10_1038_s41467_020_15796_7 crossref_primary_10_1038_s41556_021_00671_4 crossref_primary_10_1016_j_cobme_2024_100550 crossref_primary_10_1007_s11864_023_01140_w crossref_primary_10_1016_j_gde_2020_12_005 crossref_primary_10_1016_j_cell_2019_11_030 crossref_primary_10_1089_hum_2019_29101_trf crossref_primary_10_1016_j_addr_2022_114562 crossref_primary_10_1016_j_cej_2022_134992 crossref_primary_10_1016_j_ymthe_2024_01_028 crossref_primary_10_1111_bcp_14918 crossref_primary_10_1016_j_biotechadv_2021_107732 crossref_primary_10_1021_acssynbio_3c00299 crossref_primary_10_1002_adma_202307499 crossref_primary_10_1016_j_ymeth_2021_03_015 crossref_primary_10_1016_j_hemonc_2021_02_001 crossref_primary_10_1016_j_ymeth_2021_03_014 crossref_primary_10_1016_j_ymeth_2021_03_013 crossref_primary_10_1016_j_jconrel_2021_11_032 crossref_primary_10_3390_ijms22189872 crossref_primary_10_1021_acs_biochem_9b00573 crossref_primary_10_1016_j_ymthe_2021_04_003 crossref_primary_10_1038_s41573_020_0084_6 crossref_primary_10_3390_genes16010077 crossref_primary_10_1016_j_omtm_2021_11_010 crossref_primary_10_1101_gr_277261_122 crossref_primary_10_1016_j_tplants_2019_09_006 crossref_primary_10_7554_eLife_89782_2 crossref_primary_10_1016_j_gpb_2022_06_005 crossref_primary_10_1021_acssynbio_3c00045 crossref_primary_10_1038_s41580_020_0243_y crossref_primary_10_1073_pnas_2113747118 crossref_primary_10_1016_j_cbpa_2021_03_004 crossref_primary_10_3389_fpls_2020_00056 crossref_primary_10_1093_nar_gkad1125 crossref_primary_10_1016_j_biotechadv_2024_108473 crossref_primary_10_1523_ENEURO_0419_19_2020 crossref_primary_10_1016_j_ymthe_2020_07_021 crossref_primary_10_1098_rsob_190229 crossref_primary_10_1063_5_0244026 crossref_primary_10_1002_2211_5463_13292 crossref_primary_10_1016_j_blre_2024_101185 crossref_primary_10_1016_j_jmb_2024_168836 crossref_primary_10_1089_crispr_2023_0078 crossref_primary_10_3390_ijms21249604 crossref_primary_10_1038_s42003_024_07078_5 crossref_primary_10_1080_13816810_2023_2270554 crossref_primary_10_1016_j_addr_2024_115359 crossref_primary_10_1007_s42994_019_00010_0 crossref_primary_10_1016_j_ymthe_2022_11_014 crossref_primary_10_3390_genes14040908 crossref_primary_10_3389_fgene_2023_1273994 crossref_primary_10_3389_fbioe_2020_00905 crossref_primary_10_1515_hsz_2023_0174 crossref_primary_10_1186_s13059_019_1839_4 crossref_primary_10_1016_j_jgg_2021_05_001 crossref_primary_10_3389_fanim_2024_1368155 crossref_primary_10_7555_JBR_34_20200096 crossref_primary_10_1016_j_biomaterials_2021_121252 crossref_primary_10_1159_000520965 crossref_primary_10_1002_cbic_202000408 crossref_primary_10_1186_s13059_024_03358_9 crossref_primary_10_3390_ijms21113903 crossref_primary_10_1002_nadc_20204100164 crossref_primary_10_1002_advs_202309767 crossref_primary_10_1016_j_addr_2024_115346 crossref_primary_10_1002_jgm_3377 crossref_primary_10_1002_wrna_1731 crossref_primary_10_1089_hum_2024_073 crossref_primary_10_1182_blood_2022016629 crossref_primary_10_1038_s41598_023_42174_2 crossref_primary_10_1038_s41467_022_30780_z crossref_primary_10_1089_hum_2023_059 crossref_primary_10_1096_fj_202001065RRR crossref_primary_10_1016_j_stem_2019_05_008 crossref_primary_10_1016_j_synbio_2025_02_001 crossref_primary_10_1089_hum_2023_055 crossref_primary_10_1038_s41556_019_0424_0 crossref_primary_10_1038_s42003_022_04258_z crossref_primary_10_3389_fpls_2024_1477894 crossref_primary_10_1038_s41569_022_00804_8 crossref_primary_10_2174_1574888X18666230307115326 crossref_primary_10_2217_pgs_2020_0104 crossref_primary_10_1016_j_tig_2021_04_013 crossref_primary_10_1093_nar_gkaa194 crossref_primary_10_1038_s41467_019_11562_6 crossref_primary_10_1080_15476286_2021_1983288 crossref_primary_10_1186_s12284_019_0355_1 crossref_primary_10_1038_s41467_022_28300_0 crossref_primary_10_3390_ijms23179862 crossref_primary_10_1038_s41467_024_45909_5 crossref_primary_10_1038_s41477_019_0461_5 crossref_primary_10_1016_j_bios_2022_114712 crossref_primary_10_1126_sciadv_abc2315 crossref_primary_10_1038_s41556_020_0518_8 crossref_primary_10_3389_fimmu_2020_611638 crossref_primary_10_3389_fgeed_2020_00002 crossref_primary_10_1016_j_crbiot_2023_100127 crossref_primary_10_1186_s13287_023_03394_5 crossref_primary_10_1038_s41589_022_01034_2 crossref_primary_10_1016_j_nmd_2022_08_001 crossref_primary_10_1002_mco2_672 crossref_primary_10_1093_nar_gkab052 crossref_primary_10_1016_j_imlet_2022_03_005 crossref_primary_10_1038_s41598_020_62723_3 crossref_primary_10_1016_j_tins_2023_02_005 crossref_primary_10_1038_s41576_020_00298_5 crossref_primary_10_1042_ETLS20180148 crossref_primary_10_1042_ETLS20180147 crossref_primary_10_1016_j_omtn_2024_102257 crossref_primary_10_37489_2588_0527_2024_2_29_36 crossref_primary_10_1101_cshperspect_a041229 crossref_primary_10_1007_s13311_021_01081_y crossref_primary_10_1042_ETLS20180144 crossref_primary_10_1089_crispr_2019_29079_mji crossref_primary_10_1038_s41467_022_29365_7 crossref_primary_10_1002_jimd_12270 crossref_primary_10_1007_s13205_023_03901_8 crossref_primary_10_1016_j_lssr_2022_08_006 crossref_primary_10_1016_j_mmm_2020_10_001 crossref_primary_10_1016_j_omtn_2020_03_005 crossref_primary_10_1038_s41568_020_0275_9 crossref_primary_10_1089_hum_2024_043 crossref_primary_10_1016_j_stem_2020_01_019 crossref_primary_10_1016_j_bbcan_2020_188378 crossref_primary_10_1038_s41525_024_00397_w crossref_primary_10_1038_s41467_023_36004_2 crossref_primary_10_7554_eLife_55780 crossref_primary_10_1186_s40364_024_00618_5 crossref_primary_10_1016_j_jhep_2021_05_013 crossref_primary_10_1038_s41467_020_19690_0 crossref_primary_10_1016_j_tig_2020_09_001 crossref_primary_10_1186_s13578_023_01021_7 crossref_primary_10_1016_j_addr_2020_11_002 crossref_primary_10_1038_s41433_020_1105_8 crossref_primary_10_1038_s41587_019_0134_y crossref_primary_10_1016_j_ymthe_2020_06_029 crossref_primary_10_1016_j_ymthe_2023_06_007 crossref_primary_10_3389_fgeed_2023_1272678 crossref_primary_10_1038_s41588_024_01682_1 crossref_primary_10_1016_j_stemcr_2021_02_013 crossref_primary_10_1038_s41576_021_00327_x crossref_primary_10_1002_1878_0261_13272 crossref_primary_10_3389_fimmu_2022_966084 crossref_primary_10_1038_s41467_020_20810_z crossref_primary_10_1038_s41587_023_01994_3 crossref_primary_10_3389_fgeed_2020_612137 crossref_primary_10_1016_j_omtn_2021_11_023 crossref_primary_10_1021_acs_biochem_9b00046 crossref_primary_10_1016_j_isci_2020_101478 crossref_primary_10_1186_s13073_021_00857_3 crossref_primary_10_1016_j_engmed_2024_100035 crossref_primary_10_7554_eLife_95514 crossref_primary_10_1038_s41576_021_00436_7 crossref_primary_10_1007_s12298_024_01534_6 crossref_primary_10_1038_s41467_022_29550_8 crossref_primary_10_1093_nar_gkad266 crossref_primary_10_1016_j_xjidi_2023_100191 crossref_primary_10_1002_adtp_202100040 crossref_primary_10_1016_j_ymthe_2020_05_001 crossref_primary_10_51847_Usni3JotHd crossref_primary_10_3389_fgene_2023_1087267 crossref_primary_10_2147_TCRM_S386923 crossref_primary_10_1007_s00294_021_01211_1 crossref_primary_10_1007_s12038_020_00094_7 crossref_primary_10_1002_cbf_70044 crossref_primary_10_61186_JCT_14_3_241 crossref_primary_10_3390_v13112258 crossref_primary_10_1080_14712598_2020_1817375 crossref_primary_10_1126_sciadv_abg4910 crossref_primary_10_1038_s43856_023_00286_w crossref_primary_10_3390_genes10110837 crossref_primary_10_1007_s00125_019_4908_z crossref_primary_10_1021_acs_nanolett_1c01973 crossref_primary_10_1161_CIRCRESAHA_122_320496 crossref_primary_10_1038_s41467_020_14620_6 crossref_primary_10_3390_ijms252312514 crossref_primary_10_5483_BMBRep_2023_0086 crossref_primary_10_3389_fgene_2023_1204585 crossref_primary_10_1038_s41467_020_16632_8 crossref_primary_10_1002_cbin_11972 crossref_primary_10_1177_0023677221993895 crossref_primary_10_3390_agriculture13020298 crossref_primary_10_1038_s41573_019_0012_9 crossref_primary_10_1016_j_ajhg_2024_03_004 crossref_primary_10_1080_13816810_2019_1692359 crossref_primary_10_34133_2021_9898769 crossref_primary_10_1038_s41592_021_01172_w crossref_primary_10_1093_nar_gkae174 crossref_primary_10_1002_wnan_1938 crossref_primary_10_1186_s12929_024_01054_1 crossref_primary_10_2174_1566523220666201214115024 crossref_primary_10_1038_s41467_020_16643_5 crossref_primary_10_1016_j_jconrel_2020_09_003 crossref_primary_10_1038_s41587_023_01821_9 crossref_primary_10_1016_j_ymthe_2020_09_025 crossref_primary_10_1038_s41434_020_0181_5 crossref_primary_10_3390_biology10060530 crossref_primary_10_1038_s41467_023_39632_w crossref_primary_10_1016_j_omtn_2024_102201 crossref_primary_10_1094_PHYTO_08_20_0322_IA crossref_primary_10_1016_j_omtn_2025_102501 crossref_primary_10_1093_hmg_ddad105 crossref_primary_10_15835_nbha50312388 crossref_primary_10_1016_j_cell_2022_03_045 crossref_primary_10_1002_ame2_12080 crossref_primary_10_1038_s41587_023_01758_z crossref_primary_10_3390_genes10030235 crossref_primary_10_1016_j_xpro_2024_103189 crossref_primary_10_1111_pbi_13399 crossref_primary_10_1002_advs_201902312 crossref_primary_10_1038_s41596_021_00552_y crossref_primary_10_3390_agronomy12030565 crossref_primary_10_3389_fmed_2021_774618 crossref_primary_10_1126_science_aaw7166 crossref_primary_10_1089_hum_2021_283 crossref_primary_10_3390_cells13141214 crossref_primary_10_1007_s11248_021_00253_y crossref_primary_10_1016_j_pbi_2021_102006 crossref_primary_10_3389_fgeed_2023_1034720 crossref_primary_10_1002_eji_202048712 crossref_primary_10_1021_acssynbio_9b00297 crossref_primary_10_3389_fonc_2023_1236038 crossref_primary_10_1016_j_omtn_2022_04_032 crossref_primary_10_1038_s41589_021_00880_w crossref_primary_10_3390_biom10050734 crossref_primary_10_1007_s00281_021_00902_8 crossref_primary_10_1039_D2CC03664A crossref_primary_10_1089_crispr_2021_0124 crossref_primary_10_1016_j_csbj_2022_12_055 crossref_primary_10_1016_j_omtn_2022_04_033 crossref_primary_10_1038_s41433_024_03441_2 crossref_primary_10_1093_icb_icaa023 crossref_primary_10_3389_fimmu_2022_960348 crossref_primary_10_1016_j_tibtech_2020_06_010 crossref_primary_10_1038_s41576_020_0261_9 crossref_primary_10_1038_s41589_023_01531_y crossref_primary_10_3389_fpls_2022_860281 crossref_primary_10_1089_hum_2022_090 crossref_primary_10_1002_advs_202305311 crossref_primary_10_3389_fpls_2020_577980 crossref_primary_10_1016_j_jmb_2023_168120 crossref_primary_10_1016_j_omtm_2024_101250 crossref_primary_10_1016_j_mec_2020_e00135 crossref_primary_10_1021_acscentsci_3c00289 crossref_primary_10_1016_j_lfs_2022_121204 crossref_primary_10_1146_annurev_genet_030723_120717 crossref_primary_10_1515_revneuro_2020_0152 crossref_primary_10_1097_JBR_0000000000000060 crossref_primary_10_3390_genes11090976 crossref_primary_10_1016_j_jbior_2023_100993 crossref_primary_10_1038_s41467_024_48111_9 crossref_primary_10_1038_s41587_020_0412_8 crossref_primary_10_3390_plants11081052 crossref_primary_10_1007_s13237_024_00473_7 crossref_primary_10_1038_s41591_020_0790_y crossref_primary_10_1016_j_celrep_2024_114313 crossref_primary_10_1242_dmm_050088 crossref_primary_10_1038_s41467_020_19136_7 crossref_primary_10_1089_crispr_2021_0143 crossref_primary_10_1016_j_ymthe_2023_02_001 crossref_primary_10_1089_crispr_2023_0033 crossref_primary_10_1007_s12038_023_00413_8 crossref_primary_10_1038_s41596_020_00431_y crossref_primary_10_1089_nat_2022_0037 crossref_primary_10_3390_jcm11041061 crossref_primary_10_1016_j_jgg_2023_08_001 crossref_primary_10_1038_s41596_023_00877_w crossref_primary_10_1016_j_cels_2023_03_007 crossref_primary_10_3389_fcvm_2022_889519 crossref_primary_10_1002_ijch_202300152 crossref_primary_10_3389_fgene_2023_1085024 crossref_primary_10_1161_CIRCRESAHA_120_318674 crossref_primary_10_1089_crispr_2023_0026 crossref_primary_10_1080_14712598_2022_2049229 crossref_primary_10_3390_pharmaceutics12080767 crossref_primary_10_1016_j_tibtech_2020_06_008 crossref_primary_10_1016_j_apsb_2022_12_013 crossref_primary_10_3389_fgeed_2022_852867 crossref_primary_10_1016_j_synbio_2025_03_007 crossref_primary_10_1038_s41586_019_1161_z crossref_primary_10_1186_s43170_022_00111_9 crossref_primary_10_1016_j_bbiosy_2023_100073 crossref_primary_10_1038_s41580_023_00697_6 crossref_primary_10_5483_BMBRep_2020_53_7_070 crossref_primary_10_1186_s13059_023_02987_w crossref_primary_10_1016_j_molcel_2023_10_033 crossref_primary_10_1002_chem_202101985 crossref_primary_10_1007_s40257_021_00626_3 crossref_primary_10_1038_s41587_024_02430_w crossref_primary_10_1089_hum_2021_013 crossref_primary_10_1016_j_yexcr_2021_112844 crossref_primary_10_1002_advs_202410237 crossref_primary_10_1007_s11816_022_00749_x crossref_primary_10_1021_acs_jafc_2c08583 crossref_primary_10_1161_CIRCULATIONAHA_123_065624 crossref_primary_10_1021_acssynbio_0c00627 crossref_primary_10_1186_s12870_024_04786_2 crossref_primary_10_1089_hum_2020_231 crossref_primary_10_1021_acs_molpharmaceut_2c00653 crossref_primary_10_1128_aem_02455_24 crossref_primary_10_1186_s13578_024_01216_6 crossref_primary_10_1089_crispr_2023_0005 crossref_primary_10_1080_00207454_2020_1740218 crossref_primary_10_1089_crispr_2023_0002 crossref_primary_10_1038_s41587_023_01756_1 crossref_primary_10_3390_v13071288 crossref_primary_10_1007_s00299_024_03346_0 crossref_primary_10_1007_s11033_021_06479_7 crossref_primary_10_1089_cell_2023_0094 crossref_primary_10_15283_ijsc23030 crossref_primary_10_3390_ijms24065798 crossref_primary_10_1016_j_addr_2023_115026 crossref_primary_10_3389_fgeed_2021_737632 crossref_primary_10_1002_ame2_12069 crossref_primary_10_1016_j_cell_2023_03_035 crossref_primary_10_1038_s41392_023_01309_7 crossref_primary_10_1038_s41598_022_13688_y crossref_primary_10_1016_j_tips_2021_10_012 crossref_primary_10_1089_crispr_2021_0063 crossref_primary_10_1038_s41587_022_01532_7 crossref_primary_10_1016_j_jid_2019_07_701 crossref_primary_10_1089_crispr_2021_0065 crossref_primary_10_1038_s41684_020_0510_8 crossref_primary_10_1016_j_biomaterials_2023_122328 crossref_primary_10_1093_nar_gkae1217 crossref_primary_10_3390_ijms241210266 crossref_primary_10_1016_j_theriogenology_2022_11_044 crossref_primary_10_1089_genbio_2022_0015 crossref_primary_10_1038_s41467_020_16542_9 crossref_primary_10_15283_ijsc22171 crossref_primary_10_7759_cureus_64324 crossref_primary_10_3389_fpls_2022_868027 crossref_primary_10_1038_s41586_021_03609_w crossref_primary_10_1001_jamaophthalmol_2020_6418 crossref_primary_10_1093_plcell_koab099 crossref_primary_10_1038_s41467_022_31322_3 crossref_primary_10_1038_s41573_023_00809_z crossref_primary_10_1097_WCO_0000000000000978 crossref_primary_10_3389_fimmu_2020_01965 crossref_primary_10_1021_jacs_1c11269 crossref_primary_10_1038_d41586_019_03536_x crossref_primary_10_1007_s44281_024_00053_4 crossref_primary_10_1038_s41576_019_0167_6 crossref_primary_10_1007_s00395_020_00839_3 crossref_primary_10_1038_s41467_024_45969_7 crossref_primary_10_1038_s41593_023_01499_x crossref_primary_10_1038_s41467_019_12829_8 crossref_primary_10_1016_j_cell_2020_05_037 crossref_primary_10_1016_j_envpol_2023_122458 crossref_primary_10_3389_fgeed_2021_630600 crossref_primary_10_1089_crispr_2019_0001 crossref_primary_10_1242_dmm_039321 crossref_primary_10_3390_ijms232012375 crossref_primary_10_1089_hum_2020_166 crossref_primary_10_1079_cabireviews_2025_0003 crossref_primary_10_1016_j_ggedit_2021_100005 crossref_primary_10_1016_j_cobme_2023_100514 crossref_primary_10_1155_2020_2907623 crossref_primary_10_3390_ijms24108623 crossref_primary_10_1096_fj_201901587R crossref_primary_10_3390_ijms22073327 crossref_primary_10_1016_j_cobme_2023_100506 crossref_primary_10_3390_cells9010112 crossref_primary_10_1186_s42483_024_00289_y crossref_primary_10_1016_j_psj_2022_102174 crossref_primary_10_1016_j_preteyeres_2022_101065 crossref_primary_10_1016_j_ygeno_2021_09_001 crossref_primary_10_1016_j_ymthe_2022_07_010 crossref_primary_10_1016_j_jgg_2022_03_007 crossref_primary_10_1002_1873_3468_13668 crossref_primary_10_3390_ijms24119527 crossref_primary_10_1089_crispr_2021_0095 crossref_primary_10_1016_j_gfs_2024_100785 crossref_primary_10_1016_j_molcel_2020_08_009 crossref_primary_10_1007_s11427_023_2384_9 crossref_primary_10_1631_jzus_B2000282 crossref_primary_10_1002_bit_27121 crossref_primary_10_1016_j_molp_2019_06_009 crossref_primary_10_3390_ijms23042276 crossref_primary_10_1038_s41587_020_0527_y crossref_primary_10_1038_s41467_020_19730_9 crossref_primary_10_1186_s12915_020_00879_0 crossref_primary_10_1038_s41598_021_87669_y crossref_primary_10_1016_j_jgg_2019_11_003 crossref_primary_10_1590_1984_3143_ar2023_0089 crossref_primary_10_3390_ijms23031145 crossref_primary_10_1007_s13237_024_00470_w crossref_primary_10_1038_s41467_024_49343_5 crossref_primary_10_1016_j_preteyeres_2020_100861 crossref_primary_10_3390_jcm10030482 crossref_primary_10_3389_fgeed_2022_937879 crossref_primary_10_1007_s42764_021_00035_0 crossref_primary_10_1038_s41419_020_2244_3 crossref_primary_10_1021_acssynbio_0c00445 crossref_primary_10_1146_annurev_neuro_030520_101844 crossref_primary_10_3389_fmed_2022_859930 crossref_primary_10_1038_s41587_024_02313_0 crossref_primary_10_3390_ijms22020857 crossref_primary_10_1089_hum_2021_191 crossref_primary_10_1038_s41587_020_0491_6 crossref_primary_10_1016_j_jgg_2019_11_005 crossref_primary_10_1016_j_sbi_2021_02_005 crossref_primary_10_1016_j_ymthe_2020_04_009 crossref_primary_10_3389_fgeed_2022_901444 crossref_primary_10_1016_j_addr_2020_05_001 crossref_primary_10_3389_fbioe_2022_924914 crossref_primary_10_3389_fnins_2020_579062 crossref_primary_10_1093_nar_gkab541 crossref_primary_10_1172_JCI136873 crossref_primary_10_1038_s41467_023_36887_1 crossref_primary_10_1084_jem_20190607 crossref_primary_10_3390_biomedicines12061284 crossref_primary_10_1093_jxb_eraa466 crossref_primary_10_1038_s41467_021_27183_x crossref_primary_10_1038_s41467_021_22295_w crossref_primary_10_1093_nar_gkaa215 crossref_primary_10_1021_acs_biochem_2c00340 crossref_primary_10_1016_j_celrep_2020_107723 crossref_primary_10_1021_acssynbio_4c00407 crossref_primary_10_1079_cabireviews202217039 crossref_primary_10_3390_plants11192494 crossref_primary_10_1186_s13059_021_02563_0 crossref_primary_10_1016_j_tplants_2021_06_015 crossref_primary_10_1016_j_molcel_2023_06_009 crossref_primary_10_1126_science_aax7063 crossref_primary_10_1021_acssynbio_0c00226 crossref_primary_10_1016_j_ymthe_2022_08_008 crossref_primary_10_3389_fbioe_2019_00026 crossref_primary_10_3389_fgeed_2021_673566 crossref_primary_10_1038_s41551_019_0501_5 crossref_primary_10_1038_s41576_019_0110_x crossref_primary_10_1038_s41587_019_0119_x crossref_primary_10_1093_humrep_dez162 crossref_primary_10_1186_s12943_022_01518_8 crossref_primary_10_1186_s12915_020_00866_5 crossref_primary_10_1016_j_ymthe_2023_01_028 crossref_primary_10_1038_s41551_021_00706_z crossref_primary_10_1093_nsr_nwy150 crossref_primary_10_3390_ijms25020705 crossref_primary_10_3390_biom11040611 crossref_primary_10_1016_j_omtm_2024_101229 crossref_primary_10_3389_fimmu_2025_1544532 crossref_primary_10_1038_s41586_019_1711_4 crossref_primary_10_1038_s41587_024_02324_x crossref_primary_10_1016_j_tig_2020_05_006 crossref_primary_10_1021_acs_jafc_1c00104 crossref_primary_10_1016_j_dnarep_2021_103257 crossref_primary_10_1016_j_ccr_2023_215172 crossref_primary_10_1128_spectrum_03760_22 crossref_primary_10_1098_rsif_2020_0154 crossref_primary_10_3389_fbioe_2019_00031 crossref_primary_10_1021_acs_biochem_4c00649 crossref_primary_10_1038_s41587_020_0414_6 crossref_primary_10_1038_s41563_019_0385_5 crossref_primary_10_1007_s00018_019_03205_2 crossref_primary_10_1016_j_gendis_2018_11_005 crossref_primary_10_1016_j_cell_2020_03_023 crossref_primary_10_1016_j_molcel_2021_02_007 crossref_primary_10_1016_j_ymthe_2020_11_009 crossref_primary_10_1016_j_cell_2023_01_026 crossref_primary_10_1007_s00281_021_00887_4 crossref_primary_10_1101_gr_250720_119 crossref_primary_10_1002_ijch_202200056 crossref_primary_10_1007_s00114_021_01782_6 crossref_primary_10_1007_s11684_023_1013_y crossref_primary_10_1016_j_ymthe_2020_01_005 crossref_primary_10_1146_annurev_chembioeng_101420_014055 crossref_primary_10_3390_cimb45020059 crossref_primary_10_3390_ijms21103604 crossref_primary_10_1002_advs_202405628 crossref_primary_10_1007_s12038_021_00138_6 crossref_primary_10_1016_j_preteyeres_2021_100975 crossref_primary_10_1016_j_ymthe_2020_05_024 crossref_primary_10_1016_j_jdermsci_2021_11_004 crossref_primary_10_3389_fimmu_2021_642343 crossref_primary_10_1021_acssynbio_4c00686 crossref_primary_10_1038_s41573_020_0083_7 crossref_primary_10_1038_s41587_023_01927_0 crossref_primary_10_1111_imr_13305 crossref_primary_10_1093_nsr_nwad143 crossref_primary_10_1134_S0006297924060026 crossref_primary_10_3390_ijms21197353 crossref_primary_10_1007_s43538_022_00100_6 crossref_primary_10_1093_nar_gkac201 crossref_primary_10_1007_s11427_019_1572_7 crossref_primary_10_1089_crispr_2020_0035 crossref_primary_10_1002_advs_202102021 crossref_primary_10_1038_s41467_021_26461_y crossref_primary_10_1007_s10265_022_01409_5 crossref_primary_10_1038_s41576_019_0191_6 crossref_primary_10_1089_crispr_2022_0084 crossref_primary_10_1073_pnas_2004831117 crossref_primary_10_7554_eLife_95514_3 crossref_primary_10_1089_hum_2024_020 crossref_primary_10_7554_eLife_89782 crossref_primary_10_1007_s12045_020_1088_6 crossref_primary_10_3389_fgene_2020_592623 crossref_primary_10_1016_j_drudis_2023_103793 crossref_primary_10_1007_s11010_022_04518_w crossref_primary_10_1016_j_molcel_2021_12_026 crossref_primary_10_1016_j_tibtech_2021_03_010 crossref_primary_10_1002_ggn2_10038 crossref_primary_10_1007_s13238_022_00913_7 crossref_primary_10_1038_s41375_024_02444_y crossref_primary_10_1093_nar_gkad995 crossref_primary_10_1016_j_eng_2024_10_019 crossref_primary_10_1002_mco2_155 crossref_primary_10_15835_nbha50212678 crossref_primary_10_3389_fncel_2020_00183 crossref_primary_10_1016_j_jbc_2022_102103 crossref_primary_10_1089_genbio_2021_0010 crossref_primary_10_1038_s41421_023_00624_1 crossref_primary_10_1038_s41467_024_48336_8 crossref_primary_10_1007_s00438_021_01769_y crossref_primary_10_1515_medgen_2020_2021 crossref_primary_10_3390_cells11030460 crossref_primary_10_1038_s41587_024_02394_x crossref_primary_10_1089_crispr_2020_0095 crossref_primary_10_1186_s12870_021_02907_9 crossref_primary_10_1016_j_lfs_2024_123144 crossref_primary_10_1080_17460441_2020_1718100 crossref_primary_10_1146_annurev_biochem_052521_013938 crossref_primary_10_1126_science_aba8853 crossref_primary_10_3389_fendo_2020_576632 crossref_primary_10_1126_sciadv_aba1773 crossref_primary_10_1016_j_jtha_2024_04_020 crossref_primary_10_1016_j_cell_2023_02_027 crossref_primary_10_1016_j_stemcr_2019_12_013 crossref_primary_10_3389_fcell_2023_1158373 crossref_primary_10_1016_j_transci_2021_103060 crossref_primary_10_1128_msphere_00594_22 crossref_primary_10_1038_s43586_021_00093_4 crossref_primary_10_1038_s41596_020_0361_1 crossref_primary_10_1038_s41551_019_0357_8 crossref_primary_10_1002_cpmb_129 crossref_primary_10_1007_s12519_024_00843_w crossref_primary_10_1007_s40778_020_00173_3 crossref_primary_10_1021_acs_biochem_8b01202 crossref_primary_10_1038_s41587_024_02437_3 crossref_primary_10_1007_s00299_022_02830_9 crossref_primary_10_1016_j_molcel_2024_01_021 crossref_primary_10_3390_cells9081786 crossref_primary_10_3390_ijms23179809 crossref_primary_10_3390_ijms232315276 crossref_primary_10_3390_cells13171508 crossref_primary_10_1007_s11627_021_10187_z crossref_primary_10_3390_v14010004 crossref_primary_10_1089_crispr_2019_0017 crossref_primary_10_3389_fpls_2021_664997 crossref_primary_10_1021_acs_chemrev_4c00761 crossref_primary_10_3390_v13010141 crossref_primary_10_1038_s41571_024_00959_y crossref_primary_10_3389_fgene_2021_627714 crossref_primary_10_1007_s00439_022_02446_9 crossref_primary_10_1016_j_bja_2024_11_040 crossref_primary_10_1093_ckj_sfae119 crossref_primary_10_1016_j_chembiol_2023_05_006 crossref_primary_10_1016_j_jmb_2024_168714 crossref_primary_10_1016_j_ymeth_2019_02_022 crossref_primary_10_1016_j_cellin_2022_100067 crossref_primary_10_1007_s11033_021_06926_5 crossref_primary_10_1002_fbe2_70002 crossref_primary_10_1016_j_biotechadv_2020_107676 crossref_primary_10_1371_journal_pbio_3002071 crossref_primary_10_1186_s12915_020_00929_7 crossref_primary_10_1016_j_cobme_2020_100252 crossref_primary_10_1038_s41591_019_0346_1 crossref_primary_10_1016_j_ymthe_2021_09_027 crossref_primary_10_1186_s13059_021_02304_3 crossref_primary_10_1038_s41467_023_41048_5 crossref_primary_10_1016_j_stemcr_2024_08_003 crossref_primary_10_15212_bioi_2022_0018 crossref_primary_10_1021_acs_jafc_4c01650 crossref_primary_10_1182_blood_2021011993 crossref_primary_10_1016_j_ijbiomac_2024_132474 crossref_primary_10_1007_s11427_023_2468_y crossref_primary_10_3389_fgene_2020_00731 crossref_primary_10_1038_s41576_024_00720_2 crossref_primary_10_3390_ijms24087029 crossref_primary_10_1101_gr_255414_119 crossref_primary_10_3390_ijms21030777 crossref_primary_10_1002_anie_201900788 crossref_primary_10_1158_0008_5472_CAN_21_2519 crossref_primary_10_1016_j_gendis_2023_101121 crossref_primary_10_1038_s41588_021_00861_8 crossref_primary_10_5483_BMBRep_2022_55_6_033 crossref_primary_10_1016_j_tig_2022_06_015 crossref_primary_10_1111_jipb_12793 crossref_primary_10_1016_j_omtn_2023_07_007 crossref_primary_10_1016_j_omtn_2019_06_024 crossref_primary_10_1021_acs_analchem_3c01809 crossref_primary_10_1038_s41596_021_00677_0 crossref_primary_10_1016_j_ymthe_2021_10_026 crossref_primary_10_1093_cvr_cvae136 crossref_primary_10_1186_s13287_022_03135_0 crossref_primary_10_1016_j_omtn_2024_102190 crossref_primary_10_1021_acs_chemrev_0c00928 crossref_primary_10_1007_s40778_022_00221_0 crossref_primary_10_1186_s12896_019_0504_z crossref_primary_10_1016_j_biomaterials_2022_121419 crossref_primary_10_1021_acs_jafc_1c05389 crossref_primary_10_1021_jacs_2c02633 crossref_primary_10_1021_acs_chemrev_3c00215 crossref_primary_10_3389_fgene_2021_615491 crossref_primary_10_26508_lsa_202201538 crossref_primary_10_3390_ijms24098144 crossref_primary_10_1016_j_ymthe_2025_01_011 crossref_primary_10_4049_jimmunol_1901468 crossref_primary_10_1016_j_ymthe_2021_08_019 crossref_primary_10_3390_cells13070596 crossref_primary_10_1021_acs_jafc_4c09392 crossref_primary_10_1038_s41592_024_02256_z crossref_primary_10_1038_s41576_022_00541_1 crossref_primary_10_1126_science_adn9409 crossref_primary_10_1016_j_jplph_2022_153740 crossref_primary_10_1016_j_molmed_2024_12_001 crossref_primary_10_1186_s43556_022_00095_y crossref_primary_10_1038_s42003_024_06848_5 crossref_primary_10_3390_v14030609 crossref_primary_10_1038_s12276_021_00609_8 crossref_primary_10_1093_nar_gkad598 crossref_primary_10_3389_fonc_2020_01387 crossref_primary_10_1016_j_omtn_2024_102183 crossref_primary_10_1016_j_omtn_2025_102482 crossref_primary_10_1038_s12276_024_01212_3 crossref_primary_10_1016_j_omtn_2025_102486 crossref_primary_10_3349_ymj_2022_63_2_105 crossref_primary_10_1016_j_jbc_2021_100909 crossref_primary_10_1089_hum_2023_115 crossref_primary_10_1016_j_ymthe_2025_01_042 crossref_primary_10_1038_s41587_022_01595_6 crossref_primary_10_1073_pnas_2010650118 crossref_primary_10_3389_fgeed_2024_1304110 crossref_primary_10_3390_ijms23179749 crossref_primary_10_3389_fgene_2022_911429 crossref_primary_10_1053_j_seminhematol_2020_07_004 crossref_primary_10_1146_annurev_bioeng_122019_121602 crossref_primary_10_3389_fbioe_2023_1335901 crossref_primary_10_1002_adfm_202011068 crossref_primary_10_1016_j_ymthe_2022_04_005 crossref_primary_10_1016_j_omtn_2021_05_012 crossref_primary_10_1007_s15010_020_01554_w crossref_primary_10_1126_scitranslmed_aay9101 crossref_primary_10_1038_s41573_022_00476_6 crossref_primary_10_15252_emmm_201809958 crossref_primary_10_3390_ijerph19116739 crossref_primary_10_3390_ijms242015310 crossref_primary_10_3390_ijms22010148 crossref_primary_10_1016_j_omtn_2024_102366 crossref_primary_10_3389_fgeed_2021_644319 crossref_primary_10_3390_genes10050387 crossref_primary_10_1016_j_ymthe_2025_01_031 crossref_primary_10_1016_j_tig_2023_02_014 crossref_primary_10_1038_s41467_024_45763_5 crossref_primary_10_1038_s41467_021_25217_y crossref_primary_10_1038_s41477_021_00991_1 crossref_primary_10_1093_jxb_erad175 crossref_primary_10_3389_fgene_2020_00528 crossref_primary_10_1038_s41422_019_0188_x crossref_primary_10_1007_s10530_019_02146_y crossref_primary_10_3390_cells12121555 crossref_primary_10_1002_pdi3_16 crossref_primary_10_1038_s41587_020_0609_x crossref_primary_10_3390_ijms25021267 crossref_primary_10_1007_s11427_023_2435_9 crossref_primary_10_1093_jxb_erae053 crossref_primary_10_1111_cpr_13808 crossref_primary_10_1097_JS9_0000000000001081 crossref_primary_10_1093_synbio_ysaa021 crossref_primary_10_2147_TACG_S273525 crossref_primary_10_1038_s41421_019_0128_4 crossref_primary_10_1016_j_isci_2021_102769 crossref_primary_10_1186_s12977_019_0486_x crossref_primary_10_1515_mr_2022_0029 crossref_primary_10_1038_s12276_021_00579_x crossref_primary_10_1080_19336934_2020_1832416 crossref_primary_10_1126_sciadv_aaz2309 crossref_primary_10_1016_j_addr_2024_115294 crossref_primary_10_3389_fmed_2021_649896 crossref_primary_10_1126_sciadv_abo0522 crossref_primary_10_1038_s41575_022_00729_0 crossref_primary_10_3390_cells11223615 crossref_primary_10_1182_bloodadvances_2020003702 crossref_primary_10_3390_ijms222010985 crossref_primary_10_1038_s41587_020_0509_0 crossref_primary_10_1038_s41596_020_00450_9 crossref_primary_10_1097_JBR_0000000000000140 crossref_primary_10_1002_adma_202414728 crossref_primary_10_1016_j_crmeth_2024_100776 crossref_primary_10_1111_joim_13055 crossref_primary_10_1038_s41587_020_0453_z crossref_primary_10_3389_fcell_2020_590581 crossref_primary_10_1007_s11481_019_09849_y crossref_primary_10_1016_j_molmed_2019_06_008 crossref_primary_10_1038_s41587_020_0573_5 crossref_primary_10_3390_cells11192964 crossref_primary_10_1038_s41588_024_01726_6 crossref_primary_10_1089_hum_2022_198 crossref_primary_10_1007_s11427_019_1559_y crossref_primary_10_1016_j_tplants_2020_05_008 crossref_primary_10_1038_s41587_020_0535_y crossref_primary_10_15252_emmm_202013228 crossref_primary_10_1016_j_molcel_2018_12_003 crossref_primary_10_1128_msphere_00523_24 crossref_primary_10_3389_fcell_2022_903812 crossref_primary_10_1186_s12864_022_08971_1 crossref_primary_10_1016_j_csbj_2022_07_046 crossref_primary_10_1016_j_omtn_2022_12_001 crossref_primary_10_1515_mr_2022_0044 crossref_primary_10_3389_fgeed_2021_745559 crossref_primary_10_1016_j_plaphy_2024_108511 crossref_primary_10_1016_j_preteyeres_2024_101323 crossref_primary_10_1038_s43018_020_00114_3 crossref_primary_10_1016_j_omtn_2023_102062 crossref_primary_10_1111_pbi_13278 crossref_primary_10_1186_s13059_020_01989_2 crossref_primary_10_1186_s13059_020_02137_6 crossref_primary_10_3389_fchem_2020_00178 crossref_primary_10_3389_fpls_2021_742932 crossref_primary_10_1038_s41467_020_18391_y crossref_primary_10_1186_s13059_022_02618_w crossref_primary_10_1016_j_preteyeres_2021_101038 crossref_primary_10_1261_rna_079519_122 crossref_primary_10_1038_s41467_023_35886_6 crossref_primary_10_1182_blood_2019003776 crossref_primary_10_1016_j_pbiomolbio_2022_05_001 crossref_primary_10_1038_s41525_021_00196_7 crossref_primary_10_3390_agronomy15030603 crossref_primary_10_1093_plphys_kiab591 crossref_primary_10_1186_s43042_024_00501_w crossref_primary_10_1093_femsre_fuae020 crossref_primary_10_5858_arpa_2022_0410_CP crossref_primary_10_1186_s13059_022_02836_2 crossref_primary_10_31857_S0320972524060023 crossref_primary_10_1038_s41467_024_49987_3 crossref_primary_10_1016_j_molcel_2020_06_012 crossref_primary_10_1016_j_cr_2019_08_001 crossref_primary_10_1038_s41551_022_00911_4 crossref_primary_10_1016_j_cub_2023_08_044 crossref_primary_10_1016_j_omtn_2022_12_020 crossref_primary_10_1007_s11427_020_1775_2 crossref_primary_10_1021_jacs_3c01145 crossref_primary_10_3390_ijms22115585 crossref_primary_10_1038_s41467_020_14465_z crossref_primary_10_1042_BST20200550 crossref_primary_10_3390_ijms24087651 crossref_primary_10_1038_s41598_020_77379_2 crossref_primary_10_1016_j_aquaculture_2023_740487 crossref_primary_10_3390_ijms23042303 crossref_primary_10_1007_s12274_024_6729_8 crossref_primary_10_1093_nar_gkab1295 crossref_primary_10_3389_fpls_2022_865848 crossref_primary_10_1007_s11427_024_2712_5 crossref_primary_10_1073_pnas_2210104119 crossref_primary_10_3390_cells11060984 crossref_primary_10_1038_s42003_022_03188_0 crossref_primary_10_3389_fimmu_2023_1111777 crossref_primary_10_3390_jcm14062040 crossref_primary_10_3390_ijms232113256 crossref_primary_10_1261_rna_080334_124 crossref_primary_10_1038_s41586_020_2477_4 crossref_primary_10_3390_v13071373 crossref_primary_10_15252_embj_2023114760 crossref_primary_10_1007_s42976_024_00610_7 crossref_primary_10_1126_science_adn5876 crossref_primary_10_1016_j_cell_2021_02_036 crossref_primary_10_1096_fj_202100123R crossref_primary_10_1016_j_omtn_2023_05_015 crossref_primary_10_1080_14737159_2019_1568242 crossref_primary_10_1038_s41587_023_01866_w crossref_primary_10_1038_s41434_022_00342_5 crossref_primary_10_1016_j_genrep_2024_101979 crossref_primary_10_1016_j_ymthe_2022_02_010 crossref_primary_10_1038_s12276_019_0339_7 crossref_primary_10_1016_j_tvjl_2024_106142 crossref_primary_10_1016_j_dnarep_2024_103734 crossref_primary_10_1089_crispr_2021_0036 crossref_primary_10_1186_s43556_023_00120_8 crossref_primary_10_3389_fbioe_2020_00146 crossref_primary_10_1089_crispr_2021_0039 crossref_primary_10_1038_s41587_022_01527_4 crossref_primary_10_1146_annurev_med_052318_100741 crossref_primary_10_1038_s41467_023_41331_5 crossref_primary_10_1093_hr_uhad155 crossref_primary_10_1016_j_metabol_2020_154461 crossref_primary_10_1016_j_preteyeres_2022_101132 crossref_primary_10_1096_fj_201900476RR crossref_primary_10_1016_j_neurot_2024_e00391 crossref_primary_10_1074_jbc_REV119_006132 crossref_primary_10_1111_pbi_13244 crossref_primary_10_15252_embj_2020104748 crossref_primary_10_3389_fnut_2021_751512 crossref_primary_10_1089_crispr_2018_0037 crossref_primary_10_1016_j_omtn_2022_11_021 crossref_primary_10_1038_s41570_024_00576_4 crossref_primary_10_3390_ijms26052357 crossref_primary_10_3390_ijms24043655 crossref_primary_10_1186_s13059_024_03399_0 crossref_primary_10_1002_smll_202411583 crossref_primary_10_1038_s41586_019_1314_0 crossref_primary_10_1016_j_stem_2020_10_014 crossref_primary_10_1074_jbc_RA119_011790 crossref_primary_10_1016_j_ymthe_2021_09_001 crossref_primary_10_1126_sciadv_abq6720 crossref_primary_10_1038_s41587_020_0566_4 crossref_primary_10_1016_j_omtn_2024_102302 crossref_primary_10_1038_s41589_024_01738_7 crossref_primary_10_1016_j_hoc_2022_05_002 crossref_primary_10_1101_gr_275770_121 crossref_primary_10_1038_s41580_023_00663_2 crossref_primary_10_3389_fgeed_2022_923718 crossref_primary_10_1038_s41587_022_01351_w crossref_primary_10_1186_s12967_024_05957_3 crossref_primary_10_1007_s12015_024_10715_5 crossref_primary_10_1038_s41551_020_00632_6 crossref_primary_10_1007_s10709_021_00146_2 crossref_primary_10_18632_aging_102246 crossref_primary_10_15252_embj_2020104741 crossref_primary_10_1038_s41592_024_02502_4 crossref_primary_10_3389_fphar_2022_939090 crossref_primary_10_1016_j_molcel_2020_07_005 crossref_primary_10_1016_j_bbrc_2024_150942 crossref_primary_10_3390_cells13100800 crossref_primary_10_3389_fphar_2022_1015926 crossref_primary_10_3390_ijms21186925 crossref_primary_10_5483_BMBRep_2019_52_8_149 crossref_primary_10_3389_fcell_2023_1236553 |
Cites_doi | 10.1126/science.1231143 10.1038/nbt.4198 10.1038/s41422-018-0052-4 10.1158/2159-8290.CD-16-0154 10.1016/j.jmb.2008.01.033 10.1126/science.aaq0180 10.1021/acssynbio.7b00113 10.1073/pnas.1520244113 10.1093/genetics/122.3.519 10.1038/nature17946 10.1038/nature11881 10.1038/s41592-018-0017-z 10.1038/nbt.4172 10.1038/cr.2013.122 10.1038/nsmb.3203 10.1101/gr.171322.113 10.1016/j.molp.2018.02.008 10.1016/j.sbi.2016.05.015 10.1038/nbt1153 10.1007/s13238-017-0458-7 10.1002/anie.201402634 10.1073/pnas.91.13.6064 10.1111/j.1476-5381.2009.00288.x 10.1038/mt.2016.8 10.1038/nbt.3803 10.1126/science.aat9249 10.1038/nbt.3117 10.1002/anie.201206489 10.1038/nature17664 10.1007/s13238-017-0475-6 10.1083/jcb.152.6.1279 10.1073/pnas.92.18.8483 10.1016/j.cell.2015.09.038 10.1038/nm.3793 10.1038/nbt.2477 10.1038/nsmb1047 10.1371/journal.pbio.0020391 10.1016/j.molcel.2015.02.032 10.1073/pnas.70.11.3240 10.1126/science.aaf8729 10.1172/JCI200113419 10.1161/ATVBAHA.117.309881 10.1038/nprot.2013.143 10.1038/nature25164 10.1089/hum.1996.7.17-2101 10.1016/j.molcel.2017.08.008 10.1016/j.cell.2014.05.010 10.1126/sciadv.aao4774 10.1016/j.cell.2014.09.039 10.1038/srep41478 10.1186/s13059-018-1482-5 10.1093/nar/gku662 10.1038/nbt765 10.1016/0092-8674(95)90467-0 10.1007/s13238-018-0568-x 10.1038/nmeth.4027 10.1371/journal.pbio.1001877 10.1038/nbt.2507 10.1128/MCB.14.12.8096 10.1093/nar/gkt1113 10.1126/science.1225829 10.1101/392217 10.1104/pp.15.01663 10.1016/S0959-4388(03)00062-X 10.1016/0092-8674(88)90253-X 10.1038/nbt.4148 10.1038/mt.2009.5 10.1038/nbt.4199 10.1038/mt.2015.218 10.1073/pnas.1212548109 10.1104/pp.15.00793 10.1038/nmeth.4327 10.1146/annurev.biochem.71.110601.135501 10.1038/nbt.4192 10.1016/S0022-2836(66)80022-0 10.1038/nbt.2675 10.1007/s13238-017-0418-2 10.1038/nplants.2017.107 10.1038/nbt.3816 10.1038/ncb2941 10.1046/j.1365-2958.2002.02839.x 10.1038/srep17886 10.1073/pnas.1306243110 10.1038/nature24644 10.1038/cr.2017.111 10.1084/jem.20030275 10.1038/nature00981 10.1016/S0921-8777(00)00040-9 10.1016/j.cell.2014.02.001 10.1038/s41591-018-0049-z 10.1016/j.ymthe.2018.08.007 10.1038/nbt.3596 10.1111/j.1365-2958.2008.06149.x 10.1038/nature20565 10.1101/gr.163394.113 10.1021/jacs.5b10216 10.1126/science.1232033 10.1016/j.cell.2016.10.044 10.1016/j.copbio.2018.08.006 10.1038/s41421-018-0047-9 10.1038/nbt.3852 10.1016/j.molcel.2012.07.029 10.1126/science.aas9129 10.1016/S0065-2660(08)60144-3 10.1101/263657 10.1146/annurev-biochem-060208-105251 10.1016/j.molcel.2017.09.029 10.1038/nbt.3583 10.1111/pbi.12993 10.1038/nature09523 10.1038/nbt.4102 10.1038/nrg1066 10.1038/s41477-018-0178-x 10.1038/nbt.3811 10.1038/362709a0 10.1093/nar/gkt1273 10.1038/374077a0 10.1073/pnas.1208507109 10.1038/nbt.3081 10.1016/j.molp.2018.02.007 10.1016/S0921-8777(00)00025-2 10.1021/bi001383g 10.1038/nature14592 10.1038/s41591-018-0050-6 10.1038/nmeth.4038 10.1038/nature26155 10.1038/nature14299 10.7554/eLife.00471 10.1016/S1097-2765(02)00742-6 10.1126/science.1258096 10.1073/pnas.211419898 10.1126/science.aap8992 10.1038/nbt.3833 10.1101/gr.164749.113 10.1073/pnas.97.25.13573 10.1038/nrg.2016.49 10.1038/nbt.3404 10.1093/nar/22.25.5649 10.1093/nar/gkt520 10.1007/s00018-009-8739-9 10.1093/nar/gkv1222 10.1002/cmdc.201402139 10.1038/nature16526 10.1128/JVI.74.8.3793-3803.2000 10.1038/sj.onc.1205996 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2018 COPYRIGHT 2018 Nature Publishing Group Copyright Nature Publishing Group Dec 2018 |
Copyright_xml | – notice: Springer Nature Limited 2018 – notice: COPYRIGHT 2018 Nature Publishing Group – notice: Copyright Nature Publishing Group Dec 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/s41576-018-0059-1 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1471-0064 |
EndPage | 788 |
ExternalDocumentID | PMC6535181 A573157069 30323312 10_1038_s41576_018_0059_1 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118062 – fundername: NIGMS NIH HHS grantid: R01 GM065865 – fundername: NHGRI NIH HHS grantid: RM1 HG009490 – fundername: NIGMS NIH HHS grantid: R01 GM065400 – fundername: Howard Hughes Medical Institute – fundername: NIBIB NIH HHS grantid: R01 EB022376 |
GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AFBBN AFFNX AFKRA AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QP 7QR 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c668t-a7b54d561b784e95a38987a1af7a867036fa145f764d5762df487d5f35a0e3e53 |
IEDL.DBID | 7X7 |
ISSN | 1471-0056 1471-0064 |
IngestDate | Thu Aug 21 14:13:42 EDT 2025 Tue Aug 05 10:18:39 EDT 2025 Sat Aug 23 13:56:12 EDT 2025 Tue Jun 17 21:38:32 EDT 2025 Tue Jun 10 20:36:55 EDT 2025 Fri Jun 27 05:12:31 EDT 2025 Thu May 22 21:22:29 EDT 2025 Mon Jul 21 06:08:10 EDT 2025 Tue Jul 01 01:19:56 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c668t-a7b54d561b784e95a38987a1af7a867036fa145f764d5762df487d5f35a0e3e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Literature Review-3 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6535181 |
PMID | 30323312 |
PQID | 2133834077 |
PQPubID | 44267 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6535181 proquest_miscellaneous_2120751879 proquest_journals_2133834077 gale_infotracmisc_A573157069 gale_infotracacademiconefile_A573157069 gale_incontextgauss_ISR_A573157069 gale_healthsolutions_A573157069 pubmed_primary_30323312 crossref_primary_10_1038_s41576_018_0059_1 crossref_citationtrail_10_1038_s41576_018_0059_1 springer_journals_10_1038_s41576_018_0059_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Genetics |
PublicationTitleAbbrev | Nat Rev Genet |
PublicationTitleAlternate | Nat Rev Genet |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Nishikura (CR74) 2010; 79 Hsu, Lander, Zhang (CR9) 2014; 157 Kang (CR92) 2018; 4 Tanenbaum, Gilbert, Qi, Weissman, Vale (CR110) 2014; 159 Lau, Wyatt, Glassner, Samson, Ellenberger (CR87) 2000; 97 Chadwick, Wang, Musunuru (CR141) 2017; 37 Goodwin, McPherson, McCombie (CR26) 2016; 17 Zong (CR161) 2017; 35 Kuttan, Bass (CR69) 2012; 109 Bodles-Brakhop, Heller, Draghia-Akli (CR123) 2009; 17 Radany (CR81) 2000; 461 Zetsche (CR103) 2015; 163 CR156 Herbert, Rich (CR67) 2001; 98 Yan (CR85) 2018; 11 Schenk (CR139) 2001; 108 Montiel-Gonzalez, Vallecillo-Viejo, Yudowski, Rosenthal (CR40) 2013; 110 Haapaniemi, Botla, Persson, Schmierer, Taipale (CR146) 2018; 24 Harris, Petersen-Mahrt, Neuberger (CR50) 2002; 10 Billon (CR145) 2017; 67 Park (CR132) 2017; 40 Ihry (CR147) 2018; 24 Schneider, Wettengel, Hoffmann, Stafforst (CR66) 2014; 42 Fukuda (CR42) 2017; 7 Liang (CR135) 2017; 8 Rudin, Sugarman, Haber (CR20) 1989; 122 Nishida (CR34) 2016; 353 Liu (CR100) 2018; 9 Shin (CR30) 2017; 8 Roccio, Hahnewald, Perny, Senn (CR142) 2015; 5 Lukacsovich, Yang, Waldman (CR19) 1994; 22 Paquet (CR24) 2016; 533 Ran (CR102) 2015; 520 Lehmann, Bass (CR68) 2000; 39 Garneau (CR4) 2010; 468 Kume, Hino, Galipon, Ui-Tei (CR71) 2014; 42 Okazaki (CR98) 2003; 197 Midoux, Pichon, Yaouanc, Jaffres (CR122) 2009; 157 Pinello (CR117) 2016; 34 Tang, Hu, Liu (CR155) 2017; 8 Komor, Badran, Liu (CR10) 2017; 168 Wettengel, Reautschnig, Geisler, Kahle, Stafforst (CR43) 2017; 45 Matthews (CR61) 2016; 23 Yang, Sklar, Axel, Maniatis (CR73) 1995; 374 Dong, Fan, Frizzell (CR129) 1996; 7 Mol (CR53) 1995; 82 Tsai (CR31) 2015; 33 Hess (CR76) 2016; 13 Hu (CR86) 2018; 556 Rouet, Smih, Jasin (CR21) 1994; 91 Bass, Weintraub (CR60) 1988; 55 Ryu (CR83) 2018; 36 Yasui (CR57) 2008; 377 Farzadfard, Lu (CR154) 2018; 361 Rees (CR93) 2017; 8 Landrum (CR29) 2014; 42 Kleinstiver (CR108) 2015; 523 Hur (CR151) 2016; 34 Thomas, Ehrhardt, Kay (CR124) 2003; 4 Stafforst, Schneider (CR48) 2012; 51 Bikard (CR14) 2013; 41 Cheng (CR15) 2013; 23 Sung (CR153) 2014; 24 Suzuki (CR119) 2016; 540 Tanaka (CR138) 2018; 8 Losey, Ruthenburg, Verdine (CR58) 2006; 13 Li (CR134) 2017; 8 Liu (CR89) 2018; 9 Ran (CR143) 2013; 8 Lee (CR96) 2018; 9 Hess, Tycko, Yao, Bassik (CR82) 2017; 68 Zhang (CR137) 2017; 8 Li (CR163) 2018; 19 Kim, Kim, Cho, Kim, Kim (CR127) 2014; 24 Nishimasu (CR37) 2014; 156 Athanasiadis, Rich, Maas (CR75) 2004; 2 Burns (CR99) 2013; 494 Cox (CR39) 2017; 358 Sung (CR152) 2013; 31 Wang (CR126) 2016; 113 Di Noia, Neuberger (CR80) 2002; 419 Lin, Staahl, Alla, Doudna (CR25) 2014; 3 Kosicki, Tomberg, Bradley (CR27) 2018; 38 Gao (CR131) 2018; 553 Lindahl (CR56) 1993; 362 CR114 Cox, Platt, Zhang (CR23) 2015; 21 Yin, Gao, Qiu (CR157) 2017; 3 Vogel (CR49) 2018; 15 Yeh, Chiang, Rees, Edge, Liu (CR90) 2018; 9 Kim (CR109) 2017; 35 Zafra (CR121) 2018 Zeng, Li, Li, Huang, Yu, Zhang, Chen, Chen, Liu, Huang (CR140) 2018; 26 Gasiunas, Barrangou, Horvath, Siksnys (CR16) 2012; 109 Endo, Mikami, Toki (CR160) 2016; 170 CR118 Jansen, Embden, Gaastra, Schouls (CR3) 2002; 43 Muller (CR105) 2016; 24 Wang (CR116) 2018 Zuris (CR125) 2015; 33 Cho, Kim, Kim, Kim (CR5) 2013; 31 Wang (CR79) 2017; 27 Mali (CR13) 2013; 31 Li (CR38) 2018; 36 Zhang (CR32) 2015; 10 Gaudelli (CR35) 2017; 551 Cong (CR6) 2013; 339 Yu (CR62) 2001; 152 Kim, Bae, Hwang, Kim (CR112) 2017; 18 Shimatani (CR162) 2017; 35 Komor, Kim, Packer, Zuris, Liu (CR33) 2016; 533 Kouzminova, Kuzminov (CR88) 2008; 68 Gapinske (CR150) 2018; 19 Montiel-Gonzalez, Vallecillo-Viejo, Rosenthal (CR41) 2016; 44 Vogel, Schneider, Wettengel, Stafforst (CR47) 2014; 53 Kim (CR94) 2017; 35 Kim (CR104) 2017; 8 Jinek (CR2) 2012; 337 Crick (CR70) 1966; 19 Nishimasu, Shi, Ishiguro, Gao, Hirano, Okazaki, Noda, Abudayyeh, Gootenberg, Mori, Oura, Holmes, Tanaka, Seki, Hirano, Aburatani, Ishitani, Ikawa, Yachie, Zhang, Nureki (CR113) 2018; 361 Tang, Liu (CR54) 2018; 360 Seeburg, Hartner (CR72) 2003; 13 Svitashev (CR159) 2015; 169 Bass (CR63) 2002; 71 Roukos, Misteli (CR149) 2014; 16 Hua, Tao, Yuan, Wang, Zhu (CR84) 2018; 11 Yamanaka (CR97) 1995; 92 Keppler (CR65) 2003; 21 Doudna, Charpentier (CR11) 2014; 346 Rouet, Smih, Jasin (CR18) 1994; 14 Vogel, Stafforst (CR59) 2018; 55 Ma (CR78) 2016; 13 Lai (CR130) 2005; 23 Kunz, Saito, Schar (CR51) 2009; 66 Komor (CR36) 2017; 3 Koblan (CR91) 2018; 36 Sternberg, Doudna (CR12) 2015; 58 Krokan, Drablos, Slupphaug (CR55) 2002; 21 Aguirre (CR148) 2016; 6 Hanswillemenke, Kuzdere, Vogel, Jekely, Stafforst (CR45) 2015; 137 Vogel, Stafforst (CR46) 2014; 9 Yang (CR115) 2018; 9 Pearl (CR52) 2000; 460 Vogel, Hanswillemenke, Stafforst (CR44) 2017; 6 Bazak (CR64) 2014; 24 Mali (CR8) 2013; 339 Kuscu (CR144) 2017; 14 Kleinstiver (CR95) 2016; 529 Miao (CR128) 2000; 74 Lee, Cradick, Bao (CR106) 2016; 24 Voytas, Gao (CR158) 2014; 12 CR101 Ma (CR136) 2018; 4 Kim (CR77) 2017; 35 Kleinstiver (CR107) 2015; 33 Liang (CR133) 2017; 8 Jiang (CR111) 2018; 28 Wheeler, Lim, Marqusee, Harms (CR120) 2016; 38 Landrum (CR28) 2016; 44 Jeggo (CR17) 1998; 38 Cohen, Chang, Boyer, Helling (CR1) 1973; 70 Jinek (CR7) 2013; 2 Chapman, Taylor, Boulton (CR22) 2012; 47 BL Bass (59_CR63) 2002; 71 BP Kleinstiver (59_CR107) 2015; 33 F Farzadfard (59_CR154) 2018; 361 SH Sternberg (59_CR12) 2015; 58 B Zetsche (59_CR103) 2015; 163 JH Yang (59_CR73) 1995; 374 X Li (59_CR38) 2018; 36 AM Bodles-Brakhop (59_CR123) 2009; 17 RJ Ihry (59_CR147) 2018; 24 D Paquet (59_CR24) 2016; 533 RS Harris (59_CR50) 2002; 10 P Vogel (59_CR59) 2018; 55 A Athanasiadis (59_CR75) 2004; 2 A Keppler (59_CR65) 2003; 21 F Yan (59_CR85) 2018; 11 H Nishimasu (59_CR37) 2014; 156 FA Ran (59_CR102) 2015; 520 P Liang (59_CR133) 2017; 8 Y Zhang (59_CR137) 2017; 8 Z Shimatani (59_CR162) 2017; 35 59_CR101 SW Cho (59_CR5) 2013; 31 NM Gaudelli (59_CR35) 2017; 551 AC Komor (59_CR33) 2016; 533 C Li (59_CR163) 2018; 19 HA Rees (59_CR93) 2017; 8 Y Lai (59_CR130) 2005; 23 JR Chapman (59_CR22) 2012; 47 DB Cox (59_CR23) 2015; 21 P Rouet (59_CR21) 1994; 91 M Jinek (59_CR7) 2013; 2 AW Cheng (59_CR15) 2013; 23 DBT Cox (59_CR39) 2017; 358 M Roccio (59_CR142) 2015; 5 M Jinek (59_CR2) 2012; 337 N Rudin (59_CR20) 1989; 122 D Kim (59_CR94) 2017; 35 59_CR118 DS Park (59_CR132) 2017; 40 P Vogel (59_CR46) 2014; 9 GT Hess (59_CR76) 2016; 13 CM Lee (59_CR106) 2016; 24 HE Krokan (59_CR55) 2002; 21 59_CR114 R Jansen (59_CR3) 2002; 43 CD Mol (59_CR53) 1995; 82 IM Okazaki (59_CR98) 2003; 197 E Haapaniemi (59_CR146) 2018; 24 P Vogel (59_CR47) 2014; 53 P Liang (59_CR135) 2017; 8 CH Miao (59_CR128) 2000; 74 JY Dong (59_CR129) 1996; 7 S Yamanaka (59_CR97) 1995; 92 MF Montiel-Gonzalez (59_CR41) 2016; 44 AJ Aguirre (59_CR148) 2016; 6 T Lindahl (59_CR56) 1993; 362 S Svitashev (59_CR159) 2015; 169 Yanting Zeng (59_CR140) 2018; 26 LC Wheeler (59_CR120) 2016; 38 J Noia Di (59_CR80) 2002; 419 MF Montiel-Gonzalez (59_CR40) 2013; 110 MJ Landrum (59_CR29) 2014; 42 KA Lehmann (59_CR68) 2000; 39 K Nishida (59_CR34) 2016; 353 MP Zafra (59_CR121) 2018 X Gao (59_CR131) 2018; 553 Hiroshi Nishimasu (59_CR113) 2018; 361 AC Chadwick (59_CR141) 2017; 37 AY Lau (59_CR87) 2000; 97 LW Koblan (59_CR91) 2018; 36 P Midoux (59_CR122) 2009; 157 YH Sung (59_CR153) 2014; 24 YH Sung (59_CR152) 2013; 31 X Wang (59_CR116) 2018 Z Liu (59_CR100) 2018; 9 M Gapinske (59_CR150) 2018; 19 P Vogel (59_CR49) 2018; 15 EH Radany (59_CR81) 2000; 461 EA Kouzminova (59_CR88) 2008; 68 C Kunz (59_CR51) 2009; 66 G Li (59_CR134) 2017; 8 C Kuscu (59_CR144) 2017; 14 JA Doudna (59_CR11) 2014; 346 MM Matthews (59_CR61) 2016; 23 Y Zong (59_CR161) 2017; 35 G Gasiunas (59_CR16) 2012; 109 Z Liu (59_CR89) 2018; 9 L Yang (59_CR115) 2018; 9 JK Hur (59_CR151) 2016; 34 BP Kleinstiver (59_CR95) 2016; 529 BC Kang (59_CR92) 2018; 4 L Pinello (59_CR117) 2016; 34 SM Ryu (59_CR83) 2018; 36 L Bazak (59_CR64) 2014; 24 A Herbert (59_CR67) 2001; 98 S Goodwin (59_CR26) 2016; 17 JA Zuris (59_CR125) 2015; 33 B Schenk (59_CR139) 2001; 108 K Kim (59_CR77) 2017; 35 DF Voytas (59_CR158) 2014; 12 YT Yu (59_CR62) 2001; 152 JH Hu (59_CR86) 2018; 556 J Wettengel (59_CR43) 2017; 45 Y Ma (59_CR136) 2018; 4 CE Thomas (59_CR124) 2003; 4 BL Bass (59_CR60) 1988; 55 P Rouet (59_CR18) 1994; 14 D Bikard (59_CR14) 2013; 41 T Stafforst (59_CR48) 2012; 51 S Kim (59_CR112) 2017; 18 K Suzuki (59_CR119) 2016; 540 P Mali (59_CR13) 2013; 31 Y Ma (59_CR78) 2016; 13 PD Hsu (59_CR9) 2014; 157 59_CR156 W Jiang (59_CR111) 2018; 28 L Zhang (59_CR32) 2015; 10 AC Komor (59_CR36) 2017; 3 PA Jeggo (59_CR17) 1998; 38 E Kim (59_CR104) 2017; 8 MF Schneider (59_CR66) 2014; 42 JE Garneau (59_CR4) 2010; 468 M Endo (59_CR160) 2016; 170 M Kosicki (59_CR27) 2018; 38 L Wang (59_CR79) 2017; 27 WH Yeh (59_CR90) 2018; 9 MJ Landrum (59_CR28) 2016; 44 GT Hess (59_CR82) 2017; 68 L Cong (59_CR6) 2013; 339 A Kuttan (59_CR69) 2012; 109 LH Pearl (59_CR52) 2000; 460 AC Komor (59_CR10) 2017; 168 K Yin (59_CR157) 2017; 3 M Fukuda (59_CR42) 2017; 7 SN Cohen (59_CR1) 1973; 70 HC Losey (59_CR58) 2006; 13 K Hua (59_CR84) 2018; 11 SQ Tsai (59_CR31) 2015; 33 YB Kim (59_CR109) 2017; 35 T Lukacsovich (59_CR19) 1994; 22 P Vogel (59_CR44) 2017; 6 M Wang (59_CR126) 2016; 113 W Tang (59_CR54) 2018; 360 H Kume (59_CR71) 2014; 42 PH Seeburg (59_CR72) 2003; 13 P Billon (59_CR145) 2017; 67 S Lin (59_CR25) 2014; 3 V Roukos (59_CR149) 2014; 16 K Nishikura (59_CR74) 2010; 79 W Tang (59_CR155) 2017; 8 BP Kleinstiver (59_CR108) 2015; 523 JK Lee (59_CR96) 2018; 9 MB Burns (59_CR99) 2013; 494 S Tanaka (59_CR138) 2018; 8 P Mali (59_CR8) 2013; 339 HY Shin (59_CR30) 2017; 8 M Muller (59_CR105) 2016; 24 FA Ran (59_CR143) 2013; 8 A Hanswillemenke (59_CR45) 2015; 137 M Yasui (59_CR57) 2008; 377 FH Crick (59_CR70) 1966; 19 ME Tanenbaum (59_CR110) 2014; 159 S Kim (59_CR127) 2014; 24 30341440 - Nat Rev Genet. 2018 Dec;19(12):801. doi: 10.1038/s41576-018-0068-0. |
References_xml | – volume: 4 start-page: 346 year: 2003 end-page: 358 ident: CR124 article-title: Progress and problems with the use of viral vectors for gene therapy publication-title: Nat. Rev. Genet. – volume: 35 start-page: 435 year: 2017 end-page: 437 ident: CR77 article-title: Highly efficient RNA-guided base editing in mouse embryos publication-title: Nat. Biotechnol. – volume: 38 start-page: 185 year: 1998 end-page: 218 ident: CR17 article-title: DNA breakage and repair publication-title: Adv. Genet. – volume: 82 start-page: 701 year: 1995 end-page: 708 ident: CR53 article-title: Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA publication-title: Cell – volume: 9 year: 2018 ident: CR96 article-title: Directed evolution of CRISPR-Cas9 to increase its specificity publication-title: Nat. Commun. – volume: 152 start-page: 1279 year: 2001 end-page: 1288 ident: CR62 article-title: Internal modification of U2 small nuclear (sn)RNA occurs in nucleoli of oocytes publication-title: J. Cell Biol. – volume: 92 start-page: 8483 year: 1995 end-page: 8487 ident: CR97 article-title: Apolipoprotein B mRNA-editing protein induces hepatocellular carcinoma and dysplasia in transgenic animals publication-title: Proc. Natl Acad. Sci. USA – volume: 55 start-page: 1089 year: 1988 end-page: 1098 ident: CR60 article-title: An unwinding activity that covalently modifies its double-stranded RNA substrate publication-title: Cell – volume: 520 start-page: 186 year: 2015 end-page: 191 ident: CR102 article-title: In vivo genome editing using Cas9 publication-title: Nature – volume: 74 start-page: 3793 year: 2000 end-page: 3803 ident: CR128 article-title: Nonrandom transduction of recombinant adeno-associated virus vectors in mouse hepatocytes in vivo: cell cycling does not influence hepatocyte transduction publication-title: J. Virol. – volume: 45 start-page: 2797 year: 2017 end-page: 2808 ident: CR43 article-title: Harnessing human ADAR2 for RNA repair — recoding a PINK1 mutation rescues mitophagy publication-title: Nucleic Acids Res. – volume: 551 start-page: 464 year: 2017 end-page: 471 ident: CR35 article-title: Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage publication-title: Nature – volume: 110 start-page: 18285 year: 2013 end-page: 18290 ident: CR40 article-title: Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing publication-title: Proc. Natl Acad. Sci. USA – volume: 66 start-page: 1021 year: 2009 end-page: 1038 ident: CR51 article-title: DNA repair in mammalian cells — mismatched repair: variations on a theme publication-title: Cell. Mol. Life Sci. – volume: 55 start-page: 74 year: 2018 end-page: 80 ident: CR59 article-title: Critical review on engineering deaminases for site-directed RNA editing publication-title: Curr. Opin. Biotechnol. – volume: 346 start-page: 1258096 year: 2014 ident: CR11 article-title: The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science – ident: CR101 – start-page: 888 year: 2018 end-page: 893 ident: CR121 article-title: Optimized baseeditors enable efficient editing in cells, organoids and mice publication-title: Nat. Biotechnol. – volume: 5 year: 2015 ident: CR142 article-title: Cell cycle reactivation of cochlear progenitor cells in neonatal FUCCI mice by a GSK3 small molecule inhibitor publication-title: Sci. Rep. – volume: 14 start-page: 8096 year: 1994 end-page: 8106 ident: CR18 article-title: Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease publication-title: Mol. Cell. Biol. – volume: 11 start-page: 627 year: 2018 end-page: 630 ident: CR84 article-title: Precise A·T to G·C base editing in the rice genome publication-title: Mol. Plant – volume: 8 year: 2017 ident: CR104 article-title: In vivo genome editing with a small Cas9 orthologue derived from publication-title: Nat. Commun. – volume: 31 start-page: 23 year: 2013 end-page: 24 ident: CR152 article-title: Knockout mice created by TALEN-mediated gene targeting publication-title: Nat. Biotechnol. – volume: 461 start-page: 41 year: 2000 end-page: 58 ident: CR81 article-title: Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase publication-title: Mutat. Res. – volume: 9 year: 2018 ident: CR89 article-title: Highly efficient RNA-guided base editing in rabbit publication-title: Nat. Commun. – volume: 13 start-page: 279 year: 2003 end-page: 283 ident: CR72 article-title: Regulation of ion channel/neurotransmitter receptor function by RNA editing publication-title: Curr. Opin. Neurobiol. – volume: 109 start-page: E3295 year: 2012 end-page: E3304 ident: CR69 article-title: Mechanistic insights into editing-site specificity of ADARs publication-title: Proc. Natl Acad. Sci. USA – volume: 137 start-page: 15875 year: 2015 end-page: 15881 ident: CR45 article-title: Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein publication-title: J. Am. Chem. Soc. – volume: 9 year: 2018 ident: CR100 article-title: Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing publication-title: Nat. Commun. – volume: 156 start-page: 935 year: 2014 end-page: 949 ident: CR37 article-title: Crystal structure of Cas9 in complex with guide RNA and target DNA publication-title: Cell – volume: 36 start-page: 536 year: 2018 end-page: 539 ident: CR83 article-title: Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy publication-title: Nat. Biotechnol. – volume: 15 start-page: 535 year: 2018 end-page: 538 ident: CR49 article-title: Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs publication-title: Nat. Methods – volume: 91 start-page: 6064 year: 1994 end-page: 6068 ident: CR21 article-title: Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells publication-title: Proc. Natl Acad. Sci. USA – volume: 169 start-page: 931 year: 2015 end-page: 945 ident: CR159 article-title: Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA publication-title: Plant Physiol. – volume: 529 start-page: 490 year: 2016 end-page: 495 ident: CR95 article-title: High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects publication-title: Nature – volume: 24 start-page: 939 year: 2018 end-page: 946 ident: CR147 article-title: p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells publication-title: Nat. Med. – volume: 2 year: 2004 ident: CR75 article-title: Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome publication-title: PLOS Biol. – volume: 31 start-page: 230 year: 2013 end-page: 232 ident: CR5 article-title: Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease publication-title: Nat. Biotechnol. – volume: 21 start-page: 86 year: 2003 end-page: 89 ident: CR65 article-title: A general method for the covalent labeling of fusion proteins with small molecules in vivo publication-title: Nat. Biotechnol. – volume: 24 start-page: 636 year: 2016 end-page: 644 ident: CR105 article-title: thermophilus CRISPR-Cas9 systems enable specific editing of the human genome publication-title: Mol. Ther. – volume: 19 start-page: 548 year: 1966 end-page: 555 ident: CR70 article-title: Codon—anticodon pairing: the wobble hypothesis publication-title: J. Mol. Biol. – volume: 34 start-page: 695 year: 2016 end-page: 697 ident: CR117 article-title: Analyzing CRISPR genome-editing experiments with CRISPResso publication-title: Nat. Biotechnol. – volume: 24 start-page: 927 year: 2018 end-page: 930 ident: CR146 article-title: CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response publication-title: Nat. Med. – ident: CR156 – volume: 71 start-page: 817 year: 2002 end-page: 846 ident: CR63 article-title: RNA editing by adenosine deaminases that act on RNA publication-title: Annu. Rev. Biochem. – volume: 8 start-page: 776 year: 2017 end-page: 779 ident: CR134 article-title: Highly efficient and precise base editing in discarded human tripronuclear embryos publication-title: Protein Cell – volume: 33 start-page: 187 year: 2015 end-page: 197 ident: CR31 article-title: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases publication-title: Nat. Biotechnol. – volume: 494 start-page: 366 year: 2013 end-page: 370 ident: CR99 article-title: APOBEC3B is an enzymatic source of mutation in breast cancer publication-title: Nature – volume: 3 year: 2014 ident: CR25 article-title: Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery publication-title: eLife – volume: 24 start-page: 1012 year: 2014 end-page: 1019 ident: CR127 article-title: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Res. – volume: 33 start-page: 73 year: 2015 end-page: 80 ident: CR125 article-title: Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo publication-title: Nat. Biotechnol. – volume: 39 start-page: 12875 year: 2000 end-page: 12884 ident: CR68 article-title: Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities publication-title: Biochemistry – volume: 47 start-page: 497 year: 2012 end-page: 510 ident: CR22 article-title: Playing the end game: DNA double-strand break repair pathway choice publication-title: Mol. Cell – volume: 37 start-page: 1741 year: 2017 end-page: 1747 ident: CR141 article-title: In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 163 start-page: 759 year: 2015 end-page: 771 ident: CR103 article-title: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system publication-title: Cell – volume: 533 start-page: 125 year: 2016 end-page: 129 ident: CR24 article-title: Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 publication-title: Nature – volume: 7 year: 2017 ident: CR42 article-title: Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing publication-title: Sci. Rep. – volume: 10 start-page: 1247 year: 2002 end-page: 1253 ident: CR50 article-title: RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators publication-title: Mol. Cell – volume: 67 start-page: 1068 year: 2017 end-page: 1079 ident: CR145 article-title: CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons publication-title: Mol. Cell – volume: 533 start-page: 420 year: 2016 end-page: 424 ident: CR33 article-title: Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage publication-title: Nature – volume: 23 start-page: 426 year: 2016 end-page: 433 ident: CR61 article-title: Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity publication-title: Nat. Struct. Mol. Biol. – volume: 197 start-page: 1173 year: 2003 end-page: 1181 ident: CR98 article-title: Constitutive expression of AID leads to tumorigenesis publication-title: J. Exp. Med. – volume: 159 start-page: 635 year: 2014 end-page: 646 ident: CR110 article-title: A protein-tagging system for signal amplification in gene expression and fluorescence imaging publication-title: Cell – volume: 556 start-page: 57 year: 2018 end-page: 63 ident: CR86 article-title: Evolved Cas9 variants with broad PAM compatibility and high DNA specificity publication-title: Nature – volume: 51 start-page: 11166 year: 2012 end-page: 11169 ident: CR48 article-title: An RNA-deaminase conjugate selectively repairs point mutations publication-title: Angew. Chem. Int. Ed. – volume: 361 start-page: 1259 issue: 6408 year: 2018 end-page: 1262 ident: CR113 article-title: Engineered CRISPR-Cas9 nuclease with expanded targeting space publication-title: Science – volume: 3 year: 2017 ident: CR36 article-title: Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity publication-title: Sci. Adv. – ident: CR114 – volume: 40 start-page: 823 year: 2017 end-page: 827 ident: CR132 article-title: Targeted base editing via RNA-guided cytidine deaminases in embryos publication-title: Mol. Cells – volume: 27 start-page: 1289 year: 2017 end-page: 1292 ident: CR79 article-title: Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor publication-title: Cell Res. – volume: 8 year: 2017 ident: CR155 article-title: Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation publication-title: Nat. Commun. – volume: 4 start-page: 427 year: 2018 end-page: 431 ident: CR92 article-title: Precision genome engineering through adenine base editing in plants publication-title: Nat. Plants – volume: 157 start-page: 1262 year: 2014 end-page: 1278 ident: CR9 article-title: Development and applications of CRISPR-Cas9 for genome engineering publication-title: Cell – volume: 97 start-page: 13573 year: 2000 end-page: 13578 ident: CR87 article-title: Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG publication-title: Proc. Natl Acad. Sci. USA – volume: 33 start-page: 1293 year: 2015 end-page: 1298 ident: CR107 article-title: Broadening the targeting range of CRISPR-Cas9 by modifying PAM recognition publication-title: Nat. Biotechnol. – volume: 35 start-page: 371 year: 2017 end-page: 376 ident: CR109 article-title: Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions publication-title: Nat. Biotechnol. – volume: 28 start-page: 855 year: 2018 end-page: 861 ident: CR111 article-title: BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity publication-title: Cell Res. – volume: 168 start-page: 20 year: 2017 end-page: 36 ident: CR10 article-title: CRISPR-based technologies for the manipulation of eukaryotic genomes publication-title: Cell – volume: 360 year: 2018 ident: CR54 article-title: Rewritable multi-event analog recording in bacterial and mammalian cells publication-title: Science – volume: 11 start-page: 631 year: 2018 end-page: 634 ident: CR85 article-title: Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice publication-title: Mol. Plant – volume: 16 start-page: 293 year: 2014 end-page: 300 ident: CR149 article-title: The biogenesis of chromosome translocations publication-title: Nat. Cell Biol. – volume: 44 start-page: D862 year: 2016 end-page: D868 ident: CR28 article-title: ClinVar: public archive of interpretations of clinically relevant variants publication-title: Nucleic Acids Res. – volume: 24 start-page: 125 year: 2014 end-page: 131 ident: CR153 article-title: Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases publication-title: Genome Res. – volume: 98 start-page: 12132 year: 2001 end-page: 12137 ident: CR67 article-title: The role of binding domains for dsRNA and Z-DNA in the in vivo editing of minimal substrates by ADAR1 publication-title: Proc. Natl Acad. Sci. USA – volume: 26 start-page: 2631 issue: 11 year: 2018 end-page: 2637 ident: CR140 article-title: Correction of the Marfan Syndrome Pathogenic FBN1 Mutation by Base Editing in Human Cells and Heterozygous Embryos publication-title: Molecular Therapy – volume: 42 start-page: D980 year: 2014 end-page: D985 ident: CR29 article-title: ClinVar: public archive of relationships among sequence variation and human phenotype publication-title: Nucleic Acids Res. – volume: 358 start-page: 1019 year: 2017 end-page: 1027 ident: CR39 article-title: RNA editing with CRISPR-Cas13 publication-title: Science – volume: 17 start-page: 333 year: 2016 end-page: 351 ident: CR26 article-title: Coming of age: ten years of next-generation sequencing technologies publication-title: Nat. Rev. Genet. – volume: 38 start-page: 765 year: 2018 end-page: 771 ident: CR27 article-title: Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements publication-title: Nat. Biotechnol. – volume: 374 start-page: 77 year: 1995 end-page: 81 ident: CR73 article-title: Editing of glutamate receptor subunit B pre-mRNA in vitro by site-specific deamination of adenosine publication-title: Nature – volume: 122 start-page: 519 year: 1989 end-page: 534 ident: CR20 article-title: Genetic and physical analysis of double-strand break repair and recombination in publication-title: Genetics – volume: 10 year: 2015 ident: CR32 article-title: Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9 publication-title: PLOS ONE – volume: 44 year: 2016 ident: CR41 article-title: An efficient system for selectively altering genetic information within mRNAs publication-title: Nucleic Acids Res. – volume: 353 start-page: aaf8729 year: 2016 ident: CR34 article-title: Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems publication-title: Science – volume: 553 start-page: 217 year: 2018 end-page: 221 ident: CR131 article-title: Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents publication-title: Nature – volume: 361 start-page: 870 year: 2018 end-page: 875 ident: CR154 article-title: Emerging applications for DNA writers and molecular recorders publication-title: Science – volume: 36 start-page: 843 year: 2018 end-page: 846 ident: CR91 article-title: Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction publication-title: Nat. Biotechnol. – volume: 68 start-page: 26 year: 2017 end-page: 43 ident: CR82 article-title: Methods and applications of CRISPR-mediated base editing in eukaryotic genomes publication-title: Mol. Cell – volume: 23 start-page: 1163 year: 2013 end-page: 1171 ident: CR15 article-title: Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system publication-title: Cell Res. – volume: 19 year: 2018 ident: CR150 article-title: CRISPR-SKIP: programmable gene splicing with single base editors publication-title: Genome Biol. – volume: 9 year: 2018 ident: CR90 article-title: In vivo base editing of post-mitotic sensory cells publication-title: Nat. Commun. – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: CR6 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 21 start-page: 8935 year: 2002 end-page: 8948 ident: CR55 article-title: Uracil in DNA — occurrence, consequences and repair publication-title: Oncogene – volume: 18 year: 2017 ident: CR112 article-title: Rescue of high-specificity Cas9 variants using sgRNAs with matched 5’ nucleotides publication-title: Genome Biol. – volume: 34 start-page: 807 year: 2016 end-page: 808 ident: CR151 article-title: Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins publication-title: Nat. Biotechnol. – volume: 70 start-page: 3240 year: 1973 end-page: 3244 ident: CR1 article-title: Construction of biologically functional bacterial plasmids in vitro publication-title: Proc. Natl Acad. Sci. USA – volume: 53 start-page: 6267 year: 2014 end-page: 6271 ident: CR47 article-title: Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA publication-title: Angew. Chem. Int. Ed. – volume: 108 start-page: 1687 year: 2001 end-page: 1695 ident: CR139 article-title: MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If publication-title: J. Clin. Invest. – volume: 35 start-page: 475 year: 2017 end-page: 480 ident: CR94 article-title: Genome-wide target specificities of CRISPR RNA-guided programmable deaminases publication-title: Nat. Biotechnol. – volume: 13 start-page: 1036 year: 2016 end-page: 1042 ident: CR76 article-title: Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells publication-title: Nat. Methods – year: 2018 ident: CR116 article-title: Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4198 – volume: 113 start-page: 2868 year: 2016 end-page: 2873 ident: CR126 article-title: Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles publication-title: Proc. Natl Acad. Sci. USA – volume: 23 start-page: 1435 year: 2005 end-page: 1439 ident: CR130 article-title: Efficient in vivo gene expression by -splicing adeno-associated viral vectors publication-title: Nat. Biotechnol. – volume: 170 start-page: 667 year: 2016 end-page: 677 ident: CR160 article-title: Biallelic gene targeting in rice publication-title: Plant Physiol. – volume: 42 start-page: 10050 year: 2014 end-page: 10060 ident: CR71 article-title: A-To-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency publication-title: Nucleic Acids Res. – volume: 9 start-page: 2021 year: 2014 end-page: 2025 ident: CR46 article-title: Site-directed RNA editing with antagomir deaminases — a tool to study protein and RNA function publication-title: ChemMedChem – volume: 8 year: 2018 ident: CR138 article-title: In vivo targeted single-nucleotide editing in zebrafish publication-title: Sci. Rep. – volume: 35 start-page: 441 year: 2017 end-page: 443 ident: CR162 article-title: Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion publication-title: Nat. Biotechnol. – volume: 2 year: 2013 ident: CR7 article-title: RNA-programmed genome editing in human cells publication-title: eLife – volume: 6 start-page: 1642 year: 2017 end-page: 1649 ident: CR44 article-title: Switching protein localization by site-directed RNA editing under control of light publication-title: ACS Synth. Biol. – volume: 8 year: 2017 ident: CR93 article-title: Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery publication-title: Nat. Commun. – volume: 540 start-page: 144 year: 2016 end-page: 149 ident: CR119 article-title: In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration publication-title: Nature – volume: 12 year: 2014 ident: CR158 article-title: Precision genome engineering and agriculture: opportunities and regulatory challenges publication-title: PLOS Biol. – volume: 17 start-page: 585 year: 2009 end-page: 592 ident: CR123 article-title: Electroporation for the delivery of DNA-based vaccines and immunotherapeutics: current clinical developments publication-title: Mol. Ther. – volume: 21 start-page: 121 year: 2015 end-page: 131 ident: CR23 article-title: Therapeutic genome editing: prospects and challenges publication-title: Nat. Med. – volume: 19 year: 2018 ident: CR163 article-title: Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion publication-title: Genome Biol. – volume: 419 start-page: 43 year: 2002 end-page: 48 ident: CR80 article-title: Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase publication-title: Nature – volume: 58 start-page: 568 year: 2015 end-page: 574 ident: CR12 article-title: Expanding the biologist’s toolkit with CRISPR-Cas9 publication-title: Mol. Cell – volume: 157 start-page: 166 year: 2009 end-page: 178 ident: CR122 article-title: Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers publication-title: Br. J. Pharmacol. – volume: 36 start-page: 324 year: 2018 end-page: 327 ident: CR38 article-title: Base editing with a Cpf1-cytidine deaminase fusion publication-title: Nat. Biotechnol. – volume: 13 start-page: 1029 year: 2016 end-page: 1035 ident: CR78 article-title: Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells publication-title: Nat. Methods – volume: 8 start-page: 811 year: 2017 end-page: 822 ident: CR135 article-title: Correction of beta-thalassemia mutant by base editor in human embryos publication-title: Protein Cell – volume: 24 start-page: 365 year: 2014 end-page: 376 ident: CR64 article-title: A-To-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes publication-title: Genome Res. – volume: 8 year: 2017 ident: CR137 article-title: Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system publication-title: Nat. Commun. – volume: 14 start-page: 710 year: 2017 end-page: 712 ident: CR144 article-title: CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations publication-title: Nat. Methods – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: CR2 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science – volume: 468 start-page: 67 year: 2010 end-page: 71 ident: CR4 article-title: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA publication-title: Nature – volume: 362 start-page: 709 year: 1993 end-page: 715 ident: CR56 article-title: Instability and decay of the primary structure of DNA publication-title: Nature – volume: 43 start-page: 1565 year: 2002 end-page: 1575 ident: CR3 article-title: Identification of genes that are associated with DNA repeats in prokaryotes publication-title: Mol. Microbiol. – volume: 339 start-page: 823 year: 2013 end-page: 826 ident: CR8 article-title: RNA-guided human genome engineering via Cas9 publication-title: Science – volume: 41 start-page: 7429 year: 2013 end-page: 7437 ident: CR14 article-title: Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system publication-title: Nucleic Acids Res. – volume: 8 start-page: 601 year: 2017 end-page: 611 ident: CR133 article-title: Effective gene editing by high-fidelity base editor 2 in mouse zygotes publication-title: Protein Cell – volume: 35 start-page: 438 year: 2017 end-page: 440 ident: CR161 article-title: Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion publication-title: Nat. Biotechnol. – volume: 79 start-page: 321 year: 2010 end-page: 349 ident: CR74 article-title: Functions and regulation of RNA editing by ADAR deaminases publication-title: Annu. Rev. Biochem. – volume: 38 start-page: 37 year: 2016 end-page: 43 ident: CR120 article-title: The thermostability and specificity of ancient proteins publication-title: Curr. Opin. Struct. Biol. – volume: 68 start-page: 202 year: 2008 end-page: 215 ident: CR88 article-title: Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks publication-title: Mol. Microbiol. – volume: 22 start-page: 5649 year: 1994 end-page: 5657 ident: CR19 article-title: Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI publication-title: Nucleic Acids Res. – volume: 8 year: 2017 ident: CR30 article-title: CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome publication-title: Nat. Commun. – volume: 9 start-page: 814 year: 2018 end-page: 819 ident: CR115 article-title: Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants publication-title: Protein Cell – volume: 7 start-page: 2101 year: 1996 end-page: 2112 ident: CR129 article-title: Quantitative analysis of the packaging capacity of recombinant adeno-associated virus publication-title: Hum. Gene Ther. – volume: 8 start-page: 2281 year: 2013 end-page: 2308 ident: CR143 article-title: Genome engineering using the CRISPR-Cas9 system publication-title: Nat. Protoc. – volume: 13 start-page: 153 year: 2006 end-page: 159 ident: CR58 article-title: Crystal structure of tRNA adenosine deaminase TadA in complex with RNA publication-title: Nat. Struct. Mol. Biol. – volume: 109 start-page: E2579 year: 2012 end-page: E2586 ident: CR16 article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria publication-title: Proc. Natl Acad. Sci. USA – volume: 24 start-page: 645 year: 2016 end-page: 654 ident: CR106 article-title: The CRISPR-Cas9 system enables specific genome editing in mammalian cells publication-title: Mol. Ther. – ident: CR118 – volume: 4 start-page: 39 year: 2018 ident: CR136 article-title: Highly efficient and precise base editing by engineered dCas9-guide tRNA adenosine deaminase in rats publication-title: Cell Discov. – volume: 460 start-page: 165 year: 2000 end-page: 181 ident: CR52 article-title: Structure and function in the uracil-DNA glycosylase superfamily publication-title: Mutat. Res. – volume: 42 year: 2014 ident: CR66 article-title: Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans publication-title: Nucleic Acids Res. – volume: 6 start-page: 914 year: 2016 end-page: 929 ident: CR148 article-title: Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting publication-title: Cancer Discov. – volume: 377 start-page: 1015 year: 2008 end-page: 1023 ident: CR57 article-title: Miscoding properties of 2ʹ-deoxyinosine, a nitric oxide-derived DNA Adduct, during translesion synthesis catalyzed by human DNA polymerases publication-title: J. Mol. Biol. – volume: 31 start-page: 833 year: 2013 end-page: 838 ident: CR13 article-title: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering publication-title: Nat. Biotechnol. – volume: 3 start-page: 17107 year: 2017 ident: CR157 article-title: Progress and prospects in plant genome editing publication-title: Nat. Plants – volume: 523 start-page: 481 year: 2015 end-page: 485 ident: CR108 article-title: Engineered CRISPR-Cas9 nucleases with altered PAM specificities publication-title: Nature – volume: 28 start-page: 855 year: 2018 ident: 59_CR111 publication-title: Cell Res. doi: 10.1038/s41422-018-0052-4 – volume: 6 start-page: 914 year: 2016 ident: 59_CR148 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-16-0154 – volume: 9 year: 2018 ident: 59_CR96 publication-title: Nat. Commun. – volume: 377 start-page: 1015 year: 2008 ident: 59_CR57 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.01.033 – volume: 358 start-page: 1019 year: 2017 ident: 59_CR39 publication-title: Science doi: 10.1126/science.aaq0180 – volume: 6 start-page: 1642 year: 2017 ident: 59_CR44 publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.7b00113 – volume: 113 start-page: 2868 year: 2016 ident: 59_CR126 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1520244113 – volume: 122 start-page: 519 year: 1989 ident: 59_CR20 publication-title: Genetics doi: 10.1093/genetics/122.3.519 – volume: 533 start-page: 420 year: 2016 ident: 59_CR33 publication-title: Nature doi: 10.1038/nature17946 – volume: 494 start-page: 366 year: 2013 ident: 59_CR99 publication-title: Nature doi: 10.1038/nature11881 – volume: 15 start-page: 535 year: 2018 ident: 59_CR49 publication-title: Nat. Methods doi: 10.1038/s41592-018-0017-z – volume: 36 start-page: 843 year: 2018 ident: 59_CR91 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4172 – volume: 23 start-page: 1163 year: 2013 ident: 59_CR15 publication-title: Cell Res. doi: 10.1038/cr.2013.122 – volume: 23 start-page: 426 year: 2016 ident: 59_CR61 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3203 – volume: 24 start-page: 1012 year: 2014 ident: 59_CR127 publication-title: Genome Res. doi: 10.1101/gr.171322.113 – volume: 11 start-page: 631 year: 2018 ident: 59_CR85 publication-title: Mol. Plant doi: 10.1016/j.molp.2018.02.008 – volume: 38 start-page: 37 year: 2016 ident: 59_CR120 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2016.05.015 – volume: 23 start-page: 1435 year: 2005 ident: 59_CR130 publication-title: Nat. Biotechnol. doi: 10.1038/nbt1153 – volume: 8 start-page: 776 year: 2017 ident: 59_CR134 publication-title: Protein Cell doi: 10.1007/s13238-017-0458-7 – volume: 8 year: 2017 ident: 59_CR104 publication-title: Nat. Commun. – volume: 53 start-page: 6267 year: 2014 ident: 59_CR47 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402634 – volume: 91 start-page: 6064 year: 1994 ident: 59_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.91.13.6064 – volume: 157 start-page: 166 year: 2009 ident: 59_CR122 publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.2009.00288.x – volume: 24 start-page: 645 year: 2016 ident: 59_CR106 publication-title: Mol. Ther. doi: 10.1038/mt.2016.8 – volume: 35 start-page: 371 year: 2017 ident: 59_CR109 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3803 – volume: 361 start-page: 870 year: 2018 ident: 59_CR154 publication-title: Science doi: 10.1126/science.aat9249 – volume: 33 start-page: 187 year: 2015 ident: 59_CR31 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3117 – volume: 9 year: 2018 ident: 59_CR100 publication-title: Nat. Commun. – volume: 51 start-page: 11166 year: 2012 ident: 59_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201206489 – volume: 18 year: 2017 ident: 59_CR112 publication-title: Genome Biol. – volume: 8 year: 2017 ident: 59_CR155 publication-title: Nat. Commun. – volume: 533 start-page: 125 year: 2016 ident: 59_CR24 publication-title: Nature doi: 10.1038/nature17664 – volume: 8 start-page: 811 year: 2017 ident: 59_CR135 publication-title: Protein Cell doi: 10.1007/s13238-017-0475-6 – volume: 152 start-page: 1279 year: 2001 ident: 59_CR62 publication-title: J. Cell Biol. doi: 10.1083/jcb.152.6.1279 – volume: 92 start-page: 8483 year: 1995 ident: 59_CR97 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.92.18.8483 – volume: 163 start-page: 759 year: 2015 ident: 59_CR103 publication-title: Cell doi: 10.1016/j.cell.2015.09.038 – volume: 21 start-page: 121 year: 2015 ident: 59_CR23 publication-title: Nat. Med. doi: 10.1038/nm.3793 – volume: 31 start-page: 23 year: 2013 ident: 59_CR152 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2477 – volume: 13 start-page: 153 year: 2006 ident: 59_CR58 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb1047 – volume: 2 year: 2004 ident: 59_CR75 publication-title: PLOS Biol. doi: 10.1371/journal.pbio.0020391 – start-page: 888 volume-title: Nat. Biotechnol. year: 2018 ident: 59_CR121 – volume: 58 start-page: 568 year: 2015 ident: 59_CR12 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.02.032 – volume: 70 start-page: 3240 year: 1973 ident: 59_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.70.11.3240 – volume: 353 start-page: aaf8729 year: 2016 ident: 59_CR34 publication-title: Science doi: 10.1126/science.aaf8729 – volume: 108 start-page: 1687 year: 2001 ident: 59_CR139 publication-title: J. Clin. Invest. doi: 10.1172/JCI200113419 – volume: 37 start-page: 1741 year: 2017 ident: 59_CR141 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.117.309881 – volume: 8 start-page: 2281 year: 2013 ident: 59_CR143 publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.143 – volume: 553 start-page: 217 year: 2018 ident: 59_CR131 publication-title: Nature doi: 10.1038/nature25164 – volume: 7 start-page: 2101 year: 1996 ident: 59_CR129 publication-title: Hum. Gene Ther. doi: 10.1089/hum.1996.7.17-2101 – volume: 67 start-page: 1068 year: 2017 ident: 59_CR145 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.008 – volume: 157 start-page: 1262 year: 2014 ident: 59_CR9 publication-title: Cell doi: 10.1016/j.cell.2014.05.010 – volume: 3 year: 2017 ident: 59_CR36 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao4774 – volume: 159 start-page: 635 year: 2014 ident: 59_CR110 publication-title: Cell doi: 10.1016/j.cell.2014.09.039 – volume: 7 year: 2017 ident: 59_CR42 publication-title: Sci. Rep. doi: 10.1038/srep41478 – volume: 19 year: 2018 ident: 59_CR150 publication-title: Genome Biol. doi: 10.1186/s13059-018-1482-5 – volume: 44 year: 2016 ident: 59_CR41 publication-title: Nucleic Acids Res. – volume: 42 start-page: 10050 year: 2014 ident: 59_CR71 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku662 – volume: 21 start-page: 86 year: 2003 ident: 59_CR65 publication-title: Nat. Biotechnol. doi: 10.1038/nbt765 – volume: 40 start-page: 823 year: 2017 ident: 59_CR132 publication-title: Mol. Cells – volume: 82 start-page: 701 year: 1995 ident: 59_CR53 publication-title: Cell doi: 10.1016/0092-8674(95)90467-0 – volume: 9 start-page: 814 year: 2018 ident: 59_CR115 publication-title: Protein Cell doi: 10.1007/s13238-018-0568-x – year: 2018 ident: 59_CR116 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4198 – volume: 9 year: 2018 ident: 59_CR89 publication-title: Nat. Commun. – volume: 13 start-page: 1029 year: 2016 ident: 59_CR78 publication-title: Nat. Methods doi: 10.1038/nmeth.4027 – volume: 12 year: 2014 ident: 59_CR158 publication-title: PLOS Biol. doi: 10.1371/journal.pbio.1001877 – volume: 8 year: 2017 ident: 59_CR30 publication-title: Nat. Commun. – volume: 31 start-page: 230 year: 2013 ident: 59_CR5 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2507 – volume: 14 start-page: 8096 year: 1994 ident: 59_CR18 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.14.12.8096 – volume: 42 start-page: D980 year: 2014 ident: 59_CR29 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1113 – volume: 337 start-page: 816 year: 2012 ident: 59_CR2 publication-title: Science doi: 10.1126/science.1225829 – ident: 59_CR118 doi: 10.1101/392217 – volume: 170 start-page: 667 year: 2016 ident: 59_CR160 publication-title: Plant Physiol. doi: 10.1104/pp.15.01663 – volume: 13 start-page: 279 year: 2003 ident: 59_CR72 publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(03)00062-X – volume: 55 start-page: 1089 year: 1988 ident: 59_CR60 publication-title: Cell doi: 10.1016/0092-8674(88)90253-X – volume: 36 start-page: 536 year: 2018 ident: 59_CR83 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4148 – volume: 17 start-page: 585 year: 2009 ident: 59_CR123 publication-title: Mol. Ther. doi: 10.1038/mt.2009.5 – ident: 59_CR101 doi: 10.1038/nbt.4199 – volume: 24 start-page: 636 year: 2016 ident: 59_CR105 publication-title: Mol. Ther. doi: 10.1038/mt.2015.218 – volume: 109 start-page: E3295 year: 2012 ident: 59_CR69 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1212548109 – volume: 169 start-page: 931 year: 2015 ident: 59_CR159 publication-title: Plant Physiol. doi: 10.1104/pp.15.00793 – volume: 14 start-page: 710 year: 2017 ident: 59_CR144 publication-title: Nat. Methods doi: 10.1038/nmeth.4327 – volume: 71 start-page: 817 year: 2002 ident: 59_CR63 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.71.110601.135501 – volume: 38 start-page: 765 year: 2018 ident: 59_CR27 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4192 – volume: 10 year: 2015 ident: 59_CR32 publication-title: PLOS ONE – volume: 19 year: 2018 ident: 59_CR163 publication-title: Genome Biol. – volume: 19 start-page: 548 year: 1966 ident: 59_CR70 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(66)80022-0 – volume: 31 start-page: 833 year: 2013 ident: 59_CR13 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2675 – volume: 8 start-page: 601 year: 2017 ident: 59_CR133 publication-title: Protein Cell doi: 10.1007/s13238-017-0418-2 – volume: 3 start-page: 17107 year: 2017 ident: 59_CR157 publication-title: Nat. Plants doi: 10.1038/nplants.2017.107 – volume: 35 start-page: 435 year: 2017 ident: 59_CR77 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3816 – volume: 16 start-page: 293 year: 2014 ident: 59_CR149 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2941 – volume: 43 start-page: 1565 year: 2002 ident: 59_CR3 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02839.x – volume: 5 year: 2015 ident: 59_CR142 publication-title: Sci. Rep. doi: 10.1038/srep17886 – volume: 110 start-page: 18285 year: 2013 ident: 59_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1306243110 – volume: 551 start-page: 464 year: 2017 ident: 59_CR35 publication-title: Nature doi: 10.1038/nature24644 – volume: 27 start-page: 1289 year: 2017 ident: 59_CR79 publication-title: Cell Res. doi: 10.1038/cr.2017.111 – volume: 45 start-page: 2797 year: 2017 ident: 59_CR43 publication-title: Nucleic Acids Res. – volume: 197 start-page: 1173 year: 2003 ident: 59_CR98 publication-title: J. Exp. Med. doi: 10.1084/jem.20030275 – volume: 419 start-page: 43 year: 2002 ident: 59_CR80 publication-title: Nature doi: 10.1038/nature00981 – volume: 461 start-page: 41 year: 2000 ident: 59_CR81 publication-title: Mutat. Res. doi: 10.1016/S0921-8777(00)00040-9 – volume: 156 start-page: 935 year: 2014 ident: 59_CR37 publication-title: Cell doi: 10.1016/j.cell.2014.02.001 – volume: 24 start-page: 927 year: 2018 ident: 59_CR146 publication-title: Nat. Med. doi: 10.1038/s41591-018-0049-z – volume: 26 start-page: 2631 issue: 11 year: 2018 ident: 59_CR140 publication-title: Molecular Therapy doi: 10.1016/j.ymthe.2018.08.007 – volume: 34 start-page: 807 year: 2016 ident: 59_CR151 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3596 – volume: 68 start-page: 202 year: 2008 ident: 59_CR88 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2008.06149.x – volume: 540 start-page: 144 year: 2016 ident: 59_CR119 publication-title: Nature doi: 10.1038/nature20565 – volume: 24 start-page: 125 year: 2014 ident: 59_CR153 publication-title: Genome Res. doi: 10.1101/gr.163394.113 – volume: 137 start-page: 15875 year: 2015 ident: 59_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10216 – volume: 339 start-page: 823 year: 2013 ident: 59_CR8 publication-title: Science doi: 10.1126/science.1232033 – volume: 168 start-page: 20 year: 2017 ident: 59_CR10 publication-title: Cell doi: 10.1016/j.cell.2016.10.044 – volume: 55 start-page: 74 year: 2018 ident: 59_CR59 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2018.08.006 – volume: 4 start-page: 39 year: 2018 ident: 59_CR136 publication-title: Cell Discov. doi: 10.1038/s41421-018-0047-9 – volume: 35 start-page: 475 year: 2017 ident: 59_CR94 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3852 – volume: 47 start-page: 497 year: 2012 ident: 59_CR22 publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.07.029 – volume: 8 year: 2017 ident: 59_CR93 publication-title: Nat. Commun. – volume: 361 start-page: 1259 issue: 6408 year: 2018 ident: 59_CR113 publication-title: Science doi: 10.1126/science.aas9129 – volume: 38 start-page: 185 year: 1998 ident: 59_CR17 publication-title: Adv. Genet. doi: 10.1016/S0065-2660(08)60144-3 – ident: 59_CR156 doi: 10.1101/263657 – volume: 79 start-page: 321 year: 2010 ident: 59_CR74 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060208-105251 – volume: 68 start-page: 26 year: 2017 ident: 59_CR82 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.09.029 – volume: 34 start-page: 695 year: 2016 ident: 59_CR117 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3583 – ident: 59_CR114 doi: 10.1111/pbi.12993 – volume: 468 start-page: 67 year: 2010 ident: 59_CR4 publication-title: Nature doi: 10.1038/nature09523 – volume: 36 start-page: 324 year: 2018 ident: 59_CR38 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4102 – volume: 3 year: 2014 ident: 59_CR25 publication-title: eLife – volume: 4 start-page: 346 year: 2003 ident: 59_CR124 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1066 – volume: 4 start-page: 427 year: 2018 ident: 59_CR92 publication-title: Nat. Plants doi: 10.1038/s41477-018-0178-x – volume: 8 year: 2017 ident: 59_CR137 publication-title: Nat. Commun. – volume: 35 start-page: 438 year: 2017 ident: 59_CR161 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3811 – volume: 339 start-page: 819 year: 2013 ident: 59_CR6 publication-title: Science doi: 10.1126/science.1231143 – volume: 362 start-page: 709 year: 1993 ident: 59_CR56 publication-title: Nature doi: 10.1038/362709a0 – volume: 42 year: 2014 ident: 59_CR66 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1273 – volume: 374 start-page: 77 year: 1995 ident: 59_CR73 publication-title: Nature doi: 10.1038/374077a0 – volume: 109 start-page: E2579 year: 2012 ident: 59_CR16 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1208507109 – volume: 33 start-page: 73 year: 2015 ident: 59_CR125 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3081 – volume: 11 start-page: 627 year: 2018 ident: 59_CR84 publication-title: Mol. Plant doi: 10.1016/j.molp.2018.02.007 – volume: 460 start-page: 165 year: 2000 ident: 59_CR52 publication-title: Mutat. Res. doi: 10.1016/S0921-8777(00)00025-2 – volume: 39 start-page: 12875 year: 2000 ident: 59_CR68 publication-title: Biochemistry doi: 10.1021/bi001383g – volume: 523 start-page: 481 year: 2015 ident: 59_CR108 publication-title: Nature doi: 10.1038/nature14592 – volume: 24 start-page: 939 year: 2018 ident: 59_CR147 publication-title: Nat. Med. doi: 10.1038/s41591-018-0050-6 – volume: 13 start-page: 1036 year: 2016 ident: 59_CR76 publication-title: Nat. Methods doi: 10.1038/nmeth.4038 – volume: 9 year: 2018 ident: 59_CR90 publication-title: Nat. Commun. – volume: 556 start-page: 57 year: 2018 ident: 59_CR86 publication-title: Nature doi: 10.1038/nature26155 – volume: 520 start-page: 186 year: 2015 ident: 59_CR102 publication-title: Nature doi: 10.1038/nature14299 – volume: 2 year: 2013 ident: 59_CR7 publication-title: eLife doi: 10.7554/eLife.00471 – volume: 10 start-page: 1247 year: 2002 ident: 59_CR50 publication-title: Mol. Cell doi: 10.1016/S1097-2765(02)00742-6 – volume: 346 start-page: 1258096 year: 2014 ident: 59_CR11 publication-title: Science doi: 10.1126/science.1258096 – volume: 8 year: 2018 ident: 59_CR138 publication-title: Sci. Rep. – volume: 98 start-page: 12132 year: 2001 ident: 59_CR67 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.211419898 – volume: 360 year: 2018 ident: 59_CR54 publication-title: Science doi: 10.1126/science.aap8992 – volume: 35 start-page: 441 year: 2017 ident: 59_CR162 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3833 – volume: 24 start-page: 365 year: 2014 ident: 59_CR64 publication-title: Genome Res. doi: 10.1101/gr.164749.113 – volume: 97 start-page: 13573 year: 2000 ident: 59_CR87 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.25.13573 – volume: 17 start-page: 333 year: 2016 ident: 59_CR26 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.49 – volume: 33 start-page: 1293 year: 2015 ident: 59_CR107 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3404 – volume: 22 start-page: 5649 year: 1994 ident: 59_CR19 publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.25.5649 – volume: 41 start-page: 7429 year: 2013 ident: 59_CR14 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt520 – volume: 66 start-page: 1021 year: 2009 ident: 59_CR51 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-009-8739-9 – volume: 44 start-page: D862 year: 2016 ident: 59_CR28 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1222 – volume: 9 start-page: 2021 year: 2014 ident: 59_CR46 publication-title: ChemMedChem doi: 10.1002/cmdc.201402139 – volume: 529 start-page: 490 year: 2016 ident: 59_CR95 publication-title: Nature doi: 10.1038/nature16526 – volume: 74 start-page: 3793 year: 2000 ident: 59_CR128 publication-title: J. Virol. doi: 10.1128/JVI.74.8.3793-3803.2000 – volume: 21 start-page: 8935 year: 2002 ident: 59_CR55 publication-title: Oncogene doi: 10.1038/sj.onc.1205996 – reference: 30341440 - Nat Rev Genet. 2018 Dec;19(12):801. doi: 10.1038/s41576-018-0068-0. |
SSID | ssj0016173 |
Score | 2.7088735 |
SecondaryResourceType | review_article |
Snippet | RNA-guided programmable nucleases from CRISPR systems generate precise breaks in DNA or RNA at specified positions. In cells, this activity can lead to changes... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 770 |
SubjectTerms | 631/1647/1511 631/1647/1513 631/337/1645/1944 631/337/4041/3196 631/61/338 Agriculture Animal Genetics and Genomics Animals Base sequence Biomedical and Life Sciences Biomedicine Cancer Research CRISPR CRISPR-Cas Systems Deoxyribonucleic acid DNA DNA binding proteins DNA Breaks, Double-Stranded DNA damage DNA glycosylase DNA sequencing Double-stranded RNA Editing Editors Endonucleases Enzymes Gene Editing - methods Gene expression Gene Function Gene mutation Genome editing Genomes Genomics Human Genetics Humans Mutation Nuclease Nucleases Nucleotide sequence Review Article Ribonucleic acid RNA RNA editing Therapeutic applications Transcription Transcription (Genetics) Transcriptome |
Title | Base editing: precision chemistry on the genome and transcriptome of living cells |
URI | https://link.springer.com/article/10.1038/s41576-018-0059-1 https://www.ncbi.nlm.nih.gov/pubmed/30323312 https://www.proquest.com/docview/2133834077 https://www.proquest.com/docview/2120751879 https://pubmed.ncbi.nlm.nih.gov/PMC6535181 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA-6Ifgy_LZzziiCoJS1TdO0e5FtbEzBodPBfQtpPtxga6_rvQ_-9zsnTTt7wb0U2pyG5vTkfCQnv0PI-8pkrsITPVaBBOdO13Fd1Elcm1zrPIOp7tH5v50Ux2f51xmfhQW3LqRVDjrRK2rTalwj38l8MAXhh_g8_xNj1SjcXQ0lNO6TdYQuw5QuMRsDLnTdfYI9KOAYMS-HXU1W7nRguATG0iW2VHE6sUur2vkf87SaOrmyf-rN0tEjshH8SbrXC8Bjcs82T8iDvsLk36fkxz5YKQoGCrObd-n8OpTUoXoo9EbhBpxAimCtV5aqxtAF2i-vTfBJ6-jlBS47UFzk756Rs6PDXwfHcaiiEOuiKBexEjXPDbhJtShzW3EFLkopVKqcUGWB-FtOpTl3ogAqUI3GQQxjuGNcJZZZzp6TtaZt7EtCrRZaM50rrGyT5NCxYc6VhUqEqozgEUkGHkodIMax0sWl9FvdrJQ92yWwXSLbZRqRj-Mr8x5f4y7iN_hjZH9EdJybco8LBqRJUUXknadAZIsGU2d-q2XXyS8_TydEHwKRa-HztAonEWCQCIY1odyaUMKP0dPmQUJkmPqdvBXUiLwdm_FNTGdrbLtEmizB_S4BXbzoBWocPfgUGWNpFhExEbWRAAHBpy3NxbkHBi84g06BTZ8Gobz9rP8ydfPuQbwiDzOcJT6DZ4usLa6X9jX4YYt62082uJYH6TZZ3z88-X56Azd-L1A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEG8ChRoEQgJFTWLHTpAQaqHVLm1XUFqpN-M4NlQqydLsCvVP8RuZyatkJXrrcddfrHg8nkdmPEPIizSPXIo3eqwGDubOZH4mssDPcm4Mj-Co19X596difMQ_HcfHK-RPdxcG0yo7mVgL6rw0-I18I6qdKXA_5PvZLx-7RmF0tWuh0bDFrj3_DS5b9W7yEfb3ZRTtbB9-GPttVwHfCJHMfS2zmOdgNmQy4TaNNajsROpQO6kTgfWonA557KQAFIiK3IFNn8eOxTqwzGKXCBD5q5yBKzMiq1vb088HfdxCNDHtEES-j1U2uzgqSzYqUJUSvfcER1I_HGjCZX3wj0JcTtZcitjWinDnFrnZWrB0s2G522TFFnfItaan5fld8mUL9CIFlYj51G_p7Kxt4kNN11qOwg8wOymWh_1pqS5yOkeNWcsv_Kd09PQEP3RQDCtU98jRlVD4PhkVZWEfEmqNNIYZrrGXTsBh4pw5lwgdSJ3mMvZI0NFQmbaoOfbWOFV1cJ0lqiG7ArIrJLsKPfK6f2TWVPS4DLyOG6OaS6m9NFCbsWQADUTqkec1AmtpFJis810vqkpNvh4MQK9akCvh9Yxu7z7AIrH81gC5NkDCxpjhcMchqhU2lbo4Gh551g_jk5hAV9hygZgowAibhCkeNAzVrx6smIixMPKIHLBaD8AS5MOR4uRHXYpcxAwmBTK96Zjy4rX-S9RHly9inVwfH-7vqb3JdPcxuRHhianzh9bIaH62sE_ACpxnT9ujR8m3qz7tfwHmamoe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3ra9RAEF9Ki-KX4tvUaldRBCVcks1mE0GkWo-e1eKrcN-2m81uLdTk2twh_df865zZPGoO7Ld-vNtfQnYyz8zsDCHPsiKyGZ7oMQo4OLY69_MkD_y8iLWOIxB1153_836yexB_nPLpCvnTnYXBsspOJzpFXVQav5GPIhdMQfghRrYti_iyM347O_VxghRmWrtxGg2L7Jnz3xC-1W8mO_Cun0fR-MOP97t-O2HA10mSzn0lch4X4ELkIo1NxhWY71SoUFmh0gR7U1kVxtyKBFCgNgoL_n3BLeMqMMzgxAhQ_2uC8RBlTEz7YA_DBlfcD8rfx36bXUaVpaMajKbAOD7FlcwPBzZx2TL8YxqXyzaXcrfOJI5vkvXWl6XbDfPdIiumvE2uNdMtz--Qr-_AQlIwjlhZ_ZrOztpxPlR3Q-Yo_AAHlGKj2F-GqrKgc7SdTpPhP5WlJ8f4yYNigqG-Sw6uhL73yGpZleYBoUYLrZmOFU7VCWK4ccGsTRMVCJUVgnsk6GgoddveHKdsnEiXZmepbMgugewSyS5Dj7zsL5k1vT0uA2_hi5HN8dReL8htLhhAgyTzyFOHwK4aJfLnkVrUtZx8_zYAvWhBtoLH06o9BQGbxEZcA-TmAAkvRg-XOw6Rrdqp5YWQeORJv4xXYildaaoFYqIAc20CbnG_Yah-9-DPRIyFkUfEgNV6ADYjH66Uxz9dU_KEgxCkQKZXHVNePNZ_ibpx-Sa2yHWQcflpsr_3kNyIUGBcIdEmWZ2fLcwjcAfn-WMnd5QcXrWg_wX0Wmzu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Base+editing%3A+precision+chemistry+on+the+genome+and+transcriptome+of+living+cells&rft.jtitle=Nature+reviews.+Genetics&rft.au=Rees%2C+Holly+A&rft.au=Liu%2C+David+R&rft.date=2018-12-01&rft.pub=Nature+Publishing+Group&rft.issn=1471-0056&rft.volume=19&rft.issue=12&rft.spage=770&rft_id=info:doi/10.1038%2Fs41576-018-0059-1&rft.externalDocID=A573157069 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |