Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing
In the budding yeast, Saccharomyces cerevisiae , genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double‐strand break (DSB) repair and in telomeric len...
Saved in:
Published in | The EMBO journal Vol. 17; no. 6; pp. 1819 - 1828 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
16.03.1998
Nature Publishing Group UK European Molecular Biology Organization |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the budding yeast,
Saccharomyces cerevisiae
, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double‐strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an
in vivo
plasmid rejoining assay, we demonstrate that
SIR2
,
SIR3
and
SIR4
, three genes shown previously to function in TPE, are essential for Ku‐dependent DSB repair. As is the case for Ku‐deficient strains, residual repair operating in the absence of the
SIR
gene products ensues through an error‐prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku‐associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that
TEL1
, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However,
RAD50
,
MRE11
and
XRS2
function both in Ku‐dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing. |
---|---|
AbstractList | In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing. In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing. In the budding yeast, Saccharomyces cerevisiae , genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double‐strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2 , SIR3 and SIR4 , three genes shown previously to function in TPE, are essential for Ku‐dependent DSB repair. As is the case for Ku‐deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error‐prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku‐associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1 , a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50 , MRE11 and XRS2 function both in Ku‐dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing. |
Author | Boulton, Simon J. Jackson, Stephen P. |
AuthorAffiliation | Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK |
AuthorAffiliation_xml | – name: Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK |
Author_xml | – sequence: 1 fullname: Boulton, S.J – sequence: 2 fullname: Jackson, S.P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9501103$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUkmP0zAUjtCgoTNw5oTwiVtaO4m3CxJUswADCMHAiIvlOi-pS2KXOO3QP8DvxiVVNXCYnmy99y1vO0mOnHeQJE8JHhMs8wm0M7-YED5mYyKIfJCMSMFwmmFOj5IRzhhJCyLko-QkhAXGmApOjpNjSTEhOB8lv6e-XUZJ1wfkK9TPAb1bpSUswZUxiKJdOvetb3ztVwHFaLrw1llXo6Xu57d6g3QHyLq1b9ZQxg_qofEtdNagBlzdz1GrrevBaWcAaVfeAQQbISaKPU4eVroJ8GT3nibX52dfppfp1ceLN9NXV6lhTLC0nPHMiFnGgBVVBcAlL0uaMy4Ep5gZkxdQcGriDEpmRAWklJXRglIiZyWp8tPk5aC7XM1aKE1ssdONWna21d1GeW3Vvxln56r2a0UIxzSTUeDFTqDzP1cQetXaYKBptIM4IBUryjOS4YPAQtCMYn4YSFhOYz80Ap_drX1f9G6XMT8Z8qbzIXRQ7REEq-2xqL_HoghXTG2PJTLofwxje91bv-3dNvfwxMC7jfvbHLJRZ-9fv-VUYiFZpOKBGiLL1dCphV91Lu78Hrd0oNjQw6-9m-5-KMZzTtW3DxcqP7_5-umSflc3Ef98wFfaK113NqjrzxkmOc4El5Ky_A9GiQNg |
CitedBy_id | crossref_primary_10_1101_gad_206801 crossref_primary_10_1073_pnas_111125998 crossref_primary_10_1093_nar_gkq886 crossref_primary_10_1016_S1097_2765_02_00705_0 crossref_primary_10_1016_j_celrep_2021_109098 crossref_primary_10_1128_MCB_20_3_786_796_2000 crossref_primary_10_1071_RD04112 crossref_primary_10_1126_science_288_5470_1377 crossref_primary_10_1016_j_febslet_2010_07_029 crossref_primary_10_1073_pnas_95_24_14066 crossref_primary_10_1074_jbc_273_34_21447 crossref_primary_10_7314_APJCP_2013_14_2_795 crossref_primary_10_1016_S1097_2765_00_80097_0 crossref_primary_10_1093_embo_reports_kve038 crossref_primary_10_1016_S1097_2765_03_00177_1 crossref_primary_10_1093_embo_reports_kvd051 crossref_primary_10_1016_j_molcel_2007_11_001 crossref_primary_10_1080_02656730310001625986 crossref_primary_10_1016_j_febslet_2010_07_030 crossref_primary_10_1534_genetics_104_030676 crossref_primary_10_1534_genetics_114_161307 crossref_primary_10_1016_S0092_8674_00_80773_4 crossref_primary_10_1007_s00109_004_0616_2 crossref_primary_10_1016_j_jmb_2007_07_013 crossref_primary_10_1134_S0026893312040152 crossref_primary_10_1074_jbc_M206861200 crossref_primary_10_1093_genetics_158_1_145 crossref_primary_10_1101_gad_225102 crossref_primary_10_1159_000443793 crossref_primary_10_1016_j_fbr_2007_02_004 crossref_primary_10_3109_10409238_2016_1172552 crossref_primary_10_1074_jbc_M306841200 crossref_primary_10_1128_MCB_01525_08 crossref_primary_10_1038_cdd_2012_69 crossref_primary_10_1371_journal_pone_0030451 crossref_primary_10_1534_genetics_109_106674 crossref_primary_10_1038_sj_onc_1204350 crossref_primary_10_1534_genetics_117_200972 crossref_primary_10_1073_pnas_1914081116 crossref_primary_10_1093_genetics_154_3_1039 crossref_primary_10_1146_annurev_genet_38_072902_091500 crossref_primary_10_1016_S1369_5274_00_00064_3 crossref_primary_10_1080_10409230091169177 crossref_primary_10_1128_MCB_25_24_10782_10790_2005 crossref_primary_10_1371_journal_pgen_1002233 crossref_primary_10_1006_jsbi_2000_4240 crossref_primary_10_1038_emboj_2008_21 crossref_primary_10_1093_genetics_165_4_1929 crossref_primary_10_1016_j_dnarep_2020_102869 crossref_primary_10_1134_S1022795409010013 crossref_primary_10_1093_embo_reports_kve044 crossref_primary_10_1016_j_dnarep_2004_03_021 crossref_primary_10_1093_nar_gkv082 crossref_primary_10_1073_pnas_062702199 crossref_primary_10_7717_peerj_1534 crossref_primary_10_1074_jbc_M208813200 crossref_primary_10_1093_genetics_154_3_1125 crossref_primary_10_1016_S1369_5274_98_80119_7 crossref_primary_10_1016_j_cell_2004_08_015 crossref_primary_10_1128_MCB_25_10_3934_3944_2005 crossref_primary_10_1128_MCB_20_5_1659_1668_2000 crossref_primary_10_1038_nsmb_2323 crossref_primary_10_1074_jbc_M312913200 crossref_primary_10_1074_jbc_M809131200 crossref_primary_10_1134_S1022795406040028 crossref_primary_10_1016_j_molcel_2006_10_005 crossref_primary_10_1016_S0962_8924_98_01383_X crossref_primary_10_1128_MCB_20_22_8397_8408_2000 crossref_primary_10_1534_genetics_112_145805 crossref_primary_10_1101_gad_1373205 crossref_primary_10_1101_gad_1214504 crossref_primary_10_1371_journal_pgen_1009816 crossref_primary_10_1038_sj_onc_1203283 crossref_primary_10_1093_genetics_152_4_1531 crossref_primary_10_3390_cells9071678 crossref_primary_10_1016_j_dnarep_2005_06_011 crossref_primary_10_1016_j_fgb_2007_08_003 crossref_primary_10_1093_mutage_gev046 crossref_primary_10_1101_gad_12_14_2188 crossref_primary_10_1139_g00_067 crossref_primary_10_1371_journal_pone_0087248 crossref_primary_10_1038_nrg1746 crossref_primary_10_1016_S0304_3835_02_00701_2 crossref_primary_10_1126_science_1075277 crossref_primary_10_1073_pnas_0304797101 crossref_primary_10_1016_j_biochi_2007_07_008 crossref_primary_10_1093_emboj_17_21_6412 crossref_primary_10_1093_nar_27_17_3494 crossref_primary_10_1016_j_dnarep_2004_04_013 crossref_primary_10_1073_pnas_0504063102 crossref_primary_10_1093_genetics_155_2_569 crossref_primary_10_1074_jbc_273_47_31068 crossref_primary_10_1093_nar_27_10_2072 crossref_primary_10_1104_pp_109_150391 crossref_primary_10_1534_genetics_105_049478 crossref_primary_10_2217_epi_2022_0035 crossref_primary_10_1091_mbc_11_7_2221 crossref_primary_10_1016_S0921_8777_99_00046_4 crossref_primary_10_1017_S0031182021000378 crossref_primary_10_1128_MCB_24_12_5130_5143_2004 crossref_primary_10_1080_10934520009377062 crossref_primary_10_1371_journal_pone_0026210 crossref_primary_10_1128_EC_3_6_1557_1566_2004 crossref_primary_10_1128_MCB_23_15_5186_5197_2003 crossref_primary_10_1016_j_dnarep_2015_04_024 crossref_primary_10_1038_nsmb854 crossref_primary_10_1038_sj_neo_7900107 crossref_primary_10_1074_jbc_273_41_26559 crossref_primary_10_1371_journal_pgen_0020018 crossref_primary_10_1371_journal_pgen_1004691 crossref_primary_10_1093_nar_26_23_5365 crossref_primary_10_1074_jbc_M112_439315 crossref_primary_10_3103_S0095452714030062 crossref_primary_10_1016_j_jmb_2020_11_014 crossref_primary_10_1016_S0092_8674_00_80795_3 crossref_primary_10_1016_S0092_8674_00_80772_2 crossref_primary_10_1097_IIO_0000000000000159 crossref_primary_10_1371_journal_pgen_1005425 crossref_primary_10_1016_S0092_8674_00_81626_8 crossref_primary_10_1146_annurev_genet_39_073003_113340 crossref_primary_10_1146_annurev_genet_32_1_619 crossref_primary_10_1534_genetics_107_083535 crossref_primary_10_4161_cc_9_18_13129 crossref_primary_10_1016_S0378_1119_98_00530_7 crossref_primary_10_1128_MCB_23_22_8202_8215_2003 crossref_primary_10_3389_fimmu_2019_02531 crossref_primary_10_1073_pnas_0903869106 crossref_primary_10_1101_gad_486208 crossref_primary_10_1016_S0047_6374_00_00151_2 crossref_primary_10_1074_jbc_M000491200 crossref_primary_10_1128_MCB_21_11_3642_3651_2001 crossref_primary_10_1038_47528 crossref_primary_10_1046_j_1365_313X_2002_01258_x crossref_primary_10_1016_j_dnarep_2004_05_009 crossref_primary_10_1016_j_dnarep_2008_05_008 crossref_primary_10_1128_MCB_23_24_9162_9177_2003 crossref_primary_10_1007_BF02759599 crossref_primary_10_1101_sqb_1999_64_191 crossref_primary_10_1002_bies_201400102 crossref_primary_10_1016_j_biochi_2004_10_022 crossref_primary_10_1158_1078_0432_CCR_0669_3 crossref_primary_10_1093_genetics_160_1_49 crossref_primary_10_1016_j_gde_2003_12_007 crossref_primary_10_1038_emboj_2009_176 crossref_primary_10_1091_mbc_11_10_3265 crossref_primary_10_1016_j_molcel_2007_01_028 crossref_primary_10_1074_jbc_M308705200 crossref_primary_10_1128_MCB_22_7_2182_2193_2002 crossref_primary_10_1016_j_bbrc_2010_07_117 crossref_primary_10_1016_S0921_8777_00_00017_3 crossref_primary_10_1016_S0959_437X_99_80030_6 crossref_primary_10_1089_ars_2012_4981 crossref_primary_10_1007_s00018_021_03801_1 crossref_primary_10_1016_S0304_419X_01_00018_X crossref_primary_10_1080_09553000050151619 crossref_primary_10_1146_annurev_pharmtox_41_1_367 crossref_primary_10_1016_S0960_9822_01_00488_2 crossref_primary_10_1074_jbc_M004315200 crossref_primary_10_21448_ijsm_415191 crossref_primary_10_1038_sj_cr_7310007 crossref_primary_10_1038_emboj_2012_313 crossref_primary_10_1016_j_molbiopara_2012_08_003 crossref_primary_10_1007_s00702_021_02442_9 crossref_primary_10_1534_genetics_108_089003 crossref_primary_10_1534_genetics_106_063446 crossref_primary_10_1016_j_dnarep_2004_06_003 crossref_primary_10_1016_j_mito_2011_03_001 crossref_primary_10_1101_gad_844000 crossref_primary_10_1128_MCB_19_10_6608 crossref_primary_10_1080_02656730310001627713 crossref_primary_10_1128_MMBR_63_2_349_404_1999 crossref_primary_10_1074_jbc_M301579200 crossref_primary_10_1091_mbc_e01_11_0117 crossref_primary_10_4161_cc_25266 crossref_primary_10_1534_genetics_111_137851 crossref_primary_10_3390_ijms23073517 crossref_primary_10_1074_jbc_274_12_7848 crossref_primary_10_1016_S0955_0674_99_80043_X crossref_primary_10_1371_journal_pone_0031288 crossref_primary_10_1016_S1047_8477_02_00533_6 crossref_primary_10_1371_journal_pgen_1000155 crossref_primary_10_1371_journal_pgen_1001362 crossref_primary_10_1093_genetics_165_4_1703 crossref_primary_10_1074_jbc_M008779200 crossref_primary_10_1038_nsmb_1641 crossref_primary_10_1101_gad_300004 crossref_primary_10_1038_nsmb_1640 crossref_primary_10_1091_mbc_e08_01_0099 crossref_primary_10_15252_embj_201592462 crossref_primary_10_1038_sj_onc_1205078 crossref_primary_10_1128_EC_2_1_134_142_2003 crossref_primary_10_1371_journal_pone_0059842 crossref_primary_10_1016_j_abb_2007_11_001 crossref_primary_10_1093_nar_gkae509 crossref_primary_10_1534_genetics_119_302395 crossref_primary_10_1093_nar_27_13_2655 crossref_primary_10_1038_sj_onc_1205082 crossref_primary_10_1128_MCB_00423_08 crossref_primary_10_1146_annurev_biochem_71_090501_150203 crossref_primary_10_1046_j_1432_1033_2002_02865_x crossref_primary_10_1038_sj_onc_1205080 crossref_primary_10_1093_nar_gki777 crossref_primary_10_1016_S0960_9822_98_70315_X crossref_primary_10_1128_EC_00228_08 crossref_primary_10_1038_sj_onc_1205085 crossref_primary_10_1097_MD_0000000000004713 crossref_primary_10_1016_S0378_1119_01_00741_7 crossref_primary_10_1016_S0960_9822_00_00413_9 crossref_primary_10_1016_j_dnarep_2004_12_005 crossref_primary_10_1074_jbc_274_30_21223 crossref_primary_10_1074_jbc_M203205200 crossref_primary_10_1534_genetics_104_034538 crossref_primary_10_1128_MCB_02059_06 crossref_primary_10_1016_j_gene_2017_10_003 crossref_primary_10_1038_nrm805 crossref_primary_10_1093_genetics_160_3_995 crossref_primary_10_1371_journal_pone_0033498 crossref_primary_10_1016_S0047_6374_01_00294_9 crossref_primary_10_1016_S0020_7519_02_00247_3 crossref_primary_10_1046_j_1365_2141_2002_03910_x crossref_primary_10_1016_S0962_8924_98_01331_2 crossref_primary_10_1016_S0968_0004_00_01557_7 crossref_primary_10_1038_nsmb1354 crossref_primary_10_1042_bse0480201 crossref_primary_10_1083_jcb_200506029 crossref_primary_10_1093_genetics_166_4_1641 crossref_primary_10_3389_fimmu_2019_01152 crossref_primary_10_1016_S0027_5107_03_00009_5 crossref_primary_10_1016_S0300_483X_02_00220_2 crossref_primary_10_1093_genetics_161_3_995 crossref_primary_10_1128_MCB_21_16_5359_5373_2001 crossref_primary_10_1093_genetics_152_1_143 crossref_primary_10_1126_science_1099824 crossref_primary_10_1371_journal_pone_0125358 crossref_primary_10_1016_S0960_9822_00_00610_2 crossref_primary_10_1128_MCB_21_13_4233_4245_2001 crossref_primary_10_1016_j_dnarep_2005_10_004 crossref_primary_10_1091_mbc_e10_06_0549 crossref_primary_10_1111_j_1365_313X_2001_00928_x crossref_primary_10_1016_S0960_9822_99_80424_2 crossref_primary_10_1016_S0955_0674_00_00210_6 crossref_primary_10_1212_WNL_0b013e318211c3c8 crossref_primary_10_1111_j_1365_2958_2006_05374_x crossref_primary_10_1073_pnas_0903362106 crossref_primary_10_1128_MCB_22_16_5679_5687_2002 crossref_primary_10_1074_jbc_M500655200 crossref_primary_10_1038_nsmb1214 crossref_primary_10_1038_nature08217 crossref_primary_10_1016_S0891_5849_00_00439_1 crossref_primary_10_1073_pnas_110144297 crossref_primary_10_1128_MMBR_66_4_630_670_2002 crossref_primary_10_1128_MCB_18_9_5600 crossref_primary_10_1371_journal_pgen_1005071 crossref_primary_10_1016_j_jmb_2007_03_014 crossref_primary_10_1128_MCB_18_11_6423 crossref_primary_10_1016_S1097_2765_01_00340_9 crossref_primary_10_1016_j_mrfmmm_2015_08_004 crossref_primary_10_5352_JLS_2003_13_3_241 crossref_primary_10_1074_jbc_M500126200 crossref_primary_10_1515_bmc_2011_023 crossref_primary_10_1016_S0300_9084_00_00183_8 crossref_primary_10_1101_sqb_2004_69_327 crossref_primary_10_1016_j_gene_2013_05_088 crossref_primary_10_1016_j_molcel_2016_09_011 crossref_primary_10_1128_MCB_20_7_2378_2384_2000 crossref_primary_10_1016_S1568_7864_03_00063_6 crossref_primary_10_1016_S1097_2765_01_00287_8 crossref_primary_10_1158_1541_7786_MCR_14_0072 crossref_primary_10_1089_hum_2023_115 crossref_primary_10_1152_physrev_00022_2011 crossref_primary_10_1038_77139 crossref_primary_10_1002_path_1164 crossref_primary_10_1128_MCB_24_8_3213_3226_2004 crossref_primary_10_1016_j_dnarep_2008_06_004 crossref_primary_10_1038_sj_onc_1203968 crossref_primary_10_1128_MCB_25_17_7725_7733_2005 crossref_primary_10_1016_j_femsre_2004_06_001 crossref_primary_10_1016_S0027_5107_00_00040_3 crossref_primary_10_1016_S0921_8777_99_00009_9 crossref_primary_10_1093_nar_gkp905 crossref_primary_10_1016_S0027_5107_00_00052_X crossref_primary_10_1074_jbc_M410192200 crossref_primary_10_1046_j_1365_2958_2002_03224_x crossref_primary_10_1101_gad_1199404 crossref_primary_10_1007_s00412_005_0338_4 crossref_primary_10_1007_s00412_015_0545_6 crossref_primary_10_1002_cam4_3847 crossref_primary_10_1099_mic_0_039255_0 crossref_primary_10_1016_S0161_5890_01_00008_6 crossref_primary_10_1084_jem_20081326 crossref_primary_10_1016_j_bbaexp_2003_11_015 crossref_primary_10_7554_eLife_96933 crossref_primary_10_1074_jbc_M110_195024 crossref_primary_10_1534_genetics_107_076539 crossref_primary_10_1006_jmbi_1998_2257 crossref_primary_10_1007_s00438_007_0218_0 crossref_primary_10_1021_acs_jproteome_8b00771 crossref_primary_10_1016_S0027_5107_01_00167_1 crossref_primary_10_1073_pnas_0307796100 crossref_primary_10_3390_cells12020255 crossref_primary_10_1534_genetics_107_081091 crossref_primary_10_1016_j_aca_2018_09_019 crossref_primary_10_1016_j_bbrc_2007_04_011 crossref_primary_10_1074_jbc_M208542200 crossref_primary_10_1146_annurev_physiol_021113_170411 crossref_primary_10_1038_sj_embor_7400600 crossref_primary_10_1016_S0027_5107_00_00041_5 crossref_primary_10_1016_S0959_437X_00_00178_7 crossref_primary_10_1128_MCB_00471_07 crossref_primary_10_1073_pnas_96_22_12454 crossref_primary_10_1016_S1097_2765_01_00154_X crossref_primary_10_1016_j_mrfmmm_2016_02_004 crossref_primary_10_1128_MCB_19_5_3848 crossref_primary_10_1016_S0968_0004_98_01284_5 crossref_primary_10_1126_science_1079161 crossref_primary_10_1016_j_dnarep_2005_01_004 crossref_primary_10_1016_j_dnarep_2009_03_004 crossref_primary_10_1016_S0092_8674_00_81482_8 crossref_primary_10_1038_sj_onc_1202541 crossref_primary_10_1146_annurev_biochem_72_121801_161547 crossref_primary_10_1371_journal_pgen_1007170 crossref_primary_10_1007_s00412_010_0299_0 crossref_primary_10_1126_science_281_5384_1818 crossref_primary_10_1016_S0092_8674_01_00591_8 crossref_primary_10_1371_journal_pone_0023732 crossref_primary_10_1016_S0959_437X_99_80032_X crossref_primary_10_1038_nsmb1261 crossref_primary_10_1074_jbc_M112_431155 crossref_primary_10_1371_journal_pgen_1000659 crossref_primary_10_1074_jbc_M105482200 crossref_primary_10_1128_MCB_25_11_4514_4528_2005 crossref_primary_10_1042_BST20220754 crossref_primary_10_1016_S0959_437X_99_80014_8 crossref_primary_10_1534_genetics_106_067447 crossref_primary_10_1016_S0960_9822_98_70253_2 crossref_primary_10_1186_s12979_019_0153_z crossref_primary_10_1016_j_biochi_2007_07_022 crossref_primary_10_1101_sqb_1998_63_401 crossref_primary_10_1093_genetics_155_4_1577 crossref_primary_10_1128_MCB_21_4_1164_1172_2001 crossref_primary_10_1101_sqb_2000_65_275 crossref_primary_10_1016_j_jbiotec_2008_10_007 crossref_primary_10_1093_femsre_fuad021 crossref_primary_10_1186_s13072_020_00344_w crossref_primary_10_1016_j_dnarep_2005_04_021 crossref_primary_10_7554_eLife_96933_3 crossref_primary_10_1042_BJ20090942 crossref_primary_10_1007_s00438_011_0619_y crossref_primary_10_1126_science_1065672 crossref_primary_10_1534_genetics_107_079848 crossref_primary_10_1016_j_febslet_2011_11_013 crossref_primary_10_1101_sqb_2000_65_281 crossref_primary_10_1073_pnas_98_4_1711 crossref_primary_10_1128_MCB_19_9_6260 crossref_primary_10_1016_S0960_9822_01_00328_1 crossref_primary_10_1093_genetics_152_4_1501 crossref_primary_10_1016_j_celrep_2013_05_026 crossref_primary_10_1080_10409239891204242 crossref_primary_10_1128_MCB_01460_09 crossref_primary_10_1164_rccm_201111_2023OC crossref_primary_10_1371_journal_pntd_0010041 crossref_primary_10_1667_RR3425_1 crossref_primary_10_1534_genetics_108_094490 crossref_primary_10_1038_sj_emboj_7600778 crossref_primary_10_1074_jbc_M301110200 crossref_primary_10_1016_S0960_9822_98_70252_0 crossref_primary_10_1016_j_dnarep_2005_04_016 crossref_primary_10_1093_nar_gku267 crossref_primary_10_1111_j_1745_7254_2005_00165_x crossref_primary_10_1016_j_dnarep_2004_02_001 crossref_primary_10_1667_RADE_24_00038_1 crossref_primary_10_1128_MCB_25_7_2708_2721_2005 crossref_primary_10_1111_j_1365_2958_2006_05186_x crossref_primary_10_1016_S0921_8777_99_00006_3 crossref_primary_10_1515_BC_1999_095 crossref_primary_10_3390_genes9120589 crossref_primary_10_1038_s41598_021_86552_0 crossref_primary_10_1007_s00412_006_0067_3 crossref_primary_10_1073_pnas_1934561100 crossref_primary_10_1074_jbc_M200550200 crossref_primary_10_1074_jbc_M413562200 crossref_primary_10_1101_gad_202960_112 crossref_primary_10_1006_geno_1998_5668 crossref_primary_10_1002__SICI_1521_1878_199908_21_8_649__AID_BIES4_3_0_CO_2_O crossref_primary_10_1101_gad_864101 crossref_primary_10_1038_nsmb_2116 crossref_primary_10_1016_j_gde_2008_01_011 crossref_primary_10_1016_S0959_437X_00_00070_8 crossref_primary_10_1016_j_isci_2021_103081 crossref_primary_10_1101_sqb_2000_65_113 crossref_primary_10_1093_nar_gkp512 crossref_primary_10_1101_gad_1125903 crossref_primary_10_1016_j_dnarep_2019_102739 crossref_primary_10_1006_bbrc_1999_0897 crossref_primary_10_1093_genetics_157_2_579 crossref_primary_10_7554_eLife_07750 crossref_primary_10_1093_mutage_gei031 crossref_primary_10_1128_MCB_24_21_9682_9694_2004 crossref_primary_10_1016_j_freeradbiomed_2013_01_004 crossref_primary_10_1371_journal_pgen_1007356 crossref_primary_10_1128_MCB_19_1_556 crossref_primary_10_1007_s11103_006_9061_7 crossref_primary_10_1590_S1415_47572000000400056 crossref_primary_10_1093_genetics_161_4_1437 crossref_primary_10_1128_EC_2_2_306_317_2003 crossref_primary_10_1126_science_1065986 crossref_primary_10_1534_genetics_105_046144 crossref_primary_10_1016_S1568_7864_03_00115_0 crossref_primary_10_1007_s10577_005_0995_4 crossref_primary_10_1146_annurev_genet_39_110304_095755 crossref_primary_10_1534_genetics_104_033902 crossref_primary_10_1093_nar_gkx123 crossref_primary_10_1530_JOE_17_0060 crossref_primary_10_1016_j_bbrc_2006_12_180 crossref_primary_10_1074_jbc_M404492200 crossref_primary_10_1016_S1097_2765_05_00094_8 crossref_primary_10_1016_j_dnarep_2007_12_003 crossref_primary_10_1534_genetics_102_012708 crossref_primary_10_4049_jimmunol_163_11_6065 crossref_primary_10_1016_j_cell_2009_01_037 crossref_primary_10_1038_s44319_024_00198_3 crossref_primary_10_1146_annurev_biochem_73_071403_160049 crossref_primary_10_1016_S0014_4800_03_00010_8 crossref_primary_10_1038_srep04489 crossref_primary_10_1016_S1383_5742_99_00042_3 crossref_primary_10_1038_35003120 crossref_primary_10_1128_MCB_19_6_4065 crossref_primary_10_1038_sj_emboj_7600975 crossref_primary_10_1128_MCB_21_19_6559_6573_2001 crossref_primary_10_1128_MCB_24_11_5050_5059_2004 crossref_primary_10_1016_j_mrrev_2014_06_002 crossref_primary_10_1016_S0092_8674_01_00227_6 crossref_primary_10_1038_nrm1367 crossref_primary_10_1074_jbc_M002588200 crossref_primary_10_1007_s10529_012_1107_0 crossref_primary_10_1073_pnas_96_24_13926 crossref_primary_10_1016_S0960_9822_01_00372_4 crossref_primary_10_1093_genetics_164_1_31 crossref_primary_10_1016_S0960_9822_99_80483_7 crossref_primary_10_1158_1535_7163_MCT_05_0263 crossref_primary_10_1091_mbc_e02_11_0719 crossref_primary_10_1038_nrm1256 crossref_primary_10_1101_sqb_2000_65_265 crossref_primary_10_1016_j_dnarep_2011_10_011 crossref_primary_10_1093_genetics_155_1_475 crossref_primary_10_1016_j_jmb_2020_03_030 crossref_primary_10_1007_s11103_010_9685_5 crossref_primary_10_1016_S1097_2765_01_00388_4 crossref_primary_10_1038_nsmb_3369 crossref_primary_10_1371_journal_pgen_1006479 crossref_primary_10_1371_journal_pgen_1006117 crossref_primary_10_1128_EC_00129_10 crossref_primary_10_1016_j_molcel_2005_01_014 crossref_primary_10_1093_genetics_164_1_47 crossref_primary_10_1016_S1097_2765_03_00174_6 |
ContentType | Journal Article |
Copyright | European Molecular Biology Organization 1998 Copyright © 1998 European Molecular Biology Organization |
Copyright_xml | – notice: European Molecular Biology Organization 1998 – notice: Copyright © 1998 European Molecular Biology Organization |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7S9 L.6 7X8 5PM |
DOI | 10.1093/emboj/17.6.1819 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Nucleic Acids Abstracts MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1460-2075 |
EndPage | 1828 |
ExternalDocumentID | PMC1170529 9501103 10_1093_emboj_17_6_1819 EMBJ7590896 ark_67375_WNG_3FXVQH5Z_X US201302879956 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust |
GroupedDBID | --- -DZ -Q- -~X .55 0R~ 123 1OC 29G 2WC 33P 36B 39C 3O- 4.4 53G 5VS 70F 7X7 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AAJSJ AANHP AANLZ AAONW AASGY AASML AAXRX AAYCA AAZKR ABCUV ABLJU ABUWG ABZEH ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFFNX AFGKR AFKRA AFRAH AFWVQ AFZJQ AHMBA AI. AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ASPBG AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAWUL BBNVY BDRZF BENPR BFHJK BHPHI BKSAR BMNLL BMXJE BPHCQ BRXPI BTFSW BVXVI C1A C6C CAG CCPQU COF CS3 D1J DCZOG DIK DPXWK DRFUL DRSTM DU5 DWQXO E3Z EBD EBLON EBS EJD EMB EMOBN F5P FA8 FBQ FEDTE FYUFA G-S GNUQQ GODZA GROUPED_DOAJ GUQSH GX1 H13 HCIFZ HH5 HK~ HMCUK HVGLF HYE H~9 KQ8 LATKE LEEKS LH4 LITHE LK8 LOXES LUTES LW6 LYRES M1P M2O M7P MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ NAO O9- OK1 P2P P2W PCBAR PHGZT PQQKQ PROAC PSQYO Q2X R.K RHI RIG RNI RNS ROL RPM RZO SV3 TN5 TR2 UKHRP VH1 WBKPD WH7 WIH WIK WIN WOHZO WOQ WXSBR X7M XSW Y6R YSK YYP ZCA ZGI ZXP ZZTAW ~KM 24P ABJNI AFPWT BSCLL ESTFP RHF WYJ PKN AAYXX AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7TM AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c6686-db72c8b26e64ffee797dd5367887506cc34e475c146d6c8fe1d9fca85519bd1f3 |
ISSN | 0261-4189 1460-2075 |
IngestDate | Thu Aug 21 18:20:15 EDT 2025 Sun Aug 24 03:29:57 EDT 2025 Fri Jul 11 11:38:06 EDT 2025 Thu Jul 10 22:43:15 EDT 2025 Wed Feb 19 01:13:01 EST 2025 Tue Jul 01 03:07:59 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Wed Jan 22 16:59:34 EST 2025 Fri Feb 21 02:37:58 EST 2025 Wed Oct 30 09:49:28 EDT 2024 Thu Apr 03 09:45:20 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Rad50 DSB repair Ku silencing telomeres |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c6686-db72c8b26e64ffee797dd5367887506cc34e475c146d6c8fe1d9fca85519bd1f3 |
Notes | ark:/67375/WNG-3FXVQH5Z-X istex:644E02DE0DC09D8159EA7DDE31D393EC30E96B10 ArticleID:EMBJ7590896 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1093/emboj/17.6.1819 |
PMID | 9501103 |
PQID | 16351465 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_1170529 proquest_miscellaneous_79732120 proquest_miscellaneous_48525070 proquest_miscellaneous_16351465 pubmed_primary_9501103 crossref_primary_10_1093_emboj_17_6_1819 crossref_citationtrail_10_1093_emboj_17_6_1819 wiley_primary_10_1093_emboj_17_6_1819_EMBJ7590896 springer_journals_10_1093_emboj_17_6_1819 istex_primary_ark_67375_WNG_3FXVQH5Z_X fao_agris_US201302879956 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | March 16, 1998 |
PublicationDateYYYYMMDD | 1998-03-16 |
PublicationDate_xml | – month: 03 year: 1998 text: March 16, 1998 day: 16 |
PublicationDecade | 1990 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: London – name: England |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 1998 |
Publisher | John Wiley & Sons, Ltd Nature Publishing Group UK European Molecular Biology Organization |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Nature Publishing Group UK – name: European Molecular Biology Organization |
References | Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (1991) Current Protocols in Molecular Biology. J. Wiley & Sons, Chichester, UK. Cohn M and Blackburn EH (1995) Telomerase in yeast. Science, 269, 396-400. Teo S-H and Jackson SP (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J, 16, 4788-4795. Klar AJS, Fogel S and McLeod K (1979) MAR1 a regulator of HMa and HMα loci in Saccharomyces cerevisiae. Genetics, 93, 37-50. Marcand S, Gilson E and Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science, 275, 986-990. Shinohara A and Ogawa T (1995) Homologous recombination and the roles of double-strand breaks. Trends Biol Sci, 20, 387-391. Blackburn EH (1991) Structure and function of telomeres. Nature, 350, 569-573. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature, 389, 349-352. Rine J, Strathern JN, Hicks JB and Herskowitz I (1979) A supressor of mating-type locus mutations in Saccharomyces cerevisiae. Genetics, 93, 877-901. Porter SE, Greenwell PW, Ritchie KB and Petes TD (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res, 24, 582-585. Barnes G and Rio D (1997) DNA double-strand break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 94, 867-872. Stavenhagen JB and Zakian VA (1994) Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev, 8, 1411-1422. Dvir A, Stein LY, Calore BL and Dynan WS (1993) Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem, 268, 10440-10447. Mezard C and Nicolas A (1994) Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol, 14, 1278-1292. Kramer KM, Brock JA, Bloom K, Moore K and Haber JE (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol, 14, 1293-1301. Jackson SP and Jeggo PA (1995) DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci, 20, 412-415. Jackson SP (1996) DNA damage detection by DNA dependent protein kinase. Cancer Surveys, 28, 261-279. Shore D, Squire M and Nasmyth KA (1984) Characterization of two genes required for position effect control of mating type. EMBO J, 3, 2817-2823. Greenwall PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B and Petes TD (1995) TEL1, a gene involved in controlling telomere length in S.cerevisiae, is homologous to the Human Ataxia Telangiectasia gene. Cell, 82, 823-829. Shore D and Nasmyth KA (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell, 51, 721-732. Tsukamoto Y, Kato J and Ikeda H (1997a) Budding yeast Rad50, Mre11, Xrs2 and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid. Mol Gen Genet, 255. Petrini JHJ, Walsh ME, DiMare C, Chen X, Korenberg JR and Weaver DT (1995) Isolation and characterisation of the human MRE11 homologue. Genomics, 29, 80-86. Schar P, Herrmann G, Daly G and Lindahl T (1997) A newly identified DNA ligase Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev, 11, 1912-1924. Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA and Petrini JHJ (1996) Human Rad50 is physically associated with human Mre11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol, 16, 4832-4841. Siede W, Friedl AA, Dianova I, Eckardt-Schupp F and Friedberg EC (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics, 142, 91-102. Gottschling DE, Aparicio OM, Billington BL and Zakian VA (1990) Position effect at S.cerevisiae telomeres: reversible repression of pol II transcription. Cell, 63, 751-762. Lieber MR, Grawunder U, Wu XT and Yaneva M (1997) Tying loose ends: Roles of Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Dev, 7, 99-104. Sherman F, Fink GR and Laurence C (1979) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Boulton SJ and Jackson SP (1996a) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J, 15, 5093-5103. Schiestl RH, Dominska M and Petes TD (1993) Transformation of Saccharomyces cerevisiae with nonhomologous DNA: Illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol, 13, 2697-2705. Feldmann H, Driller L, Meier B, Mages G, Kellermann J and Winnacker EL (1996) Hdf2, the second subunit of the Ku homolog from Saccharomyces cerevisiae. J Biol Chem, 271, 27765-27769. Boulton SJ and Jackson SP (1996b) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and telomeric maintenance. Nucleic Acids Res, 24, 4639-4648. Aparicio OM, Billington BL and Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S.cerevisiae. Cell, 66, 1279-1287. Milne GT, Jin S, Shannon KB and Weaver DT (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol, 16, 4189-4198. Hartley KO, Gell D, Smith GCM, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW and Jackson SP (1995) DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the Ataxia Telangiectasia gene product. Cell, 82, 849-856. Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM and Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell, 80, 583-592. Moretti P, Freeman K, Coodley L and Shore D (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev, 8, 2257-2269. Schiestl RH and Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 88, 7585-7589. Connelly JC and Leach DRF (1996) The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes to Cells, 1, 285-291. Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M and Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature, 388, 492-495. Gottlieb TM and Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 72, 131-142. Schiestl RH, Zhu J and Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol, 14, 4493-4500. Tsukamoto Y, Kato J and Ikeda H (1997b) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature, 388, 900-903. Wilson TE, Grawunder U and Lieber MR (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 388, 495-498. Goffeau A et al. (1996) Life with 6000 genes. Science, 274, 546. Shore D (1995) Telomere position effects and transcriptional silencing in the yeast Saccharomyces cerevisiae. Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Carr AM (1996) Checkpoints take the next step. Science, 271, 314-315. Mages GJ, Feldmann HM and Winnacker E-L (1996) Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J Biol Chem, 271, 7910-7915. Moore JK and Haber JE (1996) Cell cycle and genetic requirements of two pathways of non-homologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol, 16, 2164-2173. Critchlow SE, Bowater RP and Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol, 7, 588-598. Sun Z, Fay DS, Marini F, Foiani M and Stern D (1996) Spk1/Rad53 is regulated by Mec1-dependent phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev, 10, 395-406. Labhart P (1995) DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc Natl Acad Sci USA, 92, 2934-2938. Wiley EA and Zakian VA (1995) Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics, 139, 67-79. Friedberg EC, Walker GC and Siede W (1995) DNA Repair and Mutagenesis. American Society for Microbiology, Washington, DC. Jackson SP (1997) Silencing and DNA repair connect. Nature, 388, 829-830. Feldmann H and Winnacker EL (1993) A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem, 268, 12895-12900. Kuhn A, Gottlieb TM, Jackson SP and Grummt I (1995) DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev, 9, 193-203. 1995; 9 1991; 350 1995; 92 1987; 51 1997a; 255 1997; 275 1995; 139 1995 1996; 142 1991 1993; 268 1996; 16 1979; 93 1996; 10 1997b; 388 1979 1997; 7 1997; 388 1995; 20 1996b; 24 1990; 63 1997; 389 1994; 8 1993; 13 1995; 82 1997; 94 1996; 28 1995; 80 1997; 11 1993; 72 1984; 3 1991; 66 1991; 88 1996; 271 1996a; 15 1994; 14 1995; 269 1997; 16 1996; 1 1996; 274 1995; 29 1996; 24 7958893 - Genes Dev. 1994 Oct 1;8(19):2257-69 8533154 - Trends Biochem Sci. 1995 Oct;20(10):412-5 1881899 - Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7585-9 9278039 - Nature. 1997 Aug 28;388(6645):829-30 8626469 - J Biol Chem. 1996 Apr 5;271(14):7910-5 8977040 - Cancer Surv. 1996;28:261-79 9271115 - Genes Dev. 1997 Aug 1;11(15):1912-24 9259561 - Curr Biol. 1997 Aug 1;7(8):588-98 8604297 - Nucleic Acids Res. 1996 Feb 15;24(4):582-5 7618104 - Science. 1995 Jul 21;269(5222):396-400 9303323 - EMBO J. 1997 Aug 1;16(15):4788-95 8422676 - Cell. 1993 Jan 15;72(1):131-42 2225075 - Cell. 1990 Nov 16;63(4):751-62 9023348 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):867-72 7926741 - Genes Dev. 1994 Jun 15;8(12):1411-22 8972848 - Nucleic Acids Res. 1996 Dec 1;24(23):4639-48 8756642 - Mol Cell Biol. 1996 Sep;16(9):4832-41 8770587 - Genetics. 1996 Jan;142(1):91-102 1708110 - Nature. 1991 Apr 18;350(6319):569-73 8486698 - J Biol Chem. 1993 May 15;268(14):10440-7 9242410 - Nature. 1997 Jul 31;388(6641):492-5 7671312 - Cell. 1995 Sep 8;82(5):849-56 8289808 - Mol Cell Biol. 1994 Feb;14(2):1293-301 7705652 - Genetics. 1995 Jan;139(1):67-79 8628283 - Mol Cell Biol. 1996 May;16(5):2164-73 8007955 - Mol Cell Biol. 1994 Jul;14(7):4493-500 8600024 - Genes Dev. 1996 Feb 15;10(4):395-406 8849441 - Science. 1996 Oct 25;274(5287):546, 563-7 9133662 - Genes Cells. 1996 Mar;1(3):285-91 8533149 - Trends Biochem Sci. 1995 Oct;20(10):387-91 8754818 - Mol Cell Biol. 1996 Aug;16(8):4189-98 8289807 - Mol Cell Biol. 1994 Feb;14(2):1278-92 9020083 - Science. 1997 Feb 14;275(5302):986-90 3315231 - Cell. 1987 Dec 4;51(5):721-32 8386316 - Mol Cell Biol. 1993 May;13(5):2697-705 9242411 - Nature. 1997 Jul 31;388(6641):495-8 8890183 - EMBO J. 1996 Sep 16;15(18):5093-103 7867066 - Cell. 1995 Feb 24;80(4):583-92 7851793 - Genes Dev. 1995 Jan 15;9(2):193-203 8910371 - J Biol Chem. 1996 Nov 1;271(44):27765-9 8530104 - Genomics. 1995 Sep 1;29(1):80-6 9024627 - Curr Opin Genet Dev. 1997 Feb;7(1):99-104 6098447 - EMBO J. 1984 Dec 1;3(12):2817-23 8553064 - Science. 1996 Jan 19;271(5247):314-5 1913809 - Cell. 1991 Sep 20;66(6):1279-87 8509423 - J Biol Chem. 1993 Jun 15;268(17):12895-900 9311776 - Nature. 1997 Sep 25;389(6649):349-52 17248968 - Genetics. 1979 Sep;93(1):37-50 7708751 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2934-8 7671310 - Cell. 1995 Sep 8;82(5):823-9 9278054 - Nature. 1997 Aug 28;388(6645):900-3 397913 - Genetics. 1979 Dec;93(4):877-901 |
References_xml | – reference: Carr AM (1996) Checkpoints take the next step. Science, 271, 314-315. – reference: Labhart P (1995) DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc Natl Acad Sci USA, 92, 2934-2938. – reference: Moore JK and Haber JE (1996) Cell cycle and genetic requirements of two pathways of non-homologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol, 16, 2164-2173. – reference: Friedberg EC, Walker GC and Siede W (1995) DNA Repair and Mutagenesis. American Society for Microbiology, Washington, DC. – reference: Marcand S, Gilson E and Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science, 275, 986-990. – reference: Boulton SJ and Jackson SP (1996b) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and telomeric maintenance. Nucleic Acids Res, 24, 4639-4648. – reference: Siede W, Friedl AA, Dianova I, Eckardt-Schupp F and Friedberg EC (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics, 142, 91-102. – reference: Mezard C and Nicolas A (1994) Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol, 14, 1278-1292. – reference: Kuhn A, Gottlieb TM, Jackson SP and Grummt I (1995) DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev, 9, 193-203. – reference: Goffeau A et al. (1996) Life with 6000 genes. Science, 274, 546. – reference: Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M and Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature, 388, 492-495. – reference: Porter SE, Greenwell PW, Ritchie KB and Petes TD (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res, 24, 582-585. – reference: Sun Z, Fay DS, Marini F, Foiani M and Stern D (1996) Spk1/Rad53 is regulated by Mec1-dependent phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev, 10, 395-406. – reference: Feldmann H and Winnacker EL (1993) A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem, 268, 12895-12900. – reference: Shore D and Nasmyth KA (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell, 51, 721-732. – reference: Aparicio OM, Billington BL and Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S.cerevisiae. Cell, 66, 1279-1287. – reference: Gottlieb TM and Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 72, 131-142. – reference: Schiestl RH, Zhu J and Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol, 14, 4493-4500. – reference: Kramer KM, Brock JA, Bloom K, Moore K and Haber JE (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol, 14, 1293-1301. – reference: Milne GT, Jin S, Shannon KB and Weaver DT (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol, 16, 4189-4198. – reference: Teo S-H and Jackson SP (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J, 16, 4788-4795. – reference: Klar AJS, Fogel S and McLeod K (1979) MAR1 a regulator of HMa and HMα loci in Saccharomyces cerevisiae. Genetics, 93, 37-50. – reference: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (1991) Current Protocols in Molecular Biology. J. Wiley & Sons, Chichester, UK. – reference: Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature, 389, 349-352. – reference: Moretti P, Freeman K, Coodley L and Shore D (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev, 8, 2257-2269. – reference: Tsukamoto Y, Kato J and Ikeda H (1997a) Budding yeast Rad50, Mre11, Xrs2 and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid. Mol Gen Genet, 255. – reference: Barnes G and Rio D (1997) DNA double-strand break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 94, 867-872. – reference: Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM and Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell, 80, 583-592. – reference: Mages GJ, Feldmann HM and Winnacker E-L (1996) Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J Biol Chem, 271, 7910-7915. – reference: Dvir A, Stein LY, Calore BL and Dynan WS (1993) Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem, 268, 10440-10447. – reference: Greenwall PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B and Petes TD (1995) TEL1, a gene involved in controlling telomere length in S.cerevisiae, is homologous to the Human Ataxia Telangiectasia gene. Cell, 82, 823-829. – reference: Connelly JC and Leach DRF (1996) The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes to Cells, 1, 285-291. – reference: Rine J, Strathern JN, Hicks JB and Herskowitz I (1979) A supressor of mating-type locus mutations in Saccharomyces cerevisiae. Genetics, 93, 877-901. – reference: Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA and Petrini JHJ (1996) Human Rad50 is physically associated with human Mre11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol, 16, 4832-4841. – reference: Hartley KO, Gell D, Smith GCM, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW and Jackson SP (1995) DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the Ataxia Telangiectasia gene product. Cell, 82, 849-856. – reference: Schiestl RH, Dominska M and Petes TD (1993) Transformation of Saccharomyces cerevisiae with nonhomologous DNA: Illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol, 13, 2697-2705. – reference: Lieber MR, Grawunder U, Wu XT and Yaneva M (1997) Tying loose ends: Roles of Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Dev, 7, 99-104. – reference: Boulton SJ and Jackson SP (1996a) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J, 15, 5093-5103. – reference: Sherman F, Fink GR and Laurence C (1979) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. – reference: Shore D (1995) Telomere position effects and transcriptional silencing in the yeast Saccharomyces cerevisiae. Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. – reference: Feldmann H, Driller L, Meier B, Mages G, Kellermann J and Winnacker EL (1996) Hdf2, the second subunit of the Ku homolog from Saccharomyces cerevisiae. J Biol Chem, 271, 27765-27769. – reference: Tsukamoto Y, Kato J and Ikeda H (1997b) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature, 388, 900-903. – reference: Cohn M and Blackburn EH (1995) Telomerase in yeast. Science, 269, 396-400. – reference: Jackson SP (1996) DNA damage detection by DNA dependent protein kinase. Cancer Surveys, 28, 261-279. – reference: Gottschling DE, Aparicio OM, Billington BL and Zakian VA (1990) Position effect at S.cerevisiae telomeres: reversible repression of pol II transcription. Cell, 63, 751-762. – reference: Petrini JHJ, Walsh ME, DiMare C, Chen X, Korenberg JR and Weaver DT (1995) Isolation and characterisation of the human MRE11 homologue. Genomics, 29, 80-86. – reference: Shinohara A and Ogawa T (1995) Homologous recombination and the roles of double-strand breaks. Trends Biol Sci, 20, 387-391. – reference: Blackburn EH (1991) Structure and function of telomeres. Nature, 350, 569-573. – reference: Critchlow SE, Bowater RP and Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol, 7, 588-598. – reference: Jackson SP and Jeggo PA (1995) DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci, 20, 412-415. – reference: Wiley EA and Zakian VA (1995) Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics, 139, 67-79. – reference: Jackson SP (1997) Silencing and DNA repair connect. Nature, 388, 829-830. – reference: Shore D, Squire M and Nasmyth KA (1984) Characterization of two genes required for position effect control of mating type. EMBO J, 3, 2817-2823. – reference: Stavenhagen JB and Zakian VA (1994) Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev, 8, 1411-1422. – reference: Schiestl RH and Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 88, 7585-7589. – reference: Wilson TE, Grawunder U and Lieber MR (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 388, 495-498. – reference: Schar P, Herrmann G, Daly G and Lindahl T (1997) A newly identified DNA ligase Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev, 11, 1912-1924. – volume: 13 start-page: 2697 year: 1993 end-page: 2705 article-title: Transformation of with nonhomologous DNA: Illegitimate integration of transforming DNA into yeast chromosomes and ligation of transforming DNA to mitochondrial DNA sequences publication-title: Mol Cell Biol – volume: 16 start-page: 4788 year: 1997 end-page: 4795 article-title: Identification of DNA ligase IV: involvement in DNA double‐strand break repair publication-title: EMBO J – volume: 350 start-page: 569 year: 1991 end-page: 573 article-title: Structure and function of telomeres publication-title: Nature – year: 1995 article-title: telomeres: function, structure and replication – volume: 388 start-page: 495 year: 1997 end-page: 498 article-title: Yeast DNA ligase IV mediates non‐homologous DNA end joining publication-title: Nature – volume: 271 start-page: 314 year: 1996 end-page: 315 article-title: Checkpoints take the next step publication-title: Science – volume: 92 start-page: 2934 year: 1995 end-page: 2938 article-title: DNA‐dependent protein kinase specifically represses promoter‐directed transcription initiation by RNA polymerase I publication-title: Proc Natl Acad Sci USA – volume: 93 start-page: 877 year: 1979 end-page: 901 article-title: A supressor of mating‐type locus mutations in publication-title: Genetics – volume: 274 start-page: 546 year: 1996 article-title: Life with 6000 genes publication-title: Science – year: 1979 – volume: 255 year: 1997a article-title: Budding yeast Rad50, Mre11, Xrs2 and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid publication-title: Mol Gen Genet – volume: 275 start-page: 986 year: 1997 end-page: 990 article-title: A protein‐counting mechanism for telomere length regulation in yeast publication-title: Science – volume: 271 start-page: 27765 year: 1996 end-page: 27769 article-title: Hdf2, the second subunit of the Ku homolog from publication-title: J Biol Chem – volume: 3 start-page: 2817 year: 1984 end-page: 2823 article-title: Characterization of two genes required for position effect control of mating type publication-title: EMBO J – volume: 8 start-page: 2257 year: 1994 end-page: 2269 article-title: Evidence that a complex of proteins interacts with the silencer and telomere‐binding protein publication-title: Genes Dev – volume: 94 start-page: 867 year: 1997 end-page: 872 article-title: DNA double‐strand break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku‐deficient publication-title: Proc Natl Acad Sci USA – volume: 9 start-page: 193 year: 1995 end-page: 203 article-title: DNA‐dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I publication-title: Genes Dev – volume: 10 start-page: 395 year: 1996 end-page: 406 article-title: Spk1/Rad53 is regulated by Mec1‐dependent phosphorylation in DNA replication and damage checkpoint pathways publication-title: Genes Dev – volume: 1 start-page: 285 year: 1996 end-page: 291 article-title: The and genes of encode a nuclease involved in palindrome inviability and genetic recombination publication-title: Genes to Cells – volume: 20 start-page: 412 year: 1995 end-page: 415 article-title: DNA double‐strand break repair and V(D)J recombination: involvement of DNA‐PK publication-title: Trends Biochem Sci – volume: 14 start-page: 1278 year: 1994 end-page: 1292 article-title: Homologous, homeologous, and illegitimate repair of double‐strand breaks during transformation of a wild‐type strain and a mutant strain of publication-title: Mol Cell Biol – volume: 14 start-page: 4493 year: 1994 end-page: 4500 article-title: Effect of mutations in genes affecting homologous recombination on restriction enzyme‐mediated and illegitimate recombination in publication-title: Mol Cell Biol – volume: 16 start-page: 4832 year: 1996 end-page: 4841 article-title: Human Rad50 is physically associated with human Mre11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair publication-title: Mol Cell Biol – volume: 7 start-page: 588 year: 1997 end-page: 598 article-title: Mammalian DNA double‐strand break repair protein XRCC4 interacts with DNA ligase IV publication-title: Curr Biol – volume: 16 start-page: 2164 year: 1996 end-page: 2173 article-title: Cell cycle and genetic requirements of two pathways of non‐homologous end‐joining repair of double‐strand breaks in publication-title: Mol Cell Biol – volume: 268 start-page: 10440 year: 1993 end-page: 10447 article-title: Purification and characterization of a template‐associated protein kinase that phosphorylates RNA polymerase II publication-title: J Biol Chem – volume: 63 start-page: 751 year: 1990 end-page: 762 article-title: Position effect at telomeres: reversible repression of pol II transcription publication-title: Cell – volume: 82 start-page: 823 year: 1995 end-page: 829 article-title: , a gene involved in controlling telomere length in , is homologous to the Human Ataxia Telangiectasia gene publication-title: Cell – volume: 82 start-page: 849 year: 1995 end-page: 856 article-title: DNA‐dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3‐kinase and the Ataxia Telangiectasia gene product publication-title: Cell – volume: 16 start-page: 4189 year: 1996 end-page: 4198 article-title: Mutations in two Ku homologs define a DNA end‐joining repair pathway in publication-title: Mol Cell Biol – volume: 271 start-page: 7910 year: 1996 end-page: 7915 article-title: Involvement of the gene in DNA double‐strand break repair and recombination publication-title: J Biol Chem – volume: 142 start-page: 91 year: 1996 end-page: 102 article-title: The Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination publication-title: Genetics – volume: 80 start-page: 583 year: 1995 end-page: 592 article-title: Histone H3 and H4 N‐termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast publication-title: Cell – volume: 388 start-page: 829 year: 1997 end-page: 830 article-title: Silencing and DNA repair connect publication-title: Nature – volume: 7 start-page: 99 year: 1997 end-page: 104 article-title: Tying loose ends: Roles of Ku and DNA‐dependent protein kinase in the repair of double‐strand breaks publication-title: Curr Opin Genet Dev – volume: 269 start-page: 396 year: 1995 end-page: 400 article-title: Telomerase in yeast publication-title: Science – volume: 388 start-page: 492 year: 1997 end-page: 495 article-title: Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells publication-title: Nature – volume: 72 start-page: 131 year: 1993 end-page: 142 article-title: The DNA‐dependent protein kinase: requirement for DNA ends and association with Ku antigen publication-title: Cell – volume: 388 start-page: 900 year: 1997b end-page: 903 article-title: Silencing factors participate in DNA repair and recombination in publication-title: Nature – volume: 24 start-page: 4639 year: 1996b end-page: 4648 article-title: Identification of a homologue: roles in DNA double strand break rejoining and telomeric maintenance publication-title: Nucleic Acids Res – volume: 20 start-page: 387 year: 1995 end-page: 391 article-title: Homologous recombination and the roles of double‐strand breaks publication-title: Trends Biol Sci – volume: 28 start-page: 261 year: 1996 end-page: 279 article-title: DNA damage detection by DNA dependent protein kinase publication-title: Cancer Surveys – volume: 14 start-page: 1293 year: 1994 end-page: 1301 article-title: Two different types of double‐strand breaks in are repaired by similar RAD52‐independent, nonhomologous recombination events publication-title: Mol Cell Biol – volume: 29 start-page: 80 year: 1995 end-page: 86 article-title: Isolation and characterisation of the human MRE11 homologue publication-title: Genomics – volume: 93 start-page: 37 year: 1979 end-page: 50 article-title: MAR1 a regulator of and α loci in publication-title: Genetics – volume: 66 start-page: 1279 year: 1991 end-page: 1287 article-title: Modifiers of position effect are shared between telomeric and silent mating‐type loci in publication-title: Cell – volume: 51 start-page: 721 year: 1987 end-page: 732 article-title: Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements publication-title: Cell – volume: 24 start-page: 582 year: 1996 end-page: 585 article-title: The DNA‐binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in publication-title: Nucleic Acids Res – volume: 8 start-page: 1411 year: 1994 end-page: 1422 article-title: Internal tracts of telomeric DNA act as silencers in publication-title: Genes Dev – year: 1995 – volume: 88 start-page: 7585 year: 1991 end-page: 7589 article-title: Integration of DNA fragments by illegitimate recombination in publication-title: Proc Natl Acad Sci USA – volume: 139 start-page: 67 year: 1995 end-page: 79 article-title: Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at telomeres publication-title: Genetics – volume: 268 start-page: 12895 year: 1993 end-page: 12900 article-title: A putative homologue of the human autoantigen Ku from publication-title: J Biol Chem – year: 1991 – volume: 11 start-page: 1912 year: 1997 end-page: 1924 article-title: A newly identified DNA ligase involved in RAD52‐independent repair of DNA double‐strand breaks publication-title: Genes Dev – volume: 15 start-page: 5093 year: 1996a end-page: 5103 article-title: potentiates illegitimate DNA double‐strand break repair and serves as a barrier to error‐prone DNA repair pathways publication-title: EMBO J – volume: 389 start-page: 349 year: 1997 end-page: 352 article-title: Histone acetylation in chromatin structure and transcription publication-title: Nature – reference: 1881899 - Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7585-9 – reference: 8849441 - Science. 1996 Oct 25;274(5287):546, 563-7 – reference: 9242410 - Nature. 1997 Jul 31;388(6641):492-5 – reference: 8604297 - Nucleic Acids Res. 1996 Feb 15;24(4):582-5 – reference: 8754818 - Mol Cell Biol. 1996 Aug;16(8):4189-98 – reference: 7671310 - Cell. 1995 Sep 8;82(5):823-9 – reference: 8600024 - Genes Dev. 1996 Feb 15;10(4):395-406 – reference: 9311776 - Nature. 1997 Sep 25;389(6649):349-52 – reference: 9271115 - Genes Dev. 1997 Aug 1;11(15):1912-24 – reference: 8289808 - Mol Cell Biol. 1994 Feb;14(2):1293-301 – reference: 397913 - Genetics. 1979 Dec;93(4):877-901 – reference: 8972848 - Nucleic Acids Res. 1996 Dec 1;24(23):4639-48 – reference: 8977040 - Cancer Surv. 1996;28:261-79 – reference: 6098447 - EMBO J. 1984 Dec 1;3(12):2817-23 – reference: 9303323 - EMBO J. 1997 Aug 1;16(15):4788-95 – reference: 7708751 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2934-8 – reference: 9259561 - Curr Biol. 1997 Aug 1;7(8):588-98 – reference: 7618104 - Science. 1995 Jul 21;269(5222):396-400 – reference: 9133662 - Genes Cells. 1996 Mar;1(3):285-91 – reference: 1913809 - Cell. 1991 Sep 20;66(6):1279-87 – reference: 8486698 - J Biol Chem. 1993 May 15;268(14):10440-7 – reference: 8756642 - Mol Cell Biol. 1996 Sep;16(9):4832-41 – reference: 9242411 - Nature. 1997 Jul 31;388(6641):495-8 – reference: 8509423 - J Biol Chem. 1993 Jun 15;268(17):12895-900 – reference: 8770587 - Genetics. 1996 Jan;142(1):91-102 – reference: 8533149 - Trends Biochem Sci. 1995 Oct;20(10):387-91 – reference: 8628283 - Mol Cell Biol. 1996 May;16(5):2164-73 – reference: 9024627 - Curr Opin Genet Dev. 1997 Feb;7(1):99-104 – reference: 3315231 - Cell. 1987 Dec 4;51(5):721-32 – reference: 17248968 - Genetics. 1979 Sep;93(1):37-50 – reference: 8533154 - Trends Biochem Sci. 1995 Oct;20(10):412-5 – reference: 9020083 - Science. 1997 Feb 14;275(5302):986-90 – reference: 8386316 - Mol Cell Biol. 1993 May;13(5):2697-705 – reference: 9023348 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):867-72 – reference: 7958893 - Genes Dev. 1994 Oct 1;8(19):2257-69 – reference: 7705652 - Genetics. 1995 Jan;139(1):67-79 – reference: 8530104 - Genomics. 1995 Sep 1;29(1):80-6 – reference: 8890183 - EMBO J. 1996 Sep 16;15(18):5093-103 – reference: 8553064 - Science. 1996 Jan 19;271(5247):314-5 – reference: 8422676 - Cell. 1993 Jan 15;72(1):131-42 – reference: 8626469 - J Biol Chem. 1996 Apr 5;271(14):7910-5 – reference: 8289807 - Mol Cell Biol. 1994 Feb;14(2):1278-92 – reference: 8007955 - Mol Cell Biol. 1994 Jul;14(7):4493-500 – reference: 7867066 - Cell. 1995 Feb 24;80(4):583-92 – reference: 1708110 - Nature. 1991 Apr 18;350(6319):569-73 – reference: 7926741 - Genes Dev. 1994 Jun 15;8(12):1411-22 – reference: 8910371 - J Biol Chem. 1996 Nov 1;271(44):27765-9 – reference: 9278039 - Nature. 1997 Aug 28;388(6645):829-30 – reference: 7671312 - Cell. 1995 Sep 8;82(5):849-56 – reference: 9278054 - Nature. 1997 Aug 28;388(6645):900-3 – reference: 7851793 - Genes Dev. 1995 Jan 15;9(2):193-203 – reference: 2225075 - Cell. 1990 Nov 16;63(4):751-62 |
SSID | ssj0005871 |
Score | 2.1623263 |
Snippet | In the budding yeast,
Saccharomyces cerevisiae
, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere... In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere... |
SourceID | pubmedcentral proquest pubmed crossref wiley springer istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1819 |
SubjectTerms | Antigens, Nuclear dna double strand break repair DNA Helicases dna non-homologous end joining DNA repair DNA Repair - physiology DNA-binding proteins DNA-Binding Proteins - genetics DNA-Binding Proteins - physiology DSB repair Endodeoxyribonucleases Exodeoxyribonucleases Fungal Proteins Fungal Proteins - genetics Fungal Proteins - physiology gene expression gene silencing Genes, Fungal Genes, Fungal - physiology Genetic Markers genetic regulation genetics Histone Deacetylases Ku Autoantigen length Mutagenesis, Insertional mutants Nuclear Proteins Nuclear Proteins - physiology physiology position effect Rad50 Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins silencing Silent Information Regulator Proteins, Saccharomyces cerevisiae Sirtuin 1 Sirtuin 2 Sirtuins Telomere Telomere - genetics telomeres telomeric position effect Temperature Trans-Activators Trans-Activators - genetics Trans-Activators - physiology Transcription, Genetic Transcription, Genetic - genetics transcriptional silencing |
Title | Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing |
URI | https://api.istex.fr/ark:/67375/WNG-3FXVQH5Z-X/fulltext.pdf https://link.springer.com/article/10.1093/emboj/17.6.1819 https://onlinelibrary.wiley.com/doi/abs/10.1093%2Femboj%2F17.6.1819 https://www.ncbi.nlm.nih.gov/pubmed/9501103 https://www.proquest.com/docview/16351465 https://www.proquest.com/docview/48525070 https://www.proquest.com/docview/79732120 https://pubmed.ncbi.nlm.nih.gov/PMC1170529 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9RAFJ4AhsiLUZSwXufBGM2mS28z0z4qAQlmUQPoxpdJL1MXZLcEFhV_gD_F3-k503Y6jWxUXpqmnV6_r2fmdL5zDiFPoyRICqWE46UqcMIo504a89hxmZtyP85YqNXuwz2-cxjujthoYeGXpVq6mKWD7MeVcSXXQRW2Aa4YJfsfyJqTwgZYB3xhCQjD8p8wxo-5nKpayYJDyDcXTlPWdtYHz94ZlxM0byh0ha3OcakLQmA61fG35LKPuq-jKZioryrXkkd1UlbqeqywMhv3JwkmlJiawIK2wfkRxis1Pd9xy7qt4au3ffv-k0756v12JsoK8N-vA81yOyKvio-s_oo1swbDpp5vXUbzshNOatk1_OUVelXloIGq7G7IXYC2KqJiDLOwCGhbWRiVxFaPDS5SdGVvUGXKUpO0PMYfFGLAB82hFjtOJ5oeMcOhUND2i0at-G64ifV5mB8vkhs-uCO-7gBaN4tF2rE3D9akkIqDDX3xDXPpFbJcX6czDloskhK8I_ywv1_l6vyp2DXT9l2nSo-KDm6TW7U7Q19W3LxDFtR0lSzXyKySm5tNPcG75GfLVloWFNhKbbbSLlupxVZas5UCW2nDVlihhoy0Yiu12EqBrVYDw9Z75HB762Bzx6mrgDgZ5xF38lT4WZT6XPGwQLMSizxnAUcZLHN5lgWhCgXLgEI5z6JCeXlcZEkErkCc5l4RrJEleAK1TmgEw_1MpCzC2faY5ZEL7numPJ7HbsBE0CODBhOZ1SnysVLLiaykGoHUcEpPSC4Rzh55bg44rbLDzG-6DiDL5DP03fJw39eKgQjTMfIeeaaRN6dIzr6g3lIw-XHvtQy2Rx_e77BPctQjTxpqSAAPp_aSqQJMJHhV4PlwNr9FGKGAQbjzWwhM3OX50GKtIpu5n5qyPSI6LDT7MUV9d8_0aKxT1dffTY-8aPgqa_tzPv9FeZrQf3uhEqzZrmCoW-D3r31nD8hKa9MekqXZ2YV6BG7GLH2sv_HfRAUruw |
linkProvider | ABC ChemistRy |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF61qVC5IChUTXl0DwjBwanX9j58DFVDSJtIqA1EXFZ-rJuUxq7yAHrjB3DgN_JLmNnYgahEiFtij1fxznj2c77Zbwh5riI_yoyRDouN7wQqFU4citBxuRsLL0x4YKvduz3R7gedAR9sEFbthbHV7hUlaTN1KXl0aMZxcXnIZEM0YFUKN8mW4kIFNbLVbHbOOr_rOpR9y7J_rARMhZWez-0hVpaizSwqAKDi3H79G9q8XTS5ZE5Xca1dmFr3yb0SUdLmIgQekA2T75A7ix6TNztk-6hq6faQfMenv8ixdoIWGQXsR0_mP7_9qDrhzmhe5PB9WIzx6mI-pXAcDlwWto8Exf7FX6IbGk0MHeWQ2T6bFD7QmbkqLPVDsTHLbEjHEepQoJiHoVGe_mEwHeE2JxjsEem3js-P2k7ZjsFJhFDCSWPpJSr2hBFBhv4NZZpyX2A9IndFkviBCSRPIPemIlGZYWmYJZECTBbGKcv8XVKDuzB7hCrAXYmMuULaM-SpcuE9KjFMpKHrc-nXSaPyjE5KrXJsmXGlF5y5r60rNZNaaHRlnbxcXnC9kOlYb7oHrtbRBSRR3T_zLHWrUBdP1MkL6__lENHkExa-Sa4_9N5ovzV4_67NP-pBnRxUAaLBhcixRLkBr2iAtwBBBV9vEShkkqW73kKighLzwGJ3EXLL3xNyhGswPXIlFpfnUSt89Uw-GlrNcGwwxD24-VdV1OoyWU3XTxSzYf2vCdXH3dcdyZFAFvv_Mf4B2W6fd0_16dveyWNyt9rsycQTUptN5uYpoL1Z_Kx8vn8BEeNTMw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RVjwuCApVw6t7QAgOTvzah4-hNISURqASiHpZ2d41SWnsKnGA3vgBHPiN_BJm_IKoRIibH-OVd2c8-61n9htCHsvQCxNjhOVExrN8qbkVBTywbGZH3A1i5hfZ7kdD3h_5gzEbV7k5izrbvQ5JlnsakKUpzTvnOqnpjzpmFmWnHUe0eRtmqGCDbEluS1h7bXW7g-PB7xwPWay4ip8sviODmtvnchMr09JGEmYAVnGcv_4NeV5OoGyiqKsYt5ikerfIzQpd0m5pDrfJFZNuk6tlvcmLbXJ9vy7vdod8R0-QpZhHQbOEAg6kh8uf337UVXFzmmYpnE-yGT6dLRcUrsOF06yoKUGxlvGX8IKGc0OnKXi5z0bDAc3NWVaEgSgWackndBYiJwUSexgapvoPgcUUtzxBY3fJqHfwbr9vVaUZrJhzyS0dCTeWkcsN9xPUdSC0Zh7H3ERm8zj2fOMLFoMf1jyWiXF0kMShBHwWRNpJvB2yCb0wu4RKwGCxiJjEEGjAtLRhTRUbh-vA9pjwWqRda0bFFW85ls84U2X83FOFKpUjFFeoyhZ52jxwXlJ2rBfdBVWr8CM4VDU6doswrkSOPN4iTwr9N02E80-YBCeY-jB8qbze-P3bPjtR4xbZqw1EgQox3hKmBrSiAOoCHOVsvYQvMaos7PUSAtmUHBckdkqTa94nYAjdYHjEii0295E3fPVOOp0U_OFYbIi50PlntdWqynEt1g-UU5j1vwZUHRw9HwiGwWR-7z_a3yPX3rzoqdevhof3yY1636fDH5DNfL40DwH45dGj6vP-BXXsV3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Components+of+the+Ku-dependent+non-homologous+end-joining+pathway+are+involved+in+telomeric+length+maintenance+and+telomeric+silencing&rft.jtitle=The+EMBO+journal&rft.au=Boulton%2C+S+J&rft.au=Jackson%2C+S+P&rft.date=1998-03-16&rft.pub=European+Molecular+Biology+Organization&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=17&rft.issue=6&rft.spage=1819&rft.epage=1828&rft_id=info:doi/10.1093%2Femboj%2F17.6.1819&rft_id=info%3Apmid%2F9501103&rft.externalDocID=PMC1170529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |