Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing

In the budding yeast, Saccharomyces cerevisiae , genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double‐strand break (DSB) repair and in telomeric len...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 17; no. 6; pp. 1819 - 1828
Main Authors Boulton, S.J, Jackson, S.P
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 16.03.1998
Nature Publishing Group UK
European Molecular Biology Organization
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the budding yeast, Saccharomyces cerevisiae , genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double‐strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2 , SIR3 and SIR4 , three genes shown previously to function in TPE, are essential for Ku‐dependent DSB repair. As is the case for Ku‐deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error‐prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku‐associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1 , a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50 , MRE11 and XRS2 function both in Ku‐dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.
AbstractList In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.
In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double-strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2, SIR3 and SIR4, three genes shown previously to function in TPE, are essential for Ku-dependent DSB repair. As is the case for Ku-deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error-prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku-associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1, a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50, MRE11 and XRS2 function both in Ku-dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.
In the budding yeast, Saccharomyces cerevisiae , genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere position effect (TPE). Here, we show that the protein Ku, previously implicated in DNA double‐strand break (DSB) repair and in telomeric length maintenance, is also essential for telomeric silencing. Furthermore, using an in vivo plasmid rejoining assay, we demonstrate that SIR2 , SIR3 and SIR4 , three genes shown previously to function in TPE, are essential for Ku‐dependent DSB repair. As is the case for Ku‐deficient strains, residual repair operating in the absence of the SIR gene products ensues through an error‐prone DNA repair pathway that results in terminal deletions. To identify novel components of the Ku‐associated DSB repair pathway, we have tested several other candidate genes for their involvement in DNA DSB repair, telomeric maintenance and TPE. We show that TEL1 , a gene required for telomeric length maintenance, is not required for either DNA DSB repair or TPE. However, RAD50 , MRE11 and XRS2 function both in Ku‐dependent DNA DSB repair and in telomeric length maintenance, although they have no major effects on TPE. These data provide important insights into DNA DSB repair and the linkage of this process to telomere length homeostasis and transcriptional silencing.
Author Boulton, Simon J.
Jackson, Stephen P.
AuthorAffiliation Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK
AuthorAffiliation_xml – name: Wellcome/CRC Institute, Tennis Court Road, Cambridge CB2 1QR, UK
Author_xml – sequence: 1
  fullname: Boulton, S.J
– sequence: 2
  fullname: Jackson, S.P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9501103$$D View this record in MEDLINE/PubMed
BookMark eNqFUkmP0zAUjtCgoTNw5oTwiVtaO4m3CxJUswADCMHAiIvlOi-pS2KXOO3QP8DvxiVVNXCYnmy99y1vO0mOnHeQJE8JHhMs8wm0M7-YED5mYyKIfJCMSMFwmmFOj5IRzhhJCyLko-QkhAXGmApOjpNjSTEhOB8lv6e-XUZJ1wfkK9TPAb1bpSUswZUxiKJdOvetb3ztVwHFaLrw1llXo6Xu57d6g3QHyLq1b9ZQxg_qofEtdNagBlzdz1GrrevBaWcAaVfeAQQbISaKPU4eVroJ8GT3nibX52dfppfp1ceLN9NXV6lhTLC0nPHMiFnGgBVVBcAlL0uaMy4Ep5gZkxdQcGriDEpmRAWklJXRglIiZyWp8tPk5aC7XM1aKE1ssdONWna21d1GeW3Vvxln56r2a0UIxzSTUeDFTqDzP1cQetXaYKBptIM4IBUryjOS4YPAQtCMYn4YSFhOYz80Ap_drX1f9G6XMT8Z8qbzIXRQ7REEq-2xqL_HoghXTG2PJTLofwxje91bv-3dNvfwxMC7jfvbHLJRZ-9fv-VUYiFZpOKBGiLL1dCphV91Lu78Hrd0oNjQw6-9m-5-KMZzTtW3DxcqP7_5-umSflc3Ef98wFfaK113NqjrzxkmOc4El5Ky_A9GiQNg
CitedBy_id crossref_primary_10_1101_gad_206801
crossref_primary_10_1073_pnas_111125998
crossref_primary_10_1093_nar_gkq886
crossref_primary_10_1016_S1097_2765_02_00705_0
crossref_primary_10_1016_j_celrep_2021_109098
crossref_primary_10_1128_MCB_20_3_786_796_2000
crossref_primary_10_1071_RD04112
crossref_primary_10_1126_science_288_5470_1377
crossref_primary_10_1016_j_febslet_2010_07_029
crossref_primary_10_1073_pnas_95_24_14066
crossref_primary_10_1074_jbc_273_34_21447
crossref_primary_10_7314_APJCP_2013_14_2_795
crossref_primary_10_1016_S1097_2765_00_80097_0
crossref_primary_10_1093_embo_reports_kve038
crossref_primary_10_1016_S1097_2765_03_00177_1
crossref_primary_10_1093_embo_reports_kvd051
crossref_primary_10_1016_j_molcel_2007_11_001
crossref_primary_10_1080_02656730310001625986
crossref_primary_10_1016_j_febslet_2010_07_030
crossref_primary_10_1534_genetics_104_030676
crossref_primary_10_1534_genetics_114_161307
crossref_primary_10_1016_S0092_8674_00_80773_4
crossref_primary_10_1007_s00109_004_0616_2
crossref_primary_10_1016_j_jmb_2007_07_013
crossref_primary_10_1134_S0026893312040152
crossref_primary_10_1074_jbc_M206861200
crossref_primary_10_1093_genetics_158_1_145
crossref_primary_10_1101_gad_225102
crossref_primary_10_1159_000443793
crossref_primary_10_1016_j_fbr_2007_02_004
crossref_primary_10_3109_10409238_2016_1172552
crossref_primary_10_1074_jbc_M306841200
crossref_primary_10_1128_MCB_01525_08
crossref_primary_10_1038_cdd_2012_69
crossref_primary_10_1371_journal_pone_0030451
crossref_primary_10_1534_genetics_109_106674
crossref_primary_10_1038_sj_onc_1204350
crossref_primary_10_1534_genetics_117_200972
crossref_primary_10_1073_pnas_1914081116
crossref_primary_10_1093_genetics_154_3_1039
crossref_primary_10_1146_annurev_genet_38_072902_091500
crossref_primary_10_1016_S1369_5274_00_00064_3
crossref_primary_10_1080_10409230091169177
crossref_primary_10_1128_MCB_25_24_10782_10790_2005
crossref_primary_10_1371_journal_pgen_1002233
crossref_primary_10_1006_jsbi_2000_4240
crossref_primary_10_1038_emboj_2008_21
crossref_primary_10_1093_genetics_165_4_1929
crossref_primary_10_1016_j_dnarep_2020_102869
crossref_primary_10_1134_S1022795409010013
crossref_primary_10_1093_embo_reports_kve044
crossref_primary_10_1016_j_dnarep_2004_03_021
crossref_primary_10_1093_nar_gkv082
crossref_primary_10_1073_pnas_062702199
crossref_primary_10_7717_peerj_1534
crossref_primary_10_1074_jbc_M208813200
crossref_primary_10_1093_genetics_154_3_1125
crossref_primary_10_1016_S1369_5274_98_80119_7
crossref_primary_10_1016_j_cell_2004_08_015
crossref_primary_10_1128_MCB_25_10_3934_3944_2005
crossref_primary_10_1128_MCB_20_5_1659_1668_2000
crossref_primary_10_1038_nsmb_2323
crossref_primary_10_1074_jbc_M312913200
crossref_primary_10_1074_jbc_M809131200
crossref_primary_10_1134_S1022795406040028
crossref_primary_10_1016_j_molcel_2006_10_005
crossref_primary_10_1016_S0962_8924_98_01383_X
crossref_primary_10_1128_MCB_20_22_8397_8408_2000
crossref_primary_10_1534_genetics_112_145805
crossref_primary_10_1101_gad_1373205
crossref_primary_10_1101_gad_1214504
crossref_primary_10_1371_journal_pgen_1009816
crossref_primary_10_1038_sj_onc_1203283
crossref_primary_10_1093_genetics_152_4_1531
crossref_primary_10_3390_cells9071678
crossref_primary_10_1016_j_dnarep_2005_06_011
crossref_primary_10_1016_j_fgb_2007_08_003
crossref_primary_10_1093_mutage_gev046
crossref_primary_10_1101_gad_12_14_2188
crossref_primary_10_1139_g00_067
crossref_primary_10_1371_journal_pone_0087248
crossref_primary_10_1038_nrg1746
crossref_primary_10_1016_S0304_3835_02_00701_2
crossref_primary_10_1126_science_1075277
crossref_primary_10_1073_pnas_0304797101
crossref_primary_10_1016_j_biochi_2007_07_008
crossref_primary_10_1093_emboj_17_21_6412
crossref_primary_10_1093_nar_27_17_3494
crossref_primary_10_1016_j_dnarep_2004_04_013
crossref_primary_10_1073_pnas_0504063102
crossref_primary_10_1093_genetics_155_2_569
crossref_primary_10_1074_jbc_273_47_31068
crossref_primary_10_1093_nar_27_10_2072
crossref_primary_10_1104_pp_109_150391
crossref_primary_10_1534_genetics_105_049478
crossref_primary_10_2217_epi_2022_0035
crossref_primary_10_1091_mbc_11_7_2221
crossref_primary_10_1016_S0921_8777_99_00046_4
crossref_primary_10_1017_S0031182021000378
crossref_primary_10_1128_MCB_24_12_5130_5143_2004
crossref_primary_10_1080_10934520009377062
crossref_primary_10_1371_journal_pone_0026210
crossref_primary_10_1128_EC_3_6_1557_1566_2004
crossref_primary_10_1128_MCB_23_15_5186_5197_2003
crossref_primary_10_1016_j_dnarep_2015_04_024
crossref_primary_10_1038_nsmb854
crossref_primary_10_1038_sj_neo_7900107
crossref_primary_10_1074_jbc_273_41_26559
crossref_primary_10_1371_journal_pgen_0020018
crossref_primary_10_1371_journal_pgen_1004691
crossref_primary_10_1093_nar_26_23_5365
crossref_primary_10_1074_jbc_M112_439315
crossref_primary_10_3103_S0095452714030062
crossref_primary_10_1016_j_jmb_2020_11_014
crossref_primary_10_1016_S0092_8674_00_80795_3
crossref_primary_10_1016_S0092_8674_00_80772_2
crossref_primary_10_1097_IIO_0000000000000159
crossref_primary_10_1371_journal_pgen_1005425
crossref_primary_10_1016_S0092_8674_00_81626_8
crossref_primary_10_1146_annurev_genet_39_073003_113340
crossref_primary_10_1146_annurev_genet_32_1_619
crossref_primary_10_1534_genetics_107_083535
crossref_primary_10_4161_cc_9_18_13129
crossref_primary_10_1016_S0378_1119_98_00530_7
crossref_primary_10_1128_MCB_23_22_8202_8215_2003
crossref_primary_10_3389_fimmu_2019_02531
crossref_primary_10_1073_pnas_0903869106
crossref_primary_10_1101_gad_486208
crossref_primary_10_1016_S0047_6374_00_00151_2
crossref_primary_10_1074_jbc_M000491200
crossref_primary_10_1128_MCB_21_11_3642_3651_2001
crossref_primary_10_1038_47528
crossref_primary_10_1046_j_1365_313X_2002_01258_x
crossref_primary_10_1016_j_dnarep_2004_05_009
crossref_primary_10_1016_j_dnarep_2008_05_008
crossref_primary_10_1128_MCB_23_24_9162_9177_2003
crossref_primary_10_1007_BF02759599
crossref_primary_10_1101_sqb_1999_64_191
crossref_primary_10_1002_bies_201400102
crossref_primary_10_1016_j_biochi_2004_10_022
crossref_primary_10_1158_1078_0432_CCR_0669_3
crossref_primary_10_1093_genetics_160_1_49
crossref_primary_10_1016_j_gde_2003_12_007
crossref_primary_10_1038_emboj_2009_176
crossref_primary_10_1091_mbc_11_10_3265
crossref_primary_10_1016_j_molcel_2007_01_028
crossref_primary_10_1074_jbc_M308705200
crossref_primary_10_1128_MCB_22_7_2182_2193_2002
crossref_primary_10_1016_j_bbrc_2010_07_117
crossref_primary_10_1016_S0921_8777_00_00017_3
crossref_primary_10_1016_S0959_437X_99_80030_6
crossref_primary_10_1089_ars_2012_4981
crossref_primary_10_1007_s00018_021_03801_1
crossref_primary_10_1016_S0304_419X_01_00018_X
crossref_primary_10_1080_09553000050151619
crossref_primary_10_1146_annurev_pharmtox_41_1_367
crossref_primary_10_1016_S0960_9822_01_00488_2
crossref_primary_10_1074_jbc_M004315200
crossref_primary_10_21448_ijsm_415191
crossref_primary_10_1038_sj_cr_7310007
crossref_primary_10_1038_emboj_2012_313
crossref_primary_10_1016_j_molbiopara_2012_08_003
crossref_primary_10_1007_s00702_021_02442_9
crossref_primary_10_1534_genetics_108_089003
crossref_primary_10_1534_genetics_106_063446
crossref_primary_10_1016_j_dnarep_2004_06_003
crossref_primary_10_1016_j_mito_2011_03_001
crossref_primary_10_1101_gad_844000
crossref_primary_10_1128_MCB_19_10_6608
crossref_primary_10_1080_02656730310001627713
crossref_primary_10_1128_MMBR_63_2_349_404_1999
crossref_primary_10_1074_jbc_M301579200
crossref_primary_10_1091_mbc_e01_11_0117
crossref_primary_10_4161_cc_25266
crossref_primary_10_1534_genetics_111_137851
crossref_primary_10_3390_ijms23073517
crossref_primary_10_1074_jbc_274_12_7848
crossref_primary_10_1016_S0955_0674_99_80043_X
crossref_primary_10_1371_journal_pone_0031288
crossref_primary_10_1016_S1047_8477_02_00533_6
crossref_primary_10_1371_journal_pgen_1000155
crossref_primary_10_1371_journal_pgen_1001362
crossref_primary_10_1093_genetics_165_4_1703
crossref_primary_10_1074_jbc_M008779200
crossref_primary_10_1038_nsmb_1641
crossref_primary_10_1101_gad_300004
crossref_primary_10_1038_nsmb_1640
crossref_primary_10_1091_mbc_e08_01_0099
crossref_primary_10_15252_embj_201592462
crossref_primary_10_1038_sj_onc_1205078
crossref_primary_10_1128_EC_2_1_134_142_2003
crossref_primary_10_1371_journal_pone_0059842
crossref_primary_10_1016_j_abb_2007_11_001
crossref_primary_10_1093_nar_gkae509
crossref_primary_10_1534_genetics_119_302395
crossref_primary_10_1093_nar_27_13_2655
crossref_primary_10_1038_sj_onc_1205082
crossref_primary_10_1128_MCB_00423_08
crossref_primary_10_1146_annurev_biochem_71_090501_150203
crossref_primary_10_1046_j_1432_1033_2002_02865_x
crossref_primary_10_1038_sj_onc_1205080
crossref_primary_10_1093_nar_gki777
crossref_primary_10_1016_S0960_9822_98_70315_X
crossref_primary_10_1128_EC_00228_08
crossref_primary_10_1038_sj_onc_1205085
crossref_primary_10_1097_MD_0000000000004713
crossref_primary_10_1016_S0378_1119_01_00741_7
crossref_primary_10_1016_S0960_9822_00_00413_9
crossref_primary_10_1016_j_dnarep_2004_12_005
crossref_primary_10_1074_jbc_274_30_21223
crossref_primary_10_1074_jbc_M203205200
crossref_primary_10_1534_genetics_104_034538
crossref_primary_10_1128_MCB_02059_06
crossref_primary_10_1016_j_gene_2017_10_003
crossref_primary_10_1038_nrm805
crossref_primary_10_1093_genetics_160_3_995
crossref_primary_10_1371_journal_pone_0033498
crossref_primary_10_1016_S0047_6374_01_00294_9
crossref_primary_10_1016_S0020_7519_02_00247_3
crossref_primary_10_1046_j_1365_2141_2002_03910_x
crossref_primary_10_1016_S0962_8924_98_01331_2
crossref_primary_10_1016_S0968_0004_00_01557_7
crossref_primary_10_1038_nsmb1354
crossref_primary_10_1042_bse0480201
crossref_primary_10_1083_jcb_200506029
crossref_primary_10_1093_genetics_166_4_1641
crossref_primary_10_3389_fimmu_2019_01152
crossref_primary_10_1016_S0027_5107_03_00009_5
crossref_primary_10_1016_S0300_483X_02_00220_2
crossref_primary_10_1093_genetics_161_3_995
crossref_primary_10_1128_MCB_21_16_5359_5373_2001
crossref_primary_10_1093_genetics_152_1_143
crossref_primary_10_1126_science_1099824
crossref_primary_10_1371_journal_pone_0125358
crossref_primary_10_1016_S0960_9822_00_00610_2
crossref_primary_10_1128_MCB_21_13_4233_4245_2001
crossref_primary_10_1016_j_dnarep_2005_10_004
crossref_primary_10_1091_mbc_e10_06_0549
crossref_primary_10_1111_j_1365_313X_2001_00928_x
crossref_primary_10_1016_S0960_9822_99_80424_2
crossref_primary_10_1016_S0955_0674_00_00210_6
crossref_primary_10_1212_WNL_0b013e318211c3c8
crossref_primary_10_1111_j_1365_2958_2006_05374_x
crossref_primary_10_1073_pnas_0903362106
crossref_primary_10_1128_MCB_22_16_5679_5687_2002
crossref_primary_10_1074_jbc_M500655200
crossref_primary_10_1038_nsmb1214
crossref_primary_10_1038_nature08217
crossref_primary_10_1016_S0891_5849_00_00439_1
crossref_primary_10_1073_pnas_110144297
crossref_primary_10_1128_MMBR_66_4_630_670_2002
crossref_primary_10_1128_MCB_18_9_5600
crossref_primary_10_1371_journal_pgen_1005071
crossref_primary_10_1016_j_jmb_2007_03_014
crossref_primary_10_1128_MCB_18_11_6423
crossref_primary_10_1016_S1097_2765_01_00340_9
crossref_primary_10_1016_j_mrfmmm_2015_08_004
crossref_primary_10_5352_JLS_2003_13_3_241
crossref_primary_10_1074_jbc_M500126200
crossref_primary_10_1515_bmc_2011_023
crossref_primary_10_1016_S0300_9084_00_00183_8
crossref_primary_10_1101_sqb_2004_69_327
crossref_primary_10_1016_j_gene_2013_05_088
crossref_primary_10_1016_j_molcel_2016_09_011
crossref_primary_10_1128_MCB_20_7_2378_2384_2000
crossref_primary_10_1016_S1568_7864_03_00063_6
crossref_primary_10_1016_S1097_2765_01_00287_8
crossref_primary_10_1158_1541_7786_MCR_14_0072
crossref_primary_10_1089_hum_2023_115
crossref_primary_10_1152_physrev_00022_2011
crossref_primary_10_1038_77139
crossref_primary_10_1002_path_1164
crossref_primary_10_1128_MCB_24_8_3213_3226_2004
crossref_primary_10_1016_j_dnarep_2008_06_004
crossref_primary_10_1038_sj_onc_1203968
crossref_primary_10_1128_MCB_25_17_7725_7733_2005
crossref_primary_10_1016_j_femsre_2004_06_001
crossref_primary_10_1016_S0027_5107_00_00040_3
crossref_primary_10_1016_S0921_8777_99_00009_9
crossref_primary_10_1093_nar_gkp905
crossref_primary_10_1016_S0027_5107_00_00052_X
crossref_primary_10_1074_jbc_M410192200
crossref_primary_10_1046_j_1365_2958_2002_03224_x
crossref_primary_10_1101_gad_1199404
crossref_primary_10_1007_s00412_005_0338_4
crossref_primary_10_1007_s00412_015_0545_6
crossref_primary_10_1002_cam4_3847
crossref_primary_10_1099_mic_0_039255_0
crossref_primary_10_1016_S0161_5890_01_00008_6
crossref_primary_10_1084_jem_20081326
crossref_primary_10_1016_j_bbaexp_2003_11_015
crossref_primary_10_7554_eLife_96933
crossref_primary_10_1074_jbc_M110_195024
crossref_primary_10_1534_genetics_107_076539
crossref_primary_10_1006_jmbi_1998_2257
crossref_primary_10_1007_s00438_007_0218_0
crossref_primary_10_1021_acs_jproteome_8b00771
crossref_primary_10_1016_S0027_5107_01_00167_1
crossref_primary_10_1073_pnas_0307796100
crossref_primary_10_3390_cells12020255
crossref_primary_10_1534_genetics_107_081091
crossref_primary_10_1016_j_aca_2018_09_019
crossref_primary_10_1016_j_bbrc_2007_04_011
crossref_primary_10_1074_jbc_M208542200
crossref_primary_10_1146_annurev_physiol_021113_170411
crossref_primary_10_1038_sj_embor_7400600
crossref_primary_10_1016_S0027_5107_00_00041_5
crossref_primary_10_1016_S0959_437X_00_00178_7
crossref_primary_10_1128_MCB_00471_07
crossref_primary_10_1073_pnas_96_22_12454
crossref_primary_10_1016_S1097_2765_01_00154_X
crossref_primary_10_1016_j_mrfmmm_2016_02_004
crossref_primary_10_1128_MCB_19_5_3848
crossref_primary_10_1016_S0968_0004_98_01284_5
crossref_primary_10_1126_science_1079161
crossref_primary_10_1016_j_dnarep_2005_01_004
crossref_primary_10_1016_j_dnarep_2009_03_004
crossref_primary_10_1016_S0092_8674_00_81482_8
crossref_primary_10_1038_sj_onc_1202541
crossref_primary_10_1146_annurev_biochem_72_121801_161547
crossref_primary_10_1371_journal_pgen_1007170
crossref_primary_10_1007_s00412_010_0299_0
crossref_primary_10_1126_science_281_5384_1818
crossref_primary_10_1016_S0092_8674_01_00591_8
crossref_primary_10_1371_journal_pone_0023732
crossref_primary_10_1016_S0959_437X_99_80032_X
crossref_primary_10_1038_nsmb1261
crossref_primary_10_1074_jbc_M112_431155
crossref_primary_10_1371_journal_pgen_1000659
crossref_primary_10_1074_jbc_M105482200
crossref_primary_10_1128_MCB_25_11_4514_4528_2005
crossref_primary_10_1042_BST20220754
crossref_primary_10_1016_S0959_437X_99_80014_8
crossref_primary_10_1534_genetics_106_067447
crossref_primary_10_1016_S0960_9822_98_70253_2
crossref_primary_10_1186_s12979_019_0153_z
crossref_primary_10_1016_j_biochi_2007_07_022
crossref_primary_10_1101_sqb_1998_63_401
crossref_primary_10_1093_genetics_155_4_1577
crossref_primary_10_1128_MCB_21_4_1164_1172_2001
crossref_primary_10_1101_sqb_2000_65_275
crossref_primary_10_1016_j_jbiotec_2008_10_007
crossref_primary_10_1093_femsre_fuad021
crossref_primary_10_1186_s13072_020_00344_w
crossref_primary_10_1016_j_dnarep_2005_04_021
crossref_primary_10_7554_eLife_96933_3
crossref_primary_10_1042_BJ20090942
crossref_primary_10_1007_s00438_011_0619_y
crossref_primary_10_1126_science_1065672
crossref_primary_10_1534_genetics_107_079848
crossref_primary_10_1016_j_febslet_2011_11_013
crossref_primary_10_1101_sqb_2000_65_281
crossref_primary_10_1073_pnas_98_4_1711
crossref_primary_10_1128_MCB_19_9_6260
crossref_primary_10_1016_S0960_9822_01_00328_1
crossref_primary_10_1093_genetics_152_4_1501
crossref_primary_10_1016_j_celrep_2013_05_026
crossref_primary_10_1080_10409239891204242
crossref_primary_10_1128_MCB_01460_09
crossref_primary_10_1164_rccm_201111_2023OC
crossref_primary_10_1371_journal_pntd_0010041
crossref_primary_10_1667_RR3425_1
crossref_primary_10_1534_genetics_108_094490
crossref_primary_10_1038_sj_emboj_7600778
crossref_primary_10_1074_jbc_M301110200
crossref_primary_10_1016_S0960_9822_98_70252_0
crossref_primary_10_1016_j_dnarep_2005_04_016
crossref_primary_10_1093_nar_gku267
crossref_primary_10_1111_j_1745_7254_2005_00165_x
crossref_primary_10_1016_j_dnarep_2004_02_001
crossref_primary_10_1667_RADE_24_00038_1
crossref_primary_10_1128_MCB_25_7_2708_2721_2005
crossref_primary_10_1111_j_1365_2958_2006_05186_x
crossref_primary_10_1016_S0921_8777_99_00006_3
crossref_primary_10_1515_BC_1999_095
crossref_primary_10_3390_genes9120589
crossref_primary_10_1038_s41598_021_86552_0
crossref_primary_10_1007_s00412_006_0067_3
crossref_primary_10_1073_pnas_1934561100
crossref_primary_10_1074_jbc_M200550200
crossref_primary_10_1074_jbc_M413562200
crossref_primary_10_1101_gad_202960_112
crossref_primary_10_1006_geno_1998_5668
crossref_primary_10_1002__SICI_1521_1878_199908_21_8_649__AID_BIES4_3_0_CO_2_O
crossref_primary_10_1101_gad_864101
crossref_primary_10_1038_nsmb_2116
crossref_primary_10_1016_j_gde_2008_01_011
crossref_primary_10_1016_S0959_437X_00_00070_8
crossref_primary_10_1016_j_isci_2021_103081
crossref_primary_10_1101_sqb_2000_65_113
crossref_primary_10_1093_nar_gkp512
crossref_primary_10_1101_gad_1125903
crossref_primary_10_1016_j_dnarep_2019_102739
crossref_primary_10_1006_bbrc_1999_0897
crossref_primary_10_1093_genetics_157_2_579
crossref_primary_10_7554_eLife_07750
crossref_primary_10_1093_mutage_gei031
crossref_primary_10_1128_MCB_24_21_9682_9694_2004
crossref_primary_10_1016_j_freeradbiomed_2013_01_004
crossref_primary_10_1371_journal_pgen_1007356
crossref_primary_10_1128_MCB_19_1_556
crossref_primary_10_1007_s11103_006_9061_7
crossref_primary_10_1590_S1415_47572000000400056
crossref_primary_10_1093_genetics_161_4_1437
crossref_primary_10_1128_EC_2_2_306_317_2003
crossref_primary_10_1126_science_1065986
crossref_primary_10_1534_genetics_105_046144
crossref_primary_10_1016_S1568_7864_03_00115_0
crossref_primary_10_1007_s10577_005_0995_4
crossref_primary_10_1146_annurev_genet_39_110304_095755
crossref_primary_10_1534_genetics_104_033902
crossref_primary_10_1093_nar_gkx123
crossref_primary_10_1530_JOE_17_0060
crossref_primary_10_1016_j_bbrc_2006_12_180
crossref_primary_10_1074_jbc_M404492200
crossref_primary_10_1016_S1097_2765_05_00094_8
crossref_primary_10_1016_j_dnarep_2007_12_003
crossref_primary_10_1534_genetics_102_012708
crossref_primary_10_4049_jimmunol_163_11_6065
crossref_primary_10_1016_j_cell_2009_01_037
crossref_primary_10_1038_s44319_024_00198_3
crossref_primary_10_1146_annurev_biochem_73_071403_160049
crossref_primary_10_1016_S0014_4800_03_00010_8
crossref_primary_10_1038_srep04489
crossref_primary_10_1016_S1383_5742_99_00042_3
crossref_primary_10_1038_35003120
crossref_primary_10_1128_MCB_19_6_4065
crossref_primary_10_1038_sj_emboj_7600975
crossref_primary_10_1128_MCB_21_19_6559_6573_2001
crossref_primary_10_1128_MCB_24_11_5050_5059_2004
crossref_primary_10_1016_j_mrrev_2014_06_002
crossref_primary_10_1016_S0092_8674_01_00227_6
crossref_primary_10_1038_nrm1367
crossref_primary_10_1074_jbc_M002588200
crossref_primary_10_1007_s10529_012_1107_0
crossref_primary_10_1073_pnas_96_24_13926
crossref_primary_10_1016_S0960_9822_01_00372_4
crossref_primary_10_1093_genetics_164_1_31
crossref_primary_10_1016_S0960_9822_99_80483_7
crossref_primary_10_1158_1535_7163_MCT_05_0263
crossref_primary_10_1091_mbc_e02_11_0719
crossref_primary_10_1038_nrm1256
crossref_primary_10_1101_sqb_2000_65_265
crossref_primary_10_1016_j_dnarep_2011_10_011
crossref_primary_10_1093_genetics_155_1_475
crossref_primary_10_1016_j_jmb_2020_03_030
crossref_primary_10_1007_s11103_010_9685_5
crossref_primary_10_1016_S1097_2765_01_00388_4
crossref_primary_10_1038_nsmb_3369
crossref_primary_10_1371_journal_pgen_1006479
crossref_primary_10_1371_journal_pgen_1006117
crossref_primary_10_1128_EC_00129_10
crossref_primary_10_1016_j_molcel_2005_01_014
crossref_primary_10_1093_genetics_164_1_47
crossref_primary_10_1016_S1097_2765_03_00174_6
ContentType Journal Article
Copyright European Molecular Biology Organization 1998
Copyright © 1998 European Molecular Biology Organization
Copyright_xml – notice: European Molecular Biology Organization 1998
– notice: Copyright © 1998 European Molecular Biology Organization
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7S9
L.6
7X8
5PM
DOI 10.1093/emboj/17.6.1819
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList

Nucleic Acids Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1460-2075
EndPage 1828
ExternalDocumentID PMC1170529
9501103
10_1093_emboj_17_6_1819
EMBJ7590896
ark_67375_WNG_3FXVQH5Z_X
US201302879956
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
GroupedDBID ---
-DZ
-Q-
-~X
.55
0R~
123
1OC
29G
2WC
33P
36B
39C
3O-
4.4
53G
5VS
70F
7X7
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AAJSJ
AANHP
AANLZ
AAONW
AASGY
AASML
AAXRX
AAYCA
AAZKR
ABCUV
ABLJU
ABUWG
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFFNX
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AHMBA
AI.
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ASPBG
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAWUL
BBNVY
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMNLL
BMXJE
BPHCQ
BRXPI
BTFSW
BVXVI
C1A
C6C
CAG
CCPQU
COF
CS3
D1J
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
F5P
FA8
FBQ
FEDTE
FYUFA
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
GX1
H13
HCIFZ
HH5
HK~
HMCUK
HVGLF
HYE
H~9
KQ8
LATKE
LEEKS
LH4
LITHE
LK8
LOXES
LUTES
LW6
LYRES
M1P
M2O
M7P
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
NAO
O9-
OK1
P2P
P2W
PCBAR
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R.K
RHI
RIG
RNI
RNS
ROL
RPM
RZO
SV3
TN5
TR2
UKHRP
VH1
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WOQ
WXSBR
X7M
XSW
Y6R
YSK
YYP
ZCA
ZGI
ZXP
ZZTAW
~KM
24P
ABJNI
AFPWT
BSCLL
ESTFP
RHF
WYJ
PKN
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c6686-db72c8b26e64ffee797dd5367887506cc34e475c146d6c8fe1d9fca85519bd1f3
ISSN 0261-4189
1460-2075
IngestDate Thu Aug 21 18:20:15 EDT 2025
Sun Aug 24 03:29:57 EDT 2025
Fri Jul 11 11:38:06 EDT 2025
Thu Jul 10 22:43:15 EDT 2025
Wed Feb 19 01:13:01 EST 2025
Tue Jul 01 03:07:59 EDT 2025
Thu Apr 24 22:55:40 EDT 2025
Wed Jan 22 16:59:34 EST 2025
Fri Feb 21 02:37:58 EST 2025
Wed Oct 30 09:49:28 EDT 2024
Thu Apr 03 09:45:20 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Rad50
DSB repair
Ku
silencing
telomeres
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c6686-db72c8b26e64ffee797dd5367887506cc34e475c146d6c8fe1d9fca85519bd1f3
Notes ark:/67375/WNG-3FXVQH5Z-X
istex:644E02DE0DC09D8159EA7DDE31D393EC30E96B10
ArticleID:EMBJ7590896
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1093/emboj/17.6.1819
PMID 9501103
PQID 16351465
PQPubID 23462
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_1170529
proquest_miscellaneous_79732120
proquest_miscellaneous_48525070
proquest_miscellaneous_16351465
pubmed_primary_9501103
crossref_primary_10_1093_emboj_17_6_1819
crossref_citationtrail_10_1093_emboj_17_6_1819
wiley_primary_10_1093_emboj_17_6_1819_EMBJ7590896
springer_journals_10_1093_emboj_17_6_1819
istex_primary_ark_67375_WNG_3FXVQH5Z_X
fao_agris_US201302879956
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate March 16, 1998
PublicationDateYYYYMMDD 1998-03-16
PublicationDate_xml – month: 03
  year: 1998
  text: March 16, 1998
  day: 16
PublicationDecade 1990
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: London
– name: England
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 1998
Publisher John Wiley & Sons, Ltd
Nature Publishing Group UK
European Molecular Biology Organization
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Nature Publishing Group UK
– name: European Molecular Biology Organization
References Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (1991) Current Protocols in Molecular Biology. J. Wiley & Sons, Chichester, UK.
Cohn M and Blackburn EH (1995) Telomerase in yeast. Science, 269, 396-400.
Teo S-H and Jackson SP (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J, 16, 4788-4795.
Klar AJS, Fogel S and McLeod K (1979) MAR1 a regulator of HMa and HMα loci in Saccharomyces cerevisiae. Genetics, 93, 37-50.
Marcand S, Gilson E and Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science, 275, 986-990.
Shinohara A and Ogawa T (1995) Homologous recombination and the roles of double-strand breaks. Trends Biol Sci, 20, 387-391.
Blackburn EH (1991) Structure and function of telomeres. Nature, 350, 569-573.
Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature, 389, 349-352.
Rine J, Strathern JN, Hicks JB and Herskowitz I (1979) A supressor of mating-type locus mutations in Saccharomyces cerevisiae. Genetics, 93, 877-901.
Porter SE, Greenwell PW, Ritchie KB and Petes TD (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res, 24, 582-585.
Barnes G and Rio D (1997) DNA double-strand break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 94, 867-872.
Stavenhagen JB and Zakian VA (1994) Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev, 8, 1411-1422.
Dvir A, Stein LY, Calore BL and Dynan WS (1993) Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem, 268, 10440-10447.
Mezard C and Nicolas A (1994) Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol, 14, 1278-1292.
Kramer KM, Brock JA, Bloom K, Moore K and Haber JE (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol, 14, 1293-1301.
Jackson SP and Jeggo PA (1995) DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci, 20, 412-415.
Jackson SP (1996) DNA damage detection by DNA dependent protein kinase. Cancer Surveys, 28, 261-279.
Shore D, Squire M and Nasmyth KA (1984) Characterization of two genes required for position effect control of mating type. EMBO J, 3, 2817-2823.
Greenwall PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B and Petes TD (1995) TEL1, a gene involved in controlling telomere length in S.cerevisiae, is homologous to the Human Ataxia Telangiectasia gene. Cell, 82, 823-829.
Shore D and Nasmyth KA (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell, 51, 721-732.
Tsukamoto Y, Kato J and Ikeda H (1997a) Budding yeast Rad50, Mre11, Xrs2 and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid. Mol Gen Genet, 255.
Petrini JHJ, Walsh ME, DiMare C, Chen X, Korenberg JR and Weaver DT (1995) Isolation and characterisation of the human MRE11 homologue. Genomics, 29, 80-86.
Schar P, Herrmann G, Daly G and Lindahl T (1997) A newly identified DNA ligase Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev, 11, 1912-1924.
Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA and Petrini JHJ (1996) Human Rad50 is physically associated with human Mre11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol, 16, 4832-4841.
Siede W, Friedl AA, Dianova I, Eckardt-Schupp F and Friedberg EC (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics, 142, 91-102.
Gottschling DE, Aparicio OM, Billington BL and Zakian VA (1990) Position effect at S.cerevisiae telomeres: reversible repression of pol II transcription. Cell, 63, 751-762.
Lieber MR, Grawunder U, Wu XT and Yaneva M (1997) Tying loose ends: Roles of Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Dev, 7, 99-104.
Sherman F, Fink GR and Laurence C (1979) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Boulton SJ and Jackson SP (1996a) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J, 15, 5093-5103.
Schiestl RH, Dominska M and Petes TD (1993) Transformation of Saccharomyces cerevisiae with nonhomologous DNA: Illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol, 13, 2697-2705.
Feldmann H, Driller L, Meier B, Mages G, Kellermann J and Winnacker EL (1996) Hdf2, the second subunit of the Ku homolog from Saccharomyces cerevisiae. J Biol Chem, 271, 27765-27769.
Boulton SJ and Jackson SP (1996b) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and telomeric maintenance. Nucleic Acids Res, 24, 4639-4648.
Aparicio OM, Billington BL and Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S.cerevisiae. Cell, 66, 1279-1287.
Milne GT, Jin S, Shannon KB and Weaver DT (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol, 16, 4189-4198.
Hartley KO, Gell D, Smith GCM, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW and Jackson SP (1995) DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the Ataxia Telangiectasia gene product. Cell, 82, 849-856.
Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM and Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell, 80, 583-592.
Moretti P, Freeman K, Coodley L and Shore D (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev, 8, 2257-2269.
Schiestl RH and Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 88, 7585-7589.
Connelly JC and Leach DRF (1996) The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes to Cells, 1, 285-291.
Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M and Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature, 388, 492-495.
Gottlieb TM and Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 72, 131-142.
Schiestl RH, Zhu J and Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol, 14, 4493-4500.
Tsukamoto Y, Kato J and Ikeda H (1997b) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature, 388, 900-903.
Wilson TE, Grawunder U and Lieber MR (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 388, 495-498.
Goffeau A et al. (1996) Life with 6000 genes. Science, 274, 546.
Shore D (1995) Telomere position effects and transcriptional silencing in the yeast Saccharomyces cerevisiae. Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Carr AM (1996) Checkpoints take the next step. Science, 271, 314-315.
Mages GJ, Feldmann HM and Winnacker E-L (1996) Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J Biol Chem, 271, 7910-7915.
Moore JK and Haber JE (1996) Cell cycle and genetic requirements of two pathways of non-homologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol, 16, 2164-2173.
Critchlow SE, Bowater RP and Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol, 7, 588-598.
Sun Z, Fay DS, Marini F, Foiani M and Stern D (1996) Spk1/Rad53 is regulated by Mec1-dependent phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev, 10, 395-406.
Labhart P (1995) DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc Natl Acad Sci USA, 92, 2934-2938.
Wiley EA and Zakian VA (1995) Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics, 139, 67-79.
Friedberg EC, Walker GC and Siede W (1995) DNA Repair and Mutagenesis. American Society for Microbiology, Washington, DC.
Jackson SP (1997) Silencing and DNA repair connect. Nature, 388, 829-830.
Feldmann H and Winnacker EL (1993) A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem, 268, 12895-12900.
Kuhn A, Gottlieb TM, Jackson SP and Grummt I (1995) DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev, 9, 193-203.
1995; 9
1991; 350
1995; 92
1987; 51
1997a; 255
1997; 275
1995; 139
1995
1996; 142
1991
1993; 268
1996; 16
1979; 93
1996; 10
1997b; 388
1979
1997; 7
1997; 388
1995; 20
1996b; 24
1990; 63
1997; 389
1994; 8
1993; 13
1995; 82
1997; 94
1996; 28
1995; 80
1997; 11
1993; 72
1984; 3
1991; 66
1991; 88
1996; 271
1996a; 15
1994; 14
1995; 269
1997; 16
1996; 1
1996; 274
1995; 29
1996; 24
7958893 - Genes Dev. 1994 Oct 1;8(19):2257-69
8533154 - Trends Biochem Sci. 1995 Oct;20(10):412-5
1881899 - Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7585-9
9278039 - Nature. 1997 Aug 28;388(6645):829-30
8626469 - J Biol Chem. 1996 Apr 5;271(14):7910-5
8977040 - Cancer Surv. 1996;28:261-79
9271115 - Genes Dev. 1997 Aug 1;11(15):1912-24
9259561 - Curr Biol. 1997 Aug 1;7(8):588-98
8604297 - Nucleic Acids Res. 1996 Feb 15;24(4):582-5
7618104 - Science. 1995 Jul 21;269(5222):396-400
9303323 - EMBO J. 1997 Aug 1;16(15):4788-95
8422676 - Cell. 1993 Jan 15;72(1):131-42
2225075 - Cell. 1990 Nov 16;63(4):751-62
9023348 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):867-72
7926741 - Genes Dev. 1994 Jun 15;8(12):1411-22
8972848 - Nucleic Acids Res. 1996 Dec 1;24(23):4639-48
8756642 - Mol Cell Biol. 1996 Sep;16(9):4832-41
8770587 - Genetics. 1996 Jan;142(1):91-102
1708110 - Nature. 1991 Apr 18;350(6319):569-73
8486698 - J Biol Chem. 1993 May 15;268(14):10440-7
9242410 - Nature. 1997 Jul 31;388(6641):492-5
7671312 - Cell. 1995 Sep 8;82(5):849-56
8289808 - Mol Cell Biol. 1994 Feb;14(2):1293-301
7705652 - Genetics. 1995 Jan;139(1):67-79
8628283 - Mol Cell Biol. 1996 May;16(5):2164-73
8007955 - Mol Cell Biol. 1994 Jul;14(7):4493-500
8600024 - Genes Dev. 1996 Feb 15;10(4):395-406
8849441 - Science. 1996 Oct 25;274(5287):546, 563-7
9133662 - Genes Cells. 1996 Mar;1(3):285-91
8533149 - Trends Biochem Sci. 1995 Oct;20(10):387-91
8754818 - Mol Cell Biol. 1996 Aug;16(8):4189-98
8289807 - Mol Cell Biol. 1994 Feb;14(2):1278-92
9020083 - Science. 1997 Feb 14;275(5302):986-90
3315231 - Cell. 1987 Dec 4;51(5):721-32
8386316 - Mol Cell Biol. 1993 May;13(5):2697-705
9242411 - Nature. 1997 Jul 31;388(6641):495-8
8890183 - EMBO J. 1996 Sep 16;15(18):5093-103
7867066 - Cell. 1995 Feb 24;80(4):583-92
7851793 - Genes Dev. 1995 Jan 15;9(2):193-203
8910371 - J Biol Chem. 1996 Nov 1;271(44):27765-9
8530104 - Genomics. 1995 Sep 1;29(1):80-6
9024627 - Curr Opin Genet Dev. 1997 Feb;7(1):99-104
6098447 - EMBO J. 1984 Dec 1;3(12):2817-23
8553064 - Science. 1996 Jan 19;271(5247):314-5
1913809 - Cell. 1991 Sep 20;66(6):1279-87
8509423 - J Biol Chem. 1993 Jun 15;268(17):12895-900
9311776 - Nature. 1997 Sep 25;389(6649):349-52
17248968 - Genetics. 1979 Sep;93(1):37-50
7708751 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2934-8
7671310 - Cell. 1995 Sep 8;82(5):823-9
9278054 - Nature. 1997 Aug 28;388(6645):900-3
397913 - Genetics. 1979 Dec;93(4):877-901
References_xml – reference: Carr AM (1996) Checkpoints take the next step. Science, 271, 314-315.
– reference: Labhart P (1995) DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc Natl Acad Sci USA, 92, 2934-2938.
– reference: Moore JK and Haber JE (1996) Cell cycle and genetic requirements of two pathways of non-homologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol, 16, 2164-2173.
– reference: Friedberg EC, Walker GC and Siede W (1995) DNA Repair and Mutagenesis. American Society for Microbiology, Washington, DC.
– reference: Marcand S, Gilson E and Shore D (1997) A protein-counting mechanism for telomere length regulation in yeast. Science, 275, 986-990.
– reference: Boulton SJ and Jackson SP (1996b) Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and telomeric maintenance. Nucleic Acids Res, 24, 4639-4648.
– reference: Siede W, Friedl AA, Dianova I, Eckardt-Schupp F and Friedberg EC (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics, 142, 91-102.
– reference: Mezard C and Nicolas A (1994) Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol, 14, 1278-1292.
– reference: Kuhn A, Gottlieb TM, Jackson SP and Grummt I (1995) DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev, 9, 193-203.
– reference: Goffeau A et al. (1996) Life with 6000 genes. Science, 274, 546.
– reference: Grawunder U, Wilm M, Wu X, Kulesza P, Wilson TE, Mann M and Lieber MR (1997) Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature, 388, 492-495.
– reference: Porter SE, Greenwell PW, Ritchie KB and Petes TD (1996) The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res, 24, 582-585.
– reference: Sun Z, Fay DS, Marini F, Foiani M and Stern D (1996) Spk1/Rad53 is regulated by Mec1-dependent phosphorylation in DNA replication and damage checkpoint pathways. Genes Dev, 10, 395-406.
– reference: Feldmann H and Winnacker EL (1993) A putative homologue of the human autoantigen Ku from Saccharomyces cerevisiae. J Biol Chem, 268, 12895-12900.
– reference: Shore D and Nasmyth KA (1987) Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell, 51, 721-732.
– reference: Aparicio OM, Billington BL and Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S.cerevisiae. Cell, 66, 1279-1287.
– reference: Gottlieb TM and Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell, 72, 131-142.
– reference: Schiestl RH, Zhu J and Petes TD (1994) Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol, 14, 4493-4500.
– reference: Kramer KM, Brock JA, Bloom K, Moore K and Haber JE (1994) Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol Cell Biol, 14, 1293-1301.
– reference: Milne GT, Jin S, Shannon KB and Weaver DT (1996) Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol Cell Biol, 16, 4189-4198.
– reference: Teo S-H and Jackson SP (1997) Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J, 16, 4788-4795.
– reference: Klar AJS, Fogel S and McLeod K (1979) MAR1 a regulator of HMa and HMα loci in Saccharomyces cerevisiae. Genetics, 93, 37-50.
– reference: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA and Struhl K (1991) Current Protocols in Molecular Biology. J. Wiley & Sons, Chichester, UK.
– reference: Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature, 389, 349-352.
– reference: Moretti P, Freeman K, Coodley L and Shore D (1994) Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev, 8, 2257-2269.
– reference: Tsukamoto Y, Kato J and Ikeda H (1997a) Budding yeast Rad50, Mre11, Xrs2 and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid. Mol Gen Genet, 255.
– reference: Barnes G and Rio D (1997) DNA double-strand break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 94, 867-872.
– reference: Hecht A, Laroche T, Strahl-Bolsinger S, Gasser SM and Grunstein M (1995) Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell, 80, 583-592.
– reference: Mages GJ, Feldmann HM and Winnacker E-L (1996) Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J Biol Chem, 271, 7910-7915.
– reference: Dvir A, Stein LY, Calore BL and Dynan WS (1993) Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem, 268, 10440-10447.
– reference: Greenwall PW, Kronmal SL, Porter SE, Gassenhuber J, Obermaier B and Petes TD (1995) TEL1, a gene involved in controlling telomere length in S.cerevisiae, is homologous to the Human Ataxia Telangiectasia gene. Cell, 82, 823-829.
– reference: Connelly JC and Leach DRF (1996) The sbcC and sbcD genes of Escherichia coli encode a nuclease involved in palindrome inviability and genetic recombination. Genes to Cells, 1, 285-291.
– reference: Rine J, Strathern JN, Hicks JB and Herskowitz I (1979) A supressor of mating-type locus mutations in Saccharomyces cerevisiae. Genetics, 93, 877-901.
– reference: Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA and Petrini JHJ (1996) Human Rad50 is physically associated with human Mre11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol, 16, 4832-4841.
– reference: Hartley KO, Gell D, Smith GCM, Zhang H, Divecha N, Connelly MA, Admon A, Lees-Miller SP, Anderson CW and Jackson SP (1995) DNA-dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3-kinase and the Ataxia Telangiectasia gene product. Cell, 82, 849-856.
– reference: Schiestl RH, Dominska M and Petes TD (1993) Transformation of Saccharomyces cerevisiae with nonhomologous DNA: Illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol, 13, 2697-2705.
– reference: Lieber MR, Grawunder U, Wu XT and Yaneva M (1997) Tying loose ends: Roles of Ku and DNA-dependent protein kinase in the repair of double-strand breaks. Curr Opin Genet Dev, 7, 99-104.
– reference: Boulton SJ and Jackson SP (1996a) Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J, 15, 5093-5103.
– reference: Sherman F, Fink GR and Laurence C (1979) Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
– reference: Shore D (1995) Telomere position effects and transcriptional silencing in the yeast Saccharomyces cerevisiae. Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
– reference: Feldmann H, Driller L, Meier B, Mages G, Kellermann J and Winnacker EL (1996) Hdf2, the second subunit of the Ku homolog from Saccharomyces cerevisiae. J Biol Chem, 271, 27765-27769.
– reference: Tsukamoto Y, Kato J and Ikeda H (1997b) Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature, 388, 900-903.
– reference: Cohn M and Blackburn EH (1995) Telomerase in yeast. Science, 269, 396-400.
– reference: Jackson SP (1996) DNA damage detection by DNA dependent protein kinase. Cancer Surveys, 28, 261-279.
– reference: Gottschling DE, Aparicio OM, Billington BL and Zakian VA (1990) Position effect at S.cerevisiae telomeres: reversible repression of pol II transcription. Cell, 63, 751-762.
– reference: Petrini JHJ, Walsh ME, DiMare C, Chen X, Korenberg JR and Weaver DT (1995) Isolation and characterisation of the human MRE11 homologue. Genomics, 29, 80-86.
– reference: Shinohara A and Ogawa T (1995) Homologous recombination and the roles of double-strand breaks. Trends Biol Sci, 20, 387-391.
– reference: Blackburn EH (1991) Structure and function of telomeres. Nature, 350, 569-573.
– reference: Critchlow SE, Bowater RP and Jackson SP (1997) Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol, 7, 588-598.
– reference: Jackson SP and Jeggo PA (1995) DNA double-strand break repair and V(D)J recombination: involvement of DNA-PK. Trends Biochem Sci, 20, 412-415.
– reference: Wiley EA and Zakian VA (1995) Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics, 139, 67-79.
– reference: Jackson SP (1997) Silencing and DNA repair connect. Nature, 388, 829-830.
– reference: Shore D, Squire M and Nasmyth KA (1984) Characterization of two genes required for position effect control of mating type. EMBO J, 3, 2817-2823.
– reference: Stavenhagen JB and Zakian VA (1994) Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae. Genes Dev, 8, 1411-1422.
– reference: Schiestl RH and Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA, 88, 7585-7589.
– reference: Wilson TE, Grawunder U and Lieber MR (1997) Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature, 388, 495-498.
– reference: Schar P, Herrmann G, Daly G and Lindahl T (1997) A newly identified DNA ligase Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev, 11, 1912-1924.
– volume: 13
  start-page: 2697
  year: 1993
  end-page: 2705
  article-title: Transformation of with nonhomologous DNA: Illegitimate integration of transforming DNA into yeast chromosomes and ligation of transforming DNA to mitochondrial DNA sequences
  publication-title: Mol Cell Biol
– volume: 16
  start-page: 4788
  year: 1997
  end-page: 4795
  article-title: Identification of DNA ligase IV: involvement in DNA double‐strand break repair
  publication-title: EMBO J
– volume: 350
  start-page: 569
  year: 1991
  end-page: 573
  article-title: Structure and function of telomeres
  publication-title: Nature
– year: 1995
  article-title: telomeres: function, structure and replication
– volume: 388
  start-page: 495
  year: 1997
  end-page: 498
  article-title: Yeast DNA ligase IV mediates non‐homologous DNA end joining
  publication-title: Nature
– volume: 271
  start-page: 314
  year: 1996
  end-page: 315
  article-title: Checkpoints take the next step
  publication-title: Science
– volume: 92
  start-page: 2934
  year: 1995
  end-page: 2938
  article-title: DNA‐dependent protein kinase specifically represses promoter‐directed transcription initiation by RNA polymerase I
  publication-title: Proc Natl Acad Sci USA
– volume: 93
  start-page: 877
  year: 1979
  end-page: 901
  article-title: A supressor of mating‐type locus mutations in
  publication-title: Genetics
– volume: 274
  start-page: 546
  year: 1996
  article-title: Life with 6000 genes
  publication-title: Science
– year: 1979
– volume: 255
  year: 1997a
  article-title: Budding yeast Rad50, Mre11, Xrs2 and Hdf1, but not Rad52, are involved in the formation of deletions on a dicentric plasmid
  publication-title: Mol Gen Genet
– volume: 275
  start-page: 986
  year: 1997
  end-page: 990
  article-title: A protein‐counting mechanism for telomere length regulation in yeast
  publication-title: Science
– volume: 271
  start-page: 27765
  year: 1996
  end-page: 27769
  article-title: Hdf2, the second subunit of the Ku homolog from
  publication-title: J Biol Chem
– volume: 3
  start-page: 2817
  year: 1984
  end-page: 2823
  article-title: Characterization of two genes required for position effect control of mating type
  publication-title: EMBO J
– volume: 8
  start-page: 2257
  year: 1994
  end-page: 2269
  article-title: Evidence that a complex of proteins interacts with the silencer and telomere‐binding protein
  publication-title: Genes Dev
– volume: 94
  start-page: 867
  year: 1997
  end-page: 872
  article-title: DNA double‐strand break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku‐deficient
  publication-title: Proc Natl Acad Sci USA
– volume: 9
  start-page: 193
  year: 1995
  end-page: 203
  article-title: DNA‐dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I
  publication-title: Genes Dev
– volume: 10
  start-page: 395
  year: 1996
  end-page: 406
  article-title: Spk1/Rad53 is regulated by Mec1‐dependent phosphorylation in DNA replication and damage checkpoint pathways
  publication-title: Genes Dev
– volume: 1
  start-page: 285
  year: 1996
  end-page: 291
  article-title: The and genes of encode a nuclease involved in palindrome inviability and genetic recombination
  publication-title: Genes to Cells
– volume: 20
  start-page: 412
  year: 1995
  end-page: 415
  article-title: DNA double‐strand break repair and V(D)J recombination: involvement of DNA‐PK
  publication-title: Trends Biochem Sci
– volume: 14
  start-page: 1278
  year: 1994
  end-page: 1292
  article-title: Homologous, homeologous, and illegitimate repair of double‐strand breaks during transformation of a wild‐type strain and a mutant strain of
  publication-title: Mol Cell Biol
– volume: 14
  start-page: 4493
  year: 1994
  end-page: 4500
  article-title: Effect of mutations in genes affecting homologous recombination on restriction enzyme‐mediated and illegitimate recombination in
  publication-title: Mol Cell Biol
– volume: 16
  start-page: 4832
  year: 1996
  end-page: 4841
  article-title: Human Rad50 is physically associated with human Mre11: Identification of a conserved multiprotein complex implicated in recombinational DNA repair
  publication-title: Mol Cell Biol
– volume: 7
  start-page: 588
  year: 1997
  end-page: 598
  article-title: Mammalian DNA double‐strand break repair protein XRCC4 interacts with DNA ligase IV
  publication-title: Curr Biol
– volume: 16
  start-page: 2164
  year: 1996
  end-page: 2173
  article-title: Cell cycle and genetic requirements of two pathways of non‐homologous end‐joining repair of double‐strand breaks in
  publication-title: Mol Cell Biol
– volume: 268
  start-page: 10440
  year: 1993
  end-page: 10447
  article-title: Purification and characterization of a template‐associated protein kinase that phosphorylates RNA polymerase II
  publication-title: J Biol Chem
– volume: 63
  start-page: 751
  year: 1990
  end-page: 762
  article-title: Position effect at telomeres: reversible repression of pol II transcription
  publication-title: Cell
– volume: 82
  start-page: 823
  year: 1995
  end-page: 829
  article-title: , a gene involved in controlling telomere length in , is homologous to the Human Ataxia Telangiectasia gene
  publication-title: Cell
– volume: 82
  start-page: 849
  year: 1995
  end-page: 856
  article-title: DNA‐dependent protein kinase catalytic subunit: A relative of phosphatidylinositol 3‐kinase and the Ataxia Telangiectasia gene product
  publication-title: Cell
– volume: 16
  start-page: 4189
  year: 1996
  end-page: 4198
  article-title: Mutations in two Ku homologs define a DNA end‐joining repair pathway in
  publication-title: Mol Cell Biol
– volume: 271
  start-page: 7910
  year: 1996
  end-page: 7915
  article-title: Involvement of the gene in DNA double‐strand break repair and recombination
  publication-title: J Biol Chem
– volume: 142
  start-page: 91
  year: 1996
  end-page: 102
  article-title: The Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination
  publication-title: Genetics
– volume: 80
  start-page: 583
  year: 1995
  end-page: 592
  article-title: Histone H3 and H4 N‐termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast
  publication-title: Cell
– volume: 388
  start-page: 829
  year: 1997
  end-page: 830
  article-title: Silencing and DNA repair connect
  publication-title: Nature
– volume: 7
  start-page: 99
  year: 1997
  end-page: 104
  article-title: Tying loose ends: Roles of Ku and DNA‐dependent protein kinase in the repair of double‐strand breaks
  publication-title: Curr Opin Genet Dev
– volume: 269
  start-page: 396
  year: 1995
  end-page: 400
  article-title: Telomerase in yeast
  publication-title: Science
– volume: 388
  start-page: 492
  year: 1997
  end-page: 495
  article-title: Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells
  publication-title: Nature
– volume: 72
  start-page: 131
  year: 1993
  end-page: 142
  article-title: The DNA‐dependent protein kinase: requirement for DNA ends and association with Ku antigen
  publication-title: Cell
– volume: 388
  start-page: 900
  year: 1997b
  end-page: 903
  article-title: Silencing factors participate in DNA repair and recombination in
  publication-title: Nature
– volume: 24
  start-page: 4639
  year: 1996b
  end-page: 4648
  article-title: Identification of a homologue: roles in DNA double strand break rejoining and telomeric maintenance
  publication-title: Nucleic Acids Res
– volume: 20
  start-page: 387
  year: 1995
  end-page: 391
  article-title: Homologous recombination and the roles of double‐strand breaks
  publication-title: Trends Biol Sci
– volume: 28
  start-page: 261
  year: 1996
  end-page: 279
  article-title: DNA damage detection by DNA dependent protein kinase
  publication-title: Cancer Surveys
– volume: 14
  start-page: 1293
  year: 1994
  end-page: 1301
  article-title: Two different types of double‐strand breaks in are repaired by similar RAD52‐independent, nonhomologous recombination events
  publication-title: Mol Cell Biol
– volume: 29
  start-page: 80
  year: 1995
  end-page: 86
  article-title: Isolation and characterisation of the human MRE11 homologue
  publication-title: Genomics
– volume: 93
  start-page: 37
  year: 1979
  end-page: 50
  article-title: MAR1 a regulator of and α loci in
  publication-title: Genetics
– volume: 66
  start-page: 1279
  year: 1991
  end-page: 1287
  article-title: Modifiers of position effect are shared between telomeric and silent mating‐type loci in
  publication-title: Cell
– volume: 51
  start-page: 721
  year: 1987
  end-page: 732
  article-title: Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements
  publication-title: Cell
– volume: 24
  start-page: 582
  year: 1996
  end-page: 585
  article-title: The DNA‐binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in
  publication-title: Nucleic Acids Res
– volume: 8
  start-page: 1411
  year: 1994
  end-page: 1422
  article-title: Internal tracts of telomeric DNA act as silencers in
  publication-title: Genes Dev
– year: 1995
– volume: 88
  start-page: 7585
  year: 1991
  end-page: 7589
  article-title: Integration of DNA fragments by illegitimate recombination in
  publication-title: Proc Natl Acad Sci USA
– volume: 139
  start-page: 67
  year: 1995
  end-page: 79
  article-title: Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at telomeres
  publication-title: Genetics
– volume: 268
  start-page: 12895
  year: 1993
  end-page: 12900
  article-title: A putative homologue of the human autoantigen Ku from
  publication-title: J Biol Chem
– year: 1991
– volume: 11
  start-page: 1912
  year: 1997
  end-page: 1924
  article-title: A newly identified DNA ligase involved in RAD52‐independent repair of DNA double‐strand breaks
  publication-title: Genes Dev
– volume: 15
  start-page: 5093
  year: 1996a
  end-page: 5103
  article-title: potentiates illegitimate DNA double‐strand break repair and serves as a barrier to error‐prone DNA repair pathways
  publication-title: EMBO J
– volume: 389
  start-page: 349
  year: 1997
  end-page: 352
  article-title: Histone acetylation in chromatin structure and transcription
  publication-title: Nature
– reference: 1881899 - Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7585-9
– reference: 8849441 - Science. 1996 Oct 25;274(5287):546, 563-7
– reference: 9242410 - Nature. 1997 Jul 31;388(6641):492-5
– reference: 8604297 - Nucleic Acids Res. 1996 Feb 15;24(4):582-5
– reference: 8754818 - Mol Cell Biol. 1996 Aug;16(8):4189-98
– reference: 7671310 - Cell. 1995 Sep 8;82(5):823-9
– reference: 8600024 - Genes Dev. 1996 Feb 15;10(4):395-406
– reference: 9311776 - Nature. 1997 Sep 25;389(6649):349-52
– reference: 9271115 - Genes Dev. 1997 Aug 1;11(15):1912-24
– reference: 8289808 - Mol Cell Biol. 1994 Feb;14(2):1293-301
– reference: 397913 - Genetics. 1979 Dec;93(4):877-901
– reference: 8972848 - Nucleic Acids Res. 1996 Dec 1;24(23):4639-48
– reference: 8977040 - Cancer Surv. 1996;28:261-79
– reference: 6098447 - EMBO J. 1984 Dec 1;3(12):2817-23
– reference: 9303323 - EMBO J. 1997 Aug 1;16(15):4788-95
– reference: 7708751 - Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2934-8
– reference: 9259561 - Curr Biol. 1997 Aug 1;7(8):588-98
– reference: 7618104 - Science. 1995 Jul 21;269(5222):396-400
– reference: 9133662 - Genes Cells. 1996 Mar;1(3):285-91
– reference: 1913809 - Cell. 1991 Sep 20;66(6):1279-87
– reference: 8486698 - J Biol Chem. 1993 May 15;268(14):10440-7
– reference: 8756642 - Mol Cell Biol. 1996 Sep;16(9):4832-41
– reference: 9242411 - Nature. 1997 Jul 31;388(6641):495-8
– reference: 8509423 - J Biol Chem. 1993 Jun 15;268(17):12895-900
– reference: 8770587 - Genetics. 1996 Jan;142(1):91-102
– reference: 8533149 - Trends Biochem Sci. 1995 Oct;20(10):387-91
– reference: 8628283 - Mol Cell Biol. 1996 May;16(5):2164-73
– reference: 9024627 - Curr Opin Genet Dev. 1997 Feb;7(1):99-104
– reference: 3315231 - Cell. 1987 Dec 4;51(5):721-32
– reference: 17248968 - Genetics. 1979 Sep;93(1):37-50
– reference: 8533154 - Trends Biochem Sci. 1995 Oct;20(10):412-5
– reference: 9020083 - Science. 1997 Feb 14;275(5302):986-90
– reference: 8386316 - Mol Cell Biol. 1993 May;13(5):2697-705
– reference: 9023348 - Proc Natl Acad Sci U S A. 1997 Feb 4;94(3):867-72
– reference: 7958893 - Genes Dev. 1994 Oct 1;8(19):2257-69
– reference: 7705652 - Genetics. 1995 Jan;139(1):67-79
– reference: 8530104 - Genomics. 1995 Sep 1;29(1):80-6
– reference: 8890183 - EMBO J. 1996 Sep 16;15(18):5093-103
– reference: 8553064 - Science. 1996 Jan 19;271(5247):314-5
– reference: 8422676 - Cell. 1993 Jan 15;72(1):131-42
– reference: 8626469 - J Biol Chem. 1996 Apr 5;271(14):7910-5
– reference: 8289807 - Mol Cell Biol. 1994 Feb;14(2):1278-92
– reference: 8007955 - Mol Cell Biol. 1994 Jul;14(7):4493-500
– reference: 7867066 - Cell. 1995 Feb 24;80(4):583-92
– reference: 1708110 - Nature. 1991 Apr 18;350(6319):569-73
– reference: 7926741 - Genes Dev. 1994 Jun 15;8(12):1411-22
– reference: 8910371 - J Biol Chem. 1996 Nov 1;271(44):27765-9
– reference: 9278039 - Nature. 1997 Aug 28;388(6645):829-30
– reference: 7671312 - Cell. 1995 Sep 8;82(5):849-56
– reference: 9278054 - Nature. 1997 Aug 28;388(6645):900-3
– reference: 7851793 - Genes Dev. 1995 Jan 15;9(2):193-203
– reference: 2225075 - Cell. 1990 Nov 16;63(4):751-62
SSID ssj0005871
Score 2.1623263
Snippet In the budding yeast, Saccharomyces cerevisiae , genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere...
In the budding yeast, Saccharomyces cerevisiae, genes in close proximity to telomeres are subject to transcriptional silencing through the process of telomere...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
springer
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1819
SubjectTerms Antigens, Nuclear
dna double strand break repair
DNA Helicases
dna non-homologous end joining
DNA repair
DNA Repair - physiology
DNA-binding proteins
DNA-Binding Proteins - genetics
DNA-Binding Proteins - physiology
DSB repair
Endodeoxyribonucleases
Exodeoxyribonucleases
Fungal Proteins
Fungal Proteins - genetics
Fungal Proteins - physiology
gene expression
gene silencing
Genes, Fungal
Genes, Fungal - physiology
Genetic Markers
genetic regulation
genetics
Histone Deacetylases
Ku Autoantigen
length
Mutagenesis, Insertional
mutants
Nuclear Proteins
Nuclear Proteins - physiology
physiology
position effect
Rad50
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins
silencing
Silent Information Regulator Proteins, Saccharomyces cerevisiae
Sirtuin 1
Sirtuin 2
Sirtuins
Telomere
Telomere - genetics
telomeres
telomeric position effect
Temperature
Trans-Activators
Trans-Activators - genetics
Trans-Activators - physiology
Transcription, Genetic
Transcription, Genetic - genetics
transcriptional silencing
Title Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing
URI https://api.istex.fr/ark:/67375/WNG-3FXVQH5Z-X/fulltext.pdf
https://link.springer.com/article/10.1093/emboj/17.6.1819
https://onlinelibrary.wiley.com/doi/abs/10.1093%2Femboj%2F17.6.1819
https://www.ncbi.nlm.nih.gov/pubmed/9501103
https://www.proquest.com/docview/16351465
https://www.proquest.com/docview/48525070
https://www.proquest.com/docview/79732120
https://pubmed.ncbi.nlm.nih.gov/PMC1170529
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9RAFJ4AhsiLUZSwXufBGM2mS28z0z4qAQlmUQPoxpdJL1MXZLcEFhV_gD_F3-k503Y6jWxUXpqmnV6_r2fmdL5zDiFPoyRICqWE46UqcMIo504a89hxmZtyP85YqNXuwz2-cxjujthoYeGXpVq6mKWD7MeVcSXXQRW2Aa4YJfsfyJqTwgZYB3xhCQjD8p8wxo-5nKpayYJDyDcXTlPWdtYHz94ZlxM0byh0ha3OcakLQmA61fG35LKPuq-jKZioryrXkkd1UlbqeqywMhv3JwkmlJiawIK2wfkRxis1Pd9xy7qt4au3ffv-k0756v12JsoK8N-vA81yOyKvio-s_oo1swbDpp5vXUbzshNOatk1_OUVelXloIGq7G7IXYC2KqJiDLOwCGhbWRiVxFaPDS5SdGVvUGXKUpO0PMYfFGLAB82hFjtOJ5oeMcOhUND2i0at-G64ifV5mB8vkhs-uCO-7gBaN4tF2rE3D9akkIqDDX3xDXPpFbJcX6czDloskhK8I_ywv1_l6vyp2DXT9l2nSo-KDm6TW7U7Q19W3LxDFtR0lSzXyKySm5tNPcG75GfLVloWFNhKbbbSLlupxVZas5UCW2nDVlihhoy0Yiu12EqBrVYDw9Z75HB762Bzx6mrgDgZ5xF38lT4WZT6XPGwQLMSizxnAUcZLHN5lgWhCgXLgEI5z6JCeXlcZEkErkCc5l4RrJEleAK1TmgEw_1MpCzC2faY5ZEL7numPJ7HbsBE0CODBhOZ1SnysVLLiaykGoHUcEpPSC4Rzh55bg44rbLDzG-6DiDL5DP03fJw39eKgQjTMfIeeaaRN6dIzr6g3lIw-XHvtQy2Rx_e77BPctQjTxpqSAAPp_aSqQJMJHhV4PlwNr9FGKGAQbjzWwhM3OX50GKtIpu5n5qyPSI6LDT7MUV9d8_0aKxT1dffTY-8aPgqa_tzPv9FeZrQf3uhEqzZrmCoW-D3r31nD8hKa9MekqXZ2YV6BG7GLH2sv_HfRAUruw
linkProvider ABC ChemistRy
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF61qVC5IChUTXl0DwjBwanX9j58DFVDSJtIqA1EXFZ-rJuUxq7yAHrjB3DgN_JLmNnYgahEiFtij1fxznj2c77Zbwh5riI_yoyRDouN7wQqFU4citBxuRsLL0x4YKvduz3R7gedAR9sEFbthbHV7hUlaTN1KXl0aMZxcXnIZEM0YFUKN8mW4kIFNbLVbHbOOr_rOpR9y7J_rARMhZWez-0hVpaizSwqAKDi3H79G9q8XTS5ZE5Xca1dmFr3yb0SUdLmIgQekA2T75A7ix6TNztk-6hq6faQfMenv8ixdoIWGQXsR0_mP7_9qDrhzmhe5PB9WIzx6mI-pXAcDlwWto8Exf7FX6IbGk0MHeWQ2T6bFD7QmbkqLPVDsTHLbEjHEepQoJiHoVGe_mEwHeE2JxjsEem3js-P2k7ZjsFJhFDCSWPpJSr2hBFBhv4NZZpyX2A9IndFkviBCSRPIPemIlGZYWmYJZECTBbGKcv8XVKDuzB7hCrAXYmMuULaM-SpcuE9KjFMpKHrc-nXSaPyjE5KrXJsmXGlF5y5r60rNZNaaHRlnbxcXnC9kOlYb7oHrtbRBSRR3T_zLHWrUBdP1MkL6__lENHkExa-Sa4_9N5ovzV4_67NP-pBnRxUAaLBhcixRLkBr2iAtwBBBV9vEShkkqW73kKighLzwGJ3EXLL3xNyhGswPXIlFpfnUSt89Uw-GlrNcGwwxD24-VdV1OoyWU3XTxSzYf2vCdXH3dcdyZFAFvv_Mf4B2W6fd0_16dveyWNyt9rsycQTUptN5uYpoL1Z_Kx8vn8BEeNTMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF7RVjwuCApVw6t7QAgOTvzah4-hNISURqASiHpZ2d41SWnsKnGA3vgBHPiN_BJm_IKoRIibH-OVd2c8-61n9htCHsvQCxNjhOVExrN8qbkVBTywbGZH3A1i5hfZ7kdD3h_5gzEbV7k5izrbvQ5JlnsakKUpzTvnOqnpjzpmFmWnHUe0eRtmqGCDbEluS1h7bXW7g-PB7xwPWay4ip8sviODmtvnchMr09JGEmYAVnGcv_4NeV5OoGyiqKsYt5ikerfIzQpd0m5pDrfJFZNuk6tlvcmLbXJ9vy7vdod8R0-QpZhHQbOEAg6kh8uf337UVXFzmmYpnE-yGT6dLRcUrsOF06yoKUGxlvGX8IKGc0OnKXi5z0bDAc3NWVaEgSgWackndBYiJwUSexgapvoPgcUUtzxBY3fJqHfwbr9vVaUZrJhzyS0dCTeWkcsN9xPUdSC0Zh7H3ERm8zj2fOMLFoMf1jyWiXF0kMShBHwWRNpJvB2yCb0wu4RKwGCxiJjEEGjAtLRhTRUbh-vA9pjwWqRda0bFFW85ls84U2X83FOFKpUjFFeoyhZ52jxwXlJ2rBfdBVWr8CM4VDU6doswrkSOPN4iTwr9N02E80-YBCeY-jB8qbze-P3bPjtR4xbZqw1EgQox3hKmBrSiAOoCHOVsvYQvMaos7PUSAtmUHBckdkqTa94nYAjdYHjEii0295E3fPVOOp0U_OFYbIi50PlntdWqynEt1g-UU5j1vwZUHRw9HwiGwWR-7z_a3yPX3rzoqdevhof3yY1636fDH5DNfL40DwH45dGj6vP-BXXsV3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Components+of+the+Ku-dependent+non-homologous+end-joining+pathway+are+involved+in+telomeric+length+maintenance+and+telomeric+silencing&rft.jtitle=The+EMBO+journal&rft.au=Boulton%2C+S+J&rft.au=Jackson%2C+S+P&rft.date=1998-03-16&rft.pub=European+Molecular+Biology+Organization&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=17&rft.issue=6&rft.spage=1819&rft.epage=1828&rft_id=info:doi/10.1093%2Femboj%2F17.6.1819&rft_id=info%3Apmid%2F9501103&rft.externalDocID=PMC1170529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon