A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development

The detection of dyskalemias-hypokalemia and hyperkalemia-currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results. Our study aimed to develop a deep-learni...

Full description

Saved in:
Bibliographic Details
Published inJMIR medical informatics Vol. 8; no. 3; p. e15931
Main Authors Lin, Chin-Sheng, Lin, Chin, Fang, Wen-Hui, Hsu, Chia-Jung, Chen, Sy-Jou, Huang, Kuo-Hua, Lin, Wei-Shiang, Tsai, Chien-Sung, Kuo, Chih-Chun, Chau, Tom, Yang, Stephen JH, Lin, Shih-Hua
Format Journal Article
LanguageEnglish
Published Canada JMIR Publications 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The detection of dyskalemias-hypokalemia and hyperkalemia-currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results. Our study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model. Spanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K ) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K concentration. Six clinicians-three emergency physicians and three cardiologists-participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians. In a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively. A deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.
AbstractList Background: The detection of dyskalemias—hypokalemia and hyperkalemia—currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results. Objective: Our study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model. Methods: Spanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K+) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K+ concentration. Six clinicians—three emergency physicians and three cardiologists—participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians. Results: In a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively. Conclusions: A deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.
The detection of dyskalemias-hypokalemia and hyperkalemia-currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results. Our study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model. Spanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K ) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K concentration. Six clinicians-three emergency physicians and three cardiologists-participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians. In a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively. A deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.
BackgroundThe detection of dyskalemias—hypokalemia and hyperkalemia—currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results. ObjectiveOur study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model. MethodsSpanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K+) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K+ concentration. Six clinicians—three emergency physicians and three cardiologists—participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians. ResultsIn a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively. ConclusionsA deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.
The detection of dyskalemias-hypokalemia and hyperkalemia-currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results.BACKGROUNDThe detection of dyskalemias-hypokalemia and hyperkalemia-currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results.Our study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model.OBJECTIVEOur study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model.Spanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K+) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K+ concentration. Six clinicians-three emergency physicians and three cardiologists-participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians.METHODSSpanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K+) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K+ concentration. Six clinicians-three emergency physicians and three cardiologists-participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians.In a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively.RESULTSIn a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively.A deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.CONCLUSIONSA deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.
Author Lin, Wei-Shiang
Huang, Kuo-Hua
Tsai, Chien-Sung
Yang, Stephen JH
Chau, Tom
Hsu, Chia-Jung
Lin, Chin-Sheng
Lin, Shih-Hua
Lin, Chin
Kuo, Chih-Chun
Fang, Wen-Hui
Chen, Sy-Jou
AuthorAffiliation 1 Division of Cardiology, Department of Medicine Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
9 Division of Cardiovascular Surgery, Department of Surgery Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
12 Department of Computer Science and Information Engineering National Central University Taoyuan Taiwan
8 Graduate Institute of Injury Prevention and Control College of Public Health and Nutrition Taipei Medical University Taipei Taiwan
10 Department of Electrical Engineering National Taiwan University Taipei Taiwan
2 Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan
13 Division of Nephrology, Department of Medicine Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
3 School of Public Health National Defense Medical Center Taipei Taiwan
6 Planning and Management Office Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
11 Department of Medicine Providence St Vi
AuthorAffiliation_xml – name: 4 Department of Research and Development National Defense Medical Center Taipei Taiwan
– name: 11 Department of Medicine Providence St Vincent Medical Center Portland, OR United States
– name: 13 Division of Nephrology, Department of Medicine Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
– name: 2 Graduate Institute of Life Sciences National Defense Medical Center Taipei Taiwan
– name: 5 Department of Family and Community Medicine Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
– name: 7 Department of Emergency Medicine Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
– name: 12 Department of Computer Science and Information Engineering National Central University Taoyuan Taiwan
– name: 3 School of Public Health National Defense Medical Center Taipei Taiwan
– name: 1 Division of Cardiology, Department of Medicine Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
– name: 8 Graduate Institute of Injury Prevention and Control College of Public Health and Nutrition Taipei Medical University Taipei Taiwan
– name: 9 Division of Cardiovascular Surgery, Department of Surgery Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
– name: 10 Department of Electrical Engineering National Taiwan University Taipei Taiwan
– name: 6 Planning and Management Office Tri-Service General Hospital National Defense Medical Center Taipei Taiwan
Author_xml – sequence: 1
  givenname: Chin-Sheng
  orcidid: 0000-0002-5167-8327
  surname: Lin
  fullname: Lin, Chin-Sheng
– sequence: 2
  givenname: Chin
  orcidid: 0000-0003-2337-2096
  surname: Lin
  fullname: Lin, Chin
– sequence: 3
  givenname: Wen-Hui
  orcidid: 0000-0002-0574-5736
  surname: Fang
  fullname: Fang, Wen-Hui
– sequence: 4
  givenname: Chia-Jung
  orcidid: 0000-0001-9969-4855
  surname: Hsu
  fullname: Hsu, Chia-Jung
– sequence: 5
  givenname: Sy-Jou
  orcidid: 0000-0002-2105-7570
  surname: Chen
  fullname: Chen, Sy-Jou
– sequence: 6
  givenname: Kuo-Hua
  orcidid: 0000-0001-5194-0826
  surname: Huang
  fullname: Huang, Kuo-Hua
– sequence: 7
  givenname: Wei-Shiang
  orcidid: 0000-0003-0559-6264
  surname: Lin
  fullname: Lin, Wei-Shiang
– sequence: 8
  givenname: Chien-Sung
  orcidid: 0000-0002-1682-3269
  surname: Tsai
  fullname: Tsai, Chien-Sung
– sequence: 9
  givenname: Chih-Chun
  orcidid: 0000-0002-2393-7678
  surname: Kuo
  fullname: Kuo, Chih-Chun
– sequence: 10
  givenname: Tom
  orcidid: 0000-0002-6333-3879
  surname: Chau
  fullname: Chau, Tom
– sequence: 11
  givenname: Stephen JH
  orcidid: 0000-0003-1059-620X
  surname: Yang
  fullname: Yang, Stephen JH
– sequence: 12
  givenname: Shih-Hua
  orcidid: 0000-0001-6152-4885
  surname: Lin
  fullname: Lin, Shih-Hua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32134388$$D View this record in MEDLINE/PubMed
BookMark eNpdkl9r2zAUxc3oWP8sX2EYxqBjeNOVZNnawyCkWVsI28v2LGT52lFmW67sFPKw7165aUuaJ11d_Tico3vPo5POdRhFMyBfKUjxDVLJ4E10RqmERArJTw7q02g2DBtCCHAQQmTvolNGgXGW52fR_3l8hdgnK9S-s10dz5vaeTuu2_hyubgG-gvHz3HlfMBGNOOE3Ox690832Fod666c7uifG8UuXjYB9M5oX1pXe92vd98PdK_wHhvXt9iN76O3lW4GnD2dF9Hfn8s_i5tk9fv6djFfJSb4HRMs8krLNDWEk6wMkSqQWSh0CbxAWYhUV0UJIXAqBOqi0rQ0kkuUxACkBbuIbve6pdMb1Xvbar9TTlv12HC-VtqP1jSogMmqIkhMQRjnGcrMZMCZ4AAEqZRB68deq98WLZYmxPC6eSX6-qWza1W7e5WRnGaMBYHLJwHv7rY4jKq1g8Gm0R267aAoyyAXYTwT-vEI3bit78JXKZpCmLzgnATqw6GjFyvPUw7Apz1gvBsGj9ULAkRNC6QeFyhwX444Y0c9WjcFsc0R_QD56sSa
CitedBy_id crossref_primary_10_1111_anec_12839
crossref_primary_10_3390_diagnostics13172723
crossref_primary_10_3390_ijerph18073839
crossref_primary_10_3390_jpm11080725
crossref_primary_10_1038_s41598_025_85722_8
crossref_primary_10_1186_s12882_023_03227_w
crossref_primary_10_36011_cpp_2024_6_e7
crossref_primary_10_1016_j_compbiomed_2022_105304
crossref_primary_10_1016_j_ijcard_2023_131380
crossref_primary_10_2478_msr_2024_0022
crossref_primary_10_1016_j_engmed_2024_100019
crossref_primary_10_3390_jpm12071150
crossref_primary_10_1016_j_cca_2022_09_021
crossref_primary_10_1177_20552076221143249
crossref_primary_10_1007_s42600_024_00371_6
crossref_primary_10_1016_j_cjca_2021_09_028
crossref_primary_10_4244_EIJ_D_20_01155
crossref_primary_10_1053_j_akdh_2022_11_009
crossref_primary_10_1136_postgradmedj_2020_139701
crossref_primary_10_1016_j_cmpb_2023_107359
crossref_primary_10_1007_s10916_023_01980_x
crossref_primary_10_3389_fmed_2022_870523
crossref_primary_10_2196_41163
crossref_primary_10_3390_jcm11133910
crossref_primary_10_1016_j_jacep_2024_07_023
crossref_primary_10_1093_ehjdh_ztac072
crossref_primary_10_1097_CIN_0000000000001000
crossref_primary_10_3390_jpm12020315
crossref_primary_10_1109_JSEN_2024_3486154
crossref_primary_10_3390_jpm12050700
crossref_primary_10_1080_07853890_2023_2209336
crossref_primary_10_2196_34724
crossref_primary_10_1016_j_amjmed_2024_01_018
crossref_primary_10_3346_jkms_2023_38_e322
crossref_primary_10_3390_jcm13041033
crossref_primary_10_1016_j_asjsur_2025_01_072
crossref_primary_10_1055_a_1202_9240
crossref_primary_10_3389_fcvm_2022_754909
crossref_primary_10_1038_s41598_021_82935_5
crossref_primary_10_1038_s41746_021_00550_0
crossref_primary_10_1063_5_0018504
crossref_primary_10_1007_s00399_024_00997_0
crossref_primary_10_1016_j_bspc_2024_106160
crossref_primary_10_2196_38454
crossref_primary_10_1210_jendso_bvab120
crossref_primary_10_1055_a_1700_7262
crossref_primary_10_1097_HCO_0000000000000888
crossref_primary_10_1109_ICJECE_2022_3228588
crossref_primary_10_4037_ajcc2025597
crossref_primary_10_3349_ymj_2024_0148
crossref_primary_10_1007_s11886_024_02062_1
crossref_primary_10_1016_j_cpcardiol_2023_102097
crossref_primary_10_3390_s22082951
crossref_primary_10_1093_europace_euaa377
crossref_primary_10_1007_s00068_022_01904_3
crossref_primary_10_1136_heartjnl_2023_323822
crossref_primary_10_3389_fcvm_2022_895201
crossref_primary_10_1038_s41598_024_65223_w
crossref_primary_10_1038_s41598_024_71562_5
crossref_primary_10_3390_jpm12030455
crossref_primary_10_1016_j_xcrm_2024_101746
crossref_primary_10_1007_s10278_024_01225_4
Cites_doi 10.1016/j.ins.2017.06.027
10.1002/widm.1312
10.18653/v1/n16-1174
10.1016/j.mayocp.2018.03.019
10.1093/eurheartj/ehv316
10.1136/bmj.324.7349.1320
10.1097/MEJ.0b013e3283643801
10.22489/cinc.2017.069-336
10.2215/CJN.04611007
10.1016/j.ins.2017.04.012
10.1109/cvpr.2017.243
10.1038/srep42492
10.1007/978-3-030-14596-5_12
10.1378/chest.125.4.1561
10.1145/3065386
10.22489/cinc.2017.070-060
10.1109/cvpr.2015.7298594
10.1001/archinte.158.8.917
10.1001/jamacardio.2019.0640
10.7326/0003-4819-150-9-200905050-00006
10.1016/j.jelectrocard.2014.10.002
10.1093/europace/euq042
10.1016/s0196-0644(05)81476-3
10.1016/j.ijcard.2017.07.035
10.1016/j.ijcard.2005.02.007
10.22489/cinc.2017.160-246
10.1038/538020a
10.1161/JAHA.115.002746
10.1109/cvpr.2016.319
10.7326/0003-4819-150-9-200905050-00008
10.1016/j.hrtlng.2017.04.003
10.1016/j.jemermed.2004.04.006
10.1038/nature21056
10.1111/j.1553-2712.2000.tb00466.x
10.1109/10.362922
10.1007/978-3-319-99740-7_1
10.1016/j.jelectrocard.2016.09.001
10.1109/cvpr.2016.90
10.1016/j.compbiomed.2017.12.023
ContentType Journal Article
Copyright Chin-Sheng Lin, Chin Lin, Wen-Hui Fang, Chia-Jung Hsu, Sy-Jou Chen, Kuo-Hua Huang, Wei-Shiang Lin, Chien-Sung Tsai, Chih-Chun Kuo, Tom Chau, Stephen JH Yang, Shih-Hua Lin. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2020.
2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Chin-Sheng Lin, Chin Lin, Wen-Hui Fang, Chia-Jung Hsu, Sy-Jou Chen, Kuo-Hua Huang, Wei-Shiang Lin, Chien-Sung Tsai, Chih-Chun Kuo, Tom Chau, Stephen JH Yang, Shih-Hua Lin. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2020. 2020
Copyright_xml – notice: Chin-Sheng Lin, Chin Lin, Wen-Hui Fang, Chia-Jung Hsu, Sy-Jou Chen, Kuo-Hua Huang, Wei-Shiang Lin, Chien-Sung Tsai, Chih-Chun Kuo, Tom Chau, Stephen JH Yang, Shih-Hua Lin. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2020.
– notice: 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Chin-Sheng Lin, Chin Lin, Wen-Hui Fang, Chia-Jung Hsu, Sy-Jou Chen, Kuo-Hua Huang, Wei-Shiang Lin, Chien-Sung Tsai, Chih-Chun Kuo, Tom Chau, Stephen JH Yang, Shih-Hua Lin. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2020. 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.2196/15931
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Health Management
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Health Management (Alumni Edition)
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2291-9694
ExternalDocumentID oai_doaj_org_article_139ff0e0cb03447e97c714364110e299
PMC7082733
32134388
10_2196_15931
Genre Journal Article
GroupedDBID 53G
5VS
7X7
8FI
8FJ
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
FYUFA
GROUPED_DOAJ
HMCUK
HYE
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RPM
UKHRP
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c667t-eb8fa955c0407d694f1977d6ad14be9b65afbd1291566eabfa2dc949e90c115b3
IEDL.DBID M48
ISSN 2291-9694
IngestDate Wed Aug 27 01:15:27 EDT 2025
Thu Aug 21 13:41:00 EDT 2025
Fri Jul 11 16:04:16 EDT 2025
Sat Jul 26 02:30:35 EDT 2025
Thu Jan 02 22:58:49 EST 2025
Tue Jul 01 04:31:18 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords electrocardiogram
sudden cardiac death
machine learning
potassium homeostasis
artificial intelligence
Language English
License Chin-Sheng Lin, Chin Lin, Wen-Hui Fang, Chia-Jung Hsu, Sy-Jou Chen, Kuo-Hua Huang, Wei-Shiang Lin, Chien-Sung Tsai, Chih-Chun Kuo, Tom Chau, Stephen JH Yang, Shih-Hua Lin. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 05.03.2020.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c667t-eb8fa955c0407d694f1977d6ad14be9b65afbd1291566eabfa2dc949e90c115b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5167-8327
0000-0002-2105-7570
0000-0003-0559-6264
0000-0002-6333-3879
0000-0001-9969-4855
0000-0002-0574-5736
0000-0001-5194-0826
0000-0002-2393-7678
0000-0003-2337-2096
0000-0002-1682-3269
0000-0003-1059-620X
0000-0001-6152-4885
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.2196/15931
PMID 32134388
PQID 2511966440
PQPubID 4997117
ParticipantIDs doaj_primary_oai_doaj_org_article_139ff0e0cb03447e97c714364110e299
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7082733
proquest_miscellaneous_2371864383
proquest_journals_2511966440
pubmed_primary_32134388
crossref_primary_10_2196_15931
crossref_citationtrail_10_2196_15931
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Canada
PublicationPlace_xml – name: Canada
– name: Toronto
– name: Toronto, Canada
PublicationTitle JMIR medical informatics
PublicationTitleAlternate JMIR Med Inform
PublicationYear 2020
Publisher JMIR Publications
Publisher_xml – name: JMIR Publications
References ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Corsi, C (ref12) 2012; 39
El-Sherif, N (ref46) 2011; 18
(ref1) 1974; 2
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
Mukhopadhyay, S (ref27) 2012; 2
ref5
ref40
References_xml – ident: ref35
  doi: 10.1016/j.ins.2017.06.027
– ident: ref40
  doi: 10.1002/widm.1312
– ident: ref25
  doi: 10.18653/v1/n16-1174
– volume: 2
  start-page: 2361
  issue: 3
  year: 2012
  ident: ref27
  publication-title: Int J Eng Res Appl
– ident: ref4
  doi: 10.1016/j.mayocp.2018.03.019
– ident: ref2
  doi: 10.1093/eurheartj/ehv316
– ident: ref6
  doi: 10.1136/bmj.324.7349.1320
– ident: ref20
– ident: ref44
  doi: 10.1097/MEJ.0b013e3283643801
– volume: 18
  start-page: 233
  issue: 3
  year: 2011
  ident: ref46
  publication-title: Cardiol J
– ident: ref28
  doi: 10.22489/cinc.2017.069-336
– ident: ref14
  doi: 10.2215/CJN.04611007
– ident: ref33
  doi: 10.1016/j.ins.2017.04.012
– ident: ref18
  doi: 10.1109/cvpr.2017.243
– ident: ref11
  doi: 10.1038/srep42492
– ident: ref21
  doi: 10.1007/978-3-030-14596-5_12
– ident: ref7
  doi: 10.1378/chest.125.4.1561
– ident: ref19
  doi: 10.1145/3065386
– ident: ref31
  doi: 10.22489/cinc.2017.070-060
– ident: ref16
  doi: 10.1109/cvpr.2015.7298594
– ident: ref39
  doi: 10.1001/archinte.158.8.917
– ident: ref36
  doi: 10.1001/jamacardio.2019.0640
– ident: ref15
– ident: ref30
– ident: ref24
  doi: 10.7326/0003-4819-150-9-200905050-00006
– ident: ref8
  doi: 10.1016/j.jelectrocard.2014.10.002
– ident: ref37
  doi: 10.1093/europace/euq042
– ident: ref38
  doi: 10.1016/s0196-0644(05)81476-3
– ident: ref45
  doi: 10.1016/j.ijcard.2017.07.035
– ident: ref29
  doi: 10.1016/j.ijcard.2005.02.007
– ident: ref32
  doi: 10.22489/cinc.2017.160-246
– ident: ref42
  doi: 10.1038/538020a
– ident: ref9
  doi: 10.1161/JAHA.115.002746
– ident: ref43
  doi: 10.1109/cvpr.2016.319
– volume: 2
  start-page: 1123
  issue: 7889
  year: 1974
  ident: ref1
  publication-title: Lancet
– ident: ref10
  doi: 10.7326/0003-4819-150-9-200905050-00008
– volume: 39
  start-page: 105
  year: 2012
  ident: ref12
  publication-title: Comput Cardiol
– ident: ref3
  doi: 10.1016/j.hrtlng.2017.04.003
– ident: ref5
  doi: 10.1016/j.jemermed.2004.04.006
– ident: ref22
  doi: 10.1038/nature21056
– ident: ref23
  doi: 10.1111/j.1553-2712.2000.tb00466.x
– ident: ref26
  doi: 10.1109/10.362922
– ident: ref41
  doi: 10.1007/978-3-319-99740-7_1
– ident: ref13
  doi: 10.1016/j.jelectrocard.2016.09.001
– ident: ref17
  doi: 10.1109/cvpr.2016.90
– ident: ref34
  doi: 10.1016/j.compbiomed.2017.12.023
SSID ssj0001416667
Score 2.5408394
Snippet The detection of dyskalemias-hypokalemia and hyperkalemia-currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia,...
Background: The detection of dyskalemias—hypokalemia and hyperkalemia—currently depends on laboratory tests. Since cardiac tissue is very sensitive to...
BackgroundThe detection of dyskalemias—hypokalemia and hyperkalemia—currently depends on laboratory tests. Since cardiac tissue is very sensitive to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e15931
SubjectTerms Accuracy
Algorithms
Cardiology
Competition
Deep learning
Electrocardiography
Hyperkalemia
Hypokalemia
Laboratories
Morphology
Original Paper
Patients
Performance evaluation
Physicians
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VHFClquoD2rQUpRIHOETEsZOse9vSpatKcAKJW-THGBCQXcFy4ND_3hknu8qiSr30GHsUOZ4ZfzPx6BuAPWWEUwJ9RtAjM-VtnllhRFbSoEWBITex2uK0mp6rXxflxaDVF9eEdfTA3cYdUoQSQo65s5GcDnXtuGV3pQi3kM5SPn0J8wbJVPy7ovg6rN6EV1zrTFZ2SLAtxRr4RI7-vwWWz-sjB4Bz_AZe95FiOu5W-BZeYPsONk_6u_D38Huc_kCcZz1D6mU6vr2cUap_dZfuT45-iuIUFwcpxaQkxjcFLDJ9ms9uCBLurk1qWs_PeL8csE_ppGuK42KRasdl_W3w3kGF0RacH0_OjqZZ30whc7QRiwztKBhdlo68tvaVVkFQ6Ocr44WyqG1VmmA9oT8ndGhsMIV3WmnUuaOo0cpt2GhnLX6EtDAqOCGtNM6S_wvtseDSmqok3eo6JLC33OXG9Uzj3PDitqGMg5XRRGUksLsSm3fUGs8FvrOKVpPMhB0HyD6a3j6af9lHAjtLBTe9ez40nFdRnqdUnsDX1TQ5Ft-WmBZnjyQjCbYrZnJN4ENnD6uVSObBk6NRAvWapawtdX2mvb6K5N01xVy1lJ_-x7d9hpcFp_-xJG4HNhb3j_iFYqSF3Y3u8AeE8A-X
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkSokhHgTKFWQeoBD1Dh2kg0XtJQtKyR6otLeIj8m24o2WbbpoQf-OzOOd7tbIY6xJ5GVmfF89oy-AThQWlgl0CUUemSinEkTI7RIcho0KLBJta-2OCmmp-r7LJ-FC7erUFa52hP9Ru06y3fkhwyFCZorlX5e_E64axRnV0MLjfvwgKnL2KrLWXl7x6I4KVbuwiOueKbXDyl4S7EVgjxT_7_g5d0qyY2wc_wEHge8GI8HBT-Fe9g-g90fISP-HP6M46-IiyTwpM7j8cWclt2fXcYfJkffRHaC_ceYkCmJcb6ARaY3i-4XBYbLcx3r1vEzLlcD5iaeDK1xrC9VHRitP218d6PO6AWcHk9-Hk2T0FIhsfQj-gTNqNFVnlvy3dIVlWoEAUBXaCeUwcoUuW6MIwzAxzrUptGZs5WqsEotYUcjX8JO27X4GuJMq8YKaaS2hnYBUTnMuMCmyEnDVdlEcLD6y7UNfOPc9uKipnMHK6P2yohgfy22GAg27gp8YRWtJ5kP2w90y3kd3KsmHNs0KabWeApDrErLjd0LRegGKeJGsLdScB2c9Kq-NakI3q-nyb04Z6Jb7K5JRlLwLpjPNYJXgz2sVyKZDU-ORhGUW5aytdTtmfb8zFN4l4S8Sinf_H9Zb-Fhxsd7X_K2Bzv98hrfEQbqzb439L_WLQh9
  priority: 102
  providerName: ProQuest
Title A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development
URI https://www.ncbi.nlm.nih.gov/pubmed/32134388
https://www.proquest.com/docview/2511966440
https://www.proquest.com/docview/2371864383
https://pubmed.ncbi.nlm.nih.gov/PMC7082733
https://doaj.org/article/139ff0e0cb03447e97c714364110e299
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED62FsqgjP3svHXGgz5sD94sW7ajwRhply4MGsZYoG9Gks9pWWqnWQrLw_733clOSEof9mjpbAudzveddP4O4EhqYaXAMiTXk4SyNFFohBZhSo0GBVaRdtkWo2w4lt_O041swm4Cf98Z2nE9qfF8-v7P9fIzGfwnTmOmBfSBPDL_Sb1LzijnIgZnHcJ32yySz8X4p-k4ViJUmZJ7sL9155ZHcsT9d6HN20mTG17o9BE87OBj0G_1_RjuYf0E9s66A_Kn8LcffEGchR1t6iToTycNxf8XV8HbwclXEY9w8S4goEpifHzAIsPlrPlFfuLqUge6Lvka56sGswwGbaUc6zJXW4LrjxvP3Ug7egbj08HPk2HYVVgILU3KIkTTq7RKU0umnJc0N5UgPFhmuhTSoDJZqitTEiTgKA-1qXRcWiUVqsgSlDTJc9ipmxpfQBBrWVmRmERbQx8FoUqMOd8mS0nhKq88OFrNcmE7-nGugjEtKAxhZRROGR74a7FZy7dxW-CYVbTuZHps19DMJ0VnbQXB2qqKMLLGMRqiyi3Xec8kgR0kB-zB4UrBxWrJFRxsUfAnZeTBm3U3WRsfoegamxuSSciXZ0zv6sFBux7WI0mYHC_p9TzIt1bK1lC3e-rLC8fonRMQy5Pk5X-89xU8iDnkd2lwh7CzmN_ga8JFC-PD_fw892H3eDD6_sN3uwu-s4Z_jJoQRw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQ0khPgmMEaQhgQP0eLYiRskhMrW0bGtT5vUt8xf6Sa2pHSdUB_4l_gbuctH106Itz3GPlmW7-z72Xf5HcCmUMwI5myArocHwuow0EyxIMZG7ZjLQ1VlWwyS_rH4PoyHK_Cn_ReG0irbM7E6qG1p6I18i6AwQnMhwi_jnwFVjaLoaltCozaLfTf7hVe2y897O6jf91G02zva7gdNVYHAJImcBk53cpXGsUHzlTZJRc4QA9lEWSa0S3USq1xbdIN0s3FK5yqyJhWpS0OD8ElzHPcO3EXHG9JlTw7l9ZuOoCCcXIMHlGGN091CsMDZksurKgP8C87ezMpccHO7j-Bhg0_9bm1Qj2HFFU9g7bCJwD-F311_x7lx0PCyjvzu-QiXaXp64X_obX9j0cBNP_qIhFGM4hMk0p-Nyx_oiC7OlK8KS99u0jbomd-rS_GYKjW2ZtD-tDDuQl7TMzi-lcV-DqtFWbiX4EdK5IZxzZXReOqw1LqIEnqSGC0qlbkHm-0qZ6bhN6cyG-cZ3nNIGVmlDA825mLjmtDjpsBXUtG8k_i3q4ZyMsqa7Zwhbs7z0IVGV5SJLpWGCsknAtGUQw_vwXqr4Kw5FC6zaxP24N28G7czxWhU4corlOEIFhLij_XgRW0P85lwYt_jnY4HcslSlqa63FOcnVaU4RKRnuT81f-n9Rbu9Y8OD7KDvcH-a7gf0dNClW63DqvTyZV7g_hrqjcqo_fh5LZ32V9yeEZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTqqQEOKbwBhBGhI8RI1jJ2mQEOrWlo5BNSEm7S3Yjt1NbEnpOqE-8I_x13GXj66dEG97jH2yLN_Z97PvlzuAHSGZFsxkHroe7olM-Z5iknkhNirDjPVlybYYR6Mj8ek4PN6AP82_MESrbM7E8qDOCk1v5B2CwgjNhfA7tqZFHPaHH6Y_PaogRZHWppxGZSIHZvELr28X7_f7qOvXQTAcfNsbeXWFAU9HUTz3jOpamYShRlOOsygRliEeyiKZMaFMoqJQWpWhS6RbjpHKyiDTiUhM4muEUorjuLdgM6ZbUQs2dwfjw69XLzyCQnJxG-4Q3xon30HowNmaAyzrBPwL3F7naK44veE9uFujVbdXmdd92DD5A2h_qePxD-F3z-0bM_XqLK0Tt3c2wYWan5y7bwZ7H1kwNvO3LuJiFKNoBYmMFtPiB7ql81PpyjyjbzNrGtTCHVSFeXRJlK3yab9bGXeF5fQIjm5kuR9DKy9y8xTcQAqrGVdcaoVnEEsyExC9JwrRvpLYOrDTrHKq62znVHTjLMVbDykjLZXhwPZSbFql97gusEsqWnZSNu6yoZhN0npzp4iirfWNr1WZQNEksaay8pFAbGXQ3zuw1Sg4rY-Ii_TKoB14tezGzU0RG5mb4hJlOEKHiLLJOvCksoflTDjl4uPdrgPxmqWsTXW9Jz89KROIx4j7Ys6f_X9aL6GNOyz9vD8-eA63A3pnKLl3W9Cazy7NCwRjc7VdW70L3296o_0F9lxL-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep-Learning+Algorithm+%28ECG12Net%29+for+Detecting+Hypokalemia+and+Hyperkalemia+by+Electrocardiography%3A+Algorithm+Development&rft.jtitle=JMIR+medical+informatics&rft.au=Lin%2C+Chin-Sheng&rft.au=Lin%2C+Chin&rft.au=Fang%2C+Wen-Hui&rft.au=Hsu%2C+Chia-Jung&rft.date=2020-03-01&rft.issn=2291-9694&rft.eissn=2291-9694&rft.volume=8&rft.issue=3&rft.spage=e15931&rft_id=info:doi/10.2196%2F15931&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2291-9694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2291-9694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2291-9694&client=summon