Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change
Jones and colleagues combine lineage tracing experiments, chemical carcinogenesis assays and mathematical modelling to study field change development in a preneoplastic epithelium. They demonstrate that Notch pathway inhibition in oesophageal epithelial progenitor cells results in imbalanced differe...
Saved in:
Published in | Nature cell biology Vol. 16; no. 6; pp. 612 - 619 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2014
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1465-7392 1476-4679 1476-4679 |
DOI | 10.1038/ncb2963 |
Cover
Loading…
Abstract | Jones and colleagues combine lineage tracing experiments, chemical carcinogenesis assays and mathematical modelling to study field change development in a preneoplastic epithelium. They demonstrate that Notch pathway inhibition in oesophageal epithelial progenitor cells results in imbalanced differentiation, and mutant clone expansion and dominance in the epithelium, increasing the likelihood of transformation.
Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed ‘field change’
1
,
2
. However, it is not known how field change develops. Here we investigate this question using lineage tracing to track the behaviour of scattered single oesophageal epithelial progenitor cells expressing a mutation that inhibits the Notch signalling pathway. Notch is frequently subject to inactivating mutation in squamous cancers
3
,
4
,
5
,
6
. Quantitative analysis reveals that cell divisions that produce two differentiated daughters are absent from mutant progenitors. As a result, mutant clones are no longer lost by differentiation and become functionally immortal. Furthermore, mutant cells promote the differentiation of neighbouring wild-type cells, which are then lost from the tissue. These effects lead to clonal expansion, with mutant cells eventually replacing the entire epithelium. Notch inhibition in progenitors carrying p53 stabilizing mutations creates large confluent regions of doubly mutant epithelium. Field change is thus a consequence of imbalanced differentiation in individual progenitor cells. |
---|---|
AbstractList | Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed 'field change' (1,2). However, it is not known how field change develops. Here we investigate this question using lineage tracing to track the behaviour of scattered single oesophageal epithelial progenitor cells expressing a mutation that inhibits the Notch signalling pathway. Notch is frequently subject to inactivating mutation in squamous cancers (3-6). Quantitative analysis reveals that cell divisions that produce two differentiated daughters are absent from mutant progenitors. As a result, mutant clones are no longer lost by differentiation and become functionally immortal. Furthermore, mutant cells promote the differentiation of neighbouring wild-type cells, which are then lost from the tissue. These effects lead to clonal expansion, with mutant cells eventually replacing the entire epithelium. Notch inhibition in progenitors carrying p53 stabilizing mutations creates large confluent regions of doubly mutant epithelium. Field change is thus a consequence of imbalanced differentiation in individual progenitor cells. Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed 'field change'. However, it is not known how field change develops. Here we investigate this question using lineage tracing to track the behaviour of scattered single oesophageal epithelial progenitor cells expressing a mutation that inhibits the Notch signalling pathway. Notch is frequently subject to inactivating mutation in squamous cancers. Quantitative analysis reveals that cell divisions that produce two differentiated daughters are absent from mutant progenitors. As a result, mutant clones are no longer lost by differentiation and become functionally immortal. Furthermore, mutant cells promote the differentiation of neighbouring wild-type cells, which are then lost from the tissue. These effects lead to clonal expansion, with mutant cells eventually replacing the entire epithelium. Notch inhibition in progenitors carrying p53 stabilizing mutations creates large confluent regions of doubly mutant epithelium. Field change is thus a consequence of imbalanced differentiation in individual progenitor cells.Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed 'field change'. However, it is not known how field change develops. Here we investigate this question using lineage tracing to track the behaviour of scattered single oesophageal epithelial progenitor cells expressing a mutation that inhibits the Notch signalling pathway. Notch is frequently subject to inactivating mutation in squamous cancers. Quantitative analysis reveals that cell divisions that produce two differentiated daughters are absent from mutant progenitors. As a result, mutant clones are no longer lost by differentiation and become functionally immortal. Furthermore, mutant cells promote the differentiation of neighbouring wild-type cells, which are then lost from the tissue. These effects lead to clonal expansion, with mutant cells eventually replacing the entire epithelium. Notch inhibition in progenitors carrying p53 stabilizing mutations creates large confluent regions of doubly mutant epithelium. Field change is thus a consequence of imbalanced differentiation in individual progenitor cells. Jones and colleagues combine lineage tracing experiments, chemical carcinogenesis assays and mathematical modelling to study field change development in a preneoplastic epithelium. They demonstrate that Notch pathway inhibition in oesophageal epithelial progenitor cells results in imbalanced differentiation, and mutant clone expansion and dominance in the epithelium, increasing the likelihood of transformation. Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed ‘field change’ 1 , 2 . However, it is not known how field change develops. Here we investigate this question using lineage tracing to track the behaviour of scattered single oesophageal epithelial progenitor cells expressing a mutation that inhibits the Notch signalling pathway. Notch is frequently subject to inactivating mutation in squamous cancers 3 , 4 , 5 , 6 . Quantitative analysis reveals that cell divisions that produce two differentiated daughters are absent from mutant progenitors. As a result, mutant clones are no longer lost by differentiation and become functionally immortal. Furthermore, mutant cells promote the differentiation of neighbouring wild-type cells, which are then lost from the tissue. These effects lead to clonal expansion, with mutant cells eventually replacing the entire epithelium. Notch inhibition in progenitors carrying p53 stabilizing mutations creates large confluent regions of doubly mutant epithelium. Field change is thus a consequence of imbalanced differentiation in individual progenitor cells. Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed ‘field change’ 1 , 2 . However, it is not known how field change develops. Here we investigate this question using lineage tracing to track the behaviour of scattered single oesophageal epithelial progenitor cells expressing a mutation that inhibits the Notch signaling pathway. Notch is frequently subject to inactivating mutation in squamous cancers 3 - 6 . Quantitative analysis reveals that cell divisions which produce two differentiated daughters are absent in mutant progenitors. As a result mutant clones are no longer lost by differentiation and become functionally immortal. In addition, mutant cells promote the differentiation of neighbouring wild type cells, which are then lost from the tissue. These effects lead to clonal expansion, with mutant cells eventually replacing the entire epithelium. Furthermore, Notch inhibition in progenitors carrying p53 stabilizing mutations creates large confluent regions of doubly mutant epithelium. Field change is thus a consequence of imbalanced differentiation in individual progenitor cells. Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed 'field change'. However, it is not known how field change develops. Here we investigate this question using lineage tracing to track the behaviour of scattered single oesophageal epithelial progenitor cells expressing a mutation that inhibits the Notch signalling pathway. Notch is frequently subject to inactivating mutation in squamous cancers. Quantitative analysis reveals that cell divisions that produce two differentiated daughters are absent from mutant progenitors. As a result, mutant clones are no longer lost by differentiation and become functionally immortal. Furthermore, mutant cells promote the differentiation of neighbouring wild-type cells, which are then lost from the tissue. These effects lead to clonal expansion, with mutant cells eventually replacing the entire epithelium. Notch inhibition in progenitors carrying p53 stabilizing mutations creates large confluent regions of doubly mutant epithelium. Field change is thus a consequence of imbalanced differentiation in individual progenitor cells. |
Audience | Academic |
Author | Alcolea, Maria P. Greulich, Philip Wabik, Agnieszka Simons, Benjamin D. Frede, Julia Jones, Philip H. |
AuthorAffiliation | 1 MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK 2 Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK 3 The Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK 4 Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, UK |
AuthorAffiliation_xml | – name: 3 The Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK – name: 4 Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, UK – name: 1 MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK – name: 2 Cavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK |
Author_xml | – sequence: 1 givenname: Maria P. surname: Alcolea fullname: Alcolea, Maria P. organization: MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus – sequence: 2 givenname: Philip surname: Greulich fullname: Greulich, Philip organization: Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue – sequence: 3 givenname: Agnieszka surname: Wabik fullname: Wabik, Agnieszka organization: MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus – sequence: 4 givenname: Julia surname: Frede fullname: Frede, Julia organization: MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus – sequence: 5 givenname: Benjamin D. surname: Simons fullname: Simons, Benjamin D. organization: Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, The Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge – sequence: 6 givenname: Philip H. surname: Jones fullname: Jones, Philip H. email: phj20@MRC-CU.cam.ac.uk organization: MRC Cancer Unit, University of Cambridge, Hutchison-MRC Research Centre, Box 197, Cambridge Biomedical Campus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24814514$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttu1DAQhiNURA8g3gBF4gK4SLHjQ5KbSlU5VaqExOHa8jrjrCvH3tpZBDwNz8KTMWGX0l1VvhjL_vyP5585Lg5CDFAUTyk5pYS1r4NZ1J1kD4ojyhtZcdl0B_NeiqphXX1YHOd8TQjlnDSPisOat5QLyo-KmzfOWkgQJqcnF0PpxoX2OhgoXSizC4OHMkKOq6UeQPtyleIAwU0xlQa8z6XR6wwYfAx47cYxpkl793Mjp0P_-5d14DGYpQ4DPC4eWu0zPNnGk-Lru7dfLj5UVx_fX16cX1VGymaqNDeS2x4EF20rGyBGCgpW9l3TAhYmW2jqmmgDsrO800zIuufcLgRjoqYLdlKcbXRX68UIvcESk_Zqldyo0w8VtVO7N8Et1RC_KU5aIQRBgZdbgRRv1pAnNbo816wDxHVWVDDSiVqQFtHne-h1XCf0Ayn8diNIzfh_atAelAs2Yl4zi6pzhsUIyvic9vQeClcPozPYduvwfOfBq50HyEzwfRqwL1ldfv60yz67a8qtG_8GAoEXG8CkmHMCe4tQouZRU9tRQ7LaI42b_jYd_-v8PfzWzoyKOAfpjkd76B-eLOO4 |
CitedBy_id | crossref_primary_10_1002_path_4917 crossref_primary_10_1016_j_ccell_2025_02_009 crossref_primary_10_1038_s41418_023_01114_3 crossref_primary_10_1098_rsif_2021_0607 crossref_primary_10_1146_annurev_cancerbio_061421_012447 crossref_primary_10_1128_jvi_01181_21 crossref_primary_10_1158_2159_8290_CD_22_0145 crossref_primary_10_1126_science_aab4082 crossref_primary_10_1016_j_tcb_2021_07_003 crossref_primary_10_1073_pnas_1600910113 crossref_primary_10_1101_cshperspect_a026542 crossref_primary_10_1002_path_5045 crossref_primary_10_1038_s41418_023_01254_6 crossref_primary_10_1091_mbc_E19_03_0177 crossref_primary_10_1098_rsif_2014_0654 crossref_primary_10_1038_s41580_022_00538_y crossref_primary_10_1128_MCB_00536_20 crossref_primary_10_1002_path_4409 crossref_primary_10_1080_15384101_2015_1090062 crossref_primary_10_1126_science_abm5874 crossref_primary_10_1242_dev_153544 crossref_primary_10_1242_dev_137950 crossref_primary_10_1038_nrg_2018_9 crossref_primary_10_1242_dev_193839 crossref_primary_10_1016_j_mrrev_2023_108471 crossref_primary_10_1016_j_stem_2015_04_014 crossref_primary_10_1093_jmcb_mjac038 crossref_primary_10_1007_s40778_019_00156_z crossref_primary_10_1038_s41588_022_01280_z crossref_primary_10_1128_mcb_00563_21 crossref_primary_10_1101_gad_349048_121 crossref_primary_10_1016_j_pharmthera_2019_107448 crossref_primary_10_1038_s41588_020_0624_3 crossref_primary_10_1038_s41588_024_01891_8 crossref_primary_10_1016_j_ebiom_2022_103903 crossref_primary_10_1038_s41556_023_01120_0 crossref_primary_10_1038_s41467_017_00993_8 crossref_primary_10_1007_s40778_023_00230_7 crossref_primary_10_1186_s13287_020_01941_y crossref_primary_10_1117_1_JBO_28_9_096004 crossref_primary_10_5483_BMBRep_2015_48_12_249 crossref_primary_10_3389_fonc_2024_1272432 crossref_primary_10_1016_j_stem_2019_06_011 crossref_primary_10_1530_ERC_14_0454 crossref_primary_10_1109_TMI_2018_2875875 crossref_primary_10_1038_s41568_021_00335_3 crossref_primary_10_1038_s41580_018_0020_3 crossref_primary_10_3389_fcell_2022_891569 crossref_primary_10_4161_15384101_2014_988027 crossref_primary_10_1073_pnas_1602779113 crossref_primary_10_1016_j_semcancer_2021_04_008 crossref_primary_10_1117_1_JBO_24_12_126004 crossref_primary_10_3748_wjg_v30_i20_2638 crossref_primary_10_1016_j_ceb_2022_01_011 crossref_primary_10_1038_nature14971 crossref_primary_10_1016_j_tig_2020_04_003 crossref_primary_10_1038_ncb3400 crossref_primary_10_1016_j_ceb_2016_07_002 crossref_primary_10_1038_s41467_024_49382_y crossref_primary_10_1038_s41467_020_15258_0 crossref_primary_10_3389_fcell_2020_592616 crossref_primary_10_18632_oncotarget_27306 crossref_primary_10_1038_nrc3764 crossref_primary_10_1038_s41556_021_00679_w crossref_primary_10_1016_j_canlet_2022_216047 crossref_primary_10_1371_journal_pcbi_1012360 crossref_primary_10_1098_rsos_201532 crossref_primary_10_1242_dev_204212 crossref_primary_10_1007_s00383_023_05438_6 crossref_primary_10_1016_j_semcancer_2023_04_002 crossref_primary_10_1242_dev_162693 crossref_primary_10_1038_ncomms12388 crossref_primary_10_1158_2159_8290_CD_24_0128 crossref_primary_10_1016_j_eng_2023_11_011 crossref_primary_10_1038_nrc_2017_102 crossref_primary_10_3390_cells9102304 crossref_primary_10_3390_medicines4030067 crossref_primary_10_1016_j_stem_2019_11_005 crossref_primary_10_1111_iep_12364 crossref_primary_10_1038_s41467_024_48347_5 crossref_primary_10_1101_cshperspect_a025700 crossref_primary_10_1126_science_aaa6806 crossref_primary_10_1038_nrc_2016_145 crossref_primary_10_1098_rsos_202231 crossref_primary_10_1038_s41588_024_01875_8 crossref_primary_10_1016_j_mad_2021_111583 crossref_primary_10_1016_j_celrep_2014_09_027 crossref_primary_10_1016_j_stem_2018_08_017 crossref_primary_10_3389_fcell_2021_682143 crossref_primary_10_3748_wjg_v22_i39_8770 crossref_primary_10_1146_annurev_pathol_052016_100127 crossref_primary_10_1098_rsif_2019_0230 crossref_primary_10_1016_j_cell_2023_03_013 crossref_primary_10_1103_PhysRevE_98_050401 crossref_primary_10_15252_embj_201490386 crossref_primary_10_3390_cancers14194702 crossref_primary_10_1038_s41586_021_03965_7 crossref_primary_10_1172_JCI78185 crossref_primary_10_1016_j_jcmgh_2024_03_008 crossref_primary_10_1073_pnas_1601045113 crossref_primary_10_15252_embr_202051921 crossref_primary_10_1158_2159_8290_CD_15_0412 crossref_primary_10_3390_cancers14215409 crossref_primary_10_1016_j_jcmgh_2022_11_009 crossref_primary_10_1038_s41568_018_0024_5 crossref_primary_10_1146_annurev_cellbio_111315_125142 crossref_primary_10_1126_science_aau3879 crossref_primary_10_1159_000477852 crossref_primary_10_1016_j_ceb_2019_04_003 crossref_primary_10_1016_j_cels_2020_11_004 crossref_primary_10_1016_j_isci_2023_106742 crossref_primary_10_1016_j_semcdb_2016_12_008 crossref_primary_10_1007_s00424_016_1832_7 crossref_primary_10_1038_s41467_022_33945_y crossref_primary_10_1088_1478_3975_abba85 crossref_primary_10_1016_j_devcel_2018_01_009 crossref_primary_10_1152_ajpgi_00021_2019 crossref_primary_10_7554_eLife_48714 crossref_primary_10_1016_j_cub_2021_11_029 crossref_primary_10_7554_eLife_58081 crossref_primary_10_1038_s41467_017_01500_9 crossref_primary_10_1038_ncb3282 crossref_primary_10_3389_fcell_2022_1054476 crossref_primary_10_1111_acel_12938 crossref_primary_10_1016_j_bpj_2017_05_040 crossref_primary_10_1016_j_lfs_2023_122240 crossref_primary_10_1038_s41586_024_07663_y crossref_primary_10_3389_fonc_2022_868301 crossref_primary_10_1016_j_neo_2021_08_001 crossref_primary_10_1126_sciadv_add9135 |
Cites_doi | 10.1073/pnas.1114669108 10.1158/0008-5472.CAN-06-0793 10.1016/j.ccr.2012.08.017 10.1002/ar.1091840302 10.1158/2159-8290.CD-12-0189 10.1073/pnas.85.15.5576 10.1016/S0960-9822(00)00451-6 10.1073/pnas.241353198 10.1242/dev.02868 10.1242/dev.030700 10.1126/science.1208130 10.1371/journal.pbio.1000067 10.1038/ng1099 10.1016/j.cell.2009.03.045 10.1177/002215540405200409 10.1038/nature03659 10.1084/jem.20050923 10.1126/science.1206923 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q 10.1126/science.1218835 10.1016/j.ccr.2009.05.016 10.1038/nature05574 10.1038/labinvest.2012.9 10.1016/j.ccr.2011.12.004 10.1016/j.cell.2012.03.048 10.1016/j.ccr.2012.08.016 10.1038/ncomms1017 10.1053/j.gastro.2010.08.040 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2014 COPYRIGHT 2014 Nature Publishing Group Copyright Nature Publishing Group Jun 2014 |
Copyright_xml | – notice: Springer Nature Limited 2014 – notice: COPYRIGHT 2014 Nature Publishing Group – notice: Copyright Nature Publishing Group Jun 2014 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM |
DOI | 10.1038/ncb2963 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central (New) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1476-4679 |
EndPage | 619 |
ExternalDocumentID | PMC4085550 3581365171 A372251340 24814514 10_1038_ncb2963 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United Kingdom--UK |
GeographicLocations_xml | – name: United Kingdom--UK |
GrantInformation_xml | – fundername: Wellcome Trust grantid: 098357 – fundername: Medical Research Council grantid: MC_U105370181 – fundername: Wellcome Trust grantid: 098357/Z/12/Z – fundername: National Centre for the Replacement, Refinement and Reduction of Animals in Research grantid: G0700600/1 – fundername: Medical Research Council grantid: MC_UU_12022/3 – fundername: Wellcome Trust grantid: 092096 – fundername: Cancer Research UK grantid: 17257 – fundername: Wellcome Trust grantid: WT090334MA – fundername: Wellcome Trust grantid: 090334 |
GroupedDBID | --- .55 .GJ 0R~ 123 29M 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABCQX ABDBF ABEFU ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACNCT ACPRK ACRPL ACUHS ADBBV ADNMO ADQMX AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AFWHJ AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D0L DB5 DU5 EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR INH INR ISR ITC J5H L-9 L7B LK8 M0L M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT SHXYY SIXXV SKT SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP X7M Y6R ZGI ~02 ~8M AAYXX ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT ABFSG AEZWR AFHIU AGQPQ AHWEU AIXLP CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QL 7QP 7QR 7T5 7TK 7TM 7TO 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PUEGO RC3 7X8 5PM |
ID | FETCH-LOGICAL-c667t-a4c64fde5458867e0c651ef6d978e14668e7220ace69f49a3562d44fb533521b3 |
IEDL.DBID | BENPR |
ISSN | 1465-7392 1476-4679 |
IngestDate | Thu Aug 21 18:19:53 EDT 2025 Thu Aug 07 15:17:41 EDT 2025 Sat Aug 23 14:58:26 EDT 2025 Tue Jun 17 21:43:25 EDT 2025 Tue Jun 10 20:50:34 EDT 2025 Fri Jun 27 04:04:35 EDT 2025 Mon Jul 21 06:05:49 EDT 2025 Tue Jul 01 00:31:10 EDT 2025 Thu Apr 24 22:58:01 EDT 2025 Fri Feb 21 02:40:03 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c667t-a4c64fde5458867e0c651ef6d978e14668e7220ace69f49a3562d44fb533521b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://doi.org/10.1038/ncb2963 |
PMID | 24814514 |
PQID | 1651750234 |
PQPubID | 45779 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4085550 proquest_miscellaneous_1530952508 proquest_journals_1651750234 gale_infotracmisc_A372251340 gale_infotracacademiconefile_A372251340 gale_incontextgauss_ISR_A372251340 pubmed_primary_24814514 crossref_primary_10_1038_ncb2963 crossref_citationtrail_10_1038_ncb2963 springer_journals_10_1038_ncb2963 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-06-01 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature cell biology |
PublicationTitleAbbrev | Nat Cell Biol |
PublicationTitleAlternate | Nat Cell Biol |
PublicationYear | 2014 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Demehri (CR21) 2012; 22 Tu (CR15) 2005; 202 Burns, Scheving, Fawcett, Gibbs, Galatzan (CR28) 1976; 184 Demehri, Kopan (CR27) 2009; 136 Slaughter, Southwick, Smejkal (CR1) 1953; 6 Wang (CR5) 2011; 108 Demehri, Turkoz, Kopan (CR12) 2009; 16 Agrawal (CR3) 2011; 333 CR14 Clayton (CR31) 2007; 446 Watt, Jordan, O’Neill (CR23) 1988; 85 Kopan, Ilagan (CR10) 2009; 137 Nicolas (CR11) 2003; 33 Lowell, Jones, Le Roux, Dunne, Watt (CR20) 2000; 10 van Es, de Geest, van de Born, Clevers, Hassan (CR30) 2010; 1 Di Piazza, Nowell, Koch, Durham, Radtke (CR22) 2012; 22 Sander, Powell (CR9) 2004; 52 Proweller (CR16) 2006; 66 Naganuma (CR17) 2012; 2 Braakhuis, Tabor, Kummer, Leemans, Brakenhoff (CR2) 2003; 63 Stransky (CR4) 2011; 333 van Es (CR19) 2005; 435 Quante (CR29) 2012; 21 Hu (CR13) 2012; 149 Demehri, Morimoto, Holtzman, Kopan (CR32) 2009; 7 Rubio, Liu, Chejfec, Sveander (CR24) 1987; 1 Zhang, Remenyik, Zelterman, Brash, Wikonkal (CR26) 2001; 98 Doupe (CR7) 2012; 337 Sakamoto (CR8) 2012; 92 Lee, Basak, Demehri, Kopan (CR18) 2007; 134 Bennett (CR25) 1991; 6 Agrawal (CR6) 2012; 2 N Agrawal (BFncb2963_CR3) 2011; 333 DP Doupe (BFncb2963_CR7) 2012; 337 S Demehri (BFncb2963_CR21) 2012; 22 S Lowell (BFncb2963_CR20) 2000; 10 N Agrawal (BFncb2963_CR6) 2012; 2 S Naganuma (BFncb2963_CR17) 2012; 2 GR Sander (BFncb2963_CR9) 2004; 52 FM Watt (BFncb2963_CR23) 1988; 85 E Clayton (BFncb2963_CR31) 2007; 446 A Proweller (BFncb2963_CR16) 2006; 66 JH van Es (BFncb2963_CR19) 2005; 435 W Zhang (BFncb2963_CR26) 2001; 98 BFncb2963_CR14 DP Slaughter (BFncb2963_CR1) 1953; 6 L Tu (BFncb2963_CR15) 2005; 202 K Sakamoto (BFncb2963_CR8) 2012; 92 BJ Braakhuis (BFncb2963_CR2) 2003; 63 M Di Piazza (BFncb2963_CR22) 2012; 22 M Nicolas (BFncb2963_CR11) 2003; 33 S Demehri (BFncb2963_CR27) 2009; 136 S Demehri (BFncb2963_CR32) 2009; 7 J Lee (BFncb2963_CR18) 2007; 134 N Stransky (BFncb2963_CR4) 2011; 333 CA Rubio (BFncb2963_CR24) 1987; 1 S Demehri (BFncb2963_CR12) 2009; 16 ER Burns (BFncb2963_CR28) 1976; 184 NJ Wang (BFncb2963_CR5) 2011; 108 B Hu (BFncb2963_CR13) 2012; 149 R Kopan (BFncb2963_CR10) 2009; 137 WP Bennett (BFncb2963_CR25) 1991; 6 M Quante (BFncb2963_CR29) 2012; 21 JH van Es (BFncb2963_CR30) 2010; 1 |
References_xml | – volume: 108 start-page: 17761 year: 2011 end-page: 17766 ident: CR5 article-title: Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1114669108 – volume: 66 start-page: 7438 year: 2006 end-page: 7444 ident: CR16 article-title: Impaired notch signaling promotes de novo squamous cell carcinoma formation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-0793 – volume: 22 start-page: 494 year: 2012 end-page: 505 ident: CR21 article-title: Elevated epidermal thymic stromal lymphopoietin levels establish an antitumor environment in the skin publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.08.017 – volume: 184 start-page: 265 year: 1976 end-page: 273 ident: CR28 article-title: Circadian influence on the frequency of labeled mitoses method in the stratified squamous epithelium of the mouse esophagus and tongue publication-title: Anat. Rec. doi: 10.1002/ar.1091840302 – ident: CR14 – volume: 2 start-page: 899 year: 2012 end-page: 905 ident: CR6 article-title: Comparative genomic analysis of esophageal adenocarcinoma and squamous cell carcinoma publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0189 – volume: 85 start-page: 5576 year: 1988 end-page: 5580 ident: CR23 article-title: Cell shape controls terminal differentiation of human epidermal keratinocytes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.85.15.5576 – volume: 10 start-page: 491 year: 2000 end-page: 500 ident: CR20 article-title: Stimulation of human epidermal differentiation by delta-notch signalling at the boundaries of stem-cell clusters publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00451-6 – volume: 98 start-page: 13948 year: 2001 end-page: 13953 ident: CR26 article-title: Escaping the stem cell compartment: sustained UVB exposure allows p53-mutant keratinocytes to colonize adjacent epidermal proliferating units without incurring additional mutations publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.241353198 – volume: 134 start-page: 2795 year: 2007 end-page: 2806 ident: CR18 article-title: Bi-compartmental communication contributes to the opposite proliferative behavior of Notch1-deficient hair follicle and epidermal keratinocytes publication-title: Development doi: 10.1242/dev.02868 – volume: 136 start-page: 891 year: 2009 end-page: 896 ident: CR27 article-title: Notch signaling in bulge stem cells is not required for selection of hair follicle fate publication-title: Development doi: 10.1242/dev.030700 – volume: 2 start-page: 459 year: 2012 end-page: 475 ident: CR17 article-title: Notch receptor inhibition reveals the importance of cyclin D1 and Wnt signaling in invasive esophageal squamous cell carcinoma publication-title: Am. J. Cancer Res. – volume: 333 start-page: 1157 year: 2011 end-page: 1160 ident: CR4 article-title: The mutational landscape of head and neck squamous cell carcinoma publication-title: Science doi: 10.1126/science.1208130 – volume: 7 start-page: e1000067 year: 2009 ident: CR32 article-title: Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000067 – volume: 33 start-page: 416 year: 2003 end-page: 421 ident: CR11 article-title: Notch1 functions as a tumor suppressor in mouse skin publication-title: Nat. Genet. doi: 10.1038/ng1099 – volume: 137 start-page: 216 year: 2009 end-page: 233 ident: CR10 article-title: The canonical Notch signaling pathway: unfolding the activation mechanism publication-title: Cell doi: 10.1016/j.cell.2009.03.045 – volume: 52 start-page: 509 year: 2004 end-page: 516 ident: CR9 article-title: Expression of notch receptors and ligands in the adult gut publication-title: J. Histochem. Cytochem. doi: 10.1177/002215540405200409 – volume: 435 start-page: 959 year: 2005 end-page: 963 ident: CR19 article-title: Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells publication-title: Nature doi: 10.1038/nature03659 – volume: 202 start-page: 1037 year: 2005 end-page: 1042 ident: CR15 article-title: Notch signaling is an important regulator of type 2 immunity publication-title: J. Exp. Med. doi: 10.1084/jem.20050923 – volume: 333 start-page: 1154 year: 2011 end-page: 1157 ident: CR3 article-title: Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1 publication-title: Science doi: 10.1126/science.1206923 – volume: 6 start-page: 963 year: 1953 end-page: 968 ident: CR1 article-title: Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin publication-title: Cancer doi: 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q – volume: 337 start-page: 1091 year: 2012 end-page: 1093 ident: CR7 article-title: A single progenitor population switches behavior to maintain and repair esophageal epithelium publication-title: Science doi: 10.1126/science.1218835 – volume: 16 start-page: 55 year: 2009 end-page: 66 ident: CR12 article-title: Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.05.016 – volume: 446 start-page: 185 year: 2007 end-page: 189 ident: CR31 article-title: A single type of progenitor cell maintains normal epidermis publication-title: Nature doi: 10.1038/nature05574 – volume: 92 start-page: 688 year: 2012 end-page: 702 ident: CR8 article-title: Reduction of NOTCH1 expression pertains to maturation abnormalities of keratinocytes in squamous neoplasms publication-title: Lab Invest. doi: 10.1038/labinvest.2012.9 – volume: 6 start-page: 1779 year: 1991 end-page: 1784 ident: CR25 article-title: Archival analysis of p53 genetic and protein alterations in Chinese esophageal cancer publication-title: Oncogene – volume: 21 start-page: 36 year: 2012 end-page: 51 ident: CR29 article-title: Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.12.004 – volume: 63 start-page: 1727 year: 2003 end-page: 1730 ident: CR2 article-title: A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications publication-title: Cancer Res. – volume: 149 start-page: 1207 year: 2012 end-page: 1220 ident: CR13 article-title: Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling publication-title: Cell doi: 10.1016/j.cell.2012.03.048 – volume: 22 start-page: 479 year: 2012 end-page: 493 ident: CR22 article-title: Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.08.016 – volume: 1 start-page: 35 year: 1987 end-page: 38 ident: CR24 article-title: The induction of esophageal tumors in mice: dose and time dependency publication-title: In Vivo – volume: 1 start-page: 18 year: 2010 ident: CR30 article-title: Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors publication-title: Nat. Commun. doi: 10.1038/ncomms1017 – volume: 22 start-page: 479 year: 2012 ident: BFncb2963_CR22 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.08.016 – volume: 337 start-page: 1091 year: 2012 ident: BFncb2963_CR7 publication-title: Science doi: 10.1126/science.1218835 – volume: 184 start-page: 265 year: 1976 ident: BFncb2963_CR28 publication-title: Anat. Rec. doi: 10.1002/ar.1091840302 – volume: 149 start-page: 1207 year: 2012 ident: BFncb2963_CR13 publication-title: Cell doi: 10.1016/j.cell.2012.03.048 – volume: 2 start-page: 899 year: 2012 ident: BFncb2963_CR6 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-12-0189 – volume: 6 start-page: 963 year: 1953 ident: BFncb2963_CR1 publication-title: Cancer doi: 10.1002/1097-0142(195309)6:5<963::AID-CNCR2820060515>3.0.CO;2-Q – volume: 137 start-page: 216 year: 2009 ident: BFncb2963_CR10 publication-title: Cell doi: 10.1016/j.cell.2009.03.045 – volume: 63 start-page: 1727 year: 2003 ident: BFncb2963_CR2 publication-title: Cancer Res. – volume: 134 start-page: 2795 year: 2007 ident: BFncb2963_CR18 publication-title: Development doi: 10.1242/dev.02868 – volume: 108 start-page: 17761 year: 2011 ident: BFncb2963_CR5 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1114669108 – volume: 22 start-page: 494 year: 2012 ident: BFncb2963_CR21 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.08.017 – volume: 333 start-page: 1154 year: 2011 ident: BFncb2963_CR3 publication-title: Science doi: 10.1126/science.1206923 – volume: 1 start-page: 35 year: 1987 ident: BFncb2963_CR24 publication-title: In Vivo – volume: 136 start-page: 891 year: 2009 ident: BFncb2963_CR27 publication-title: Development doi: 10.1242/dev.030700 – volume: 202 start-page: 1037 year: 2005 ident: BFncb2963_CR15 publication-title: J. Exp. Med. doi: 10.1084/jem.20050923 – volume: 66 start-page: 7438 year: 2006 ident: BFncb2963_CR16 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-0793 – volume: 21 start-page: 36 year: 2012 ident: BFncb2963_CR29 publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.12.004 – volume: 6 start-page: 1779 year: 1991 ident: BFncb2963_CR25 publication-title: Oncogene – volume: 2 start-page: 459 year: 2012 ident: BFncb2963_CR17 publication-title: Am. J. Cancer Res. – volume: 10 start-page: 491 year: 2000 ident: BFncb2963_CR20 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)00451-6 – volume: 98 start-page: 13948 year: 2001 ident: BFncb2963_CR26 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.241353198 – volume: 33 start-page: 416 year: 2003 ident: BFncb2963_CR11 publication-title: Nat. Genet. doi: 10.1038/ng1099 – volume: 1 start-page: 18 year: 2010 ident: BFncb2963_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms1017 – volume: 92 start-page: 688 year: 2012 ident: BFncb2963_CR8 publication-title: Lab Invest. doi: 10.1038/labinvest.2012.9 – volume: 16 start-page: 55 year: 2009 ident: BFncb2963_CR12 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.05.016 – volume: 333 start-page: 1157 year: 2011 ident: BFncb2963_CR4 publication-title: Science doi: 10.1126/science.1208130 – volume: 435 start-page: 959 year: 2005 ident: BFncb2963_CR19 publication-title: Nature doi: 10.1038/nature03659 – volume: 85 start-page: 5576 year: 1988 ident: BFncb2963_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.85.15.5576 – volume: 7 start-page: e1000067 year: 2009 ident: BFncb2963_CR32 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1000067 – volume: 52 start-page: 509 year: 2004 ident: BFncb2963_CR9 publication-title: J. Histochem. Cytochem. doi: 10.1177/002215540405200409 – ident: BFncb2963_CR14 doi: 10.1053/j.gastro.2010.08.040 – volume: 446 start-page: 185 year: 2007 ident: BFncb2963_CR31 publication-title: Nature doi: 10.1038/nature05574 |
SSID | ssj0014407 |
Score | 2.4882958 |
Snippet | Jones and colleagues combine lineage tracing experiments, chemical carcinogenesis assays and mathematical modelling to study field change development in a... Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed 'field change'. However, it is not known how field... Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed 'field change' (1,2). However, it is not known how... Multiple cancers may arise from within a clonal region of preneoplastic epithelium, a phenomenon termed ‘field change’ 1 , 2 . However, it is not known how... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 612 |
SubjectTerms | 13/100 14/19 38/61 631/67 631/67/70 64 64/60 Animals Cancer Research Cell Biology Cell cycle Cell Differentiation Cell Lineage Cell Proliferation Cell research Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Cell Transformation, Neoplastic - pathology Cellular signal transduction Clone Cells Cloning Developmental Biology Epithelial cells Esophageal Neoplasms - genetics Esophageal Neoplasms - metabolism Esophageal Neoplasms - pathology Esophagus - metabolism Esophagus - pathology Gene Expression Regulation, Neoplastic Homeostasis letter Life Sciences Medical research Mice Mice, Transgenic Mutants Mutation Nuclear Proteins - genetics Nuclear Proteins - metabolism Physiological aspects Proteins Receptors, Notch - genetics Receptors, Notch - metabolism Stem Cells Stem Cells - metabolism Stem Cells - pathology Time Factors Transcription Factors - genetics Transcription Factors - metabolism |
Title | Differentiation imbalance in single oesophageal progenitor cells causes clonal immortalization and field change |
URI | https://link.springer.com/article/10.1038/ncb2963 https://www.ncbi.nlm.nih.gov/pubmed/24814514 https://www.proquest.com/docview/1651750234 https://www.proquest.com/docview/1530952508 https://pubmed.ncbi.nlm.nih.gov/PMC4085550 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RrZC4IN6klMogBKeom9ixsydUoFXhUKFCpb1FsT0pK22T0uwe-u-ZSbyhWSROOXicOGN75rPnBfCOVF6JnjO3ukTGKnVpbNOZjY23nLtFzSR2DrJn-vRCfZtn83Dh1ga3yo1M7AS1bxzfkR8mOiNNRxpGfbz-HXPVKLauhhIaO7BLIjjPJrD76fjs-_lgR1CqC5gmcZDFhqBAHzbLScEPa0eD0nKkj7al8h21tO0yuWU37dTRySN4GHCkOOon_jHcw_oJ3O8rS94-heZLKHyy6lkvFleWnRgdikUt-H5giaJBrmFAAoVexH5ayNv7RvBdfitcuW6RHkuG6tT9qsPpIWpTlLUXnfOb6COHn8HFyfHPz6dxqK0QO63NKi6V06ryyHazXBucOuIvVtrTqRKJXTpHk6bT0qGeVWpWSsJJXqnKZhyklVj5HCZ1U-NLEAQpjEzQ5Yoo0Wtr6AhnvafDb-IIoUTwfsPhwoXE41z_Yll0BnCZF2EqIhAD4XWfa-Nfkrc8RQVnrqjZNeaSmNEWX3-cF0eSBpwlUk0j-BCIqoY-5MoQaUDD5WRXI8r9ESVtLTdu3qyEImzttvi7ECN4MzRzT3ZXq7FZE00mCboSuswjeNEvnOGPUpVzdWTqbUZLaiDghN_jlnrxq0v8zdno6ERJ390svjvDGjNq7_9DfwUPCPmp3udtHyarmzW-JnS1sgewY-bmIGykP_qwJk8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFRaIbgg3gQKGMTjFHUTO05yQKjQVru0rFBppd5CYk9gpW1Sml2h_hTfyExeNIvEraccPHac8XgemRfAKxJ5KVqu3Go86Srf-G7mx5kb2oxrt6hYYh0gO9XjY_XpJDhZg99dLgyHVXY8sWbUtjT8j3zL0wFJOpIw6v3ZT5e7RrF3tWuh0ZDFPl78IpOtejfZofN97ft7u0cfx27bVcA1WocLN1VGq9wie4wiHeLI0MqYa0v2FBLf0BGGvj9KDeo4V3EqSUOwSuVZwOlJXiZp3WuwQWpGTLdo48Pu9Mth77dQqk7QpmUCNyTVo0nT5SLkW4UhJGg5kH-rUuCSGFwN0Vzx09bib-823Gr1VrHdENodWMPiLlxvOlle3INyp220smiOWsxOMw6aNChmheD_EXMUJXLPBGJgtBDHhSGzk3PBvoNKmHRZIT3mbBrQ9NPaLmizREVaWFEH24kmU_k-HF8J1h_AelEW-AgEqTCh9NBEiiDR6iwkkzGzloxtz5BG5MCbDsOJaQudc7-NeVI73GWUtEfhgOgBz5raHv-CvOQjSrhSRsGhON8JGVUy-XqYbEvacOBJNXLgbQuUl_Qik7aZDbRdLq41gNwcQNJVNsPhjhKSlpVUyV_Cd-BFP8wzOTyuwHJJMIEkVZm02ciBhw3h9F_kq4i7MdPscEBSPQAXGB-OFLMfdaFxrn5HFiy9tyO-S9saIurx_7f-HG6Mjz4fJAeT6f4TuElap2ri7TZhfXG-xKek2S2yZ-11EvDtqm_wH86zYUE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFRSgbgg3hgKLIjHyUpsr9fOAaFCGjUURVWhUm_G3h1DpNQudSLUX-PrmLHXpg4St55y2NlHZmfn4XkBvCKRl6Lhyq3aC1zpa9_N_HHmRibj2i1yHGAdIDtX-8fy00l4sgW_21wYDqtseWLNqE2p-Rv50FMhSTqSMHKY27CIw8n0_dlPlztIsae1bafRkMgBXvwi8616N5vQXb_2_ene14_7ru0w4GqlopWbSq1kbpC9R7GKcKRpF8yVIdsKiYeoGCPfH6Ua1TiX4zQgbcFImWchpyp5WUDrXoPtiKRiPIDtD3vzw6POhyFlnaxNy4RuRGpIk7LLBcmHhSaEqKAnCzclwiWRuBmuueGzrUXh9Dbcsjqs2G2I7g5sYXEXrjddLS_uQTmxTVdWzbWLxWnGAZQaxaIQ_G1iiaJE7p9AzIwW4hgxZNZyLtiPUAmdriuknyWbCTT9tLYRbMaoSAsj6sA70WQt34fjK8H6AxgUZYGPQJA6EwUe6lgSJBqVRWQ-ZsaQ4e1p0o4ceNNiONG26Dn33lgmtfM9iBN7FQ6IDvCsqfPxL8hLvqKEq2YUTH_fCRlVMvtylOwGdODQC-TIgbcWKC9pI53aLAc6Lhfa6kHu9CDpWev-cEsJiWUrVfL3ETjwohvmmRwqV2C5JpgwILWZNNvYgYcN4XT_yJcxd2am2VGPpDoALjbeHykWP-qi41wJj6xZ2rclvkvH6iPq8f-P_hxu0MtNPs_mB0_gJimgsgm924HB6nyNT0nJW2XP7GsS8O2qH_AfH05lbQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differentiation+imbalance+in+single+oesophageal+progenitor+cells+causes+clonal+immortalization+and+field+change&rft.jtitle=Nature+cell+biology&rft.au=Alcolea%2C+Maria+P&rft.au=Greulich%2C+Philip&rft.au=Wabik%2C+Agnieszka&rft.au=Frede%2C+Julia&rft.date=2014-06-01&rft.issn=1476-4679&rft.eissn=1476-4679&rft.volume=16&rft.issue=6&rft.spage=615&rft_id=info:doi/10.1038%2Fncb2963&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1465-7392&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1465-7392&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1465-7392&client=summon |