Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly

Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large‐scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparin...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 34; no. 14; pp. 1859 - 1874
Main Authors de Juan Romero, Camino, Bruder, Carl, Tomasello, Ugo, Sanz-Anquela, José Miguel, Borrell, Víctor
Format Journal Article
LanguageEnglish
Published London Blackwell Publishing Ltd 14.07.2015
Nature Publishing Group UK
John Wiley & Sons, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large‐scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Synopsis Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. Microarray analysis of developing ferret cerebral cortex reveals transcriptomic differences between prospective folds and fissures. Differential gene expression delineates mosaic patterns along proliferative zones prior to the emergence of folds. Some mosaics of gene expression correlate with the prospective location of folds versus fissures. Differentially expressed genes in our microarray analysis include 80% of those mutated in human cortical malformations. Graphical Abstract Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures.
AbstractList Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices.
Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ∼80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices.
Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Synopsis Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. Microarray analysis of developing ferret cerebral cortex reveals transcriptomic differences between prospective folds and fissures. Differential gene expression delineates mosaic patterns along proliferative zones prior to the emergence of folds. Some mosaics of gene expression correlate with the prospective location of folds versus fissures. Differentially expressed genes in our microarray analysis include 80% of those mutated in human cortical malformations.
Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large‐scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Synopsis Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. Microarray analysis of developing ferret cerebral cortex reveals transcriptomic differences between prospective folds and fissures. Differential gene expression delineates mosaic patterns along proliferative zones prior to the emergence of folds. Some mosaics of gene expression correlate with the prospective location of folds versus fissures. Differentially expressed genes in our microarray analysis include 80% of those mutated in human cortical malformations. Graphical Abstract Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures.
Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large‐scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Synopsis Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. Microarray analysis of developing ferret cerebral cortex reveals transcriptomic differences between prospective folds and fissures. Differential gene expression delineates mosaic patterns along proliferative zones prior to the emergence of folds. Some mosaics of gene expression correlate with the prospective location of folds versus fissures. Differentially expressed genes in our microarray analysis include 80% of those mutated in human cortical malformations. Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures.
Author Sanz‐Anquela, José Miguel
Borrell, Víctor
de Juan Romero, Camino
Bruder, Carl
Tomasello, Ugo
Author_xml – sequence: 1
  givenname: Camino
  surname: de Juan Romero
  fullname: de Juan Romero, Camino
  organization: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
– sequence: 2
  givenname: Carl
  surname: Bruder
  fullname: Bruder, Carl
  organization: Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
– sequence: 3
  givenname: Ugo
  surname: Tomasello
  fullname: Tomasello, Ugo
  organization: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
– sequence: 4
  givenname: José Miguel
  surname: Sanz-Anquela
  fullname: Sanz-Anquela, José Miguel
  organization: Service of Pathology, Hospital Universitario "Principe de Asturias", Alcalá de Henares, Spain
– sequence: 5
  givenname: Víctor
  surname: Borrell
  fullname: Borrell, Víctor
  email: vborrell@umh.es
  organization: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25916825$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:131619857$$DView record from Swedish Publication Index
BookMark eNqFkktv1DAUhS1URKeFNTsUiQ2btHYS2zELpDL0QdXCAlCXlpPczHia2MFO2ubf150MoykSYmHZsr9zfH2PD9CesQYQekvwEaEJTY6hLVZHCSZUEMLZCzQjGcNxgjndQzOcMBJnJBf76MD7FcaY5py8QvtJwFme0BkqvmhfOughqmyrtPGRraMFGIjgoXPgvbYm0iZsuVYb1USNGsH5qNK-12YxaL-M-mVQwx00tmvB9GuH0YEpoVuqZnyNXtaq8fBmMx-iX2enP-cX8dX386_zk6u4ZIyzWKmsEHVZ4SplTJAsIxwygtNCJHVZACilqrzmAqcqVVlNaU5SgnlBeRZOyjo9RGLy9ffQDYXsnG6VG6VVOqxtJTf7t_ppSA8yGDAicsqD9tOkDUALVRme4VTz3OLZidFLubB3MqMZz0USDD5sDJz9PYDvZRsaC02jDNjBS8IET0iecxzQ93-hKzu40Ns1xUKUqWCBOp6o0lnvHdTbYgiW6-zlU_Zym31QvNt9w5b_E3YAPk7AvW5g_J-fPL3-fLnrjjfdDToTvsNO1f8sKJ4k4a_Aw_Y-5W4l4ymn8ubbuTy7-XE559dY0vQRuTrf1Q
CODEN EMJODG
CitedBy_id crossref_primary_10_1007_s10548_019_00734_8
crossref_primary_10_1038_s41598_020_71535_4
crossref_primary_10_1093_hmg_ddx038
crossref_primary_10_1016_j_devcel_2023_11_004
crossref_primary_10_1093_cercor_bhad383
crossref_primary_10_1242_dev_201381
crossref_primary_10_3389_fcell_2020_604448
crossref_primary_10_1073_pnas_1715451115
crossref_primary_10_1152_physrev_00016_2021
crossref_primary_10_1038_ncomms11812
crossref_primary_10_1098_rstb_2017_0321
crossref_primary_10_1016_j_neuron_2021_08_007
crossref_primary_10_1002_wdev_256
crossref_primary_10_1073_pnas_2220200120
crossref_primary_10_1016_j_neures_2018_09_011
crossref_primary_10_1093_cercor_bhz101
crossref_primary_10_15252_embj_2019103373
crossref_primary_10_1073_pnas_2209964120
crossref_primary_10_1016_j_semcdb_2017_08_045
crossref_primary_10_1002_dneu_22588
crossref_primary_10_1002_cne_24606
crossref_primary_10_1016_j_cortex_2019_04_011
crossref_primary_10_1111_dgd_12371
crossref_primary_10_1038_nrn_2017_138
crossref_primary_10_1242_dev_169276
crossref_primary_10_1093_cercor_bhaa328
crossref_primary_10_1140_epjst_e2020_000001_6
crossref_primary_10_1016_j_neuroimage_2019_04_031
crossref_primary_10_1016_j_ceb_2017_11_009
crossref_primary_10_1016_j_semcdb_2017_09_031
crossref_primary_10_1038_s44318_024_00068_7
crossref_primary_10_1016_j_neuron_2023_10_005
crossref_primary_10_1146_annurev_pathmechdis_012418_012927
crossref_primary_10_1016_j_celrep_2022_110381
crossref_primary_10_1103_PhysRevLett_121_228002
crossref_primary_10_1016_j_devcel_2017_05_011
crossref_primary_10_15252_embj_2020105479
crossref_primary_10_3389_fnins_2018_00359
crossref_primary_10_1016_j_plrev_2019_01_012
crossref_primary_10_15252_embj_201593701
crossref_primary_10_1016_j_neuroimage_2020_117169
crossref_primary_10_1038_s41467_021_26971_9
crossref_primary_10_1126_sciadv_adn9998
crossref_primary_10_1093_cercor_bhab420
crossref_primary_10_3389_fnmol_2021_642016
crossref_primary_10_1093_cercor_bhz003
crossref_primary_10_7554_eLife_54873
crossref_primary_10_1177_10738584231190839
crossref_primary_10_1093_cercor_bhz249
crossref_primary_10_1126_sciadv_adn1640
crossref_primary_10_1093_cercor_bhaa181
crossref_primary_10_15252_embj_2019104163
crossref_primary_10_1016_j_cell_2017_04_012
crossref_primary_10_1016_j_neuron_2018_07_013
crossref_primary_10_1016_j_brain_2023_100080
crossref_primary_10_1038_s41580_020_00318_6
crossref_primary_10_1038_s41586_019_0962_4
crossref_primary_10_1111_joa_12939
crossref_primary_10_1016_j_celrep_2019_03_091
crossref_primary_10_1093_cercor_bhx098
crossref_primary_10_1016_j_cortex_2018_03_005
crossref_primary_10_1016_j_neuron_2021_07_007
crossref_primary_10_1126_science_aad2029
crossref_primary_10_1248_yakushi_20_00198_3
crossref_primary_10_1016_j_conb_2016_11_009
crossref_primary_10_1098_rsob_180066
crossref_primary_10_1016_j_media_2016_06_008
crossref_primary_10_1126_sciadv_abj4010
crossref_primary_10_3389_fcell_2022_847159
crossref_primary_10_1016_j_tins_2020_10_012
crossref_primary_10_1523_JNEUROSCI_1105_17_2017
crossref_primary_10_1016_j_conb_2016_11_004
crossref_primary_10_1126_science_aba4517
crossref_primary_10_1093_cercor_bhac537
crossref_primary_10_1016_j_jbiomech_2021_110851
crossref_primary_10_1523_JNEUROSCI_1662_18_2018
crossref_primary_10_7554_eLife_53777
crossref_primary_10_1002_1873_3468_12924
crossref_primary_10_1093_cercor_bhaa086
crossref_primary_10_1038_srep29578
crossref_primary_10_1093_cercor_bhw270
crossref_primary_10_1016_j_semcdb_2021_09_007
crossref_primary_10_1002_cne_25615
crossref_primary_10_3389_fcell_2020_574619
crossref_primary_10_3389_fnana_2017_00069
crossref_primary_10_1002_wdev_347
crossref_primary_10_1038_s41467_021_26447_w
crossref_primary_10_7554_eLife_29285
crossref_primary_10_7554_eLife_91406
crossref_primary_10_1038_s41583_018_0112_2
crossref_primary_10_1016_j_neuroimage_2018_03_046
crossref_primary_10_1042_BST20200923
crossref_primary_10_1093_cercor_bhae055
crossref_primary_10_1038_s41583_022_00631_3
crossref_primary_10_1016_j_neuron_2024_02_005
crossref_primary_10_1523_JNEUROSCI_1106_17_2017
crossref_primary_10_1038_nn_4307
crossref_primary_10_7554_eLife_91406_3
crossref_primary_10_1016_j_neuron_2019_07_009
crossref_primary_10_1126_sciadv_abc6792
crossref_primary_10_1016_j_neuron_2018_08_005
crossref_primary_10_1242_dev_163766
crossref_primary_10_1016_j_neuron_2016_09_005
crossref_primary_10_12688_f1000research_20332_1
crossref_primary_10_1016_j_neuroimage_2023_120344
crossref_primary_10_1038_srep15370
crossref_primary_10_7554_eLife_45961
crossref_primary_10_3389_fcell_2021_661759
crossref_primary_10_1016_j_conb_2016_05_004
crossref_primary_10_1242_dev_136325
crossref_primary_10_1016_j_celrep_2017_08_024
crossref_primary_10_1248_bpb_b18_00142
crossref_primary_10_15252_embj_201591952
crossref_primary_10_1016_j_pneurobio_2021_102111
crossref_primary_10_1093_cercor_bhad538
crossref_primary_10_1080_23262133_2016_1242957
crossref_primary_10_1073_pnas_2314802121
crossref_primary_10_1073_pnas_2206147119
Cites_doi 10.1073/pnas.1112213108
10.1038/nn.2427
10.1016/j.conb.2010.10.002
10.1126/science.1244392
10.1038/ng1993
10.1016/j.cell.2012.12.041
10.1038/nrn2097
10.2144/03342mt01
10.1371/journal.pone.0037104
10.1126/science.3291116
10.1073/pnas.1209647109
10.1016/j.neuron.2005.06.032
10.1093/brain/aws019
10.1007/s00401-005-1059-8
10.1007/978-1-4615-3824-0_1
10.1016/j.cell.2011.06.030
10.1093/cercor/bhr284
10.1523/JNEUROSCI.09-04-01242.1989
10.1016/j.neuron.2014.04.014
10.1146/annurev-cellbio-092910-154226
10.1093/cercor/12.4.423
10.1016/j.cell.2013.03.027
10.1038/nrn2151
10.1038/nn.3980
10.1038/nature13973
10.1101/cshperspect.a002519
10.1016/j.conb.2014.02.007
10.1016/j.neuron.2013.09.032
10.1186/1749-8104-2-10
10.1002/cne.902780202
10.1126/science.1151695
10.1038/emboj.2013.96
10.1242/dev.128.2.193
10.1126/science.aaa1975
10.1126/science.1092780
10.1038/nrm1739
10.1523/JNEUROSCI.3621-12.2013
10.1016/j.cell.2013.11.033
10.1073/pnas.1209076110
10.1126/science.288.5464.344
10.1038/nn.2553
10.1128/JVI.02305-09
10.1016/j.neuron.2008.09.028
10.1093/cercor/bhq238
10.1186/gb-2003-4-5-p3
10.1002/dneu.22013
10.1038/366464a0
10.1038/nrn2008
10.1093/cercor/12.1.37
10.1038/35049541
10.1016/S0896-6273(00)80651-0
ContentType Journal Article
Copyright The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015
2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license
2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
2015 EMBO
2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015
Copyright_xml – notice: The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015
– notice: 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license
– notice: 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
– notice: 2015 EMBO
– notice: 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015
DBID BSCLL
C6C
24P
WIN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.15252/embj.201591176
DatabaseName Istex
SpringerOpen
Wiley Online Library website
Wiley Free Archive
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts


MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 24P
  name: Wiley Online Library website
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1460-2075
EndPage 1874
ExternalDocumentID oai_prod_swepub_kib_ki_se_131619857
3743202721
10_15252_embj_201591176
25916825
EMBJ201591176
ark_67375_WNG_FWSJC7M0_5
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MICINN
  grantid: SAF2009‐07367
– fundername: European Union Seventh Framework Programme
  grantid: FP7/2007–2013
– fundername: DESIRE
  grantid: 602531
– fundername: Spanish Ministry of Economy and Competitivity
  grantid: BFU2012‐33473; CSD2007‐00023
– fundername: European Research Council
  grantid: StG309633
– fundername: European Union Seventh Framework Programme
  funderid: FP7/2007–2013
– fundername: DESIRE
  funderid: 602531
– fundername: MICINN
  funderid: SAF2009‐07367
– fundername: Spanish Ministry of Economy and Competitivity
  funderid: BFU2012‐33473; CSD2007‐00023
– fundername: European Research Council
  funderid: StG309633
GroupedDBID ---
-DZ
-Q-
-~X
0R~
123
1OC
24P
29G
2WC
33P
36B
39C
53G
5VS
70F
8R4
8R5
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSMW
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
AUFTA
AZBYB
AZFZN
AZVAB
BAWUL
BDRZF
BENPR
BFHJK
BMNLL
BMXJE
BRXPI
BSCLL
BTFSW
C6C
CS3
DCZOG
DIK
DPXWK
DRFUL
DRSTM
DU5
E3Z
EBD
EBLON
EBS
EJD
EMB
EMOBN
ESTFP
F5P
G-S
GROUPED_DOAJ
GX1
H13
HH5
HK~
HYE
KQ8
LATKE
LEEKS
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P2P
P2W
Q2X
R.K
RHF
RHI
RNS
ROL
RPM
SV3
TN5
TR2
WBKPD
WH7
WIH
WIK
WIN
WOHZO
WXSBR
WYJ
YSK
ZCA
ZZTAW
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
5PM
.55
3O-
3V.
4.4
7X7
88A
88E
8AO
8C1
8CJ
8FE
8FH
8FI
8FJ
8G5
ABUWG
ABZEH
ACKIV
ADTPV
AFKRA
AI.
AOWAS
ASPBG
AVWKF
AZQEC
BBNVY
BHPHI
BKSAR
BPHCQ
BVXVI
C1A
CAG
CCPQU
COF
D1J
D8T
DWQXO
FA8
FEDTE
FYUFA
GNUQQ
GODZA
GUQSH
HCIFZ
HMCUK
HVGLF
H~9
LH4
LK8
M0L
M1P
M2O
M7P
PCBAR
PQQKQ
PROAC
PSQYO
RIG
RNI
RZO
UKHRP
VH1
WOQ
X7M
XSW
Y6R
YYP
ZGI
ZXP
ZZAVC
ID FETCH-LOGICAL-c6676-aa4b9fcd0d366914417e4103b92fcbeeaaad8f7903a3a4f55813107b574aadcf3
IEDL.DBID RPM
ISSN 0261-4189
1460-2075
IngestDate Wed Oct 30 04:59:40 EDT 2024
Tue Sep 17 21:27:50 EDT 2024
Fri Oct 25 03:15:32 EDT 2024
Thu Oct 10 21:06:35 EDT 2024
Fri Aug 23 03:16:13 EDT 2024
Sat Sep 28 08:09:34 EDT 2024
Sat Aug 24 00:38:25 EDT 2024
Thu Oct 24 02:50:25 EDT 2024
Wed Oct 30 09:54:22 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords transcription factor
lissencephaly
microarray
protocortex
folding
Language English
License Attribution-NonCommercial-NoDerivs
2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6676-aa4b9fcd0d366914417e4103b92fcbeeaaad8f7903a3a4f55813107b574aadcf3
Notes MICINN - No. SAF2009-07367
European Research Council - No. StG309633
Spanish Ministry of Economy and Competitivity - No. BFU2012-33473; No. CSD2007-00023
ArticleID:EMBJ201591176
DESIRE - No. 602531
Supplementary Figure S1Supplementary Figure S2Supplementary Table S1Supplementary Table S2Supplementary Table S3Supplementary Table S4Supplementary Table S5Supplementary Table S6Supplementary LegendsReview Process File
ark:/67375/WNG-FWSJC7M0-5
European Union Seventh Framework Programme - No. FP7/2007-2013
istex:6BAF9D2C4A9F3A2B5DC2906FA9B6CF0E98C7A544
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: GeneData AG, Basel, Switzerland
Subject Categories Development & Differentiation; Neuroscience
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547892/
PMID 25916825
PQID 1696159396
PQPubID 35985
PageCount 16
ParticipantIDs swepub_primary_oai_prod_swepub_kib_ki_se_131619857
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547892
proquest_miscellaneous_1697218870
proquest_journals_1696159396
crossref_primary_10_15252_embj_201591176
pubmed_primary_25916825
wiley_primary_10_15252_embj_201591176_EMBJ201591176
springer_journals_10_15252_embj_201591176
istex_primary_ark_67375_WNG_FWSJC7M0_5
PublicationCentury 2000
PublicationDate 14 July 2015
PublicationDateYYYYMMDD 2015-07-14
PublicationDate_xml – month: 07
  year: 2015
  text: 14 July 2015
  day: 14
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
– name: Chichester, UK
PublicationTitle The EMBO journal
PublicationTitleAbbrev EMBO J
PublicationTitleAlternate EMBO J
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Nature Publishing Group UK
John Wiley & Sons, Ltd
Publisher_xml – name: Blackwell Publishing Ltd
– name: Nature Publishing Group UK
– name: John Wiley & Sons, Ltd
References Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21: 23-35
Mangale VS, Hirokawa KE, Satyaki PR, Gokulchandran N, Chikbire S, Subramanian L, Shetty AS, Martynoga B, Paul J, Mai MV, Li Y, Flanagan LA, Tole S, Monuki ES (2008) Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 319: 304-309
Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47: 353-364
Johnson MB, Wang PP, Atabay KD, Murphy EA, Doan RN, Hecht JL, Walsh CA (2015) Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat Neurosci 18: 637-646
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: 374-378
Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the Mammalian cerebral cortex. Cereb Cortex 21: 1674-1694
Sahara S, Kawakami Y, Izpisua Belmonte JC, O'Leary DD (2007) Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev 2: 10
Lui JH, Nowakowski TJ, Pollen AA, Javaherian A, Kriegstein AR, Oldham MC (2014) Radial glia require PDGFD-PDGFRbeta signalling in human but not mouse neocortex. Nature 515: 264-268
Jackson CA, Peduzzi JD, Hickey TL (1989) Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J Neurosci 9: 1242-1253
Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7: 883-890
Fang Y, Rowe T, Leon AJ, Banner D, Danesh A, Xu L, Ran L, Bosinger SE, Guan Y, Chen H, Cameron CC, Cameron MJ, Kelvin DJ (2010) Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus. J Virol 84: 8369-8388
Dehay C, Giroud P, Berland M, Smart I, Kennedy H (1993) Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366: 464-466
Smart IH, McSherry GM (1986a) Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J Anat 146: 141-152
Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13: 690-699
Manger PR, Kiper D, Masiello I, Murillo L, Tettoni L, Hunyadi Z, Innocenti GM (2002) The representation of the visual field in three extrastriate areas of the ferret (Mustela putorius) and the relationship of retinotopy and field boundaries to callosal connectivity. Cereb Cortex 12: 423-437
Law MI, Zahs KR, Stryker MP (1988) Organization of primary visual cortex (area 17) in the ferret. J Comp Neurol 278: 157-180
Reillo I, Borrell V (2012) Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. Cereb Cortex 22: 2039-2054
Pattabiraman K, Golonzhka O, Lindtner S, Nord AS, Taher L, Hoch R, Silberberg SN, Zhang D, Chen B, Zeng H, Pennacchio LA, Puelles L, Visel A, Rubenstein JL (2014) Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex. Neuron 82: 989-1003
Hobert O (2011) Regulation of terminal differentiation programs in the nervous system. Annu Rev Cell Dev Biol 27: 681-696
Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, Calegari F (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32: 1817-1828
Visel A, Taher L, Girgis H, May D, Golonzhka O, Hoch RV, McKinsey GL, Pattabiraman K, Silberberg SN, Blow MJ, Hansen DV, Nord AS, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I, Shoukry M, Afzal V, Kaplan T et al (2013) A high-resolution enhancer atlas of the developing telencephalon. Cell 152: 895-908
Camp JV, Svensson TL, McBrayer A, Jonsson CB, Liljestrom P, Bruder CE (2012) De-novo transcriptome sequencing of a normalized cDNA pool from influenza infected ferrets. PLoS ONE 7: e37104
Stahl R, Walcher T, De Juan Romero C, Pilz GA, Cappello S, Irmler M, Sanz-Aquela JM, Beckers J, Blum R, Borrell V, Gotz M (2013) Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153: 535-549
Borrell V, Gotz M (2014) Role of radial glial cells in cerebral cortex folding. Curr Opin Neurobiol 27C: 39-46
Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8: 427-437
Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM (2013) Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33: 10802-10814
Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12: 37-53
Bishop KM, Goudreau G, O'Leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288: 344-349
Ayoub AE, Oh S, Xie Y, Leng J, Cotney J, Dominguez MH, Noonan JP, Rakic P (2011) Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing. Proc Natl Acad Sci U S A 108: 14950-14955
Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8: 438-450
Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1: 20-29
Bae BI, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E, Wang PP, Murayama AY, Im K, Lisgo SN, Overman L, Sestan N, Chang BS, Barkovich AJ, Grant PE, Topcu M, Politsky J, Okano H, Piao X, Walsh CA (2014) Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343: 764-768
Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146: 18-36
Nord AS, Blow MJ, Attanasio C, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I, Shoukry M, Afzal V, Rubenstein JL, Rubin EM, Pennacchio LA, Visel A (2013) Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155: 1521-1531
Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong FK, Peters J, Guhr E, Klemroth S, Prufer K, Kelso J, Naumann R, Nusslein I, Dahl A, Lachmann R, Paabo S, Huttner WB (2015) Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347: 1465-1470
Yun K, Potter S, Rubenstein JL (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128: 193-205
Rakic P (1988) Specification of cerebral cortical areas. Science 241: 170-176
Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A, Amiel J, Boddaert N, Picard C, Sbiti A, Asermouh A, Attie-Bitach T, Encha-Razavi F, Munnich A, Sefiani A, Lyonnet S (2007) Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet 39: 454-456
Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60: 56-69
Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Menard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C (2013) Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80: 442-457
Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135: 1348-1369
Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Descarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303: 2033-2036
Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: P3
Smart IH, McSherry GM (1986b) Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes. J Anat 147: 27-43
Elsen GE, Hodge RD, Bedogni F, Daza RA, Nelson BR, Shiba N, Reiner SL, Hevner RF (2013) The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map. Proc Natl Acad Sci U S A 110: 4081-4086
Hevner RF (2005) The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol 110: 208-221
Borrell V, Reillo I (2012) Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol 72: 955-971
Chou SJ, Perez-Garcia CG, Kroll TT, O'Leary DD (2009) Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. Nat Neurosci 12: 1381-1389
Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA, Scheffer IE, Dobyns WB, Hirsch BA, Radtke RA, Berkovic SF, Huttenlocher PR, Walsh CA (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21: 1315-1325
Sansom SN, Livesey FJ (2009) Gradients in the br
Molyneaux, Arlotta, Menezes, Macklis (CR34) 2007; 8
Visel, Taher, Girgis, May, Golonzhka, Hoch, McKinsey, Pattabiraman, Silberberg, Blow, Hansen, Nord, Akiyama, Holt, Hosseini, Phouanenavong, Plajzer‐Frick, Shoukry, Afzal, Kaplan (CR51) 2013; 152
Jessell (CR25) 2000; 1
Lukaszewicz, Savatier, Cortay, Giroud, Huissoud, Berland, Kennedy, Dehay (CR31) 2005; 47
Borrell, Gotz (CR8) 2014; 27C
Mangale, Hirokawa, Satyaki, Gokulchandran, Chikbire, Subramanian, Shetty, Martynoga, Paul, Mai, Li, Flanagan, Tole, Monuki (CR32) 2008; 319
Reillo, Borrell (CR42) 2012; 22
Yun, Potter, Rubenstein (CR53) 2001; 128
Nonaka‐Kinoshita, Reillo, Artegiani, Martinez‐Martinez, Nelson, Borrell, Calegari (CR35) 2013; 32
Hobert (CR23) 2011; 27
Dehay, Giroud, Berland, Smart, Kennedy (CR11) 1993; 366
Kriegstein, Noctor, Martinez‐Cerdeno (CR27) 2006; 7
Chou, Perez‐Garcia, Kroll, O'Leary (CR10) 2009; 12
Piao, Hill, Bodell, Chang, Basel‐Vanagaite, Straussberg, Dobyns, Qasrawi, Winter, Innes, Voit, Ross, Michaud, Descarie, Barkovich, Walsh (CR38) 2004; 303
Betizeau, Cortay, Patti, Pfister, Gautier, Bellemin‐Menard, Afanassieff, Huissoud, Douglas, Kennedy, Dehay (CR5) 2013; 80
Rash, Tomasi, Lim, Suh, Vaccarino (CR40) 2013; 33
Smart, McSherry (CR48) 1986; 147
Dennis, Sherman, Hosack, Yang, Gao, Lane, Lempicki (CR13) 2003; 4
Sahara, Kawakami, Izpisua Belmonte, O'Leary (CR44) 2007; 2
Fox, Lamperti, Eksioglu, Hong, Feng, Graham, Scheffer, Dobyns, Hirsch, Radtke, Berkovic, Huttenlocher, Walsh (CR20) 1998; 21
Bishop, Goudreau, O'Leary (CR6) 2000; 288
Smart, McSherry (CR47) 1986; 146
Fang, Rowe, Leon, Banner, Danesh, Xu, Ran, Bosinger, Guan, Chen, Cameron, Cameron, Kelvin (CR15) 2010; 84
Florio, Albert, Taverna, Namba, Brandl, Lewitus, Haffner, Sykes, Wong, Peters, Guhr, Klemroth, Prufer, Kelso, Naumann, Nusslein, Dahl, Lachmann, Paabo, Huttner (CR19) 2015; 347
Sessa, Mao, Hadjantonakis, Klein, Broccoli (CR46) 2008; 60
Elsen, Hodge, Bedogni, Daza, Nelson, Shiba, Reiner, Hevner (CR14) 2013; 110
Fietz, Kelava, Vogt, Wilsch‐Brauninger, Stenzel, Fish, Corbeil, Riehn, Distler, Nitsch, Huttner (CR16) 2010; 13
Nord, Blow, Attanasio, Akiyama, Holt, Hosseini, Phouanenavong, Plajzer‐Frick, Shoukry, Afzal, Rubenstein, Rubin, Pennacchio, Visel (CR36) 2013; 155
Johnson, Wang, Atabay, Murphy, Doan, Hecht, Walsh (CR26) 2015; 18
Manger, Kiper, Masiello, Murillo, Tettoni, Hunyadi, Innocenti (CR33) 2002; 12
Barkovich, Guerrini, Kuzniecky, Jackson, Dobyns (CR4) 2012; 135
Fietz, Huttner (CR17) 2011; 21
Baala, Briault, Etchevers, Laumonnier, Natiq, Amiel, Boddaert, Picard, Sbiti, Asermouh, Attie‐Bitach, Encha‐Razavi, Munnich, Sefiani, Lyonnet (CR2) 2007; 39
Lui, Nowakowski, Pollen, Javaherian, Kriegstein, Oldham (CR30) 2014; 515
Reillo, de Juan Romero, Garcia‐Cabezas, Borrell (CR41) 2011; 21
Stahl, Walcher, De Juan Romero, Pilz, Cappello, Irmler, Sanz‐Aquela, Beckers, Blum, Borrell, Gotz (CR50) 2013; 153
Camp, Svensson, McBrayer, Jonsson, Liljestrom, Bruder (CR9) 2012; 7
Saeed, Sharov, White, Li, Liang, Bhagabati, Braisted, Klapa, Currier, Thiagarajan, Sturn, Snuffin, Rezantsev, Popov, Ryltsov, Kostukovich, Borisovsky, Liu, Vinsavich, Trush (CR43) 2003; 34
Ayoub, Oh, Xie, Leng, Cotney, Dominguez, Noonan, Rakic (CR1) 2011; 108
Sansom, Livesey (CR45) 2009; 1
Jackson, Peduzzi, Hickey (CR24) 1989; 9
Gotz, Huttner (CR21) 2005; 6
Fietz, Lachmann, Brandl, Kircher, Samusik, Schroder, Lakshmanaperumal, Henry, Vogt, Riehn, Distler, Nitsch, Enard, Paabo, Huttner (CR18) 2012; 109
Welker, Jones (CR52) 1990
Borrell, Reillo (CR7) 2012; 72
Lui, Hansen, Kriegstein (CR29) 2011; 146
Bae, Tietjen, Atabay, Evrony, Johnson, Asare, Wang, Murayama, Im, Lisgo, Overman, Sestan, Chang, Barkovich, Grant, Topcu, Politsky, Okano, Piao, Walsh (CR3) 2014; 343
Dehay, Kennedy (CR12) 2007; 8
Pattabiraman, Golonzhka, Lindtner, Nord, Taher, Hoch, Silberberg, Zhang, Chen, Zeng, Pennacchio, Puelles, Visel, Rubenstein (CR37) 2014; 82
Hevner (CR22) 2005; 110
Law, Zahs, Stryker (CR28) 1988; 278
Rakic (CR39) 1988; 241
Smart, Dehay, Giroud, Berland, Kennedy (CR49) 2002; 12
2007; 39
1986a; 146
2010; 13
2015; 347
2002; 12
2000; 1
1993; 366
2012; 72
2009; 12
2012; 135
1990
2008; 319
2007; 8
2013; 155
2003; 4
2011; 21
1986b; 147
2013; 152
2013; 110
2007; 2
2000; 288
2013; 153
2011; 27
2012; 22
2008; 60
2014; 515
2004; 303
2015; 18
2005; 110
2014; 27C
1989; 9
2006; 7
1988; 241
1998; 21
2014; 82
2010; 84
2012; 109
2001; 128
2005; 47
2003; 34
2011; 146
2011; 108
2013; 33
2013; 32
2013; 80
1988; 278
2005; 6
2012; 7
2009; 1
2014; 343
23431145 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4081-6
16133544 - Acta Neuropathol. 2005 Sep;110(3):208-21
17514196 - Nat Rev Neurosci. 2007 Jun;8(6):427-37
11884357 - Cereb Cortex. 2002 Apr;12(4):423-37
21873192 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14950-5
20436478 - Nat Neurosci. 2010 Jun;13(6):690-9
22684946 - Dev Neurobiol. 2012 Jul;72(7):955-71
15044805 - Science. 2004 Mar 26;303(5666):2033-6
20066088 - Cold Spring Harb Perspect Biol. 2009 Aug;1(2):a002519
11124115 - Development. 2001 Jan;128(2):193-205
21729779 - Cell. 2011 Jul 8;146(1):18-36
26022291 - EMBO J. 2015 Jul 14;34(14):1845-7
23375746 - Cell. 2013 Feb 14;152(4):895-908
22427329 - Brain. 2012 May;135(Pt 5):1348-69
11262869 - Nat Rev Genet. 2000 Oct;1(1):20-9
18202285 - Science. 2008 Jan 18;319(5861):304-9
21036598 - Curr Opin Neurobiol. 2011 Feb;21(1):23-35
16055060 - Neuron. 2005 Aug 4;47(3):353-64
23804101 - J Neurosci. 2013 Jun 26;33(26):10802-14
3693054 - J Anat. 1986 Jun;146:141-52
19820705 - Nat Neurosci. 2009 Nov;12(11):1381-9
12734009 - Genome Biol. 2003;4(5):P3
2703875 - J Neurosci. 1989 Apr;9(4):1242-53
23624932 - EMBO J. 2013 Jul 3;32(13):1817-28
23622239 - Cell. 2013 Apr 25;153(3):535-49
25391964 - Nature. 2014 Nov 13;515(7526):264-8
11734531 - Cereb Cortex. 2002 Jan;12(1):37-53
3291116 - Science. 1988 Jul 8;241(4862):170-6
17509151 - Neural Dev. 2007;2:10
21988826 - Cereb Cortex. 2012 Sep;22(9):2039-54
24531968 - Science. 2014 Feb 14;343(6172):764-8
24632307 - Curr Opin Neurobiol. 2014 Aug;27:39-46
21127018 - Cereb Cortex. 2011 Jul;21(7):1674-94
24360275 - Cell. 2013 Dec 19;155(7):1521-31
25721503 - Science. 2015 Mar 27;347(6229):1465-70
24814534 - Neuron. 2014 Jun 4;82(5):989-1003
17353897 - Nat Genet. 2007 Apr;39(4):454-6
21985672 - Annu Rev Cell Dev Biol. 2011;27:681-96
9883725 - Neuron. 1998 Dec;21(6):1315-25
3693076 - J Anat. 1986 Aug;147:27-43
3068264 - J Comp Neurol. 1988 Dec 8;278(2):157-80
17514197 - Nat Rev Neurosci. 2007 Jun;8(6):438-50
20534862 - J Virol. 2010 Sep;84(17):8369-88
22606336 - PLoS One. 2012;7(5):e37104
24139044 - Neuron. 2013 Oct 16;80(2):442-57
16314867 - Nat Rev Mol Cell Biol. 2005 Oct;6(10):777-88
12613259 - Biotechniques. 2003 Feb;34(2):374-8
22753484 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11836-41
17033683 - Nat Rev Neurosci. 2006 Nov;7(11):883-90
8247154 - Nature. 1993 Dec 2;366(6454):464-6
10764649 - Science. 2000 Apr 14;288(5464):344-9
25734491 - Nat Neurosci. 2015 May;18(5):637-46
18940588 - Neuron. 2008 Oct 9;60(1):56-69
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Smart IH (e_1_2_8_49_1) 1986; 147
e_1_2_8_51_1
Smart IH (e_1_2_8_48_1) 1986; 146
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 8
  start-page: 427
  year: 2007
  end-page: 437
  ident: CR34
  article-title: Neuronal subtype specification in the cerebral cortex
  publication-title: Nat Rev Neurosci
  contributor:
    fullname: Macklis
– volume: 21
  start-page: 1315
  year: 1998
  end-page: 1325
  ident: CR20
  article-title: Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia
  publication-title: Neuron
  contributor:
    fullname: Walsh
– volume: 110
  start-page: 208
  year: 2005
  end-page: 221
  ident: CR22
  article-title: The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis
  publication-title: Acta Neuropathol
  contributor:
    fullname: Hevner
– volume: 128
  start-page: 193
  year: 2001
  end-page: 205
  ident: CR53
  article-title: Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon
  publication-title: Development
  contributor:
    fullname: Rubenstein
– volume: 80
  start-page: 442
  year: 2013
  end-page: 457
  ident: CR5
  article-title: Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate
  publication-title: Neuron
  contributor:
    fullname: Dehay
– volume: 2
  start-page: 10
  year: 2007
  ident: CR44
  article-title: Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior‐posterior cortical area patterning
  publication-title: Neural Dev
  contributor:
    fullname: O'Leary
– volume: 109
  start-page: 11836
  year: 2012
  end-page: 11841
  ident: CR18
  article-title: Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self‐renewal
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Huttner
– volume: 72
  start-page: 955
  year: 2012
  end-page: 971
  ident: CR7
  article-title: Emerging roles of neural stem cells in cerebral cortex development and evolution
  publication-title: Dev Neurobiol
  contributor:
    fullname: Reillo
– volume: 13
  start-page: 690
  year: 2010
  end-page: 699
  ident: CR16
  article-title: OSVZ progenitors of human and ferret neocortex are epithelial‐like and expand by integrin signaling
  publication-title: Nat Neurosci
  contributor:
    fullname: Huttner
– volume: 155
  start-page: 1521
  year: 2013
  end-page: 1531
  ident: CR36
  article-title: Rapid and pervasive changes in genome‐wide enhancer usage during mammalian development
  publication-title: Cell
  contributor:
    fullname: Visel
– volume: 347
  start-page: 1465
  year: 2015
  end-page: 1470
  ident: CR19
  article-title: Human‐specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion
  publication-title: Science
  contributor:
    fullname: Huttner
– volume: 1
  start-page: 20
  year: 2000
  end-page: 29
  ident: CR25
  article-title: Neuronal specification in the spinal cord: inductive signals and transcriptional codes
  publication-title: Nat Rev Genet
  contributor:
    fullname: Jessell
– volume: 146
  start-page: 18
  year: 2011
  end-page: 36
  ident: CR29
  article-title: Development and evolution of the human neocortex
  publication-title: Cell
  contributor:
    fullname: Kriegstein
– volume: 12
  start-page: 423
  year: 2002
  end-page: 437
  ident: CR33
  article-title: The representation of the visual field in three extrastriate areas of the ferret ( ) and the relationship of retinotopy and field boundaries to callosal connectivity
  publication-title: Cereb Cortex
  contributor:
    fullname: Innocenti
– volume: 135
  start-page: 1348
  year: 2012
  end-page: 1369
  ident: CR4
  article-title: A developmental and genetic classification for malformations of cortical development: update 2012
  publication-title: Brain
  contributor:
    fullname: Dobyns
– volume: 60
  start-page: 56
  year: 2008
  end-page: 69
  ident: CR46
  article-title: Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex
  publication-title: Neuron
  contributor:
    fullname: Broccoli
– volume: 12
  start-page: 1381
  year: 2009
  end-page: 1389
  ident: CR10
  article-title: Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex
  publication-title: Nat Neurosci
  contributor:
    fullname: O'Leary
– volume: 22
  start-page: 2039
  year: 2012
  end-page: 2054
  ident: CR42
  article-title: Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors
  publication-title: Cereb Cortex
  contributor:
    fullname: Borrell
– volume: 7
  start-page: e37104
  year: 2012
  ident: CR9
  article-title: De‐novo transcriptome sequencing of a normalized cDNA pool from influenza infected ferrets
  publication-title: PLoS ONE
  contributor:
    fullname: Bruder
– volume: 7
  start-page: 883
  year: 2006
  end-page: 890
  ident: CR27
  article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion
  publication-title: Nat Rev Neurosci
  contributor:
    fullname: Martinez‐Cerdeno
– volume: 108
  start-page: 14950
  year: 2011
  end-page: 14955
  ident: CR1
  article-title: Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high‐resolution mRNA sequencing
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Rakic
– volume: 343
  start-page: 764
  year: 2014
  end-page: 768
  ident: CR3
  article-title: Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning
  publication-title: Science
  contributor:
    fullname: Walsh
– volume: 32
  start-page: 1817
  year: 2013
  end-page: 1828
  ident: CR35
  article-title: Regulation of cerebral cortex size and folding by expansion of basal progenitors
  publication-title: EMBO J
  contributor:
    fullname: Calegari
– volume: 84
  start-page: 8369
  year: 2010
  end-page: 8388
  ident: CR15
  article-title: Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus
  publication-title: J Virol
  contributor:
    fullname: Kelvin
– volume: 21
  start-page: 23
  year: 2011
  end-page: 35
  ident: CR17
  article-title: Cortical progenitor expansion, self‐renewal and neurogenesis‐a polarized perspective
  publication-title: Curr Opin Neurobiol
  contributor:
    fullname: Huttner
– volume: 27
  start-page: 681
  year: 2011
  end-page: 696
  ident: CR23
  article-title: Regulation of terminal differentiation programs in the nervous system
  publication-title: Annu Rev Cell Dev Biol
  contributor:
    fullname: Hobert
– volume: 319
  start-page: 304
  year: 2008
  end-page: 309
  ident: CR32
  article-title: Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate
  publication-title: Science
  contributor:
    fullname: Monuki
– volume: 34
  start-page: 374
  year: 2003
  end-page: 378
  ident: CR43
  article-title: TM4: a free, open‐source system for microarray data management and analysis
  publication-title: Biotechniques
  contributor:
    fullname: Trush
– volume: 47
  start-page: 353
  year: 2005
  end-page: 364
  ident: CR31
  article-title: G1 phase regulation, area‐specific cell cycle control, and cytoarchitectonics in the primate cortex
  publication-title: Neuron
  contributor:
    fullname: Dehay
– volume: 9
  start-page: 1242
  year: 1989
  end-page: 1253
  ident: CR24
  article-title: Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons
  publication-title: J Neurosci
  contributor:
    fullname: Hickey
– volume: 27C
  start-page: 39
  year: 2014
  end-page: 46
  ident: CR8
  article-title: Role of radial glial cells in cerebral cortex folding
  publication-title: Curr Opin Neurobiol
  contributor:
    fullname: Gotz
– volume: 4
  start-page: P3
  year: 2003
  ident: CR13
  article-title: DAVID: database for annotation, visualization, and integrated discovery
  publication-title: Genome Biol
  contributor:
    fullname: Lempicki
– volume: 12
  start-page: 37
  year: 2002
  end-page: 53
  ident: CR49
  article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
  publication-title: Cereb Cortex
  contributor:
    fullname: Kennedy
– start-page: 3
  year: 1990
  end-page: 136
  ident: CR52
  article-title: Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci
  publication-title: Cerebral Cortex, Peters A
  contributor:
    fullname: Jones
– volume: 1
  start-page: a002519
  year: 2009
  ident: CR45
  article-title: Gradients in the brain: the control of the development of form and function in the cerebral cortex
  publication-title: Cold Spring Harb Perspect Biol
  contributor:
    fullname: Livesey
– volume: 288
  start-page: 344
  year: 2000
  end-page: 349
  ident: CR6
  article-title: Regulation of area identity in the mammalian neocortex by Emx2 and Pax6
  publication-title: Science
  contributor:
    fullname: O'Leary
– volume: 278
  start-page: 157
  year: 1988
  end-page: 180
  ident: CR28
  article-title: Organization of primary visual cortex (area 17) in the ferret
  publication-title: J Comp Neurol
  contributor:
    fullname: Stryker
– volume: 152
  start-page: 895
  year: 2013
  end-page: 908
  ident: CR51
  article-title: A high‐resolution enhancer atlas of the developing telencephalon
  publication-title: Cell
  contributor:
    fullname: Kaplan
– volume: 147
  start-page: 27
  year: 1986
  end-page: 43
  ident: CR48
  article-title: Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes
  publication-title: J Anat
  contributor:
    fullname: McSherry
– volume: 366
  start-page: 464
  year: 1993
  end-page: 466
  ident: CR11
  article-title: Modulation of the cell cycle contributes to the parcellation of the primate visual cortex
  publication-title: Nature
  contributor:
    fullname: Kennedy
– volume: 21
  start-page: 1674
  year: 2011
  end-page: 1694
  ident: CR41
  article-title: A role for intermediate radial glia in the tangential expansion of the Mammalian cerebral cortex
  publication-title: Cereb Cortex
  contributor:
    fullname: Borrell
– volume: 39
  start-page: 454
  year: 2007
  end-page: 456
  ident: CR2
  article-title: Homozygous silencing of T‐box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis
  publication-title: Nat Genet
  contributor:
    fullname: Lyonnet
– volume: 6
  start-page: 777
  year: 2005
  end-page: 788
  ident: CR21
  article-title: The cell biology of neurogenesis
  publication-title: Nat Rev Mol Cell Biol
  contributor:
    fullname: Huttner
– volume: 303
  start-page: 2033
  year: 2004
  end-page: 2036
  ident: CR38
  article-title: G protein‐coupled receptor‐dependent development of human frontal cortex
  publication-title: Science
  contributor:
    fullname: Walsh
– volume: 8
  start-page: 438
  year: 2007
  end-page: 450
  ident: CR12
  article-title: Cell‐cycle control and cortical development
  publication-title: Nat Rev Neurosci
  contributor:
    fullname: Kennedy
– volume: 18
  start-page: 637
  year: 2015
  end-page: 646
  ident: CR26
  article-title: Single‐cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex
  publication-title: Nat Neurosci
  contributor:
    fullname: Walsh
– volume: 515
  start-page: 264
  year: 2014
  end-page: 268
  ident: CR30
  article-title: Radial glia require PDGFD‐PDGFRbeta signalling in human but not mouse neocortex
  publication-title: Nature
  contributor:
    fullname: Oldham
– volume: 146
  start-page: 141
  year: 1986
  end-page: 152
  ident: CR47
  article-title: Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes
  publication-title: J Anat
  contributor:
    fullname: McSherry
– volume: 82
  start-page: 989
  year: 2014
  end-page: 1003
  ident: CR37
  article-title: Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex
  publication-title: Neuron
  contributor:
    fullname: Rubenstein
– volume: 33
  start-page: 10802
  year: 2013
  end-page: 10814
  ident: CR40
  article-title: Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain
  publication-title: J Neurosci
  contributor:
    fullname: Vaccarino
– volume: 153
  start-page: 535
  year: 2013
  end-page: 549
  ident: CR50
  article-title: Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate
  publication-title: Cell
  contributor:
    fullname: Gotz
– volume: 110
  start-page: 4081
  year: 2013
  end-page: 4086
  ident: CR14
  article-title: The protomap is propagated to cortical plate neurons through an Eomes‐dependent intermediate map
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Hevner
– volume: 241
  start-page: 170
  year: 1988
  end-page: 176
  ident: CR39
  article-title: Specification of cerebral cortical areas
  publication-title: Science
  contributor:
    fullname: Rakic
– volume: 108
  start-page: 14950
  year: 2011
  end-page: 14955
  article-title: Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high‐resolution mRNA sequencing
  publication-title: Proc Natl Acad Sci U S A
– volume: 109
  start-page: 11836
  year: 2012
  end-page: 11841
  article-title: Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self‐renewal
  publication-title: Proc Natl Acad Sci U S A
– volume: 60
  start-page: 56
  year: 2008
  end-page: 69
  article-title: Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex
  publication-title: Neuron
– volume: 27C
  start-page: 39
  year: 2014
  end-page: 46
  article-title: Role of radial glial cells in cerebral cortex folding
  publication-title: Curr Opin Neurobiol
– volume: 6
  start-page: 777
  year: 2005
  end-page: 788
  article-title: The cell biology of neurogenesis
  publication-title: Nat Rev Mol Cell Biol
– volume: 2
  start-page: 10
  year: 2007
  article-title: Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior‐posterior cortical area patterning
  publication-title: Neural Dev
– volume: 12
  start-page: 423
  year: 2002
  end-page: 437
  article-title: The representation of the visual field in three extrastriate areas of the ferret ( ) and the relationship of retinotopy and field boundaries to callosal connectivity
  publication-title: Cereb Cortex
– volume: 84
  start-page: 8369
  year: 2010
  end-page: 8388
  article-title: Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus
  publication-title: J Virol
– volume: 110
  start-page: 208
  year: 2005
  end-page: 221
  article-title: The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis
  publication-title: Acta Neuropathol
– volume: 47
  start-page: 353
  year: 2005
  end-page: 364
  article-title: G1 phase regulation, area‐specific cell cycle control, and cytoarchitectonics in the primate cortex
  publication-title: Neuron
– volume: 7
  start-page: e37104
  year: 2012
  article-title: De‐novo transcriptome sequencing of a normalized cDNA pool from influenza infected ferrets
  publication-title: PLoS ONE
– volume: 4
  start-page: P3
  year: 2003
  article-title: DAVID: database for annotation, visualization, and integrated discovery
  publication-title: Genome Biol
– volume: 135
  start-page: 1348
  year: 2012
  end-page: 1369
  article-title: A developmental and genetic classification for malformations of cortical development: update 2012
  publication-title: Brain
– volume: 39
  start-page: 454
  year: 2007
  end-page: 456
  article-title: Homozygous silencing of T‐box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis
  publication-title: Nat Genet
– volume: 278
  start-page: 157
  year: 1988
  end-page: 180
  article-title: Organization of primary visual cortex (area 17) in the ferret
  publication-title: J Comp Neurol
– volume: 241
  start-page: 170
  year: 1988
  end-page: 176
  article-title: Specification of cerebral cortical areas
  publication-title: Science
– volume: 80
  start-page: 442
  year: 2013
  end-page: 457
  article-title: Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate
  publication-title: Neuron
– volume: 288
  start-page: 344
  year: 2000
  end-page: 349
  article-title: Regulation of area identity in the mammalian neocortex by Emx2 and Pax6
  publication-title: Science
– volume: 1
  start-page: 20
  year: 2000
  end-page: 29
  article-title: Neuronal specification in the spinal cord: inductive signals and transcriptional codes
  publication-title: Nat Rev Genet
– volume: 153
  start-page: 535
  year: 2013
  end-page: 549
  article-title: Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate
  publication-title: Cell
– volume: 72
  start-page: 955
  year: 2012
  end-page: 971
  article-title: Emerging roles of neural stem cells in cerebral cortex development and evolution
  publication-title: Dev Neurobiol
– volume: 319
  start-page: 304
  year: 2008
  end-page: 309
  article-title: Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate
  publication-title: Science
– volume: 34
  start-page: 374
  year: 2003
  end-page: 378
  article-title: TM4: a free, open‐source system for microarray data management and analysis
  publication-title: Biotechniques
– volume: 21
  start-page: 1674
  year: 2011
  end-page: 1694
  article-title: A role for intermediate radial glia in the tangential expansion of the Mammalian cerebral cortex
  publication-title: Cereb Cortex
– volume: 8
  start-page: 427
  year: 2007
  end-page: 437
  article-title: Neuronal subtype specification in the cerebral cortex
  publication-title: Nat Rev Neurosci
– volume: 110
  start-page: 4081
  year: 2013
  end-page: 4086
  article-title: The protomap is propagated to cortical plate neurons through an Eomes‐dependent intermediate map
  publication-title: Proc Natl Acad Sci U S A
– volume: 1
  start-page: a002519
  year: 2009
  article-title: Gradients in the brain: the control of the development of form and function in the cerebral cortex
  publication-title: Cold Spring Harb Perspect Biol
– volume: 33
  start-page: 10802
  year: 2013
  end-page: 10814
  article-title: Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain
  publication-title: J Neurosci
– volume: 32
  start-page: 1817
  year: 2013
  end-page: 1828
  article-title: Regulation of cerebral cortex size and folding by expansion of basal progenitors
  publication-title: EMBO J
– volume: 8
  start-page: 438
  year: 2007
  end-page: 450
  article-title: Cell‐cycle control and cortical development
  publication-title: Nat Rev Neurosci
– volume: 22
  start-page: 2039
  year: 2012
  end-page: 2054
  article-title: Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors
  publication-title: Cereb Cortex
– volume: 515
  start-page: 264
  year: 2014
  end-page: 268
  article-title: Radial glia require PDGFD‐PDGFRbeta signalling in human but not mouse neocortex
  publication-title: Nature
– volume: 152
  start-page: 895
  year: 2013
  end-page: 908
  article-title: A high‐resolution enhancer atlas of the developing telencephalon
  publication-title: Cell
– volume: 146
  start-page: 141
  year: 1986a
  end-page: 152
  article-title: Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes
  publication-title: J Anat
– volume: 343
  start-page: 764
  year: 2014
  end-page: 768
  article-title: Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning
  publication-title: Science
– volume: 347
  start-page: 1465
  year: 2015
  end-page: 1470
  article-title: Human‐specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion
  publication-title: Science
– volume: 12
  start-page: 37
  year: 2002
  end-page: 53
  article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey
  publication-title: Cereb Cortex
– volume: 21
  start-page: 1315
  year: 1998
  end-page: 1325
  article-title: Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia
  publication-title: Neuron
– volume: 21
  start-page: 23
  year: 2011
  end-page: 35
  article-title: Cortical progenitor expansion, self‐renewal and neurogenesis‐a polarized perspective
  publication-title: Curr Opin Neurobiol
– volume: 366
  start-page: 464
  year: 1993
  end-page: 466
  article-title: Modulation of the cell cycle contributes to the parcellation of the primate visual cortex
  publication-title: Nature
– volume: 13
  start-page: 690
  year: 2010
  end-page: 699
  article-title: OSVZ progenitors of human and ferret neocortex are epithelial‐like and expand by integrin signaling
  publication-title: Nat Neurosci
– volume: 27
  start-page: 681
  year: 2011
  end-page: 696
  article-title: Regulation of terminal differentiation programs in the nervous system
  publication-title: Annu Rev Cell Dev Biol
– volume: 155
  start-page: 1521
  year: 2013
  end-page: 1531
  article-title: Rapid and pervasive changes in genome‐wide enhancer usage during mammalian development
  publication-title: Cell
– volume: 128
  start-page: 193
  year: 2001
  end-page: 205
  article-title: Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon
  publication-title: Development
– volume: 7
  start-page: 883
  year: 2006
  end-page: 890
  article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion
  publication-title: Nat Rev Neurosci
– volume: 303
  start-page: 2033
  year: 2004
  end-page: 2036
  article-title: G protein‐coupled receptor‐dependent development of human frontal cortex
  publication-title: Science
– volume: 146
  start-page: 18
  year: 2011
  end-page: 36
  article-title: Development and evolution of the human neocortex
  publication-title: Cell
– start-page: 3
  year: 1990
  end-page: 136
– volume: 12
  start-page: 1381
  year: 2009
  end-page: 1389
  article-title: Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex
  publication-title: Nat Neurosci
– volume: 147
  start-page: 27
  year: 1986b
  end-page: 43
  article-title: Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes
  publication-title: J Anat
– volume: 82
  start-page: 989
  year: 2014
  end-page: 1003
  article-title: Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex
  publication-title: Neuron
– volume: 18
  start-page: 637
  year: 2015
  end-page: 646
  article-title: Single‐cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex
  publication-title: Nat Neurosci
– volume: 9
  start-page: 1242
  year: 1989
  end-page: 1253
  article-title: Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons
  publication-title: J Neurosci
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.1112213108
– ident: e_1_2_8_11_1
  doi: 10.1038/nn.2427
– ident: e_1_2_8_18_1
  doi: 10.1016/j.conb.2010.10.002
– ident: e_1_2_8_4_1
  doi: 10.1126/science.1244392
– ident: e_1_2_8_3_1
  doi: 10.1038/ng1993
– ident: e_1_2_8_52_1
  doi: 10.1016/j.cell.2012.12.041
– ident: e_1_2_8_13_1
  doi: 10.1038/nrn2097
– ident: e_1_2_8_44_1
  doi: 10.2144/03342mt01
– ident: e_1_2_8_10_1
  doi: 10.1371/journal.pone.0037104
– ident: e_1_2_8_40_1
  doi: 10.1126/science.3291116
– ident: e_1_2_8_19_1
  doi: 10.1073/pnas.1209647109
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuron.2005.06.032
– ident: e_1_2_8_5_1
  doi: 10.1093/brain/aws019
– ident: e_1_2_8_23_1
  doi: 10.1007/s00401-005-1059-8
– ident: e_1_2_8_53_1
  doi: 10.1007/978-1-4615-3824-0_1
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cell.2011.06.030
– ident: e_1_2_8_43_1
  doi: 10.1093/cercor/bhr284
– ident: e_1_2_8_25_1
  doi: 10.1523/JNEUROSCI.09-04-01242.1989
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuron.2014.04.014
– ident: e_1_2_8_24_1
  doi: 10.1146/annurev-cellbio-092910-154226
– ident: e_1_2_8_34_1
  doi: 10.1093/cercor/12.4.423
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cell.2013.03.027
– ident: e_1_2_8_35_1
  doi: 10.1038/nrn2151
– ident: e_1_2_8_27_1
  doi: 10.1038/nn.3980
– ident: e_1_2_8_31_1
  doi: 10.1038/nature13973
– ident: e_1_2_8_46_1
  doi: 10.1101/cshperspect.a002519
– ident: e_1_2_8_9_1
  doi: 10.1016/j.conb.2014.02.007
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neuron.2013.09.032
– ident: e_1_2_8_45_1
  doi: 10.1186/1749-8104-2-10
– ident: e_1_2_8_29_1
  doi: 10.1002/cne.902780202
– ident: e_1_2_8_33_1
  doi: 10.1126/science.1151695
– ident: e_1_2_8_36_1
  doi: 10.1038/emboj.2013.96
– ident: e_1_2_8_54_1
  doi: 10.1242/dev.128.2.193
– ident: e_1_2_8_20_1
  doi: 10.1126/science.aaa1975
– ident: e_1_2_8_39_1
  doi: 10.1126/science.1092780
– volume: 147
  start-page: 27
  year: 1986
  ident: e_1_2_8_49_1
  article-title: Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes
  publication-title: J Anat
  contributor:
    fullname: Smart IH
– ident: e_1_2_8_22_1
  doi: 10.1038/nrm1739
– ident: e_1_2_8_41_1
  doi: 10.1523/JNEUROSCI.3621-12.2013
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cell.2013.11.033
– ident: e_1_2_8_15_1
  doi: 10.1073/pnas.1209076110
– ident: e_1_2_8_7_1
  doi: 10.1126/science.288.5464.344
– ident: e_1_2_8_17_1
  doi: 10.1038/nn.2553
– ident: e_1_2_8_16_1
  doi: 10.1128/JVI.02305-09
– ident: e_1_2_8_47_1
  doi: 10.1016/j.neuron.2008.09.028
– ident: e_1_2_8_42_1
  doi: 10.1093/cercor/bhq238
– volume: 146
  start-page: 141
  year: 1986
  ident: e_1_2_8_48_1
  article-title: Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes
  publication-title: J Anat
  contributor:
    fullname: Smart IH
– ident: e_1_2_8_14_1
  doi: 10.1186/gb-2003-4-5-p3
– ident: e_1_2_8_8_1
  doi: 10.1002/dneu.22013
– ident: e_1_2_8_12_1
  doi: 10.1038/366464a0
– ident: e_1_2_8_28_1
  doi: 10.1038/nrn2008
– ident: e_1_2_8_50_1
  doi: 10.1093/cercor/12.1.37
– ident: e_1_2_8_26_1
  doi: 10.1038/35049541
– ident: e_1_2_8_21_1
  doi: 10.1016/S0896-6273(00)80651-0
SSID ssj0005871
Score 2.5670805
Snippet Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown....
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
wiley
springer
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1859
SubjectTerms Animals
Animals, Newborn
Brain - embryology
Cerebral Cortex - abnormalities
Cerebral Cortex - anatomy & histology
Cerebral Cortex - embryology
Cerebral Cortex - physiology
Cyclin-Dependent Kinase 6 - genetics
EMBO11
EMBO27
Female
Ferrets - embryology
Ferrets - genetics
Ferrets - growth & development
folding
Gene expression
Gene Expression Regulation, Developmental
Humans
lissencephaly
Malformations of Cortical Development - genetics
Medicin och hälsovetenskap
microarray
Molecular biology
Neurology
Oligonucleotide Array Sequence Analysis
Organ Size
Pregnancy
protocortex
Receptor, Fibroblast Growth Factor, Type 2 - genetics
Receptor, Fibroblast Growth Factor, Type 3 - genetics
Resource
transcription factor
SummonAdditionalLinks – databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgE4IXBONXYCAjIQQPEUkc2_EjhJWp0vYC0_Zm2YlNw7p0Wldp_e-5c9JsEUOISpXa2HHd-87xd_GXMyHvBOdeeqFiryofI4GPrcuK2KTKGeENvlBtcSj2j_LpCT_pkyThszA31-95xrNP7sz-QgUWh1EpxV2yDRNwge5bivJay1GEyCrcTMnTQvU5fG5pYDT9bKMlr27jln9KJId10iGn6JjOhvlo8og87Ikk_dwh_5jcce0OuddtLbneIffLzU5uT4j92sDFAdgxrRdnpmmXdOEpOI6j7qrXwba0aeFQEMbM6dwgEac1jv_256pZzijwRFpfC4xCC-vwpOD5zMzXT8nRZO9HuR_3eyvEFapaY2Nyq3xVJzUTQmFUJV2eJsyqzFfWOYCoLrxUCTPM5J7zIgUiKC2XOZRUnj0jW-2idS8IZcx7aRnLCmHzIjWGM1WrSuQFnJSKJCIfNibX510KDY2hB6KjER09oBOR9wGSoZ65OEXlmeT6-PCbnhx_n5byINE8IrsbzHQ_6JY6FQr4mWIK2nk7FIOtcQ3EtG6xCnUg5oUrK3TreQfx8GMQCaYCIuaIyBH4QwVMxT0uaZtZSMkd0qKpLCIfN25yo1t_-69Z50fj5mHa1P3x0wbfeuk02B4C3YLLiLDgc_8ypN47-DIdvr38j269Ig_wM96-TvNdsnV5sXKvgXdd2jdhzP0GptonBA
  priority: 102
  providerName: Springer Nature
– databaseName: Wiley Online Library website
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE2IvCMYtYyAjIQQPEUkc2_EjlJWp0iYkmMabZSc2DevSaV2l9d9zjnMZESAkKlVqY-c0PRf7O86XY0JeCc699ELFXpU-RgAfW5cVsUmVM8IbfCHb4lgcnuSzb7xnE-KzMG19iGHBDSMjjNcY4Mau-h17sGqoO7c_kJvFIV6luE22sW4Msvqy_PMNy6MIOVdYZsnTQnXVfVDEu7GA0cS0jTq-_hPq_J08OdxBHaqNjoFumKmm98m9DmLS961PPCC3XLNL7rSbTm52yd1Jv8fbQ2I_1jBsAG6m1fLc1M2KLj0Fl3LUXXcM2YbWDRwKlJkFXRiE6LTCkaH5vq5XcwoIklY31KMgYROeIbyYm8XmETmZHnydHMbdrgtxiXzX2JjcKl9WScWEUJhvSZenCbMq86V1DoxXFV6qhBlmcs95kQJElJbLHFpKzx6TrWbZuKeEMua9tIxlhbB5kRrDmapUKfICTkpFEpE3vcr1RVtcQ2NSgtbRaB09WCcir4NJhn7m8gw5aZLr0-NPenr6ZTaRR4nmEdnvbaa7cFzpVChAboopkPNyaAZd490R07jlOvSBbBjGXLisJ62Jhx-DHDEVkEtHRI6MP3TAIt3jlqaeh2LdoWCayiLytneTXy7rb_81a_1oLB4mVN0dP6vxrVdOg-4hBS64jAgLPvcvReqDow-z4dvef531jOzgZ1ziTvN9snV1uXbPAZtd2Rch-n4CbjwygQ
  priority: 102
  providerName: Wiley-Blackwell
Title Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly
URI https://api.istex.fr/ark:/67375/WNG-FWSJC7M0-5/fulltext.pdf
https://link.springer.com/article/10.15252/embj.201591176
https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201591176
https://www.ncbi.nlm.nih.gov/pubmed/25916825
https://www.proquest.com/docview/1696159396
https://search.proquest.com/docview/1697218870
https://pubmed.ncbi.nlm.nih.gov/PMC4547892
http://kipublications.ki.se/Default.aspx?queryparsed=id:131619857
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfWIQQvCMZXYExGQggesiZxbMePEFamSp0mwbS9WXZir2FtWq2rtP73nJ0PVgFColIrJXbc-O5s_8755Q6hd4xSyy0ToRWFDR2AD7VJslDFwihmlfs4tsUJOz5Lxxf0YgfR7l0YT9ovdHVYz-aHdTX13MrlvBh2PLHh6ST3QahEMhygARho56J3vI7Me1l-YyWNM9HG86EJTYZmrn84OheFIc5d9iIA_zHLXJ7sO6vSPSfg2z9Bzt-Zk_3j0z7U6DbK9cvU6DF61OJL_KnpxxO0Y-o9dL_JOLnZQw_yLsHbU6S_VDBnAGjG5WKuqnqFFxaDPRlsblt6bI2rGk55vswMz5TD57h000J9ua5WUwzwEZe_eEe-hY1_gXA5VbPNM3Q2OvqeH4dtyoWwcGTXUKlUC1uUUUkYE87Z4iaNI6JFYgttDGiuzCwXEVFEpZbSLAZ8yDXlKZQUljxHu_WiNi8RJsRarglJMqbTLFaKElGKgqUZXBSzKEAfOpHLZRNZQzqPxClKOkXJXlEBeu9V0tdT11eOkMapPD_5Kkfn38Y5n0SSBmi_05lsx-JKxkwAbBNEQDtv-2KQtXs0omqzWPs64ArDhAu39aJRcf9nnY0EiG8pv6_gInRvl4Dh-kjdraEG6GNnJndu6299TRo72m4eVlPZnr-q3FeujATZg_-bUR4g4m3uX4KUR5PP4_7o1X936DV66Fpxe9xxuo92b67X5g2Asxt9gAZJegq_OcsP_MD8CdnoOT0
link.rule.ids 230,315,730,783,787,888,11575,27937,27938,41133,42202,46065,46489,51589,53805,53807
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExovCMZXxoAgIQQP0Zr4K36EslLKWiGxaXuznMSm2bp0Wldp_e-5c9JsESAkIuUhtnNJ7sP-nX05E_JWcO6kEypyKncRAvgos0kamVhZI5zBA6MtJmJ4xEYn_OTWvzB1foh2wg0tw_fXaOA4Ib3esgfThtrz7BSDszgYrBR3ySYTLEXNTtj3mzCP1Dtdfp6Fxalq0vsgib0ugc7ItIlMvv4T7Pw9erJdQm3TjXaRrh-qBg_JgwZjhh9rpXhE7thqm9yrd51cbZOt_nqTt8ck-1xCvwHAOSzm56asFuHchaBTNrTXTYhsFZYVFPmYmVk4M4jRwwK7hurnslxMQ4CQYXETe-QprPxPhBdTM1s9IUeD_cP-MGq2XYhyDHiNjGGZcnnRK6gQCh0uaVnco5lKXJ5ZC9IrUidVjxpqmOM8jQEjyoxLBjW5o0_JRjWv7HMSUuqczChNUpGxNDaGU1WoHMQEN8WiF5D3a5brizq7hkavBKWjUTq6lU5A3nmRtO3M5RkGpUmujydf9OD4x6gvxz3NA7K7lplu7HGhY6EAuimqgM6bthp4jcsjprLzpW8D7jB0uvBaz2oRtw8DJzEW4EwHRHaE3zbALN3dmqqc-mzdPmOaSgLyYa0mt17rb9-a1HrUJQ8jqm7Kz0o89cJq4D34wCmXAaFe5_7FSL0__jRqr3b-667XZGt4OD7QB18n316Q-1iO890x2yUbV5dL-xKA2lX2ylviLwiqNfU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgEx8vCMbHAgOChBA8RGvir_gRupVRWDUJpvFmOYlNs3Vpta7S-t9z53yMCBASlfJQ27kkvjv7d84vZ0JeC86ddEJFTuUuQgAfZTZJIxMra4Qz-EO2xUQcHLPxd96yCfFbmDo_RLfghp7hx2t08EXh2h17MGuoPc9OkZvFwV-luEk2GYBxZPUl7Oia5ZH6mMsvs7A4VU12HxSx2xfQm5g2sY-v_oQ6fydPdm9Qu2yjfaDrZ6rRfXKvgZjh-9omHpAbttoit-pNJ9db5M6w3ePtIcn2Shg2ADeHxfzclNUynLsQTMqG9qphyFZhWUGRp8zMwplBiB4WODJUP1blchoCggyLa-qRl7D23xAupma2fkSOR_vfhgdRs-tClCPfNTKGZcrlxaCgQiiMt6Rl8YBmKnF5Zi0or0idVANqqGGO8zQGiCgzLhnU5I4-JhvVvLLbJKTUOZlRmqQiY2lsDKeqULlgKZwUi0FA3rZdrhd1cg2NQQlqR6N2dKedgLzxKunamYsz5KRJrk8mH_Xo5Ot4KA8Hmgdkp9WZbtxxqWOhALkpqkDOq64a-hrfjpjKzle-DUTDMObCbT2pVdxdDGLEWEAsHRDZU37XAJN092uqcuqTdfuEaSoJyLvWTH65rb89a1LbUV88TKi6KT8r8dBLq6HvIQROuQwI9Tb3r47U-4cfxt2_p_911kty-2hvpL98mnx-Ru5iMa52x2yHbFxerOxzgGmX2QvviD8ByeA1FQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+domains+of+gene+expression+in+germinal+layers+distinguish+the+development+of+gyrencephaly&rft.jtitle=The+EMBO+journal&rft.au=de+Juan+Romero%2C+Camino&rft.au=Bruder%2C+Carl&rft.au=Tomasello%2C+Ugo&rft.au=Sanz%E2%80%90Anquela%2C+Jos%C3%A9+Miguel&rft.date=2015-07-14&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=34&rft.issue=14&rft.spage=1859&rft.epage=1874&rft_id=info:doi/10.15252%2Fembj.201591176&rft.externalDBID=10.15252%252Fembj.201591176&rft.externalDocID=EMBJ201591176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon