Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly
Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large‐scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparin...
Saved in:
Published in | The EMBO journal Vol. 34; no. 14; pp. 1859 - 1874 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Blackwell Publishing Ltd
14.07.2015
Nature Publishing Group UK John Wiley & Sons, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large‐scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices.
Synopsis
Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures.
Microarray analysis of developing ferret cerebral cortex reveals transcriptomic differences between prospective folds and fissures.
Differential gene expression delineates mosaic patterns along proliferative zones prior to the emergence of folds.
Some mosaics of gene expression correlate with the prospective location of folds versus fissures.
Differentially expressed genes in our microarray analysis include 80% of those mutated in human cortical malformations.
Graphical Abstract
Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. |
---|---|
AbstractList | Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ∼80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Synopsis Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. Microarray analysis of developing ferret cerebral cortex reveals transcriptomic differences between prospective folds and fissures. Differential gene expression delineates mosaic patterns along proliferative zones prior to the emergence of folds. Some mosaics of gene expression correlate with the prospective location of folds versus fissures. Differentially expressed genes in our microarray analysis include 80% of those mutated in human cortical malformations. Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large‐scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Synopsis Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. Microarray analysis of developing ferret cerebral cortex reveals transcriptomic differences between prospective folds and fissures. Differential gene expression delineates mosaic patterns along proliferative zones prior to the emergence of folds. Some mosaics of gene expression correlate with the prospective location of folds versus fissures. Differentially expressed genes in our microarray analysis include 80% of those mutated in human cortical malformations. Graphical Abstract Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large‐scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations. These regional differences emerge from the existence of discrete domains of gene expression, which occur at multiple locations across the developing cortex of ferret and human, but not the lissencephalic mouse. Complex expression patterns emerge late during development and map the eventual location of folds or fissures. Protomaps of gene expression within germinal layers may contribute to define cortical folds or functional areas, but our findings demonstrate that they distinguish the development of gyrencephalic cortices. Synopsis Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. Microarray analysis of developing ferret cerebral cortex reveals transcriptomic differences between prospective folds and fissures. Differential gene expression delineates mosaic patterns along proliferative zones prior to the emergence of folds. Some mosaics of gene expression correlate with the prospective location of folds versus fissures. Differentially expressed genes in our microarray analysis include 80% of those mutated in human cortical malformations. Complex patterns of gene expression emerge in germinal layers during early cortical development of gyrencephalic animals. These modular expression patterns map the eventual location of folds and fissures. |
Author | Sanz‐Anquela, José Miguel Borrell, Víctor de Juan Romero, Camino Bruder, Carl Tomasello, Ugo |
Author_xml | – sequence: 1 givenname: Camino surname: de Juan Romero fullname: de Juan Romero, Camino organization: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain – sequence: 2 givenname: Carl surname: Bruder fullname: Bruder, Carl organization: Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden – sequence: 3 givenname: Ugo surname: Tomasello fullname: Tomasello, Ugo organization: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain – sequence: 4 givenname: José Miguel surname: Sanz-Anquela fullname: Sanz-Anquela, José Miguel organization: Service of Pathology, Hospital Universitario "Principe de Asturias", Alcalá de Henares, Spain – sequence: 5 givenname: Víctor surname: Borrell fullname: Borrell, Víctor email: vborrell@umh.es organization: Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25916825$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:131619857$$DView record from Swedish Publication Index |
BookMark | eNqFkktv1DAUhS1URKeFNTsUiQ2btHYS2zELpDL0QdXCAlCXlpPczHia2MFO2ubf150MoykSYmHZsr9zfH2PD9CesQYQekvwEaEJTY6hLVZHCSZUEMLZCzQjGcNxgjndQzOcMBJnJBf76MD7FcaY5py8QvtJwFme0BkqvmhfOughqmyrtPGRraMFGIjgoXPgvbYm0iZsuVYb1USNGsH5qNK-12YxaL-M-mVQwx00tmvB9GuH0YEpoVuqZnyNXtaq8fBmMx-iX2enP-cX8dX386_zk6u4ZIyzWKmsEHVZ4SplTJAsIxwygtNCJHVZACilqrzmAqcqVVlNaU5SgnlBeRZOyjo9RGLy9ffQDYXsnG6VG6VVOqxtJTf7t_ppSA8yGDAicsqD9tOkDUALVRme4VTz3OLZidFLubB3MqMZz0USDD5sDJz9PYDvZRsaC02jDNjBS8IET0iecxzQ93-hKzu40Ns1xUKUqWCBOp6o0lnvHdTbYgiW6-zlU_Zym31QvNt9w5b_E3YAPk7AvW5g_J-fPL3-fLnrjjfdDToTvsNO1f8sKJ4k4a_Aw_Y-5W4l4ymn8ubbuTy7-XE559dY0vQRuTrf1Q |
CODEN | EMJODG |
CitedBy_id | crossref_primary_10_1007_s10548_019_00734_8 crossref_primary_10_1038_s41598_020_71535_4 crossref_primary_10_1093_hmg_ddx038 crossref_primary_10_1016_j_devcel_2023_11_004 crossref_primary_10_1093_cercor_bhad383 crossref_primary_10_1242_dev_201381 crossref_primary_10_3389_fcell_2020_604448 crossref_primary_10_1073_pnas_1715451115 crossref_primary_10_1152_physrev_00016_2021 crossref_primary_10_1038_ncomms11812 crossref_primary_10_1098_rstb_2017_0321 crossref_primary_10_1016_j_neuron_2021_08_007 crossref_primary_10_1002_wdev_256 crossref_primary_10_1073_pnas_2220200120 crossref_primary_10_1016_j_neures_2018_09_011 crossref_primary_10_1093_cercor_bhz101 crossref_primary_10_15252_embj_2019103373 crossref_primary_10_1073_pnas_2209964120 crossref_primary_10_1016_j_semcdb_2017_08_045 crossref_primary_10_1002_dneu_22588 crossref_primary_10_1002_cne_24606 crossref_primary_10_1016_j_cortex_2019_04_011 crossref_primary_10_1111_dgd_12371 crossref_primary_10_1038_nrn_2017_138 crossref_primary_10_1242_dev_169276 crossref_primary_10_1093_cercor_bhaa328 crossref_primary_10_1140_epjst_e2020_000001_6 crossref_primary_10_1016_j_neuroimage_2019_04_031 crossref_primary_10_1016_j_ceb_2017_11_009 crossref_primary_10_1016_j_semcdb_2017_09_031 crossref_primary_10_1038_s44318_024_00068_7 crossref_primary_10_1016_j_neuron_2023_10_005 crossref_primary_10_1146_annurev_pathmechdis_012418_012927 crossref_primary_10_1016_j_celrep_2022_110381 crossref_primary_10_1103_PhysRevLett_121_228002 crossref_primary_10_1016_j_devcel_2017_05_011 crossref_primary_10_15252_embj_2020105479 crossref_primary_10_3389_fnins_2018_00359 crossref_primary_10_1016_j_plrev_2019_01_012 crossref_primary_10_15252_embj_201593701 crossref_primary_10_1016_j_neuroimage_2020_117169 crossref_primary_10_1038_s41467_021_26971_9 crossref_primary_10_1126_sciadv_adn9998 crossref_primary_10_1093_cercor_bhab420 crossref_primary_10_3389_fnmol_2021_642016 crossref_primary_10_1093_cercor_bhz003 crossref_primary_10_7554_eLife_54873 crossref_primary_10_1177_10738584231190839 crossref_primary_10_1093_cercor_bhz249 crossref_primary_10_1126_sciadv_adn1640 crossref_primary_10_1093_cercor_bhaa181 crossref_primary_10_15252_embj_2019104163 crossref_primary_10_1016_j_cell_2017_04_012 crossref_primary_10_1016_j_neuron_2018_07_013 crossref_primary_10_1016_j_brain_2023_100080 crossref_primary_10_1038_s41580_020_00318_6 crossref_primary_10_1038_s41586_019_0962_4 crossref_primary_10_1111_joa_12939 crossref_primary_10_1016_j_celrep_2019_03_091 crossref_primary_10_1093_cercor_bhx098 crossref_primary_10_1016_j_cortex_2018_03_005 crossref_primary_10_1016_j_neuron_2021_07_007 crossref_primary_10_1126_science_aad2029 crossref_primary_10_1248_yakushi_20_00198_3 crossref_primary_10_1016_j_conb_2016_11_009 crossref_primary_10_1098_rsob_180066 crossref_primary_10_1016_j_media_2016_06_008 crossref_primary_10_1126_sciadv_abj4010 crossref_primary_10_3389_fcell_2022_847159 crossref_primary_10_1016_j_tins_2020_10_012 crossref_primary_10_1523_JNEUROSCI_1105_17_2017 crossref_primary_10_1016_j_conb_2016_11_004 crossref_primary_10_1126_science_aba4517 crossref_primary_10_1093_cercor_bhac537 crossref_primary_10_1016_j_jbiomech_2021_110851 crossref_primary_10_1523_JNEUROSCI_1662_18_2018 crossref_primary_10_7554_eLife_53777 crossref_primary_10_1002_1873_3468_12924 crossref_primary_10_1093_cercor_bhaa086 crossref_primary_10_1038_srep29578 crossref_primary_10_1093_cercor_bhw270 crossref_primary_10_1016_j_semcdb_2021_09_007 crossref_primary_10_1002_cne_25615 crossref_primary_10_3389_fcell_2020_574619 crossref_primary_10_3389_fnana_2017_00069 crossref_primary_10_1002_wdev_347 crossref_primary_10_1038_s41467_021_26447_w crossref_primary_10_7554_eLife_29285 crossref_primary_10_7554_eLife_91406 crossref_primary_10_1038_s41583_018_0112_2 crossref_primary_10_1016_j_neuroimage_2018_03_046 crossref_primary_10_1042_BST20200923 crossref_primary_10_1093_cercor_bhae055 crossref_primary_10_1038_s41583_022_00631_3 crossref_primary_10_1016_j_neuron_2024_02_005 crossref_primary_10_1523_JNEUROSCI_1106_17_2017 crossref_primary_10_1038_nn_4307 crossref_primary_10_7554_eLife_91406_3 crossref_primary_10_1016_j_neuron_2019_07_009 crossref_primary_10_1126_sciadv_abc6792 crossref_primary_10_1016_j_neuron_2018_08_005 crossref_primary_10_1242_dev_163766 crossref_primary_10_1016_j_neuron_2016_09_005 crossref_primary_10_12688_f1000research_20332_1 crossref_primary_10_1016_j_neuroimage_2023_120344 crossref_primary_10_1038_srep15370 crossref_primary_10_7554_eLife_45961 crossref_primary_10_3389_fcell_2021_661759 crossref_primary_10_1016_j_conb_2016_05_004 crossref_primary_10_1242_dev_136325 crossref_primary_10_1016_j_celrep_2017_08_024 crossref_primary_10_1248_bpb_b18_00142 crossref_primary_10_15252_embj_201591952 crossref_primary_10_1016_j_pneurobio_2021_102111 crossref_primary_10_1093_cercor_bhad538 crossref_primary_10_1080_23262133_2016_1242957 crossref_primary_10_1073_pnas_2314802121 crossref_primary_10_1073_pnas_2206147119 |
Cites_doi | 10.1073/pnas.1112213108 10.1038/nn.2427 10.1016/j.conb.2010.10.002 10.1126/science.1244392 10.1038/ng1993 10.1016/j.cell.2012.12.041 10.1038/nrn2097 10.2144/03342mt01 10.1371/journal.pone.0037104 10.1126/science.3291116 10.1073/pnas.1209647109 10.1016/j.neuron.2005.06.032 10.1093/brain/aws019 10.1007/s00401-005-1059-8 10.1007/978-1-4615-3824-0_1 10.1016/j.cell.2011.06.030 10.1093/cercor/bhr284 10.1523/JNEUROSCI.09-04-01242.1989 10.1016/j.neuron.2014.04.014 10.1146/annurev-cellbio-092910-154226 10.1093/cercor/12.4.423 10.1016/j.cell.2013.03.027 10.1038/nrn2151 10.1038/nn.3980 10.1038/nature13973 10.1101/cshperspect.a002519 10.1016/j.conb.2014.02.007 10.1016/j.neuron.2013.09.032 10.1186/1749-8104-2-10 10.1002/cne.902780202 10.1126/science.1151695 10.1038/emboj.2013.96 10.1242/dev.128.2.193 10.1126/science.aaa1975 10.1126/science.1092780 10.1038/nrm1739 10.1523/JNEUROSCI.3621-12.2013 10.1016/j.cell.2013.11.033 10.1073/pnas.1209076110 10.1126/science.288.5464.344 10.1038/nn.2553 10.1128/JVI.02305-09 10.1016/j.neuron.2008.09.028 10.1093/cercor/bhq238 10.1186/gb-2003-4-5-p3 10.1002/dneu.22013 10.1038/366464a0 10.1038/nrn2008 10.1093/cercor/12.1.37 10.1038/35049541 10.1016/S0896-6273(00)80651-0 |
ContentType | Journal Article |
Copyright | The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license. 2015 EMBO 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015 |
Copyright_xml | – notice: The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015 – notice: 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license – notice: 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license. – notice: 2015 EMBO – notice: 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license 2015 |
DBID | BSCLL C6C 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.15252/embj.201591176 |
DatabaseName | Istex SpringerOpen Wiley Online Library website Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 24P name: Wiley Online Library website url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1460-2075 |
EndPage | 1874 |
ExternalDocumentID | oai_prod_swepub_kib_ki_se_131619857 3743202721 10_15252_embj_201591176 25916825 EMBJ201591176 ark_67375_WNG_FWSJC7M0_5 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MICINN grantid: SAF2009‐07367 – fundername: European Union Seventh Framework Programme grantid: FP7/2007–2013 – fundername: DESIRE grantid: 602531 – fundername: Spanish Ministry of Economy and Competitivity grantid: BFU2012‐33473; CSD2007‐00023 – fundername: European Research Council grantid: StG309633 – fundername: European Union Seventh Framework Programme funderid: FP7/2007–2013 – fundername: DESIRE funderid: 602531 – fundername: MICINN funderid: SAF2009‐07367 – fundername: Spanish Ministry of Economy and Competitivity funderid: BFU2012‐33473; CSD2007‐00023 – fundername: European Research Council funderid: StG309633 |
GroupedDBID | --- -DZ -Q- -~X 0R~ 123 1OC 24P 29G 2WC 33P 36B 39C 53G 5VS 70F 8R4 8R5 A8Z AAESR AAEVG AAHBH AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACSMW ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFNX AFGKR AFPWT AFRAH AFZJQ AHMBA AIAGR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS AUFTA AZBYB AZFZN AZVAB BAWUL BDRZF BENPR BFHJK BMNLL BMXJE BRXPI BSCLL BTFSW C6C CS3 DCZOG DIK DPXWK DRFUL DRSTM DU5 E3Z EBD EBLON EBS EJD EMB EMOBN ESTFP F5P G-S GROUPED_DOAJ GX1 H13 HH5 HK~ HYE KQ8 LATKE LEEKS LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P2P P2W Q2X R.K RHF RHI RNS ROL RPM SV3 TN5 TR2 WBKPD WH7 WIH WIK WIN WOHZO WXSBR WYJ YSK ZCA ZZTAW ~KM CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 5PM .55 3O- 3V. 4.4 7X7 88A 88E 8AO 8C1 8CJ 8FE 8FH 8FI 8FJ 8G5 ABUWG ABZEH ACKIV ADTPV AFKRA AI. AOWAS ASPBG AVWKF AZQEC BBNVY BHPHI BKSAR BPHCQ BVXVI C1A CAG CCPQU COF D1J D8T DWQXO FA8 FEDTE FYUFA GNUQQ GODZA GUQSH HCIFZ HMCUK HVGLF H~9 LH4 LK8 M0L M1P M2O M7P PCBAR PQQKQ PROAC PSQYO RIG RNI RZO UKHRP VH1 WOQ X7M XSW Y6R YYP ZGI ZXP ZZAVC |
ID | FETCH-LOGICAL-c6676-aa4b9fcd0d366914417e4103b92fcbeeaaad8f7903a3a4f55813107b574aadcf3 |
IEDL.DBID | RPM |
ISSN | 0261-4189 1460-2075 |
IngestDate | Wed Oct 30 04:59:40 EDT 2024 Tue Sep 17 21:27:50 EDT 2024 Fri Oct 25 03:15:32 EDT 2024 Thu Oct 10 21:06:35 EDT 2024 Fri Aug 23 03:16:13 EDT 2024 Sat Sep 28 08:09:34 EDT 2024 Sat Aug 24 00:38:25 EDT 2024 Thu Oct 24 02:50:25 EDT 2024 Wed Oct 30 09:54:22 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | transcription factor lissencephaly microarray protocortex folding |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6676-aa4b9fcd0d366914417e4103b92fcbeeaaad8f7903a3a4f55813107b574aadcf3 |
Notes | MICINN - No. SAF2009-07367 European Research Council - No. StG309633 Spanish Ministry of Economy and Competitivity - No. BFU2012-33473; No. CSD2007-00023 ArticleID:EMBJ201591176 DESIRE - No. 602531 Supplementary Figure S1Supplementary Figure S2Supplementary Table S1Supplementary Table S2Supplementary Table S3Supplementary Table S4Supplementary Table S5Supplementary Table S6Supplementary LegendsReview Process File ark:/67375/WNG-FWSJC7M0-5 European Union Seventh Framework Programme - No. FP7/2007-2013 istex:6BAF9D2C4A9F3A2B5DC2906FA9B6CF0E98C7A544 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: GeneData AG, Basel, Switzerland Subject Categories Development & Differentiation; Neuroscience |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547892/ |
PMID | 25916825 |
PQID | 1696159396 |
PQPubID | 35985 |
PageCount | 16 |
ParticipantIDs | swepub_primary_oai_prod_swepub_kib_ki_se_131619857 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547892 proquest_miscellaneous_1697218870 proquest_journals_1696159396 crossref_primary_10_15252_embj_201591176 pubmed_primary_25916825 wiley_primary_10_15252_embj_201591176_EMBJ201591176 springer_journals_10_15252_embj_201591176 istex_primary_ark_67375_WNG_FWSJC7M0_5 |
PublicationCentury | 2000 |
PublicationDate | 14 July 2015 |
PublicationDateYYYYMMDD | 2015-07-14 |
PublicationDate_xml | – month: 07 year: 2015 text: 14 July 2015 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Heidelberg – name: Chichester, UK |
PublicationTitle | The EMBO journal |
PublicationTitleAbbrev | EMBO J |
PublicationTitleAlternate | EMBO J |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Nature Publishing Group UK John Wiley & Sons, Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Nature Publishing Group UK – name: John Wiley & Sons, Ltd |
References | Fietz SA, Huttner WB (2011) Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol 21: 23-35 Mangale VS, Hirokawa KE, Satyaki PR, Gokulchandran N, Chikbire S, Subramanian L, Shetty AS, Martynoga B, Paul J, Mai MV, Li Y, Flanagan LA, Tole S, Monuki ES (2008) Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate. Science 319: 304-309 Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47: 353-364 Johnson MB, Wang PP, Atabay KD, Murphy EA, Doan RN, Hecht JL, Walsh CA (2015) Single-cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex. Nat Neurosci 18: 637-646 Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V et al (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34: 374-378 Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V (2011) A role for intermediate radial glia in the tangential expansion of the Mammalian cerebral cortex. Cereb Cortex 21: 1674-1694 Sahara S, Kawakami Y, Izpisua Belmonte JC, O'Leary DD (2007) Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior-posterior cortical area patterning. Neural Dev 2: 10 Lui JH, Nowakowski TJ, Pollen AA, Javaherian A, Kriegstein AR, Oldham MC (2014) Radial glia require PDGFD-PDGFRbeta signalling in human but not mouse neocortex. Nature 515: 264-268 Jackson CA, Peduzzi JD, Hickey TL (1989) Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons. J Neurosci 9: 1242-1253 Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7: 883-890 Fang Y, Rowe T, Leon AJ, Banner D, Danesh A, Xu L, Ran L, Bosinger SE, Guan Y, Chen H, Cameron CC, Cameron MJ, Kelvin DJ (2010) Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus. J Virol 84: 8369-8388 Dehay C, Giroud P, Berland M, Smart I, Kennedy H (1993) Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature 366: 464-466 Smart IH, McSherry GM (1986a) Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. J Anat 146: 141-152 Fietz SA, Kelava I, Vogt J, Wilsch-Brauninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB (2010) OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci 13: 690-699 Manger PR, Kiper D, Masiello I, Murillo L, Tettoni L, Hunyadi Z, Innocenti GM (2002) The representation of the visual field in three extrastriate areas of the ferret (Mustela putorius) and the relationship of retinotopy and field boundaries to callosal connectivity. Cereb Cortex 12: 423-437 Law MI, Zahs KR, Stryker MP (1988) Organization of primary visual cortex (area 17) in the ferret. J Comp Neurol 278: 157-180 Reillo I, Borrell V (2012) Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. Cereb Cortex 22: 2039-2054 Pattabiraman K, Golonzhka O, Lindtner S, Nord AS, Taher L, Hoch R, Silberberg SN, Zhang D, Chen B, Zeng H, Pennacchio LA, Puelles L, Visel A, Rubenstein JL (2014) Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex. Neuron 82: 989-1003 Hobert O (2011) Regulation of terminal differentiation programs in the nervous system. Annu Rev Cell Dev Biol 27: 681-696 Nonaka-Kinoshita M, Reillo I, Artegiani B, Martinez-Martinez MA, Nelson M, Borrell V, Calegari F (2013) Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J 32: 1817-1828 Visel A, Taher L, Girgis H, May D, Golonzhka O, Hoch RV, McKinsey GL, Pattabiraman K, Silberberg SN, Blow MJ, Hansen DV, Nord AS, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I, Shoukry M, Afzal V, Kaplan T et al (2013) A high-resolution enhancer atlas of the developing telencephalon. Cell 152: 895-908 Camp JV, Svensson TL, McBrayer A, Jonsson CB, Liljestrom P, Bruder CE (2012) De-novo transcriptome sequencing of a normalized cDNA pool from influenza infected ferrets. PLoS ONE 7: e37104 Stahl R, Walcher T, De Juan Romero C, Pilz GA, Cappello S, Irmler M, Sanz-Aquela JM, Beckers J, Blum R, Borrell V, Gotz M (2013) Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate. Cell 153: 535-549 Borrell V, Gotz M (2014) Role of radial glial cells in cerebral cortex folding. Curr Opin Neurobiol 27C: 39-46 Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8: 427-437 Rash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM (2013) Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain. J Neurosci 33: 10802-10814 Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12: 37-53 Bishop KM, Goudreau G, O'Leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288: 344-349 Ayoub AE, Oh S, Xie Y, Leng J, Cotney J, Dominguez MH, Noonan JP, Rakic P (2011) Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing. Proc Natl Acad Sci U S A 108: 14950-14955 Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8: 438-450 Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat Rev Genet 1: 20-29 Bae BI, Tietjen I, Atabay KD, Evrony GD, Johnson MB, Asare E, Wang PP, Murayama AY, Im K, Lisgo SN, Overman L, Sestan N, Chang BS, Barkovich AJ, Grant PE, Topcu M, Politsky J, Okano H, Piao X, Walsh CA (2014) Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning. Science 343: 764-768 Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146: 18-36 Nord AS, Blow MJ, Attanasio C, Akiyama JA, Holt A, Hosseini R, Phouanenavong S, Plajzer-Frick I, Shoukry M, Afzal V, Rubenstein JL, Rubin EM, Pennacchio LA, Visel A (2013) Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155: 1521-1531 Florio M, Albert M, Taverna E, Namba T, Brandl H, Lewitus E, Haffner C, Sykes A, Wong FK, Peters J, Guhr E, Klemroth S, Prufer K, Kelso J, Naumann R, Nusslein I, Dahl A, Lachmann R, Paabo S, Huttner WB (2015) Human-specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion. Science 347: 1465-1470 Yun K, Potter S, Rubenstein JL (2001) Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon. Development 128: 193-205 Rakic P (1988) Specification of cerebral cortical areas. Science 241: 170-176 Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A, Amiel J, Boddaert N, Picard C, Sbiti A, Asermouh A, Attie-Bitach T, Encha-Razavi F, Munnich A, Sefiani A, Lyonnet S (2007) Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet 39: 454-456 Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60: 56-69 Betizeau M, Cortay V, Patti D, Pfister S, Gautier E, Bellemin-Menard A, Afanassieff M, Huissoud C, Douglas RJ, Kennedy H, Dehay C (2013) Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80: 442-457 Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB (2012) A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135: 1348-1369 Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R, Dobyns WB, Qasrawi B, Winter RM, Innes AM, Voit T, Ross ME, Michaud JL, Descarie JC, Barkovich AJ, Walsh CA (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303: 2033-2036 Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4: P3 Smart IH, McSherry GM (1986b) Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes. J Anat 147: 27-43 Elsen GE, Hodge RD, Bedogni F, Daza RA, Nelson BR, Shiba N, Reiner SL, Hevner RF (2013) The protomap is propagated to cortical plate neurons through an Eomes-dependent intermediate map. Proc Natl Acad Sci U S A 110: 4081-4086 Hevner RF (2005) The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol 110: 208-221 Borrell V, Reillo I (2012) Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol 72: 955-971 Chou SJ, Perez-Garcia CG, Kroll TT, O'Leary DD (2009) Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex. Nat Neurosci 12: 1381-1389 Fox JW, Lamperti ED, Eksioglu YZ, Hong SE, Feng Y, Graham DA, Scheffer IE, Dobyns WB, Hirsch BA, Radtke RA, Berkovic SF, Huttenlocher PR, Walsh CA (1998) Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia. Neuron 21: 1315-1325 Sansom SN, Livesey FJ (2009) Gradients in the br Molyneaux, Arlotta, Menezes, Macklis (CR34) 2007; 8 Visel, Taher, Girgis, May, Golonzhka, Hoch, McKinsey, Pattabiraman, Silberberg, Blow, Hansen, Nord, Akiyama, Holt, Hosseini, Phouanenavong, Plajzer‐Frick, Shoukry, Afzal, Kaplan (CR51) 2013; 152 Jessell (CR25) 2000; 1 Lukaszewicz, Savatier, Cortay, Giroud, Huissoud, Berland, Kennedy, Dehay (CR31) 2005; 47 Borrell, Gotz (CR8) 2014; 27C Mangale, Hirokawa, Satyaki, Gokulchandran, Chikbire, Subramanian, Shetty, Martynoga, Paul, Mai, Li, Flanagan, Tole, Monuki (CR32) 2008; 319 Reillo, Borrell (CR42) 2012; 22 Yun, Potter, Rubenstein (CR53) 2001; 128 Nonaka‐Kinoshita, Reillo, Artegiani, Martinez‐Martinez, Nelson, Borrell, Calegari (CR35) 2013; 32 Hobert (CR23) 2011; 27 Dehay, Giroud, Berland, Smart, Kennedy (CR11) 1993; 366 Kriegstein, Noctor, Martinez‐Cerdeno (CR27) 2006; 7 Chou, Perez‐Garcia, Kroll, O'Leary (CR10) 2009; 12 Piao, Hill, Bodell, Chang, Basel‐Vanagaite, Straussberg, Dobyns, Qasrawi, Winter, Innes, Voit, Ross, Michaud, Descarie, Barkovich, Walsh (CR38) 2004; 303 Betizeau, Cortay, Patti, Pfister, Gautier, Bellemin‐Menard, Afanassieff, Huissoud, Douglas, Kennedy, Dehay (CR5) 2013; 80 Rash, Tomasi, Lim, Suh, Vaccarino (CR40) 2013; 33 Smart, McSherry (CR48) 1986; 147 Dennis, Sherman, Hosack, Yang, Gao, Lane, Lempicki (CR13) 2003; 4 Sahara, Kawakami, Izpisua Belmonte, O'Leary (CR44) 2007; 2 Fox, Lamperti, Eksioglu, Hong, Feng, Graham, Scheffer, Dobyns, Hirsch, Radtke, Berkovic, Huttenlocher, Walsh (CR20) 1998; 21 Bishop, Goudreau, O'Leary (CR6) 2000; 288 Smart, McSherry (CR47) 1986; 146 Fang, Rowe, Leon, Banner, Danesh, Xu, Ran, Bosinger, Guan, Chen, Cameron, Cameron, Kelvin (CR15) 2010; 84 Florio, Albert, Taverna, Namba, Brandl, Lewitus, Haffner, Sykes, Wong, Peters, Guhr, Klemroth, Prufer, Kelso, Naumann, Nusslein, Dahl, Lachmann, Paabo, Huttner (CR19) 2015; 347 Sessa, Mao, Hadjantonakis, Klein, Broccoli (CR46) 2008; 60 Elsen, Hodge, Bedogni, Daza, Nelson, Shiba, Reiner, Hevner (CR14) 2013; 110 Fietz, Kelava, Vogt, Wilsch‐Brauninger, Stenzel, Fish, Corbeil, Riehn, Distler, Nitsch, Huttner (CR16) 2010; 13 Nord, Blow, Attanasio, Akiyama, Holt, Hosseini, Phouanenavong, Plajzer‐Frick, Shoukry, Afzal, Rubenstein, Rubin, Pennacchio, Visel (CR36) 2013; 155 Johnson, Wang, Atabay, Murphy, Doan, Hecht, Walsh (CR26) 2015; 18 Manger, Kiper, Masiello, Murillo, Tettoni, Hunyadi, Innocenti (CR33) 2002; 12 Barkovich, Guerrini, Kuzniecky, Jackson, Dobyns (CR4) 2012; 135 Fietz, Huttner (CR17) 2011; 21 Baala, Briault, Etchevers, Laumonnier, Natiq, Amiel, Boddaert, Picard, Sbiti, Asermouh, Attie‐Bitach, Encha‐Razavi, Munnich, Sefiani, Lyonnet (CR2) 2007; 39 Lui, Nowakowski, Pollen, Javaherian, Kriegstein, Oldham (CR30) 2014; 515 Reillo, de Juan Romero, Garcia‐Cabezas, Borrell (CR41) 2011; 21 Stahl, Walcher, De Juan Romero, Pilz, Cappello, Irmler, Sanz‐Aquela, Beckers, Blum, Borrell, Gotz (CR50) 2013; 153 Camp, Svensson, McBrayer, Jonsson, Liljestrom, Bruder (CR9) 2012; 7 Saeed, Sharov, White, Li, Liang, Bhagabati, Braisted, Klapa, Currier, Thiagarajan, Sturn, Snuffin, Rezantsev, Popov, Ryltsov, Kostukovich, Borisovsky, Liu, Vinsavich, Trush (CR43) 2003; 34 Ayoub, Oh, Xie, Leng, Cotney, Dominguez, Noonan, Rakic (CR1) 2011; 108 Sansom, Livesey (CR45) 2009; 1 Jackson, Peduzzi, Hickey (CR24) 1989; 9 Gotz, Huttner (CR21) 2005; 6 Fietz, Lachmann, Brandl, Kircher, Samusik, Schroder, Lakshmanaperumal, Henry, Vogt, Riehn, Distler, Nitsch, Enard, Paabo, Huttner (CR18) 2012; 109 Welker, Jones (CR52) 1990 Borrell, Reillo (CR7) 2012; 72 Lui, Hansen, Kriegstein (CR29) 2011; 146 Bae, Tietjen, Atabay, Evrony, Johnson, Asare, Wang, Murayama, Im, Lisgo, Overman, Sestan, Chang, Barkovich, Grant, Topcu, Politsky, Okano, Piao, Walsh (CR3) 2014; 343 Dehay, Kennedy (CR12) 2007; 8 Pattabiraman, Golonzhka, Lindtner, Nord, Taher, Hoch, Silberberg, Zhang, Chen, Zeng, Pennacchio, Puelles, Visel, Rubenstein (CR37) 2014; 82 Hevner (CR22) 2005; 110 Law, Zahs, Stryker (CR28) 1988; 278 Rakic (CR39) 1988; 241 Smart, Dehay, Giroud, Berland, Kennedy (CR49) 2002; 12 2007; 39 1986a; 146 2010; 13 2015; 347 2002; 12 2000; 1 1993; 366 2012; 72 2009; 12 2012; 135 1990 2008; 319 2007; 8 2013; 155 2003; 4 2011; 21 1986b; 147 2013; 152 2013; 110 2007; 2 2000; 288 2013; 153 2011; 27 2012; 22 2008; 60 2014; 515 2004; 303 2015; 18 2005; 110 2014; 27C 1989; 9 2006; 7 1988; 241 1998; 21 2014; 82 2010; 84 2012; 109 2001; 128 2005; 47 2003; 34 2011; 146 2011; 108 2013; 33 2013; 32 2013; 80 1988; 278 2005; 6 2012; 7 2009; 1 2014; 343 23431145 - Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4081-6 16133544 - Acta Neuropathol. 2005 Sep;110(3):208-21 17514196 - Nat Rev Neurosci. 2007 Jun;8(6):427-37 11884357 - Cereb Cortex. 2002 Apr;12(4):423-37 21873192 - Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14950-5 20436478 - Nat Neurosci. 2010 Jun;13(6):690-9 22684946 - Dev Neurobiol. 2012 Jul;72(7):955-71 15044805 - Science. 2004 Mar 26;303(5666):2033-6 20066088 - Cold Spring Harb Perspect Biol. 2009 Aug;1(2):a002519 11124115 - Development. 2001 Jan;128(2):193-205 21729779 - Cell. 2011 Jul 8;146(1):18-36 26022291 - EMBO J. 2015 Jul 14;34(14):1845-7 23375746 - Cell. 2013 Feb 14;152(4):895-908 22427329 - Brain. 2012 May;135(Pt 5):1348-69 11262869 - Nat Rev Genet. 2000 Oct;1(1):20-9 18202285 - Science. 2008 Jan 18;319(5861):304-9 21036598 - Curr Opin Neurobiol. 2011 Feb;21(1):23-35 16055060 - Neuron. 2005 Aug 4;47(3):353-64 23804101 - J Neurosci. 2013 Jun 26;33(26):10802-14 3693054 - J Anat. 1986 Jun;146:141-52 19820705 - Nat Neurosci. 2009 Nov;12(11):1381-9 12734009 - Genome Biol. 2003;4(5):P3 2703875 - J Neurosci. 1989 Apr;9(4):1242-53 23624932 - EMBO J. 2013 Jul 3;32(13):1817-28 23622239 - Cell. 2013 Apr 25;153(3):535-49 25391964 - Nature. 2014 Nov 13;515(7526):264-8 11734531 - Cereb Cortex. 2002 Jan;12(1):37-53 3291116 - Science. 1988 Jul 8;241(4862):170-6 17509151 - Neural Dev. 2007;2:10 21988826 - Cereb Cortex. 2012 Sep;22(9):2039-54 24531968 - Science. 2014 Feb 14;343(6172):764-8 24632307 - Curr Opin Neurobiol. 2014 Aug;27:39-46 21127018 - Cereb Cortex. 2011 Jul;21(7):1674-94 24360275 - Cell. 2013 Dec 19;155(7):1521-31 25721503 - Science. 2015 Mar 27;347(6229):1465-70 24814534 - Neuron. 2014 Jun 4;82(5):989-1003 17353897 - Nat Genet. 2007 Apr;39(4):454-6 21985672 - Annu Rev Cell Dev Biol. 2011;27:681-96 9883725 - Neuron. 1998 Dec;21(6):1315-25 3693076 - J Anat. 1986 Aug;147:27-43 3068264 - J Comp Neurol. 1988 Dec 8;278(2):157-80 17514197 - Nat Rev Neurosci. 2007 Jun;8(6):438-50 20534862 - J Virol. 2010 Sep;84(17):8369-88 22606336 - PLoS One. 2012;7(5):e37104 24139044 - Neuron. 2013 Oct 16;80(2):442-57 16314867 - Nat Rev Mol Cell Biol. 2005 Oct;6(10):777-88 12613259 - Biotechniques. 2003 Feb;34(2):374-8 22753484 - Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11836-41 17033683 - Nat Rev Neurosci. 2006 Nov;7(11):883-90 8247154 - Nature. 1993 Dec 2;366(6454):464-6 10764649 - Science. 2000 Apr 14;288(5464):344-9 25734491 - Nat Neurosci. 2015 May;18(5):637-46 18940588 - Neuron. 2008 Oct 9;60(1):56-69 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 Smart IH (e_1_2_8_49_1) 1986; 147 e_1_2_8_51_1 Smart IH (e_1_2_8_48_1) 1986; 146 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 8 start-page: 427 year: 2007 end-page: 437 ident: CR34 article-title: Neuronal subtype specification in the cerebral cortex publication-title: Nat Rev Neurosci contributor: fullname: Macklis – volume: 21 start-page: 1315 year: 1998 end-page: 1325 ident: CR20 article-title: Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia publication-title: Neuron contributor: fullname: Walsh – volume: 110 start-page: 208 year: 2005 end-page: 221 ident: CR22 article-title: The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis publication-title: Acta Neuropathol contributor: fullname: Hevner – volume: 128 start-page: 193 year: 2001 end-page: 205 ident: CR53 article-title: Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon publication-title: Development contributor: fullname: Rubenstein – volume: 80 start-page: 442 year: 2013 end-page: 457 ident: CR5 article-title: Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate publication-title: Neuron contributor: fullname: Dehay – volume: 2 start-page: 10 year: 2007 ident: CR44 article-title: Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior‐posterior cortical area patterning publication-title: Neural Dev contributor: fullname: O'Leary – volume: 109 start-page: 11836 year: 2012 end-page: 11841 ident: CR18 article-title: Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self‐renewal publication-title: Proc Natl Acad Sci U S A contributor: fullname: Huttner – volume: 72 start-page: 955 year: 2012 end-page: 971 ident: CR7 article-title: Emerging roles of neural stem cells in cerebral cortex development and evolution publication-title: Dev Neurobiol contributor: fullname: Reillo – volume: 13 start-page: 690 year: 2010 end-page: 699 ident: CR16 article-title: OSVZ progenitors of human and ferret neocortex are epithelial‐like and expand by integrin signaling publication-title: Nat Neurosci contributor: fullname: Huttner – volume: 155 start-page: 1521 year: 2013 end-page: 1531 ident: CR36 article-title: Rapid and pervasive changes in genome‐wide enhancer usage during mammalian development publication-title: Cell contributor: fullname: Visel – volume: 347 start-page: 1465 year: 2015 end-page: 1470 ident: CR19 article-title: Human‐specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion publication-title: Science contributor: fullname: Huttner – volume: 1 start-page: 20 year: 2000 end-page: 29 ident: CR25 article-title: Neuronal specification in the spinal cord: inductive signals and transcriptional codes publication-title: Nat Rev Genet contributor: fullname: Jessell – volume: 146 start-page: 18 year: 2011 end-page: 36 ident: CR29 article-title: Development and evolution of the human neocortex publication-title: Cell contributor: fullname: Kriegstein – volume: 12 start-page: 423 year: 2002 end-page: 437 ident: CR33 article-title: The representation of the visual field in three extrastriate areas of the ferret ( ) and the relationship of retinotopy and field boundaries to callosal connectivity publication-title: Cereb Cortex contributor: fullname: Innocenti – volume: 135 start-page: 1348 year: 2012 end-page: 1369 ident: CR4 article-title: A developmental and genetic classification for malformations of cortical development: update 2012 publication-title: Brain contributor: fullname: Dobyns – volume: 60 start-page: 56 year: 2008 end-page: 69 ident: CR46 article-title: Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex publication-title: Neuron contributor: fullname: Broccoli – volume: 12 start-page: 1381 year: 2009 end-page: 1389 ident: CR10 article-title: Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex publication-title: Nat Neurosci contributor: fullname: O'Leary – volume: 22 start-page: 2039 year: 2012 end-page: 2054 ident: CR42 article-title: Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors publication-title: Cereb Cortex contributor: fullname: Borrell – volume: 7 start-page: e37104 year: 2012 ident: CR9 article-title: De‐novo transcriptome sequencing of a normalized cDNA pool from influenza infected ferrets publication-title: PLoS ONE contributor: fullname: Bruder – volume: 7 start-page: 883 year: 2006 end-page: 890 ident: CR27 article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion publication-title: Nat Rev Neurosci contributor: fullname: Martinez‐Cerdeno – volume: 108 start-page: 14950 year: 2011 end-page: 14955 ident: CR1 article-title: Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high‐resolution mRNA sequencing publication-title: Proc Natl Acad Sci U S A contributor: fullname: Rakic – volume: 343 start-page: 764 year: 2014 end-page: 768 ident: CR3 article-title: Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning publication-title: Science contributor: fullname: Walsh – volume: 32 start-page: 1817 year: 2013 end-page: 1828 ident: CR35 article-title: Regulation of cerebral cortex size and folding by expansion of basal progenitors publication-title: EMBO J contributor: fullname: Calegari – volume: 84 start-page: 8369 year: 2010 end-page: 8388 ident: CR15 article-title: Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus publication-title: J Virol contributor: fullname: Kelvin – volume: 21 start-page: 23 year: 2011 end-page: 35 ident: CR17 article-title: Cortical progenitor expansion, self‐renewal and neurogenesis‐a polarized perspective publication-title: Curr Opin Neurobiol contributor: fullname: Huttner – volume: 27 start-page: 681 year: 2011 end-page: 696 ident: CR23 article-title: Regulation of terminal differentiation programs in the nervous system publication-title: Annu Rev Cell Dev Biol contributor: fullname: Hobert – volume: 319 start-page: 304 year: 2008 end-page: 309 ident: CR32 article-title: Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate publication-title: Science contributor: fullname: Monuki – volume: 34 start-page: 374 year: 2003 end-page: 378 ident: CR43 article-title: TM4: a free, open‐source system for microarray data management and analysis publication-title: Biotechniques contributor: fullname: Trush – volume: 47 start-page: 353 year: 2005 end-page: 364 ident: CR31 article-title: G1 phase regulation, area‐specific cell cycle control, and cytoarchitectonics in the primate cortex publication-title: Neuron contributor: fullname: Dehay – volume: 9 start-page: 1242 year: 1989 end-page: 1253 ident: CR24 article-title: Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons publication-title: J Neurosci contributor: fullname: Hickey – volume: 27C start-page: 39 year: 2014 end-page: 46 ident: CR8 article-title: Role of radial glial cells in cerebral cortex folding publication-title: Curr Opin Neurobiol contributor: fullname: Gotz – volume: 4 start-page: P3 year: 2003 ident: CR13 article-title: DAVID: database for annotation, visualization, and integrated discovery publication-title: Genome Biol contributor: fullname: Lempicki – volume: 12 start-page: 37 year: 2002 end-page: 53 ident: CR49 article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey publication-title: Cereb Cortex contributor: fullname: Kennedy – start-page: 3 year: 1990 end-page: 136 ident: CR52 article-title: Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci publication-title: Cerebral Cortex, Peters A contributor: fullname: Jones – volume: 1 start-page: a002519 year: 2009 ident: CR45 article-title: Gradients in the brain: the control of the development of form and function in the cerebral cortex publication-title: Cold Spring Harb Perspect Biol contributor: fullname: Livesey – volume: 288 start-page: 344 year: 2000 end-page: 349 ident: CR6 article-title: Regulation of area identity in the mammalian neocortex by Emx2 and Pax6 publication-title: Science contributor: fullname: O'Leary – volume: 278 start-page: 157 year: 1988 end-page: 180 ident: CR28 article-title: Organization of primary visual cortex (area 17) in the ferret publication-title: J Comp Neurol contributor: fullname: Stryker – volume: 152 start-page: 895 year: 2013 end-page: 908 ident: CR51 article-title: A high‐resolution enhancer atlas of the developing telencephalon publication-title: Cell contributor: fullname: Kaplan – volume: 147 start-page: 27 year: 1986 end-page: 43 ident: CR48 article-title: Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes publication-title: J Anat contributor: fullname: McSherry – volume: 366 start-page: 464 year: 1993 end-page: 466 ident: CR11 article-title: Modulation of the cell cycle contributes to the parcellation of the primate visual cortex publication-title: Nature contributor: fullname: Kennedy – volume: 21 start-page: 1674 year: 2011 end-page: 1694 ident: CR41 article-title: A role for intermediate radial glia in the tangential expansion of the Mammalian cerebral cortex publication-title: Cereb Cortex contributor: fullname: Borrell – volume: 39 start-page: 454 year: 2007 end-page: 456 ident: CR2 article-title: Homozygous silencing of T‐box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis publication-title: Nat Genet contributor: fullname: Lyonnet – volume: 6 start-page: 777 year: 2005 end-page: 788 ident: CR21 article-title: The cell biology of neurogenesis publication-title: Nat Rev Mol Cell Biol contributor: fullname: Huttner – volume: 303 start-page: 2033 year: 2004 end-page: 2036 ident: CR38 article-title: G protein‐coupled receptor‐dependent development of human frontal cortex publication-title: Science contributor: fullname: Walsh – volume: 8 start-page: 438 year: 2007 end-page: 450 ident: CR12 article-title: Cell‐cycle control and cortical development publication-title: Nat Rev Neurosci contributor: fullname: Kennedy – volume: 18 start-page: 637 year: 2015 end-page: 646 ident: CR26 article-title: Single‐cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex publication-title: Nat Neurosci contributor: fullname: Walsh – volume: 515 start-page: 264 year: 2014 end-page: 268 ident: CR30 article-title: Radial glia require PDGFD‐PDGFRbeta signalling in human but not mouse neocortex publication-title: Nature contributor: fullname: Oldham – volume: 146 start-page: 141 year: 1986 end-page: 152 ident: CR47 article-title: Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes publication-title: J Anat contributor: fullname: McSherry – volume: 82 start-page: 989 year: 2014 end-page: 1003 ident: CR37 article-title: Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex publication-title: Neuron contributor: fullname: Rubenstein – volume: 33 start-page: 10802 year: 2013 end-page: 10814 ident: CR40 article-title: Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain publication-title: J Neurosci contributor: fullname: Vaccarino – volume: 153 start-page: 535 year: 2013 end-page: 549 ident: CR50 article-title: Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate publication-title: Cell contributor: fullname: Gotz – volume: 110 start-page: 4081 year: 2013 end-page: 4086 ident: CR14 article-title: The protomap is propagated to cortical plate neurons through an Eomes‐dependent intermediate map publication-title: Proc Natl Acad Sci U S A contributor: fullname: Hevner – volume: 241 start-page: 170 year: 1988 end-page: 176 ident: CR39 article-title: Specification of cerebral cortical areas publication-title: Science contributor: fullname: Rakic – volume: 108 start-page: 14950 year: 2011 end-page: 14955 article-title: Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high‐resolution mRNA sequencing publication-title: Proc Natl Acad Sci U S A – volume: 109 start-page: 11836 year: 2012 end-page: 11841 article-title: Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self‐renewal publication-title: Proc Natl Acad Sci U S A – volume: 60 start-page: 56 year: 2008 end-page: 69 article-title: Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex publication-title: Neuron – volume: 27C start-page: 39 year: 2014 end-page: 46 article-title: Role of radial glial cells in cerebral cortex folding publication-title: Curr Opin Neurobiol – volume: 6 start-page: 777 year: 2005 end-page: 788 article-title: The cell biology of neurogenesis publication-title: Nat Rev Mol Cell Biol – volume: 2 start-page: 10 year: 2007 article-title: Sp8 exhibits reciprocal induction with Fgf8 but has an opposing effect on anterior‐posterior cortical area patterning publication-title: Neural Dev – volume: 12 start-page: 423 year: 2002 end-page: 437 article-title: The representation of the visual field in three extrastriate areas of the ferret ( ) and the relationship of retinotopy and field boundaries to callosal connectivity publication-title: Cereb Cortex – volume: 84 start-page: 8369 year: 2010 end-page: 8388 article-title: Molecular characterization of in vivo adjuvant activity in ferrets vaccinated against influenza virus publication-title: J Virol – volume: 110 start-page: 208 year: 2005 end-page: 221 article-title: The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis publication-title: Acta Neuropathol – volume: 47 start-page: 353 year: 2005 end-page: 364 article-title: G1 phase regulation, area‐specific cell cycle control, and cytoarchitectonics in the primate cortex publication-title: Neuron – volume: 7 start-page: e37104 year: 2012 article-title: De‐novo transcriptome sequencing of a normalized cDNA pool from influenza infected ferrets publication-title: PLoS ONE – volume: 4 start-page: P3 year: 2003 article-title: DAVID: database for annotation, visualization, and integrated discovery publication-title: Genome Biol – volume: 135 start-page: 1348 year: 2012 end-page: 1369 article-title: A developmental and genetic classification for malformations of cortical development: update 2012 publication-title: Brain – volume: 39 start-page: 454 year: 2007 end-page: 456 article-title: Homozygous silencing of T‐box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis publication-title: Nat Genet – volume: 278 start-page: 157 year: 1988 end-page: 180 article-title: Organization of primary visual cortex (area 17) in the ferret publication-title: J Comp Neurol – volume: 241 start-page: 170 year: 1988 end-page: 176 article-title: Specification of cerebral cortical areas publication-title: Science – volume: 80 start-page: 442 year: 2013 end-page: 457 article-title: Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate publication-title: Neuron – volume: 288 start-page: 344 year: 2000 end-page: 349 article-title: Regulation of area identity in the mammalian neocortex by Emx2 and Pax6 publication-title: Science – volume: 1 start-page: 20 year: 2000 end-page: 29 article-title: Neuronal specification in the spinal cord: inductive signals and transcriptional codes publication-title: Nat Rev Genet – volume: 153 start-page: 535 year: 2013 end-page: 549 article-title: Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate publication-title: Cell – volume: 72 start-page: 955 year: 2012 end-page: 971 article-title: Emerging roles of neural stem cells in cerebral cortex development and evolution publication-title: Dev Neurobiol – volume: 319 start-page: 304 year: 2008 end-page: 309 article-title: Lhx2 selector activity specifies cortical identity and suppresses hippocampal organizer fate publication-title: Science – volume: 34 start-page: 374 year: 2003 end-page: 378 article-title: TM4: a free, open‐source system for microarray data management and analysis publication-title: Biotechniques – volume: 21 start-page: 1674 year: 2011 end-page: 1694 article-title: A role for intermediate radial glia in the tangential expansion of the Mammalian cerebral cortex publication-title: Cereb Cortex – volume: 8 start-page: 427 year: 2007 end-page: 437 article-title: Neuronal subtype specification in the cerebral cortex publication-title: Nat Rev Neurosci – volume: 110 start-page: 4081 year: 2013 end-page: 4086 article-title: The protomap is propagated to cortical plate neurons through an Eomes‐dependent intermediate map publication-title: Proc Natl Acad Sci U S A – volume: 1 start-page: a002519 year: 2009 article-title: Gradients in the brain: the control of the development of form and function in the cerebral cortex publication-title: Cold Spring Harb Perspect Biol – volume: 33 start-page: 10802 year: 2013 end-page: 10814 article-title: Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain publication-title: J Neurosci – volume: 32 start-page: 1817 year: 2013 end-page: 1828 article-title: Regulation of cerebral cortex size and folding by expansion of basal progenitors publication-title: EMBO J – volume: 8 start-page: 438 year: 2007 end-page: 450 article-title: Cell‐cycle control and cortical development publication-title: Nat Rev Neurosci – volume: 22 start-page: 2039 year: 2012 end-page: 2054 article-title: Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors publication-title: Cereb Cortex – volume: 515 start-page: 264 year: 2014 end-page: 268 article-title: Radial glia require PDGFD‐PDGFRbeta signalling in human but not mouse neocortex publication-title: Nature – volume: 152 start-page: 895 year: 2013 end-page: 908 article-title: A high‐resolution enhancer atlas of the developing telencephalon publication-title: Cell – volume: 146 start-page: 141 year: 1986a end-page: 152 article-title: Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes publication-title: J Anat – volume: 343 start-page: 764 year: 2014 end-page: 768 article-title: Evolutionarily dynamic alternative splicing of GPR56 regulates regional cerebral cortical patterning publication-title: Science – volume: 347 start-page: 1465 year: 2015 end-page: 1470 article-title: Human‐specific gene ARHGAP11B promotes basal progenitor amplification and neocortex expansion publication-title: Science – volume: 12 start-page: 37 year: 2002 end-page: 53 article-title: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey publication-title: Cereb Cortex – volume: 21 start-page: 1315 year: 1998 end-page: 1325 article-title: Mutations in filamin 1 prevent migration of cerebral cortical neurons in human periventricular heterotopia publication-title: Neuron – volume: 21 start-page: 23 year: 2011 end-page: 35 article-title: Cortical progenitor expansion, self‐renewal and neurogenesis‐a polarized perspective publication-title: Curr Opin Neurobiol – volume: 366 start-page: 464 year: 1993 end-page: 466 article-title: Modulation of the cell cycle contributes to the parcellation of the primate visual cortex publication-title: Nature – volume: 13 start-page: 690 year: 2010 end-page: 699 article-title: OSVZ progenitors of human and ferret neocortex are epithelial‐like and expand by integrin signaling publication-title: Nat Neurosci – volume: 27 start-page: 681 year: 2011 end-page: 696 article-title: Regulation of terminal differentiation programs in the nervous system publication-title: Annu Rev Cell Dev Biol – volume: 155 start-page: 1521 year: 2013 end-page: 1531 article-title: Rapid and pervasive changes in genome‐wide enhancer usage during mammalian development publication-title: Cell – volume: 128 start-page: 193 year: 2001 end-page: 205 article-title: Gsh2 and Pax6 play complementary roles in dorsoventral patterning of the mammalian telencephalon publication-title: Development – volume: 7 start-page: 883 year: 2006 end-page: 890 article-title: Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion publication-title: Nat Rev Neurosci – volume: 303 start-page: 2033 year: 2004 end-page: 2036 article-title: G protein‐coupled receptor‐dependent development of human frontal cortex publication-title: Science – volume: 146 start-page: 18 year: 2011 end-page: 36 article-title: Development and evolution of the human neocortex publication-title: Cell – start-page: 3 year: 1990 end-page: 136 – volume: 12 start-page: 1381 year: 2009 end-page: 1389 article-title: Lhx2 specifies regional fate in Emx1 lineage of telencephalic progenitors generating cerebral cortex publication-title: Nat Neurosci – volume: 147 start-page: 27 year: 1986b end-page: 43 article-title: Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes publication-title: J Anat – volume: 82 start-page: 989 year: 2014 end-page: 1003 article-title: Transcriptional regulation of enhancers active in protodomains of the developing cerebral cortex publication-title: Neuron – volume: 18 start-page: 637 year: 2015 end-page: 646 article-title: Single‐cell analysis reveals transcriptional heterogeneity of neural progenitors in human cortex publication-title: Nat Neurosci – volume: 9 start-page: 1242 year: 1989 end-page: 1253 article-title: Visual cortex development in the ferret. I. Genesis and migration of visual cortical neurons publication-title: J Neurosci – ident: e_1_2_8_2_1 doi: 10.1073/pnas.1112213108 – ident: e_1_2_8_11_1 doi: 10.1038/nn.2427 – ident: e_1_2_8_18_1 doi: 10.1016/j.conb.2010.10.002 – ident: e_1_2_8_4_1 doi: 10.1126/science.1244392 – ident: e_1_2_8_3_1 doi: 10.1038/ng1993 – ident: e_1_2_8_52_1 doi: 10.1016/j.cell.2012.12.041 – ident: e_1_2_8_13_1 doi: 10.1038/nrn2097 – ident: e_1_2_8_44_1 doi: 10.2144/03342mt01 – ident: e_1_2_8_10_1 doi: 10.1371/journal.pone.0037104 – ident: e_1_2_8_40_1 doi: 10.1126/science.3291116 – ident: e_1_2_8_19_1 doi: 10.1073/pnas.1209647109 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuron.2005.06.032 – ident: e_1_2_8_5_1 doi: 10.1093/brain/aws019 – ident: e_1_2_8_23_1 doi: 10.1007/s00401-005-1059-8 – ident: e_1_2_8_53_1 doi: 10.1007/978-1-4615-3824-0_1 – ident: e_1_2_8_30_1 doi: 10.1016/j.cell.2011.06.030 – ident: e_1_2_8_43_1 doi: 10.1093/cercor/bhr284 – ident: e_1_2_8_25_1 doi: 10.1523/JNEUROSCI.09-04-01242.1989 – ident: e_1_2_8_38_1 doi: 10.1016/j.neuron.2014.04.014 – ident: e_1_2_8_24_1 doi: 10.1146/annurev-cellbio-092910-154226 – ident: e_1_2_8_34_1 doi: 10.1093/cercor/12.4.423 – ident: e_1_2_8_51_1 doi: 10.1016/j.cell.2013.03.027 – ident: e_1_2_8_35_1 doi: 10.1038/nrn2151 – ident: e_1_2_8_27_1 doi: 10.1038/nn.3980 – ident: e_1_2_8_31_1 doi: 10.1038/nature13973 – ident: e_1_2_8_46_1 doi: 10.1101/cshperspect.a002519 – ident: e_1_2_8_9_1 doi: 10.1016/j.conb.2014.02.007 – ident: e_1_2_8_6_1 doi: 10.1016/j.neuron.2013.09.032 – ident: e_1_2_8_45_1 doi: 10.1186/1749-8104-2-10 – ident: e_1_2_8_29_1 doi: 10.1002/cne.902780202 – ident: e_1_2_8_33_1 doi: 10.1126/science.1151695 – ident: e_1_2_8_36_1 doi: 10.1038/emboj.2013.96 – ident: e_1_2_8_54_1 doi: 10.1242/dev.128.2.193 – ident: e_1_2_8_20_1 doi: 10.1126/science.aaa1975 – ident: e_1_2_8_39_1 doi: 10.1126/science.1092780 – volume: 147 start-page: 27 year: 1986 ident: e_1_2_8_49_1 article-title: Gyrus formation in the cerebral cortex of the ferret. II. Description of the internal histological changes publication-title: J Anat contributor: fullname: Smart IH – ident: e_1_2_8_22_1 doi: 10.1038/nrm1739 – ident: e_1_2_8_41_1 doi: 10.1523/JNEUROSCI.3621-12.2013 – ident: e_1_2_8_37_1 doi: 10.1016/j.cell.2013.11.033 – ident: e_1_2_8_15_1 doi: 10.1073/pnas.1209076110 – ident: e_1_2_8_7_1 doi: 10.1126/science.288.5464.344 – ident: e_1_2_8_17_1 doi: 10.1038/nn.2553 – ident: e_1_2_8_16_1 doi: 10.1128/JVI.02305-09 – ident: e_1_2_8_47_1 doi: 10.1016/j.neuron.2008.09.028 – ident: e_1_2_8_42_1 doi: 10.1093/cercor/bhq238 – volume: 146 start-page: 141 year: 1986 ident: e_1_2_8_48_1 article-title: Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes publication-title: J Anat contributor: fullname: Smart IH – ident: e_1_2_8_14_1 doi: 10.1186/gb-2003-4-5-p3 – ident: e_1_2_8_8_1 doi: 10.1002/dneu.22013 – ident: e_1_2_8_12_1 doi: 10.1038/366464a0 – ident: e_1_2_8_28_1 doi: 10.1038/nrn2008 – ident: e_1_2_8_50_1 doi: 10.1093/cercor/12.1.37 – ident: e_1_2_8_26_1 doi: 10.1038/35049541 – ident: e_1_2_8_21_1 doi: 10.1016/S0896-6273(00)80651-0 |
SSID | ssj0005871 |
Score | 2.5670805 |
Snippet | Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown.... |
SourceID | swepub pubmedcentral proquest crossref pubmed wiley springer istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1859 |
SubjectTerms | Animals Animals, Newborn Brain - embryology Cerebral Cortex - abnormalities Cerebral Cortex - anatomy & histology Cerebral Cortex - embryology Cerebral Cortex - physiology Cyclin-Dependent Kinase 6 - genetics EMBO11 EMBO27 Female Ferrets - embryology Ferrets - genetics Ferrets - growth & development folding Gene expression Gene Expression Regulation, Developmental Humans lissencephaly Malformations of Cortical Development - genetics Medicin och hälsovetenskap microarray Molecular biology Neurology Oligonucleotide Array Sequence Analysis Organ Size Pregnancy protocortex Receptor, Fibroblast Growth Factor, Type 2 - genetics Receptor, Fibroblast Growth Factor, Type 3 - genetics Resource transcription factor |
SummonAdditionalLinks | – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgE4IXBONXYCAjIQQPEUkc2_EjhJWp0vYC0_Zm2YlNw7p0Wldp_e-5c9JsEUOISpXa2HHd-87xd_GXMyHvBOdeeqFiryofI4GPrcuK2KTKGeENvlBtcSj2j_LpCT_pkyThszA31-95xrNP7sz-QgUWh1EpxV2yDRNwge5bivJay1GEyCrcTMnTQvU5fG5pYDT9bKMlr27jln9KJId10iGn6JjOhvlo8og87Ikk_dwh_5jcce0OuddtLbneIffLzU5uT4j92sDFAdgxrRdnpmmXdOEpOI6j7qrXwba0aeFQEMbM6dwgEac1jv_256pZzijwRFpfC4xCC-vwpOD5zMzXT8nRZO9HuR_3eyvEFapaY2Nyq3xVJzUTQmFUJV2eJsyqzFfWOYCoLrxUCTPM5J7zIgUiKC2XOZRUnj0jW-2idS8IZcx7aRnLCmHzIjWGM1WrSuQFnJSKJCIfNibX510KDY2hB6KjER09oBOR9wGSoZ65OEXlmeT6-PCbnhx_n5byINE8IrsbzHQ_6JY6FQr4mWIK2nk7FIOtcQ3EtG6xCnUg5oUrK3TreQfx8GMQCaYCIuaIyBH4QwVMxT0uaZtZSMkd0qKpLCIfN25yo1t_-69Z50fj5mHa1P3x0wbfeuk02B4C3YLLiLDgc_8ypN47-DIdvr38j269Ig_wM96-TvNdsnV5sXKvgXdd2jdhzP0GptonBA priority: 102 providerName: Springer Nature – databaseName: Wiley Online Library website dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgE2IvCMYtYyAjIQQPEUkc2_EjlJWp0iYkmMabZSc2DevSaV2l9d9zjnMZESAkKlVqY-c0PRf7O86XY0JeCc699ELFXpU-RgAfW5cVsUmVM8IbfCHb4lgcnuSzb7xnE-KzMG19iGHBDSMjjNcY4Mau-h17sGqoO7c_kJvFIV6luE22sW4Msvqy_PMNy6MIOVdYZsnTQnXVfVDEu7GA0cS0jTq-_hPq_J08OdxBHaqNjoFumKmm98m9DmLS961PPCC3XLNL7rSbTm52yd1Jv8fbQ2I_1jBsAG6m1fLc1M2KLj0Fl3LUXXcM2YbWDRwKlJkFXRiE6LTCkaH5vq5XcwoIklY31KMgYROeIbyYm8XmETmZHnydHMbdrgtxiXzX2JjcKl9WScWEUJhvSZenCbMq86V1DoxXFV6qhBlmcs95kQJElJbLHFpKzx6TrWbZuKeEMua9tIxlhbB5kRrDmapUKfICTkpFEpE3vcr1RVtcQ2NSgtbRaB09WCcir4NJhn7m8gw5aZLr0-NPenr6ZTaRR4nmEdnvbaa7cFzpVChAboopkPNyaAZd490R07jlOvSBbBjGXLisJ62Jhx-DHDEVkEtHRI6MP3TAIt3jlqaeh2LdoWCayiLytneTXy7rb_81a_1oLB4mVN0dP6vxrVdOg-4hBS64jAgLPvcvReqDow-z4dvef531jOzgZ1ziTvN9snV1uXbPAZtd2Rch-n4CbjwygQ priority: 102 providerName: Wiley-Blackwell |
Title | Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly |
URI | https://api.istex.fr/ark:/67375/WNG-FWSJC7M0-5/fulltext.pdf https://link.springer.com/article/10.15252/embj.201591176 https://onlinelibrary.wiley.com/doi/abs/10.15252%2Fembj.201591176 https://www.ncbi.nlm.nih.gov/pubmed/25916825 https://www.proquest.com/docview/1696159396 https://search.proquest.com/docview/1697218870 https://pubmed.ncbi.nlm.nih.gov/PMC4547892 http://kipublications.ki.se/Default.aspx?queryparsed=id:131619857 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfWIQQvCMZXYExGQggesiZxbMePEFamSp0mwbS9WXZir2FtWq2rtP73nJ0PVgFColIrJXbc-O5s_8755Q6hd4xSyy0ToRWFDR2AD7VJslDFwihmlfs4tsUJOz5Lxxf0YgfR7l0YT9ovdHVYz-aHdTX13MrlvBh2PLHh6ST3QahEMhygARho56J3vI7Me1l-YyWNM9HG86EJTYZmrn84OheFIc5d9iIA_zHLXJ7sO6vSPSfg2z9Bzt-Zk_3j0z7U6DbK9cvU6DF61OJL_KnpxxO0Y-o9dL_JOLnZQw_yLsHbU6S_VDBnAGjG5WKuqnqFFxaDPRlsblt6bI2rGk55vswMz5TD57h000J9ua5WUwzwEZe_eEe-hY1_gXA5VbPNM3Q2OvqeH4dtyoWwcGTXUKlUC1uUUUkYE87Z4iaNI6JFYgttDGiuzCwXEVFEpZbSLAZ8yDXlKZQUljxHu_WiNi8RJsRarglJMqbTLFaKElGKgqUZXBSzKEAfOpHLZRNZQzqPxClKOkXJXlEBeu9V0tdT11eOkMapPD_5Kkfn38Y5n0SSBmi_05lsx-JKxkwAbBNEQDtv-2KQtXs0omqzWPs64ArDhAu39aJRcf9nnY0EiG8pv6_gInRvl4Dh-kjdraEG6GNnJndu6299TRo72m4eVlPZnr-q3FeujATZg_-bUR4g4m3uX4KUR5PP4_7o1X936DV66Fpxe9xxuo92b67X5g2Asxt9gAZJegq_OcsP_MD8CdnoOT0 |
link.rule.ids | 230,315,730,783,787,888,11575,27937,27938,41133,42202,46065,46489,51589,53805,53807 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgExovCMZXxoAgIQQP0Zr4K36EslLKWiGxaXuznMSm2bp0Wldp_e-5c9JsESAkIuUhtnNJ7sP-nX05E_JWcO6kEypyKncRAvgos0kamVhZI5zBA6MtJmJ4xEYn_OTWvzB1foh2wg0tw_fXaOA4Ib3esgfThtrz7BSDszgYrBR3ySYTLEXNTtj3mzCP1Dtdfp6Fxalq0vsgib0ugc7ItIlMvv4T7Pw9erJdQm3TjXaRrh-qBg_JgwZjhh9rpXhE7thqm9yrd51cbZOt_nqTt8ck-1xCvwHAOSzm56asFuHchaBTNrTXTYhsFZYVFPmYmVk4M4jRwwK7hurnslxMQ4CQYXETe-QprPxPhBdTM1s9IUeD_cP-MGq2XYhyDHiNjGGZcnnRK6gQCh0uaVnco5lKXJ5ZC9IrUidVjxpqmOM8jQEjyoxLBjW5o0_JRjWv7HMSUuqczChNUpGxNDaGU1WoHMQEN8WiF5D3a5brizq7hkavBKWjUTq6lU5A3nmRtO3M5RkGpUmujydf9OD4x6gvxz3NA7K7lplu7HGhY6EAuimqgM6bthp4jcsjprLzpW8D7jB0uvBaz2oRtw8DJzEW4EwHRHaE3zbALN3dmqqc-mzdPmOaSgLyYa0mt17rb9-a1HrUJQ8jqm7Kz0o89cJq4D34wCmXAaFe5_7FSL0__jRqr3b-667XZGt4OD7QB18n316Q-1iO890x2yUbV5dL-xKA2lX2ylviLwiqNfU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgEx8vCMbHAgOChBA8RGvir_gRupVRWDUJpvFmOYlNs3Vpta7S-t9z53yMCBASlfJQ27kkvjv7d84vZ0JeC86ddEJFTuUuQgAfZTZJIxMra4Qz-EO2xUQcHLPxd96yCfFbmDo_RLfghp7hx2t08EXh2h17MGuoPc9OkZvFwV-luEk2GYBxZPUl7Oia5ZH6mMsvs7A4VU12HxSx2xfQm5g2sY-v_oQ6fydPdm9Qu2yjfaDrZ6rRfXKvgZjh-9omHpAbttoit-pNJ9db5M6w3ePtIcn2Shg2ADeHxfzclNUynLsQTMqG9qphyFZhWUGRp8zMwplBiB4WODJUP1blchoCggyLa-qRl7D23xAupma2fkSOR_vfhgdRs-tClCPfNTKGZcrlxaCgQiiMt6Rl8YBmKnF5Zi0or0idVANqqGGO8zQGiCgzLhnU5I4-JhvVvLLbJKTUOZlRmqQiY2lsDKeqULlgKZwUi0FA3rZdrhd1cg2NQQlqR6N2dKedgLzxKunamYsz5KRJrk8mH_Xo5Ot4KA8Hmgdkp9WZbtxxqWOhALkpqkDOq64a-hrfjpjKzle-DUTDMObCbT2pVdxdDGLEWEAsHRDZU37XAJN092uqcuqTdfuEaSoJyLvWTH65rb89a1LbUV88TKi6KT8r8dBLq6HvIQROuQwI9Tb3r47U-4cfxt2_p_911kty-2hvpL98mnx-Ru5iMa52x2yHbFxerOxzgGmX2QvviD8ByeA1FQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+domains+of+gene+expression+in+germinal+layers+distinguish+the+development+of+gyrencephaly&rft.jtitle=The+EMBO+journal&rft.au=de+Juan+Romero%2C+Camino&rft.au=Bruder%2C+Carl&rft.au=Tomasello%2C+Ugo&rft.au=Sanz%E2%80%90Anquela%2C+Jos%C3%A9+Miguel&rft.date=2015-07-14&rft.issn=0261-4189&rft.eissn=1460-2075&rft.volume=34&rft.issue=14&rft.spage=1859&rft.epage=1874&rft_id=info:doi/10.15252%2Fembj.201591176&rft.externalDBID=10.15252%252Fembj.201591176&rft.externalDocID=EMBJ201591176 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0261-4189&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0261-4189&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0261-4189&client=summon |