Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer’s disease pathology

The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer’s disease (AD) 1 . Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, L...

Full description

Saved in:
Bibliographic Details
Published inNature aging Vol. 2; no. 12; pp. 1138 - 1144
Main Authors Pereira, Joana B., Janelidze, Shorena, Strandberg, Olof, Whelan, Christopher D., Zetterberg, Henrik, Blennow, Kaj, Palmqvist, Sebastian, Stomrud, Erik, Mattsson-Carlgren, Niklas, Hansson, Oskar
Format Journal Article
LanguageEnglish
Published United States Nature Publishing Group 01.12.2022
Nature Publishing Group US
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer’s disease (AD) 1 . Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, LPL, CST7, SPP1 and CSF1 in nondemented individuals from the Swedish BioFINDER-2 cohort who underwent longitudinal tau-positron emission tomography (PET), amyloid-PET and global cognitive assessment. To assess whether baseline microglial markers had an effect on AD-related changes, we studied three sub-groups of individuals: 121 with evidence of amyloid-PET pathology (A + ), 64 with additional evidence of tau-PET pathology (A + T + ) and 159 without amyloid- or tau-PET pathology (A − T − ). Our results showed that increased levels of TREM2 were associated with slower amyloid accumulation in A + individuals in addition to slower tau deposition and cognitive decline in A + T + subjects. Similarly, higher levels of AXL, MERTK, GAS6, LPL, CST7 and CSF1 predicted slower tau accumulation and/or cognitive decline in the A + T + group. These findings have important implications for future therapeutic strategies aiming to boost microglial protective functions in AD.
AbstractList The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer’s disease (AD) 1 . Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, LPL, CST7, SPP1 and CSF1 in nondemented individuals from the Swedish BioFINDER-2 cohort who underwent longitudinal tau-positron emission tomography (PET), amyloid-PET and global cognitive assessment. To assess whether baseline microglial markers had an effect on AD-related changes, we studied three sub-groups of individuals: 121 with evidence of amyloid-PET pathology (A + ), 64 with additional evidence of tau-PET pathology (A + T + ) and 159 without amyloid- or tau-PET pathology (A − T − ). Our results showed that increased levels of TREM2 were associated with slower amyloid accumulation in A + individuals in addition to slower tau deposition and cognitive decline in A + T + subjects. Similarly, higher levels of AXL, MERTK, GAS6, LPL, CST7 and CSF1 predicted slower tau accumulation and/or cognitive decline in the A + T + group. These findings have important implications for future therapeutic strategies aiming to boost microglial protective functions in AD.
The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer’s disease (AD)1. Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, LPL, CST7, SPP1 and CSF1 in nondemented individuals from the Swedish BioFINDER-2 cohort who underwent longitudinal tau-positron emission tomography (PET), amyloid-PET and global cognitive assessment. To assess whether baseline microglial markers had an effect on AD-related changes, we studied three sub-groups of individuals: 121 with evidence of amyloid-PET pathology (A+), 64 with additional evidence of tau-PET pathology (A+T+) and 159 without amyloid- or tau-PET pathology (A−T−). Our results showed that increased levels of TREM2 were associated with slower amyloid accumulation in A+ individuals in addition to slower tau deposition and cognitive decline in A+T+ subjects. Similarly, higher levels of AXL, MERTK, GAS6, LPL, CST7 and CSF1 predicted slower tau accumulation and/or cognitive decline in the A+T+ group. These findings have important implications for future therapeutic strategies aiming to boost microglial protective functions in AD.
The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer's disease (AD)1. Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, LPL, CST7, SPP1 and CSF1 in nondemented individuals from the Swedish BioFINDER-2 cohort who underwent longitudinal tau-positron emission tomography (PET), amyloid-PET and global cognitive assessment. To assess whether baseline microglial markers had an effect on AD-related changes, we studied three sub-groups of individuals: 121 with evidence of amyloid-PET pathology (A+), 64 with additional evidence of tau-PET pathology (A+T+) and 159 without amyloid- or tau-PET pathology (A-T-). Our results showed that increased levels of TREM2 were associated with slower amyloid accumulation in A+ individuals in addition to slower tau deposition and cognitive decline in A+T+ subjects. Similarly, higher levels of AXL, MERTK, GAS6, LPL, CST7 and CSF1 predicted slower tau accumulation and/or cognitive decline in the A+T+ group. These findings have important implications for future therapeutic strategies aiming to boost microglial protective functions in AD.The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer's disease (AD)1. Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, LPL, CST7, SPP1 and CSF1 in nondemented individuals from the Swedish BioFINDER-2 cohort who underwent longitudinal tau-positron emission tomography (PET), amyloid-PET and global cognitive assessment. To assess whether baseline microglial markers had an effect on AD-related changes, we studied three sub-groups of individuals: 121 with evidence of amyloid-PET pathology (A+), 64 with additional evidence of tau-PET pathology (A+T+) and 159 without amyloid- or tau-PET pathology (A-T-). Our results showed that increased levels of TREM2 were associated with slower amyloid accumulation in A+ individuals in addition to slower tau deposition and cognitive decline in A+T+ subjects. Similarly, higher levels of AXL, MERTK, GAS6, LPL, CST7 and CSF1 predicted slower tau accumulation and/or cognitive decline in the A+T+ group. These findings have important implications for future therapeutic strategies aiming to boost microglial protective functions in AD.
The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer's disease (AD) . Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, LPL, CST7, SPP1 and CSF1 in nondemented individuals from the Swedish BioFINDER-2 cohort who underwent longitudinal tau-positron emission tomography (PET), amyloid-PET and global cognitive assessment. To assess whether baseline microglial markers had an effect on AD-related changes, we studied three sub-groups of individuals: 121 with evidence of amyloid-PET pathology (A ), 64 with additional evidence of tau-PET pathology (A T ) and 159 without amyloid- or tau-PET pathology (A T ). Our results showed that increased levels of TREM2 were associated with slower amyloid accumulation in A individuals in addition to slower tau deposition and cognitive decline in A T subjects. Similarly, higher levels of AXL, MERTK, GAS6, LPL, CST7 and CSF1 predicted slower tau accumulation and/or cognitive decline in the A T group. These findings have important implications for future therapeutic strategies aiming to boost microglial protective functions in AD.
The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer’s disease (AD) 1 . Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, LPL, CST7, SPP1 and CSF1 in nondemented individuals from the Swedish BioFINDER-2 cohort who underwent longitudinal tau-positron emission tomography (PET), amyloid-PET and global cognitive assessment. To assess whether baseline microglial markers had an effect on AD-related changes, we studied three sub-groups of individuals: 121 with evidence of amyloid-PET pathology (A + ), 64 with additional evidence of tau-PET pathology (A + T + ) and 159 without amyloid- or tau-PET pathology (A − T − ). Our results showed that increased levels of TREM2 were associated with slower amyloid accumulation in A + individuals in addition to slower tau deposition and cognitive decline in A + T + subjects. Similarly, higher levels of AXL, MERTK, GAS6, LPL, CST7 and CSF1 predicted slower tau accumulation and/or cognitive decline in the A + T + group. These findings have important implications for future therapeutic strategies aiming to boost microglial protective functions in AD. The authors show that higher concentrations of disease-associated microglial activation stage 2 (DAM2) markers are associated with reduced tau accumulation and slower cognitive decline in nondemented individuals at risk for developing Alzheimer’s disease, suggesting that microglial activation delays disease progression.
The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer’s disease (AD)1. Here, we measured the microglial marker soluble TREM2 and the disease-associated microglial activation stage 2 markers AXL, MERTK, GAS6, LPL, CST7, SPP1 and CSF1 in nondemented individuals from the Swedish BioFINDER-2 cohort who underwent longitudinal tau-positron emission tomography (PET), amyloid-PET and global cognitive assessment. To assess whether baseline microglial markers had an effect on AD-related changes, we studied three sub-groups of individuals: 121 with evidence of amyloid-PET pathology (A+), 64 with additional evidence of tau-PET pathology (A+T+) and 159 without amyloid- or tau-PET pathology (A−T−). Our results showed that increased levels of TREM2 were associated with slower amyloid accumulation in A+ individuals in addition to slower tau deposition and cognitive decline in A+T+ subjects. Similarly, higher levels of AXL, MERTK, GAS6, LPL, CST7 and CSF1 predicted slower tau accumulation and/or cognitive decline in the A+T+ group. These findings have important implications for future therapeutic strategies aiming to boost microglial protective functions in AD.The authors show that higher concentrations of disease-associated microglial activation stage 2 (DAM2) markers are associated with reduced tau accumulation and slower cognitive decline in nondemented individuals at risk for developing Alzheimer’s disease, suggesting that microglial activation delays disease progression.
Author Pereira, Joana B.
Janelidze, Shorena
Stomrud, Erik
Whelan, Christopher D.
Zetterberg, Henrik
Blennow, Kaj
Mattsson-Carlgren, Niklas
Strandberg, Olof
Palmqvist, Sebastian
Hansson, Oskar
Author_xml – sequence: 1
  givenname: Joana B.
  orcidid: 0000-0002-4604-2711
  surname: Pereira
  fullname: Pereira, Joana B.
– sequence: 2
  givenname: Shorena
  surname: Janelidze
  fullname: Janelidze, Shorena
– sequence: 3
  givenname: Olof
  surname: Strandberg
  fullname: Strandberg, Olof
– sequence: 4
  givenname: Christopher D.
  orcidid: 0000-0003-0308-5583
  surname: Whelan
  fullname: Whelan, Christopher D.
– sequence: 5
  givenname: Henrik
  orcidid: 0000-0003-3930-4354
  surname: Zetterberg
  fullname: Zetterberg, Henrik
– sequence: 6
  givenname: Kaj
  orcidid: 0000-0002-1890-4193
  surname: Blennow
  fullname: Blennow, Kaj
– sequence: 7
  givenname: Sebastian
  orcidid: 0000-0002-9267-1930
  surname: Palmqvist
  fullname: Palmqvist, Sebastian
– sequence: 8
  givenname: Erik
  surname: Stomrud
  fullname: Stomrud, Erik
– sequence: 9
  givenname: Niklas
  orcidid: 0000-0002-8885-7724
  surname: Mattsson-Carlgren
  fullname: Mattsson-Carlgren, Niklas
– sequence: 10
  givenname: Oskar
  orcidid: 0000-0001-8467-7286
  surname: Hansson
  fullname: Hansson, Oskar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37118533$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/323601$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/ef69e907-c26b-4ee7-9c5c-365790360540$$DView record from Swedish Publication Index
BookMark eNp9Ustu1DAUjVARLaU_wAJFYsMmYDuO46xQVfGSitjA2nKcm4wrJw62M9XMik9gy-_xJdyZaVFbCVaOfR735Oo8zY4mP0GWPafkNSWlfBN5Wcm6IIwVhJSUFNtH2QkTghWSi-rozvdxdhbjFSGEVbQkgj3JjsuaUlmV5Un287M1wQ_Oapdrk-xaJ-unfA4-gUkx14O2U0yImWVc3AH1fZ70gtgQYNAJYm6nHPN1MMKUoMNrZ9e2W7SL-bVNq3xBLLiNnYb83G1XYEcIv3_8inlnI-gI-azTyjs_bJ5lj3uUwdnNeZp9e__u68XH4vLLh08X55eFEUKkQrSi6zmmAqZ7RnTFG00NY23fc8pNLzXVgmkpG2qEaSiQVvRV07Qg2qoXrDzN9ME3XsO8tGoOdtRho7y2avYhaacCYLZgVsotKoJClrNmv4GooBcNNKRWholWcYBaNaYyqhRV3ZBSkIoTnFH8c8awzAqfhr11yVBBkf_2wEfyCJ3BZQbMcS_aPWSyKzX4taKEVpw2u796deMQ_PcFYlKjjQac0xP4JSomSd1QyevdsJcPqFd-CRPuXGGdGOGcSYmsF3cj_c1y2yAkyAMBaxRjgF4Zm_ZLwoTWYTS166s69FVhX9W-r2qLUvZAeuv-H9EfF4z1Ug
CitedBy_id crossref_primary_10_1111_febs_17150
crossref_primary_10_1002_alz_13859
crossref_primary_10_1016_j_nbd_2024_106485
crossref_primary_10_1016_j_bbi_2024_07_002
crossref_primary_10_1002_alz_13862
crossref_primary_10_3390_ijms252313211
crossref_primary_10_1212_WNL_0000000000209205
crossref_primary_10_1002_alz_13484
crossref_primary_10_1002_alz_14078
crossref_primary_10_3390_neurolint15030053
crossref_primary_10_3389_fcell_2023_1280257
crossref_primary_10_1016_j_neuropharm_2024_110096
crossref_primary_10_14283_jpad_2023_54
crossref_primary_10_1016_S1474_4422_23_00247_8
crossref_primary_10_1038_s41380_023_02387_3
crossref_primary_10_3390_ijms24065383
crossref_primary_10_3390_jcm13113098
crossref_primary_10_1186_s12974_024_03296_0
crossref_primary_10_1002_alz_14487
crossref_primary_10_1038_s41380_024_02753_9
crossref_primary_10_7554_eLife_85279
crossref_primary_10_1186_s12974_024_03130_7
crossref_primary_10_1172_JCI177692
crossref_primary_10_3390_genes14030763
crossref_primary_10_1016_j_jare_2024_10_031
crossref_primary_10_1016_j_pharmthera_2023_108565
crossref_primary_10_1093_braincomms_fcad286
crossref_primary_10_1038_s41380_024_02810_3
crossref_primary_10_1093_brain_awad298
crossref_primary_10_1002_ana_26885
crossref_primary_10_1186_s13195_023_01318_2
Cites_doi 10.2967/jnumed.114.148981
10.1038/547153a
10.1002/alz.12204
10.1016/j.neuron.2021.02.010
10.1007/s10654-020-00695-4
10.1371/journal.pone.0095192
10.1523/JNEUROSCI.2110-16.2016
10.1001/jamaneurol.2020.0989
10.1038/s41591-021-01456-w
10.1016/j.neuron.2020.09.029
10.1084/jem.20151948
10.1001/jama.2020.12134
10.1002/alz.12356
10.1016/S1474-4422(09)70299-6
10.1523/JNEUROSCI.1871-19.2019
10.1038/s41593-019-0433-0
10.1111/j.1365-2796.1993.tb00647.x
10.1038/s41577-018-0112-5
10.1001/jama.2018.12917
10.1038/s41593-018-0296-9
10.1016/S1474-4422(12)70291-0
10.1038/s41583-018-0057-5
10.1155/2019/2387614
10.1007/s00401-015-1388-1
10.1016/j.neuron.2021.03.029
10.1016/j.cell.2017.05.018
10.1016/j.cell.2015.01.049
10.1016/j.cell.2018.05.003
10.1016/S1474-4422(15)70016-5
10.1016/j.neuron.2016.09.016
10.1084/jem.20142322
10.1002/ana.24711
10.1056/NEJMoa1211851
10.1096/fj.201900527R
10.1016/S1474-4422(22)00027-8
10.15252/emmm.202012308
10.1084/jem.20210542
ContentType Journal Article
Copyright 2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
CorporateAuthor MultiPark: Multidisciplinary research focused on Parkinson's disease
Lunds universitet
Profile areas and other strong research environments
Department of Clinical Sciences, Malmö
WCMM-Wallenberg Centre for Molecular Medicine
Lund University
WCMM- Wallenberg center för molekylär medicinsk forskning
Strategiska forskningsområden (SFO)
Faculty of Medicine
Strategic research areas (SRA)
Clinical Memory Research
Klinisk minnesforskning
Medicinska fakulteten
Profilområden och andra starka forskningsmiljöer
Institutionen för kliniska vetenskaper, Malmö
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Strategiska forskningsområden (SFO)
– name: WCMM-Wallenberg Centre for Molecular Medicine
– name: Institutionen för kliniska vetenskaper, Malmö
– name: Clinical Memory Research
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Klinisk minnesforskning
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Profile areas and other strong research environments
– name: WCMM- Wallenberg center för molekylär medicinsk forskning
– name: MultiPark: Multidisciplinary research focused on Parkinson's disease
– name: Department of Clinical Sciences, Malmö
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTPV
AOWAS
F1U
AGCHP
D8T
D95
ZZAVC
DOI 10.1038/s43587-022-00310-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Proquest Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
SWEPUB Lunds universitet full text
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Public Health
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
MEDLINE

ProQuest Public Health
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2662-8465
EndPage 1144
ExternalDocumentID oai_portal_research_lu_se_publications_ef69e907_c26b_4ee7_9c5c_365790360540
oai_gup_ub_gu_se_323601
PMC10154192
37118533
10_1038_s43587_022_00310_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: AF-939932
– fundername: ;
  grantid: FO2021-0293
– fundername: ;
  grantid: 2017-0383, 2015.0125
– fundername: ;
  grantid: 2020-0314
GroupedDBID 0R~
53G
7X7
8C1
8FI
8FJ
AARCD
AAYXX
AAYZH
ABJNI
ABUWG
ACBWK
AFANA
AFFVI
AFKRA
AFSHS
AFWHJ
AIBTJ
ALMA_UNASSIGNED_HOLDINGS
ATHPR
BENPR
CCPQU
CITATION
FYUFA
HMCUK
PHGZM
PHGZT
RNT
SNYQT
SOJ
UKHRP
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
ODYON
3V.
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTPV
AOWAS
F1U
AGCHP
D8T
D95
ZZAVC
ID FETCH-LOGICAL-c666t-6b6df4acce2af20a549a1c22bff414cf8a1a62a8891c6c91e0b6f599be6b5f623
IEDL.DBID 7X7
ISSN 2662-8465
IngestDate Fri Aug 22 03:12:51 EDT 2025
Thu Aug 21 06:55:35 EDT 2025
Thu Aug 21 18:37:30 EDT 2025
Fri Jul 11 11:07:54 EDT 2025
Sat Aug 16 21:31:27 EDT 2025
Thu Apr 03 07:02:22 EDT 2025
Tue Jul 01 04:19:38 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c666t-6b6df4acce2af20a549a1c22bff414cf8a1a62a8891c6c91e0b6f599be6b5f623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9267-1930
0000-0003-3930-4354
0000-0002-1890-4193
0000-0002-4604-2711
0000-0002-8885-7724
0000-0001-8467-7286
0000-0003-0308-5583
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10154192
PMID 37118533
PQID 3102044288
PQPubID 7023509
PageCount 7
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_ef69e907_c26b_4ee7_9c5c_365790360540
swepub_primary_oai_gup_ub_gu_se_323601
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10154192
proquest_miscellaneous_2807918471
proquest_journals_3102044288
pubmed_primary_37118533
crossref_citationtrail_10_1038_s43587_022_00310_z
crossref_primary_10_1038_s43587_022_00310_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Nature aging
PublicationTitleAlternate Nat Aging
PublicationYear 2022
Publisher Nature Publishing Group
Nature Publishing Group US
Publisher_xml – name: Nature Publishing Group
– name: Nature Publishing Group US
References L Sheng (310_CR21) 2019; 33
R Guerreiro (310_CR3) 2013; 368
CR Jack Jr (310_CR29) 2010; 9
A Leuzy (310_CR39) 2020; 77
R Ossenkoppele (310_CR11) 2021; 17
G Tondo (310_CR7) 2019; 2019
E Assarsson (310_CR37) 2014; 9
M Ewers (310_CR8) 2020; 12
CR Jack Jr (310_CR30) 2013; 12
TR Jay (310_CR20) 2017; 37
R Ossenkoppele (310_CR38) 2018; 11
M Gratuze (310_CR17) 2021; 218
MT Heneka (310_CR19) 2015; 14
TA Pascoal (310_CR10) 2021; 27
O Butovsky (310_CR2) 2018; 19
H Cho (310_CR13) 2016; 80
C Haass (310_CR15) 2021; 109
Y Wang (310_CR27) 2016; 213
C Cantoni (310_CR22) 2015; 129
TR Jay (310_CR24) 2015; 212
E McDade (310_CR14) 2017; 547
S Parhizkar (310_CR23) 2019; 22
JW Lewcock (310_CR4) 2020; 108
CE Leyns (310_CR18) 2019; 22
310_CR31
310_CR32
310_CR33
310_CR12
Y Wang (310_CR26) 2015; 160
310_CR35
S Palmqvist (310_CR34) 2020; 324
310_CR36
P Yuan (310_CR28) 2016; 92
MT Heneka (310_CR1) 2019; 19
H Keren-Shaul (310_CR5) 2017; 169
A Deczkowska (310_CR6) 2018; 173
SH Lee (310_CR16) 2021; 109
E Morenas-Rodríguez (310_CR9) 2022; 21
WJ Meilandt (310_CR25) 2020; 40
References_xml – ident: 310_CR12
  doi: 10.2967/jnumed.114.148981
– volume: 547
  start-page: 153
  year: 2017
  ident: 310_CR14
  publication-title: Nature
  doi: 10.1038/547153a
– ident: 310_CR36
  doi: 10.1002/alz.12204
– volume: 109
  start-page: 1283
  year: 2021
  ident: 310_CR16
  publication-title: Neuron
  doi: 10.1016/j.neuron.2021.02.010
– ident: 310_CR32
  doi: 10.1007/s10654-020-00695-4
– volume: 9
  start-page: e95192
  year: 2014
  ident: 310_CR37
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0095192
– volume: 37
  start-page: 637
  year: 2017
  ident: 310_CR20
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2110-16.2016
– volume: 77
  start-page: 955
  year: 2020
  ident: 310_CR39
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2020.0989
– volume: 27
  start-page: 1592
  year: 2021
  ident: 310_CR10
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01456-w
– volume: 108
  start-page: 801
  year: 2020
  ident: 310_CR4
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.09.029
– volume: 213
  start-page: 667
  year: 2016
  ident: 310_CR27
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151948
– volume: 324
  start-page: 772
  year: 2020
  ident: 310_CR34
  publication-title: JAMA
  doi: 10.1001/jama.2020.12134
– volume: 17
  start-page: 1998
  year: 2021
  ident: 310_CR11
  publication-title: Alzheimers Dement.
  doi: 10.1002/alz.12356
– volume: 9
  start-page: 119
  year: 2010
  ident: 310_CR29
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(09)70299-6
– volume: 40
  start-page: 1956
  year: 2020
  ident: 310_CR25
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1871-19.2019
– volume: 22
  start-page: 1217
  year: 2019
  ident: 310_CR18
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0433-0
– ident: 310_CR31
  doi: 10.1111/j.1365-2796.1993.tb00647.x
– volume: 19
  start-page: 79
  year: 2019
  ident: 310_CR1
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-018-0112-5
– volume: 11
  start-page: 1151
  year: 2018
  ident: 310_CR38
  publication-title: JAMA
  doi: 10.1001/jama.2018.12917
– volume: 22
  start-page: 191
  year: 2019
  ident: 310_CR23
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0296-9
– volume: 12
  start-page: 207
  year: 2013
  ident: 310_CR30
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(12)70291-0
– volume: 19
  start-page: 622
  year: 2018
  ident: 310_CR2
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/s41583-018-0057-5
– volume: 2019
  start-page: 1
  year: 2019
  ident: 310_CR7
  publication-title: Dis. Markers
  doi: 10.1155/2019/2387614
– volume: 129
  start-page: 429
  year: 2015
  ident: 310_CR22
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-015-1388-1
– volume: 109
  start-page: 1243
  year: 2021
  ident: 310_CR15
  publication-title: Neuron
  doi: 10.1016/j.neuron.2021.03.029
– volume: 169
  start-page: 1276
  year: 2017
  ident: 310_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.018
– volume: 160
  start-page: 1061
  year: 2015
  ident: 310_CR26
  publication-title: Cell
  doi: 10.1016/j.cell.2015.01.049
– ident: 310_CR35
– volume: 173
  start-page: 1073
  year: 2018
  ident: 310_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.003
– volume: 14
  start-page: 388
  year: 2015
  ident: 310_CR19
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(15)70016-5
– volume: 92
  start-page: 252
  year: 2016
  ident: 310_CR28
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.09.016
– volume: 212
  start-page: 287
  year: 2015
  ident: 310_CR24
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20142322
– volume: 80
  start-page: 247
  year: 2016
  ident: 310_CR13
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24711
– ident: 310_CR33
– volume: 368
  start-page: 117
  year: 2013
  ident: 310_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211851
– volume: 33
  start-page: 10425
  year: 2019
  ident: 310_CR21
  publication-title: FASEB J.
  doi: 10.1096/fj.201900527R
– volume: 21
  start-page: 329
  year: 2022
  ident: 310_CR9
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(22)00027-8
– volume: 12
  start-page: e12308
  year: 2020
  ident: 310_CR8
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.202012308
– volume: 218
  start-page: e20210542
  year: 2021
  ident: 310_CR17
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20210542
SSID ssj0002513062
Score 2.437676
Snippet The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer’s disease (AD) 1...
The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer's disease (AD) ....
The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer’s disease (AD)1....
The role of microglia in tau accumulation is currently unclear but could provide an important insight into the mechanisms underlying Alzheimer's disease (AD)1....
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1138
SubjectTerms Alzheimer Disease - pathology
Alzheimer's disease
Amyloid
Amyloidogenic Proteins
Basic Medicine
c-Mer Tyrosine Kinase
Cognitive Dysfunction - pathology
Humans
Letter
Medical and Health Sciences
Medicin och hälsovetenskap
Medicinska och farmaceutiska grundvetenskaper
Microglia - pathology
Neurosciences
Neurovetenskaper
Pathology
tau Proteins
Title Microglial activation protects against accumulation of tau aggregates in nondemented individuals with underlying Alzheimer’s disease pathology
URI https://www.ncbi.nlm.nih.gov/pubmed/37118533
https://www.proquest.com/docview/3102044288
https://www.proquest.com/docview/2807918471
https://pubmed.ncbi.nlm.nih.gov/PMC10154192
https://gup.ub.gu.se/publication/323601
oai:portal.research.lu.se:publications/ef69e907-c26b-4ee7-9c5c-365790360540
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvXBBIP4CpTIS4oKixo7z4xMqVasKqRVCVFpxsRzH3l0pzS6b5LKnPkKvvB5PwkziDURFveQQ20rk8djfjGe-IeR9lJjEMW5CWyZRKIwQWMg9Dx2gc860MyLBfOeLy_T8SnyZJTPvcGt8WOVuT-w36nJl0Ed-BDCERwLAcv5p_TPEqlF4u-pLaDwk-0hdhiFd2SwbfSxwdgMi5j5XJorzowbQAWgVhrD3pJjhdnoe3QGZd2MlJ4yi_Sl09oQ89vCRHg_yfkoe2PoZub3AqLp5BUuJYp7C4GWlnoKhoXoO5n_TQpvprn25LrpytNUdtIHBja60hi5rWq_qsvcX2pIux1SthqK3lmK62abCtCh6XG0XdnltN79vfjXUX_JQrG7ce-mfk6uz0-8n56GvtBAaMF_aMC3S0gn4C8u145EGo1Ezw3nhnGDCuFwznXKd55KZ1EhmoyJ1iZSFTYvEAYJ6QfbgD-0rQqVhOrJR5MBuFA5H5jbJYmfLIuauLALCdvOtjKchx2oYleqvw-NcDTJSIKOBuFRtA_JxHLMeSDju7X2wE6PyCtmov8snIO_GZlAlvB_RtV11jUJiIMnwuA7Iy0Hq4-fijCGyiQOST9bD2AFpuqct9XLR03UzhKkApAPyYVg6kzHzbq3g1bxTjVUxj8FADsiP_3QczDHlOaAWqupHrP9x7irrUmlllCnD00IJazMlTWJUnCaZBKiC8Pz1_bPzhjziqB19wM4B2Ws3nX0LsKstDnvdgmd-wg7J_ufTy6_f_gC5ozfA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5V6QEuCMSfocAiARdk1bteb-wDQgVapbSJEGqlisuyXu8mllInxLEQOfEIXHkJHoonYcZ2DFFRb71md-XIM7P-5u8bQp4FkYkc48a3WRT4wgiBg9xj3wE650w7IyLsdx6O5OBUvD-LzrbIr3UvDJZVru_E-qLOZgZj5LsAQ3ggACzHr-dffJwahdnV9QiNRi2O7Lev4LKVrw7fgXyfc36wf_J24LdTBXwDUH3py1RmTmiDk7AcDzQ4SJoZzlPnBBPGxZppyXUcJ8xIkzAbpNJFSZJamUZOItEBXPnbIgRXpke23-yPPnzsojqAFgCD87Y7Jwjj3RLwCNgxFs3XNJz-avMLeAHWXqzO3OAwrb97BzfJjRaw0r1Gw26RLVvcJj-GWMc3noLyUuyMaOK6tCV9KKke6xxwJ6yZ6rwdEEZnji51BWvg4mPwrqR5QYtZkdURSpvRvGsOKynGhyk2uC2m2IhF96aric3P7eL3958lbdNKFOcp13mBO-T0SqRwl_TgH9r7hCaG6cAGgQNPVTg8GduoHzqbpSF3WeoRtn7fyrTE5zh_Y6rqBHwYq0ZGCmTUUKWqlUdedmfmDe3Hpbt31mJU7RVQqr8K65Gn3TIYL2ZkdGFnVamQiihhCBA8cq-Reve4sM8QS4UeiTf0oduAxOCbK0U-qQnCGQJjgO4eedGozsaZcTVX8NO4UqVVIUc99sin_2xsHEDVsk5N1LQ-Mf8nnKysk4lNgr4yXKZKWNtXiYmMCmXUTwAcoUPw4PK384RcG5wMj9Xx4ejoIbnO0VLqcqEd0lsuKvsIQN8yfdxaGiWfr9q4_wDORXU-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microglial+activation+protects+against+accumulation+of+tau+aggregates+in+nondemented+individuals+with+underlying+Alzheimer%E2%80%99s+disease+pathology&rft.jtitle=Nature+aging&rft.au=Pereira%2C+Joana+B.&rft.au=Janelidze%2C+Shorena&rft.au=Strandberg%2C+Olof&rft.au=Whelan%2C+Christopher+D.&rft.date=2022-12-01&rft.pub=Nature+Publishing+Group+US&rft.eissn=2662-8465&rft.volume=2&rft.issue=12&rft.spage=1138&rft.epage=1144&rft_id=info:doi/10.1038%2Fs43587-022-00310-z&rft_id=info%3Apmid%2F37118533&rft.externalDocID=PMC10154192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-8465&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-8465&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-8465&client=summon