The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix

Summary Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 14; no. 8; pp. 1913 - 1928
Main Authors Colvin, Kelly M., Irie, Yasuhiko, Tart, Catherine S., Urbano, Rodolfo, Whitney, John C., Ryder, Cynthia, Howell, P. Lynne, Wozniak, Daniel J., Parsek, Matthew R.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non‐mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P. aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain‐to‐strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve redundant functions as structural scaffolds in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this, we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that upregulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and redundant roles for two distinct biofilm exopolysaccharides.
AbstractList Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non‐mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P. aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain‐to‐strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve redundant functions as structural scaffolds in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this, we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that upregulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and redundant roles for two distinct biofilm exopolysaccharides.
Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non-mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P. aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain-to-strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve a redundant function as a structural scaffold in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that up-regulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and functionally redundant roles for two distinct biofilm exopolysaccharides.
Summary Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non‐mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P. aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain‐to‐strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve redundant functions as structural scaffolds in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this, we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that upregulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and redundant roles for two distinct biofilm exopolysaccharides.
Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce multiple types of polysaccharides. Pseudomonas aeruginosa produces at least three extracellular polysaccharides, alginate, Pel and Psl, that have been implicated in biofilm development. Non-mucoid strains can use either Pel or Psl as the primary matrix structural polysaccharide. In this study, we evaluated a range of clinical and environmental P.aeruginosa isolates for their dependence on Pel and Psl for biofilm development. Mutational analysis demonstrates that Psl plays an important role in surface attachment for most isolates. However, there was significant strain-to-strain variability in the contribution of Pel and Psl to mature biofilm structure. This analysis led us to propose four classes of strains based upon their Pel and Psl functional and expression profiles. Our data also suggest that Pel and Psl can serve redundant functions as structural scaffolds in mature biofilms. We propose that redundancy could help preserve the capacity to produce a biofilm when exopolysaccharide genes are subjected to mutation. To test this, we used PAO1, a common lab strain that primarily utilizes Psl in the matrix. As expected, a psl mutant strain initially produced a poor biofilm. After extended cultivation, we demonstrate that this strain acquired mutations that upregulated expression of the Pel polysaccharide, demonstrating the utility of having a redundant scaffold exopolysaccharide. Collectively, our studies revealed both unique and redundant roles for two distinct biofilm exopolysaccharides.
Author Tart, Catherine S.
Wozniak, Daniel J.
Howell, P. Lynne
Ryder, Cynthia
Urbano, Rodolfo
Colvin, Kelly M.
Irie, Yasuhiko
Whitney, John C.
Parsek, Matthew R.
AuthorAffiliation 4 Departments of Medicine (Infectious Disease) and Microbiology, Center for Microbial Interface Biology, Ohio State University, 484 W. 12 th Ave, Columbus, OH 43210
3 Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, ON, M5S 1A8
1 Department of Microbiology, University of Washington, 1959 NE Pacific St, Box number 357242, Seattle, WA 98195
2 Program in Molecular Structure & Function, Hospital for Sick Children, 555 University Ave, Toronto, Ontario MSG 1X8, Canada
AuthorAffiliation_xml – name: 1 Department of Microbiology, University of Washington, 1959 NE Pacific St, Box number 357242, Seattle, WA 98195
– name: 2 Program in Molecular Structure & Function, Hospital for Sick Children, 555 University Ave, Toronto, Ontario MSG 1X8, Canada
– name: 3 Department of Biochemistry, University of Toronto, 1 Kings College Circle, Toronto, ON, M5S 1A8
– name: 4 Departments of Medicine (Infectious Disease) and Microbiology, Center for Microbial Interface Biology, Ohio State University, 484 W. 12 th Ave, Columbus, OH 43210
Author_xml – sequence: 1
  givenname: Kelly M.
  surname: Colvin
  fullname: Colvin, Kelly M.
  organization: Department of Microbiology, University of Washington, 1959 NE Pacific St, Box number 357242, Seattle, WA 98195, USA
– sequence: 2
  givenname: Yasuhiko
  surname: Irie
  fullname: Irie, Yasuhiko
  organization: Department of Microbiology, University of Washington, 1959 NE Pacific St, Box number 357242, Seattle, WA 98195, USA
– sequence: 3
  givenname: Catherine S.
  surname: Tart
  fullname: Tart, Catherine S.
  organization: Department of Microbiology, University of Washington, 1959 NE Pacific St, Box number 357242, Seattle, WA 98195, USA
– sequence: 4
  givenname: Rodolfo
  surname: Urbano
  fullname: Urbano, Rodolfo
  organization: Department of Microbiology, University of Washington, 1959 NE Pacific St, Box number 357242, Seattle, WA 98195, USA
– sequence: 5
  givenname: John C.
  surname: Whitney
  fullname: Whitney, John C.
  organization: Program in Molecular Structure & Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, MSG 1X8, Canada
– sequence: 6
  givenname: Cynthia
  surname: Ryder
  fullname: Ryder, Cynthia
  organization: Department of Biology, Lincoln Memorial University, 206 Farr-Chinnock Hall, Harrogate, TN 37752, USA
– sequence: 7
  givenname: P. Lynne
  surname: Howell
  fullname: Howell, P. Lynne
  organization: Program in Molecular Structure & Function, Hospital for Sick Children, 555 University Ave, Toronto, ON, MSG 1X8, Canada
– sequence: 8
  givenname: Daniel J.
  surname: Wozniak
  fullname: Wozniak, Daniel J.
  organization: Departments of Medicine (Infectious Disease) and Microbiology, Center for Microbial Interface Biology, Ohio State University, 484 W. 12th Ave, Columbus, OH 43210, USA
– sequence: 9
  givenname: Matthew R.
  surname: Parsek
  fullname: Parsek, Matthew R.
  email: parsem@u.washington.edu
  organization: Department of Microbiology, University of Washington, 1959 NE Pacific St, Box number 357242, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22176658$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUhi1URC_wCshLNhNsJ3GSBUhQSlsxQBFFSGyOHOek4yGxBztpZ96-DlMi2OGNj_RffKTPx-TAOouEUM4SHs_LdcIzKRaiEiwRjPOECZkXyfYROZqFg3nm4pAch7BmjBdpwZ6QQyF4IWVeHhF7vUJ6hR1VtqFXoaMb1-2C0nqlvGkw0I13t3GIGo6N651VgSr0442xLigaBj_qYfSqox6b0TbK6h29M8PKWDrE7tq41nQ97dXgzfYpedyqLuCzh_uEfHt_dn16sVh-Pr88fbNcaCllscjqUrVprcuUtXmplcCaiUJymXLdVlnVsoZJbGSZ1Uy1ulQVpnmFhWCZZKLJ0xPyet-7GeseG412iCvCxpte-R04ZeBfxZoV3LhbSMuMFVUWC148FHj3a8QwQG-Cxq5TFt0YgLO0lKzKCh6t5d6qvQvBYzs_wxlMuGANEwmYqMCEC37jgm2MPv97zTn4h080vNob7kyHu_8uhrOPl9MU84t93oQBt3Ne-Z8g41_I4func3i3_Pql-vD2B_D0Hmpkt_E
CitedBy_id crossref_primary_10_1007_s00253_018_9175_2
crossref_primary_10_1128_AEM_00712_17
crossref_primary_10_1128_JB_00047_16
crossref_primary_10_1002_pmic_201900290
crossref_primary_10_1128_AEM_00414_12
crossref_primary_10_5604_01_3001_0010_3792
crossref_primary_10_1007_s11274_023_03545_z
crossref_primary_10_3389_fmicb_2021_686793
crossref_primary_10_1002_mbo3_857
crossref_primary_10_1021_acs_est_3c03855
crossref_primary_10_1111_1751_7915_13633
crossref_primary_10_1177_1178636120988588
crossref_primary_10_1074_jbc_M115_645051
crossref_primary_10_1128_spectrum_00296_23
crossref_primary_10_1016_j_jprot_2016_10_005
crossref_primary_10_1038_srep16569
crossref_primary_10_1128_JB_00448_16
crossref_primary_10_1016_j_genrep_2021_101427
crossref_primary_10_1021_acsami_3c18656
crossref_primary_10_1128_spectrum_03774_22
crossref_primary_10_3390_polym13101556
crossref_primary_10_1016_j_jab_2014_05_002
crossref_primary_10_1099_mic_0_001179
crossref_primary_10_1128_mbio_02418_22
crossref_primary_10_3389_fmicb_2019_01908
crossref_primary_10_3390_coatings10100930
crossref_primary_10_1038_s41522_024_00496_7
crossref_primary_10_3390_ma12233912
crossref_primary_10_1073_pnas_1217993109
crossref_primary_10_36320_ajb_v13_i2_11758
crossref_primary_10_1038_srep33115
crossref_primary_10_1128_mBio_01333_14
crossref_primary_10_1016_j_bioflm_2023_100129
crossref_primary_10_1007_s11030_024_10830_y
crossref_primary_10_1007_s00203_022_02847_4
crossref_primary_10_1016_j_bioflm_2023_100133
crossref_primary_10_1016_j_biomaterials_2018_03_016
crossref_primary_10_1108_AGJSR_10_2022_0244
crossref_primary_10_1021_acs_est_0c05758
crossref_primary_10_1007_s10103_018_02707_y
crossref_primary_10_1371_journal_ppat_1004334
crossref_primary_10_1128_AAC_01997_16
crossref_primary_10_1128_AEM_00219_18
crossref_primary_10_1128_JB_00059_19
crossref_primary_10_1186_s12866_024_03293_6
crossref_primary_10_3390_ijms18091970
crossref_primary_10_1016_j_addr_2021_113916
crossref_primary_10_1002_sia_6854
crossref_primary_10_1111_1758_2229_12252
crossref_primary_10_3390_ijms21207666
crossref_primary_10_1128_JB_02190_12
crossref_primary_10_3390_life14030383
crossref_primary_10_1093_femsec_fix047
crossref_primary_10_1007_s00253_015_6591_4
crossref_primary_10_1080_14760584_2023_2274955
crossref_primary_10_3390_microorganisms8111740
crossref_primary_10_1146_annurev_micro_041320_111355
crossref_primary_10_1371_journal_ppat_1006504
crossref_primary_10_1007_s11694_022_01777_5
crossref_primary_10_1021_acs_jmedchem_9b01245
crossref_primary_10_1038_s41522_020_00148_6
crossref_primary_10_1080_08927014_2014_993390
crossref_primary_10_2174_1874070702014010124
crossref_primary_10_1016_j_watres_2021_117973
crossref_primary_10_3390_ijms23158308
crossref_primary_10_3389_fbioe_2023_1244595
crossref_primary_10_3390_app13137797
crossref_primary_10_1002_1873_3468_12454
crossref_primary_10_1021_acsinfecdis_1c00014
crossref_primary_10_2166_wst_2024_147
crossref_primary_10_1128_AEM_00196_20
crossref_primary_10_1128_aac_00052_22
crossref_primary_10_7554_eLife_45084
crossref_primary_10_1016_j_desal_2017_12_006
crossref_primary_10_7554_eLife_56533
crossref_primary_10_3934_microbiol_2018_2_274
crossref_primary_10_1089_mdr_2019_0274
crossref_primary_10_1111_j_1751_7915_2012_00359_x
crossref_primary_10_2166_wh_2021_223
crossref_primary_10_1073_pnas_1503058112
crossref_primary_10_1007_s12551_021_00784_y
crossref_primary_10_1038_nature12155
crossref_primary_10_4155_fmc_15_6
crossref_primary_10_1128_mBio_00242_13
crossref_primary_10_3389_fmicb_2022_955286
crossref_primary_10_1128_AAC_01660_16
crossref_primary_10_1016_j_envres_2023_115999
crossref_primary_10_1128_JB_02150_12
crossref_primary_10_1039_C4NP00086B
crossref_primary_10_3934_microbiol_2021025
crossref_primary_10_1016_j_micpath_2021_105166
crossref_primary_10_5897_AJB2016_15795
crossref_primary_10_1111_ijcp_13060
crossref_primary_10_1128_AEM_01237_14
crossref_primary_10_3390_ijms241411680
crossref_primary_10_3390_v14051057
crossref_primary_10_1099_mic_0_001301
crossref_primary_10_1111_1574_6968_12482
crossref_primary_10_35118_apjmbb_2020_028_3_04
crossref_primary_10_1038_cr_2015_129
crossref_primary_10_1016_j_jiac_2018_01_007
crossref_primary_10_1021_acsami_8b09475
crossref_primary_10_2174_1389450119666180801120231
crossref_primary_10_1111_mmi_12321
crossref_primary_10_7554_eLife_65355
crossref_primary_10_2217_fmb_2022_0155
crossref_primary_10_1097_MD_0000000000031373
crossref_primary_10_1128_spectrum_02060_23
crossref_primary_10_1016_j_micpath_2021_105042
crossref_primary_10_1038_s41396_023_01446_5
crossref_primary_10_1111_1462_2920_12155
crossref_primary_10_1128_jb_00400_22
crossref_primary_10_29252_JoMMID_6_2_3_72
crossref_primary_10_1039_C8CC05544K
crossref_primary_10_1111_1462_2920_15784
crossref_primary_10_1128_spectrum_03875_23
crossref_primary_10_1128_AEM_00299_14
crossref_primary_10_1016_j_mimet_2015_07_013
crossref_primary_10_1007_s10096_015_2509_4
crossref_primary_10_3389_fmicb_2020_611122
crossref_primary_10_3389_fmicb_2019_01826
crossref_primary_10_1016_j_csbj_2021_05_008
crossref_primary_10_15407_microbiolj84_02_033
crossref_primary_10_1159_000487515
crossref_primary_10_3390_microorganisms10122508
crossref_primary_10_1111_mmi_14855
crossref_primary_10_3390_pathogens7010003
crossref_primary_10_1111_mmi_14732
crossref_primary_10_1038_s41598_023_35056_0
crossref_primary_10_1016_j_jprot_2021_104192
crossref_primary_10_1016_j_mib_2014_01_006
crossref_primary_10_1128_mBio_00374_17
crossref_primary_10_1093_femsle_fnx124
crossref_primary_10_3389_fmicb_2021_807397
crossref_primary_10_1016_j_watres_2023_120101
crossref_primary_10_1007_s00253_021_11132_1
crossref_primary_10_1111_1462_2920_12483
crossref_primary_10_1128_jb_00019_23
crossref_primary_10_1007_s10068_023_01373_3
crossref_primary_10_3389_fmicb_2023_1252155
crossref_primary_10_1016_j_celrep_2021_108782
crossref_primary_10_1088_1361_6463_aa6b83
crossref_primary_10_3389_fcimb_2022_835754
crossref_primary_10_1016_j_microb_2024_100078
crossref_primary_10_1016_j_actbio_2023_01_008
crossref_primary_10_1016_j_isci_2022_104308
crossref_primary_10_1038_s41598_017_16215_6
crossref_primary_10_1128_mBio_00538_16
crossref_primary_10_1016_j_bioflm_2022_100089
crossref_primary_10_1021_acsbiomaterials_0c01698
crossref_primary_10_1038_s41598_019_50003_8
crossref_primary_10_1039_c3sm27638d
crossref_primary_10_1128_AAC_00234_19
crossref_primary_10_1128_mBio_00543_18
crossref_primary_10_3389_fmicb_2021_617784
crossref_primary_10_1021_acsomega_4c02343
crossref_primary_10_1371_journal_pone_0138527
crossref_primary_10_3389_fcimb_2023_1270667
crossref_primary_10_3389_fcimb_2023_1240138
crossref_primary_10_1016_j_biotechadv_2014_11_010
crossref_primary_10_1126_sciadv_1501632
crossref_primary_10_1021_acs_est_6b01458
crossref_primary_10_3390_min9020081
crossref_primary_10_1038_s41522_020_00154_8
crossref_primary_10_3390_ijms24108709
crossref_primary_10_1002_mrc_5405
crossref_primary_10_1007_s42485_024_00154_8
crossref_primary_10_1016_j_cell_2020_07_006
crossref_primary_10_1128_AAC_00373_12
crossref_primary_10_3390_ijms21228671
crossref_primary_10_2166_wh_2024_294
crossref_primary_10_1038_s41579_022_00767_0
crossref_primary_10_1183_13993003_02108_2016
crossref_primary_10_1093_jambio_lxac056
crossref_primary_10_1111_1462_2920_12257
crossref_primary_10_1021_acs_langmuir_9b02188
crossref_primary_10_1038_s41522_021_00234_3
crossref_primary_10_3390_pathogens9090766
crossref_primary_10_1038_ncomms5780
crossref_primary_10_3389_fimmu_2020_00805
crossref_primary_10_1016_j_burns_2021_02_025
crossref_primary_10_1038_s41522_021_00197_5
crossref_primary_10_3389_fcimb_2017_00106
crossref_primary_10_1099_mic_0_000932
crossref_primary_10_3390_microorganisms9020445
crossref_primary_10_1021_acsabm_1c00794
crossref_primary_10_1007_s12223_018_0585_4
crossref_primary_10_1089_mdr_2020_0557
crossref_primary_10_3389_fmicb_2014_00635
crossref_primary_10_3390_ma11122468
crossref_primary_10_1128_JB_00595_18
crossref_primary_10_3390_polym14204253
crossref_primary_10_1002_cpmo_83
crossref_primary_10_1080_00914037_2022_2066668
crossref_primary_10_1073_pnas_2113723119
crossref_primary_10_7554_eLife_72778
crossref_primary_10_1016_j_csbj_2020_11_025
crossref_primary_10_1038_s41598_017_05273_5
crossref_primary_10_1111_jam_13153
crossref_primary_10_1111_jam_14241
crossref_primary_10_1021_am4035762
crossref_primary_10_1111_1758_2229_12682
crossref_primary_10_1016_j_nbt_2019_11_002
crossref_primary_10_1039_C7RA05559E
crossref_primary_10_1016_j_watres_2018_11_020
crossref_primary_10_1080_08927014_2019_1689964
crossref_primary_10_3389_fcimb_2022_869736
crossref_primary_10_1016_j_bioflm_2020_100027
crossref_primary_10_3390_microorganisms9051065
crossref_primary_10_1128_aem_00039_22
crossref_primary_10_1016_j_jhazmat_2024_134017
crossref_primary_10_1371_journal_ppat_1003526
crossref_primary_10_1007_s43630_022_00236_w
crossref_primary_10_1016_j_ajic_2022_03_037
crossref_primary_10_3389_fimmu_2023_1162342
crossref_primary_10_1042_BCJ20210301
crossref_primary_10_1002_adbi_201700161
crossref_primary_10_1038_s41598_020_71834_w
crossref_primary_10_1128_microbiolspec_MB_0011_2014
crossref_primary_10_1007_s13353_023_00811_6
crossref_primary_10_1016_j_ijfoodmicro_2023_110369
crossref_primary_10_3390_ijms24044030
crossref_primary_10_1099_mgen_0_000513
crossref_primary_10_1016_j_micres_2014_11_005
crossref_primary_10_1080_08927014_2020_1759558
crossref_primary_10_1038_s41522_021_00257_w
crossref_primary_10_1016_j_ijbiomac_2021_08_193
crossref_primary_10_1152_physrev_00009_2015
crossref_primary_10_1128_mBio_01536_14
crossref_primary_10_1183_20734735_0261_2019
crossref_primary_10_1016_j_isci_2021_102443
crossref_primary_10_1038_s41598_017_17721_3
crossref_primary_10_1128_spectrum_04832_22
crossref_primary_10_1099_acmi_0_000021
crossref_primary_10_1088_1367_2630_18_4_045019
crossref_primary_10_1080_08927014_2022_2085566
crossref_primary_10_1128_mBio_00864_17
crossref_primary_10_1039_C5SM02755A
crossref_primary_10_1128_JB_00216_20
crossref_primary_10_3389_fmicb_2021_730980
crossref_primary_10_1128_mbio_02742_22
crossref_primary_10_1111_1758_2229_13190
crossref_primary_10_1016_j_micpath_2020_104291
crossref_primary_10_1111_j_1574_6976_2011_00322_x
crossref_primary_10_1128_MRA_00572_21
crossref_primary_10_1371_journal_pone_0182582
crossref_primary_10_1007_s11538_020_00701_6
crossref_primary_10_1038_s41467_019_10201_4
crossref_primary_10_1073_pnas_1702798114
crossref_primary_10_3389_fphy_2023_1239632
crossref_primary_10_1039_D3EN00219E
crossref_primary_10_3390_pathogens8040283
crossref_primary_10_1074_jbc_M114_613810
crossref_primary_10_3390_md17010043
crossref_primary_10_1080_08927014_2013_798865
crossref_primary_10_1128_jb_00335_22
crossref_primary_10_3389_fcimb_2020_00213
crossref_primary_10_1016_j_enzmictec_2021_109767
crossref_primary_10_1139_cjm_2016_0119
crossref_primary_10_3389_fmicb_2015_00851
crossref_primary_10_3389_fmicb_2019_01847
crossref_primary_10_1038_s41598_017_09886_8
crossref_primary_10_1128_mbio_01671_22
crossref_primary_10_7554_eLife_21855
crossref_primary_10_1007_s40843_020_1480_3
crossref_primary_10_1016_j_isci_2022_104234
crossref_primary_10_1128_JB_00297_21
crossref_primary_10_1016_j_corsci_2024_112228
crossref_primary_10_1099_jmm_0_001791
crossref_primary_10_30699_ijmm_16_6_557
crossref_primary_10_3389_fcimb_2023_1237164
crossref_primary_10_1099_mic_0_000380
crossref_primary_10_1016_j_mtbio_2022_100504
crossref_primary_10_3390_antibiotics8030103
crossref_primary_10_1128_mSphere_00630_20
crossref_primary_10_1093_jbcr_iry043
crossref_primary_10_1038_s41522_023_00427_y
crossref_primary_10_1038_s41598_020_78437_5
crossref_primary_10_1186_s13568_023_01647_3
crossref_primary_10_3390_pharmaceutics14102016
crossref_primary_10_1007_s10123_023_00395_5
crossref_primary_10_1093_nar_gky324
crossref_primary_10_1007_s12275_018_8114_3
crossref_primary_10_1183_13993003_01293_2021
crossref_primary_10_1016_j_bioflm_2024_100188
crossref_primary_10_3390_plants10020412
crossref_primary_10_1016_j_jclepro_2022_134759
crossref_primary_10_1038_s41598_017_05253_9
crossref_primary_10_1038_s41522_021_00243_2
crossref_primary_10_3389_fmed_2022_818669
crossref_primary_10_1371_journal_ppat_1003052
crossref_primary_10_3389_fmicb_2018_01455
crossref_primary_10_1016_j_jmb_2015_08_016
crossref_primary_10_1016_j_jgar_2019_11_012
crossref_primary_10_1128_microbiolspec_MB_0003_2014
crossref_primary_10_1371_journal_pgen_1004518
crossref_primary_10_3389_fmicb_2017_02311
crossref_primary_10_3389_fcimb_2017_00039
crossref_primary_10_3390_ijms22169100
crossref_primary_10_1016_j_memsci_2016_08_071
crossref_primary_10_1128_jb_00528_21
crossref_primary_10_15690_vramn1010
crossref_primary_10_1111_1758_2229_12521
crossref_primary_10_1128_AAC_02919_15
crossref_primary_10_1021_acsomega_0c05114
crossref_primary_10_1007_s11033_023_09126_5
crossref_primary_10_1128_JB_02516_14
crossref_primary_10_3389_fmicb_2015_00902
crossref_primary_10_1038_nprot_2015_115
crossref_primary_10_1080_21691401_2023_2268167
crossref_primary_10_1074_jbc_R116_720995
crossref_primary_10_1186_s40064_015_1184_3
crossref_primary_10_1093_femsre_fuy011
crossref_primary_10_1371_journal_pcbi_1004452
crossref_primary_10_1128_genomeA_01163_14
crossref_primary_10_1016_j_tim_2019_07_004
crossref_primary_10_1002_JLB_4HI0918_364RR
crossref_primary_10_3389_fmicb_2022_977673
crossref_primary_10_1128_mbio_02114_23
crossref_primary_10_1007_s10096_015_2323_z
crossref_primary_10_1128_jb_00365_23
crossref_primary_10_3390_microorganisms10020303
crossref_primary_10_1111_1462_2920_15355
crossref_primary_10_1128_mBio_01376_18
crossref_primary_10_1039_D1SM00463H
crossref_primary_10_1371_journal_ppat_1007511
crossref_primary_10_1074_jbc_RA120_014555
crossref_primary_10_3389_fimmu_2018_02416
crossref_primary_10_1007_s15010_024_02313_x
crossref_primary_10_3390_microorganisms8111700
crossref_primary_10_1016_j_bios_2020_112259
crossref_primary_10_1128_jb_00568_21
crossref_primary_10_1016_j_memsci_2014_04_046
crossref_primary_10_1128_mBio_00585_18
crossref_primary_10_1093_femsre_fux010
crossref_primary_10_1111_1462_2920_15916
crossref_primary_10_1073_pnas_1806005115
crossref_primary_10_1371_journal_ppat_1008281
crossref_primary_10_3390_pharmaceutics12070616
crossref_primary_10_3389_fcimb_2022_926758
crossref_primary_10_1021_acsabm_8b00062
crossref_primary_10_1016_j_micpath_2024_106543
crossref_primary_10_1128_IAI_00631_20
crossref_primary_10_1016_j_micpath_2022_105654
crossref_primary_10_3389_fmicb_2024_1374466
crossref_primary_10_1007_s11270_019_4248_0
crossref_primary_10_1128_JB_00265_21
crossref_primary_10_3389_fmicb_2019_00677
crossref_primary_10_3390_microorganisms11040913
crossref_primary_10_1038_s41522_018_0076_z
crossref_primary_10_1021_acsomega_2c01667
crossref_primary_10_1128_JB_00684_19
crossref_primary_10_1128_msystems_01317_23
crossref_primary_10_1080_10408398_2024_2312539
crossref_primary_10_1073_pnas_1613606114
crossref_primary_10_1099_mic_0_001031
crossref_primary_10_3389_fcimb_2023_1102199
crossref_primary_10_3390_ijms241512496
crossref_primary_10_3390_pathogens13050393
crossref_primary_10_3390_jof8040336
crossref_primary_10_1007_s00253_022_12150_3
crossref_primary_10_1111_1462_2920_14832
crossref_primary_10_1038_s41413_023_00254_z
crossref_primary_10_1099_mic_0_001392
Cites_doi 10.1111/j.1365-2958.2007.05879.x
10.1126/science.288.5469.1251
10.1128/AEM.67.9.4048-4056.2001
10.1016/S0140-6736(01)05321-1
10.1146/annurev.micro.57.030502.090720
10.1046/j.1365-2958.2003.03525.x
10.1128/IAI.00786-08
10.1128/JB.00727-07
10.1038/35037627
10.3109/10408419709115130
10.1146/annurev.micro.56.012302.160705
10.1371/journal.ppat.1001264
10.1111/j.1462-2920.2011.02503.x
10.1186/gb-2006-7-10-r90
10.1111/j.1462-2920.2011.02499.x
10.1016/j.devcel.2004.08.020
10.1128/JB.00119-09
10.1371/journal.ppat.1000483
10.1073/pnas.0832438100
10.1111/j.1365-2958.2009.06991.x
10.1111/j.1462-2920.2004.00656.x
10.1111/j.1462-2920.2011.02432.x
10.1128/JB.186.14.4457-4465.2004
10.1099/mic.0.27410-0
10.1111/j.1462-2920.2004.00605.x
10.1016/j.micinf.2003.08.009
10.1128/mr.60.3.539-574.1996
10.1128/MMBR.00041-08
10.1126/science.7604262
10.1021/bp000117r
10.1111/j.1574-6968.2001.tb10695.x
10.1128/JB.01202-06
10.1111/j.1462-2920.2011.02447.x
10.1126/science.284.5418.1318
10.1128/JB.187.9.3214-3226.2005
10.1128/mBio.00140-10
10.1073/pnas.0507407103
10.1128/JB.186.9.2724-2734.2004
10.1111/j.1365-2958.2009.06795.x
10.1093/clinids/5.2.279
10.1371/journal.pone.0014220
10.3389/fmicb.2011.00167
10.1128/JB.01020-07
10.1126/science.280.5361.295
10.1016/S0076-6879(99)10008-9
10.1099/00221287-13-3-572
10.1128/JB.183.18.5395-5401.2001
10.1016/S0378-1119(98)00130-9
10.1128/JB.00591-09
10.1128/JB.00137-07
10.1111/j.1365-2958.2008.06281.x
10.1128/JB.180.19.5183-5191.1998
10.1016/S0076-6879(01)36576-X
10.1046/j.1365-2958.2003.03877.x
10.1073/pnas.0801499105
10.1128/JB.00332-10
10.1016/S0378-1097(04)00009-6
10.1128/AEM.00637-11
10.1111/j.1365-2958.2010.07320.x
10.1128/JB.185.9.2687-2689.2003
10.1073/pnas.1231792100
10.1128/JB.184.23.6481-6489.2002
10.1111/j.1365-2958.2009.06832.x
10.1038/nprot.2006.24
10.1073/pnas.96.7.4028
10.1016/j.mib.2007.09.010
10.1111/j.1365-2958.2006.05421.x
ContentType Journal Article
Copyright 2011 Society for Applied Microbiology and Blackwell Publishing Ltd
2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Copyright_xml – notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd
– notice: 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
C1K
5PM
DOI 10.1111/j.1462-2920.2011.02657.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef


MEDLINE
Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 1928
ExternalDocumentID 10_1111_j_1462_2920_2011_02657_x
22176658
EMI2657
ark_67375_WNG_DLSQ9KBZ_1
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI077628-01A1
– fundername: NIAID NIH HHS
  grantid: R01 AI077628
– fundername: NIAID NIH HHS
  grantid: R01 AI081983-01A2
– fundername: NHLBI NIH HHS
  grantid: R01 HL087920
– fundername: Canadian Institutes of Health Research
  grantid: MT 43998
– fundername: NHLBI NIH HHS
  grantid: R01 HL087920-01A1
– fundername: NIAID NIH HHS
  grantid: R01 AI081983
– fundername: NIAID NIH HHS
  grantid: R01 AI061396
– fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
  grantid: R01 AI077628-01A1 || AI
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: R01 HL087920-01A1 || HL
– fundername: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
  grantid: R01 AI081983-01A2 || AI
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ACRPL
ACYXJ
CITATION
7QL
C1K
5PM
ID FETCH-LOGICAL-c6667-4b8af3bc830f58ca2eb02761631cf949f0d06ed684b0afc8a9e359e7204602d53
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Tue Sep 17 21:18:02 EDT 2024
Wed Dec 04 10:59:28 EST 2024
Fri Dec 06 02:48:56 EST 2024
Sat Sep 28 08:02:36 EDT 2024
Sat Aug 24 00:54:12 EDT 2024
Wed Oct 30 09:49:13 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6667-4b8af3bc830f58ca2eb02761631cf949f0d06ed684b0afc8a9e359e7204602d53
Notes ark:/67375/WNG-DLSQ9KBZ-1
ArticleID:EMI2657
istex:77553C45F9F9B628F6BAE0A6CC957C897D24811F
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc3840794?pdf=render
PMID 22176658
PQID 1038609471
PQPubID 23462
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3840794
proquest_miscellaneous_1038609471
crossref_primary_10_1111_j_1462_2920_2011_02657_x
pubmed_primary_22176658
wiley_primary_10_1111_j_1462_2920_2011_02657_x_EMI2657
istex_primary_ark_67375_WNG_DLSQ9KBZ_1
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Sakuragi, Y., and Kolter, R. (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189: 5383-5386.
Drenkard, E. (2003) Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5: 1213-1219.
Govan, J.R., and Deretic, V. (1996) Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60: 539-574.
Colvin, K.M., Gordon, V.D., Murakami, K., Borlee, B.R., Wozniak, D.J., Wong, G.C., and Parsek, M.R. (2011) The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7: e1001264.
Hentzer, M., Teitzel, G.M., Balzer, G.J., Heydorn, A., Molin, S., Givskov, M., and Parsek, M.R. (2001) Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183: 5395-5401.
Karatan, E., and Watnick, P. (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73: 310-347.
Hickman, J.W., Tifrea, D.F., and Harwood, C.S. (2005) A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA 102: 14422-14427.
Borlee, B.R., Goldman, A.D., Murakami, K., Samudrala, R., Wozniak, D.J., and Parsek, M.R. (2010) Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75: 827-842.
D'Argenio, D.A., Calfee, M.W., Rainey, P.B., and Pesci, E.C. (2002) Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J Bacteriol 184: 6481-6489.
Matilla, M.A., Travieso, M.L., Ramos, J.L., and Ramos-Gonzalez, M.I. (2011) Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in Pseudomonas putida: its role in the rhizosphere and an analysis of its target processes. Environ Microbiol 13: 1745-1766.
Coulon, C., Vinogradov, E., Filloux, A., and Sadovskaya, I. (2010) Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14. PLoS ONE 5: e14220.
Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., and Schweizer, H.P. (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86.
Goodman, A.L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R.S., and Lory, S. (2004) A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell 7: 745-754.
Nilsson, M., Chiang, W.C., Fazli, M., Gjermansen, M., Givskov, M., and Tolker-Nielsen, T. (2011) Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability. Environ Microbiol 13: 1357-1369.
Stewart, P.S., and Costerton, J.W. (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358: 135-138.
Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., and Ausubel, F.M. (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268: 1899-1902.
Holloway, B.W. (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13: 572-581.
Starkey, M., Hickman, J.H., Ma, L., Zhang, N., De Long, S., Hinz, A., et al. (2009) Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191: 3492-3503.
Smith, E.E., Buckley, D.G., Wu, Z., Saenphimmachak, C., Hoffman, L.R., D'Argenio, D.A., et al. (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci USA 103: 8487-8492.
O'Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B., and Kolter, R. (1999) Genetic approaches to study of biofilms. Methods Enzymol 310: 91-109.
Hardalo, C., and Edberg, S.C. (1997) Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev Microbiol 23: 47-75.
Ghafoor, A., Hay, I.D., and Rehm, B.H. (2011) The role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77: 5238-5246.
Byrd, M.S., Pang, B., Mishra, M., Swords, W.E., and Wozniak, D.J. (2010) The Pseudomonas aeruginosa exopolysaccharide Psl facilitates surface adherence and NF-kappaB activation in A549 cells. MBio 1: e00104-10.
Matsukawa, M., and Greenberg, E.P. (2004) Putative exopolysaccharide synthesis genes influence Pseudomonas aeruginosa biofilm development. J Bacteriol 186: 4449-4456.
Anriany, Y.A., Weiner, R.M., Johnson, J.A., De Rezende, C.E., and Joseph, S.W. (2001) Salmonella enterica serovar Typhimurium DT104 displays a rugose phenotype. Appl Environ Microbiol 67: 4048-4056.
Lee, V.T., Matewish, J.M., Kessler, J.L., Hyodo, M., Hayakawa, Y., and Lory, S. (2007) A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 65: 1474-1484.
Shrout, J.D., Chopp, D.L., Just, C.L., Hentzer, M., Givskov, M., and Parsek, M.R. (2006) The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62: 1264-1277.
Chandler, J.R., Duerkop, B.A., Hinz, A., West, T.E., Herman, J.P., Churchill, M.E., et al. (2009) Mutational analysis of Burkholderia thailandensis quorum sensing and self-aggregation. J Bacteriol 191: 5901-5909.
Kirisits, M.J., Prost, L., Starkey, M., and Parsek, M.R. (2005) Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71: 4809-4821.
Oliver, A., Canton, R., Campo, P., Baquero, F., and Blazquez, J. (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251-1254.
Ryder, C., Byrd, M., and Wozniak, D.J. (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10: 644-648.
Ledeboer, N.A., and Jones, B.D. (2005) Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar typhimurium on HEp-2 cells and chicken intestinal epithelium. J Bacteriol 187: 3214-3226.
Cheng, H.P., and Walker, G.C. (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180: 5183-5191.
Friedman, L., and Kolter, R. (2004b) Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J Bacteriol 186: 4457-4465.
Parsek, M.R., and Singh, P.K. (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57: 677-701.
Harrison, J.J., Ceri, H., Stremick, C.A., and Turner, R.J. (2004) Biofilm susceptibility to metal toxicity. Environ Microbiol 6: 1220-1227.
Lambertsen, L., Sternberg, C., and Molin, S. (2004) Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6: 726-732.
Bodey, G.P., Bolivar, R., Fainstein, V., and Jadeja, L. (1983) Infections caused by Pseudomonas aeruginosa. Rev Infect Dis 5: 279-313.
Yang, L., Hu, Y., Liu, Y., Zhang, J., Ulstrup, J., and Molin, S. (2011) Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Environ Microbiol 13: 1705-1717.
Friedman, L., and Kolter, R. (2004a) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51: 675-690.
Boles, B.R., and Singh, P.K. (2008) Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci USA 105: 12503-12508.
Ma, L., Jackson, K.D., Landry, R.M., Parsek, M.R., and Wozniak, D.J. (2006) Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188: 8213-8221.
Vasseur, P., Vallet-Gely, I., Soscia, C., Genin, S., and Filloux, A. (2005) The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology 151: 985-997.
Wolfgang, M.C., Kulasekara, B.R., Liang, X., Boyd, D., Wu, K., Yang, Q., et al. (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100: 8484-8489.
Buckstein, M.H., He, J., and Rubin, H. (2008) Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol 190: 718-726.
Chang, W.S., van de Mortel, M., Nielsen, L., Nino de Guzman, G., Li, X., and Halverson, L.J. (2007) Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 189: 8290-8299.
Lee, D.G., Urbach, J.M., Wu, G., Liberati, N.T., Feinbaum, R.L., Miyata, S., et al. (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7: R90.
Yildiz, F.H., and Schoolnik, G.K. (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96: 4028-4033.
Choi, K.H., and Schweizer, H.P. (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1: 153-161.
Gilbert, K.B., Kim, T.H., Gupta, R., Greenberg, E.P., and Schuster, M. (2009) Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol 73: 1072-1085.
Nielsen, L., Li, X., and Halverson, L.J. (2011) Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol 13: 1342-1356.
Haussler, S., and Parsek, M.R. (2010) Biofilms 2009: new perspectives at the heart of surface-associated m
2008; 190
2007; 189
1998; 280
2001; 183
2002; 56
2004; 7
1983; 5
2003; 57
2004; 6
1999; 284
2008; 105
2008; 76
2011; 13
2004b; 186
2000; 407
2010; 1
2006; 62
2005; 187
2002; 184
2005; 102
2008; 69
1996; 60
2003; 5
1999; 96
2010; 192
2005; 71
2000; 288
2007; 65
2010; 5
1955; 13
2001; 336
1998; 180
2010; 78
2010; 75
2004; 186
2005; 151
2011; 2
1997; 23
2006; 7
2011; 77
2006; 1
2001; 67
2007; 10
1998; 212
2011; 7
2009; 73
2009; 191
2004a; 51
1995; 268
2009; 5
1999; 310
2003; 100
2006; 188
2006; 103
2003; 185
2001; 358
20735777 - Mol Microbiol. 2010 Oct;78(1):158-72
21507177 - Environ Microbiol. 2011 May;13(5):1342-56
17496081 - J Bacteriol. 2007 Jul;189(14):5383-6
21991261 - Front Microbiol. 2011 Aug 22;2:167
14731271 - Mol Microbiol. 2004 Feb;51(3):675-90
20382760 - J Bacteriol. 2010 Jun;192(12):2941-9
11048725 - Nature. 2000 Oct 12;407(6805):762-4
12810959 - Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7907-12
14623017 - Microbes Infect. 2003 Nov;5(13):1213-9
16687478 - Proc Natl Acad Sci U S A. 2006 May 30;103(22):8487-92
12815109 - Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8484-9
9535661 - Science. 1998 Apr 10;280(5361):295-8
18794278 - Infect Immun. 2008 Nov;76(11):5341-9
21554519 - Environ Microbiol. 2011 Jul;13(7):1745-66
17981495 - Curr Opin Microbiol. 2007 Dec;10(6):644-8
8840786 - Microbiol Rev. 1996 Sep;60(3):539-74
18719125 - Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12503-8
16980452 - J Bacteriol. 2006 Dec;188(23):8213-21
15560820 - Environ Microbiol. 2004 Dec;6(12):1220-7
15090514 - J Bacteriol. 2004 May;186(9):2724-34
12700246 - J Bacteriol. 2003 May;185(9):2687-9
15758243 - Microbiology. 2005 Mar;151(Pt 3):985-97
7604262 - Science. 1995 Jun 30;268(5219):1899-902
17038190 - Genome Biol. 2006;7(10):R90
20088866 - Mol Microbiol. 2010 Feb;75(4):827-42
16085879 - Appl Environ Microbiol. 2005 Aug;71(8):4809-21
13278508 - J Gen Microbiol. 1955 Dec;13(3):572-81
15838049 - J Bacteriol. 2005 May;187(9):3214-26
15231776 - J Bacteriol. 2004 Jul;186(14):4449-56
20802825 - MBio. 2010;1(3). pii: e00140-10. doi: 10.1128/mBio.00140-10
19329647 - J Bacteriol. 2009 Jun;191(11):3492-503
9097014 - Crit Rev Microbiol. 1997;23(1):47-75
17059568 - Mol Microbiol. 2006 Dec;62(5):1264-77
17965154 - J Bacteriol. 2008 Jan;190(2):718-26
17824927 - Mol Microbiol. 2007 Sep;65(6):1474-84
15525535 - Dev Cell. 2004 Nov;7(5):745-54
15231777 - J Bacteriol. 2004 Jul;186(14):4457-65
19659934 - Mol Microbiol. 2009 Aug;73(4):622-38
9748453 - J Bacteriol. 1998 Oct;180(19):5183-91
19648250 - J Bacteriol. 2009 Oct;191(19):5901-9
17601783 - J Bacteriol. 2007 Nov;189(22):8290-9
11463434 - Lancet. 2001 Jul 14;358(9276):135-8
14527295 - Annu Rev Microbiol. 2003;57:677-701
16186483 - Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14422-7
15186351 - Environ Microbiol. 2004 Jul;6(7):726-32
19543378 - PLoS Pathog. 2009 Jun;5(6):e1000483
17406227 - Nat Protoc. 2006;1(1):153-61
16373506 - Proc Natl Acad Sci U S A. 2006 Jan 3;103(1):171-6
12426335 - J Bacteriol. 2002 Dec;184(23):6481-9
19487730 - Microbiol Mol Biol Rev. 2009 Jun;73(2):310-47
6405475 - Rev Infect Dis. 1983 Mar-Apr;5(2):279-313
21298031 - PLoS Pathog. 2011;7(1):e1001264
9661666 - Gene. 1998 May 28;212(1):77-86
19682264 - Mol Microbiol. 2009 Sep;73(6):1072-85
11526004 - Appl Environ Microbiol. 2001 Sep;67(9):4048-56
21151973 - PLoS One. 2010;5(12):e14220
10097157 - Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):4028-33
10818002 - Science. 2000 May 19;288(5469):1251-4
10547784 - Methods Enzymol. 1999;310:91-109
11398416 - Methods Enzymol. 2001;336:41-7
21666010 - Appl Environ Microbiol. 2011 Aug;77(15):5238-46
10334980 - Science. 1999 May 21;284(5418):1318-22
21507178 - Environ Microbiol. 2011 May;13(5):1357-69
11514525 - J Bacteriol. 2001 Sep;183(18):5395-401
12142477 - Annu Rev Microbiol. 2002;56:187-209
18485075 - Mol Microbiol. 2008 Jul;69(2):376-89
21605307 - Environ Microbiol. 2011 Jul;13(7):1705-17
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 77
  start-page: 5238
  year: 2011
  end-page: 5246
  article-title: The role of exopolysaccharides in biofilm formation and architecture
  publication-title: Appl Environ Microbiol
– volume: 5
  start-page: 1213
  year: 2003
  end-page: 1219
  article-title: Antimicrobial resistance of biofilms
  publication-title: Microbes Infect
– volume: 183
  start-page: 5395
  year: 2001
  end-page: 5401
  article-title: Alginate overproduction affects biofilm structure and function
  publication-title: J Bacteriol
– volume: 62
  start-page: 1264
  year: 2006
  end-page: 1277
  article-title: The impact of quorum sensing and swarming motility on biofilm formation is nutritionally conditional
  publication-title: Mol Microbiol
– volume: 187
  start-page: 3214
  year: 2005
  end-page: 3226
  article-title: Exopolysaccharide sugars contribute to biofilm formation by on HEp‐2 cells and chicken intestinal epithelium
  publication-title: J Bacteriol
– volume: 189
  start-page: 8290
  year: 2007
  end-page: 8299
  article-title: Alginate production by creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water‐limiting conditions
  publication-title: J Bacteriol
– volume: 13
  start-page: 1357
  year: 2011
  end-page: 1369
  article-title: Influence of putative exopolysaccharide genes on KT2440 biofilm stability
  publication-title: Environ Microbiol
– volume: 288
  start-page: 1251
  year: 2000
  end-page: 1254
  article-title: High frequency of hypermutable in cystic fibrosis lung infection
  publication-title: Science
– volume: 186
  start-page: 2724
  year: 2004
  end-page: 2734
  article-title: The pgaABCD locus of promotes the synthesis of a polysaccharide adhesin required for biofilm formation
  publication-title: J Bacteriol
– volume: 1
  start-page: 153
  year: 2006
  end-page: 161
  article-title: mini‐Tn7 insertion in bacteria with single attTn7 sites: example
  publication-title: Nat Protoc
– volume: 151
  start-page: 985
  year: 2005
  end-page: 997
  article-title: The genes of the PAK strain are involved at early and late stages of biofilm formation
  publication-title: Microbiology
– volume: 69
  start-page: 376
  year: 2008
  end-page: 389
  article-title: Identification of FleQ from as a c‐di‐GMP‐responsive transcription factor
  publication-title: Mol Microbiol
– volume: 7
  start-page: R90
  year: 2006
  article-title: Genomic analysis reveals that virulence is combinatorial
  publication-title: Genome Biol
– volume: 268
  start-page: 1899
  year: 1995
  end-page: 1902
  article-title: Common virulence factors for bacterial pathogenicity in plants and animals
  publication-title: Science
– volume: 105
  start-page: 12503
  year: 2008
  end-page: 12508
  article-title: Endogenous oxidative stress produces diversity and adaptability in biofilm communities
  publication-title: Proc Natl Acad Sci USA
– volume: 284
  start-page: 1318
  year: 1999
  end-page: 1322
  article-title: Bacterial biofilms: a common cause of persistent infections
  publication-title: Science
– volume: 6
  start-page: 1220
  year: 2004
  end-page: 1227
  article-title: Biofilm susceptibility to metal toxicity
  publication-title: Environ Microbiol
– volume: 407
  start-page: 762
  year: 2000
  end-page: 764
  article-title: Quorum‐sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms
  publication-title: Nature
– volume: 96
  start-page: 4028
  year: 1999
  end-page: 4033
  article-title: O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation
  publication-title: Proc Natl Acad Sci USA
– volume: 7
  start-page: e1001264
  year: 2011
  article-title: The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of
  publication-title: PLoS Pathog
– volume: 102
  start-page: 14422
  year: 2005
  end-page: 14427
  article-title: A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels
  publication-title: Proc Natl Acad Sci USA
– volume: 189
  start-page: 5383
  year: 2007
  end-page: 5386
  article-title: Quorum‐sensing regulation of the biofilm matrix genes ( ) of
  publication-title: J Bacteriol
– volume: 76
  start-page: 5341
  year: 2008
  end-page: 5349
  article-title: Identification of a bile‐induced exopolysaccharide required for biofilm formation on gallstone surfaces
  publication-title: Infect Immun
– volume: 13
  start-page: 1705
  year: 2011
  end-page: 1717
  article-title: Distinct roles of extracellular polymeric substances in biofilm development
  publication-title: Environ Microbiol
– volume: 23
  start-page: 47
  year: 1997
  end-page: 75
  article-title: : assessment of risk from drinking water
  publication-title: Crit Rev Microbiol
– volume: 10
  start-page: 644
  year: 2007
  end-page: 648
  article-title: Role of polysaccharides in biofilm development
  publication-title: Curr Opin Microbiol
– volume: 2
  start-page: 167
  year: 2011
  article-title: Biosynthesis of the extracellular polysaccharides, Alginate, Pel and Psl
  publication-title: Front Microbiol
– volume: 67
  start-page: 4048
  year: 2001
  end-page: 4056
  article-title: DT104 displays a rugose phenotype
  publication-title: Appl Environ Microbiol
– volume: 73
  start-page: 622
  year: 2009
  end-page: 638
  article-title: Genetic and biochemical analyses of the Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production
  publication-title: Mol Microbiol
– volume: 5
  start-page: e1000483
  year: 2009
  article-title: Connecting quorum sensing, c‐di‐GMP, pel polysaccharide, and biofilm formation in through tyrosine phosphatase TpbA (PA3885)
  publication-title: PLoS Pathog
– volume: 57
  start-page: 677
  year: 2003
  end-page: 701
  article-title: Bacterial biofilms: an emerging link to disease pathogenesis
  publication-title: Annu Rev Microbiol
– volume: 212
  start-page: 77
  year: 1998
  end-page: 86
  article-title: A broad‐host‐range Flp‐FRT recombination system for site‐specific excision of chromosomally‐located DNA sequences: application for isolation of unmarked mutants
  publication-title: Gene
– volume: 184
  start-page: 6481
  year: 2002
  end-page: 6489
  article-title: Autolysis and autoaggregation in colony morphology mutants
  publication-title: J Bacteriol
– volume: 100
  start-page: 8484
  year: 2003
  end-page: 8489
  article-title: Conservation of genome content and virulence determinants among clinical and environmental isolates of
  publication-title: Proc Natl Acad Sci USA
– volume: 1
  start-page: e00104
  year: 2010
  end-page: 10
  article-title: The exopolysaccharide Psl facilitates surface adherence and NF‐kappaB activation in A549 cells
  publication-title: MBio
– volume: 188
  start-page: 8213
  year: 2006
  end-page: 8221
  article-title: Analysis of conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment
  publication-title: J Bacteriol
– volume: 185
  start-page: 2687
  year: 2003
  end-page: 2689
  article-title: To build a biofilm
  publication-title: J Bacteriol
– volume: 336
  start-page: 41
  year: 2001
  end-page: 47
  article-title: Acylated homoserine lactone detection in biofilms by radiolabel assay
  publication-title: Methods Enzymol
– volume: 13
  start-page: 1342
  year: 2011
  end-page: 1356
  article-title: Cell–cell and cell–surface interactions mediated by cellulose and a novel exopolysaccharide contribute to biofilm formation and fitness under water‐limiting conditions
  publication-title: Environ Microbiol
– volume: 186
  start-page: 4449
  year: 2004
  end-page: 4456
  article-title: Putative exopolysaccharide synthesis genes influence biofilm development
  publication-title: J Bacteriol
– volume: 310
  start-page: 91
  year: 1999
  end-page: 109
  article-title: Genetic approaches to study of biofilms
  publication-title: Methods Enzymol
– volume: 75
  start-page: 827
  year: 2010
  end-page: 842
  article-title: uses a cyclic‐di‐GMP‐regulated adhesin to reinforce the biofilm extracellular matrix
  publication-title: Mol Microbiol
– volume: 73
  start-page: 1072
  year: 2009
  end-page: 1085
  article-title: Global position analysis of the quorum‐sensing transcription factor LasR
  publication-title: Mol Microbiol
– volume: 71
  start-page: 4809
  year: 2005
  end-page: 4821
  article-title: Characterization of colony morphology variants isolated from biofilms
  publication-title: Appl Environ Microbiol
– volume: 103
  start-page: 171
  year: 2006
  end-page: 176
  article-title: Multiple sensors control reciprocal expression of regulatory RNA and virulence genes
  publication-title: Proc Natl Acad Sci USA
– volume: 180
  start-page: 5183
  year: 1998
  end-page: 5191
  article-title: Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by
  publication-title: J Bacteriol
– volume: 186
  start-page: 4457
  year: 2004b
  end-page: 4465
  article-title: Two genetic loci produce distinct carbohydrate‐rich structural components of the biofilm matrix
  publication-title: J Bacteriol
– volume: 13
  start-page: 572
  year: 1955
  end-page: 581
  article-title: Genetic recombination in
  publication-title: J Gen Microbiol
– volume: 78
  start-page: 158
  year: 2010
  end-page: 172
  article-title: biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post‐transcriptionally by RsmA
  publication-title: Mol Microbiol
– volume: 51
  start-page: 675
  year: 2004a
  end-page: 690
  article-title: Genes involved in matrix formation in PA14 biofilms
  publication-title: Mol Microbiol
– volume: 13
  start-page: 1745
  year: 2011
  end-page: 1766
  article-title: Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in : its role in the rhizosphere and an analysis of its target processes
  publication-title: Environ Microbiol
– volume: 5
  start-page: e14220
  year: 2010
  article-title: Chemical analysis of cellular and extracellular carbohydrates of a biofilm‐forming strain PA14
  publication-title: PLoS ONE
– volume: 7
  start-page: 745
  year: 2004
  end-page: 754
  article-title: A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in
  publication-title: Dev Cell
– volume: 192
  start-page: 2941
  year: 2010
  end-page: 2949
  article-title: Biofilms 2009: new perspectives at the heart of surface‐associated microbial communities
  publication-title: J Bacteriol
– volume: 60
  start-page: 539
  year: 1996
  end-page: 574
  article-title: Microbial pathogenesis in cystic fibrosis: mucoid and
  publication-title: Microbiol Rev
– volume: 56
  start-page: 187
  year: 2002
  end-page: 209
  article-title: Biofilms as complex differentiated communities
  publication-title: Annu Rev Microbiol
– volume: 190
  start-page: 718
  year: 2008
  end-page: 726
  article-title: Characterization of nucleotide pools as a function of physiological state in
  publication-title: J Bacteriol
– volume: 191
  start-page: 5901
  year: 2009
  end-page: 5909
  article-title: Mutational analysis of quorum sensing and self‐aggregation
  publication-title: J Bacteriol
– volume: 73
  start-page: 310
  year: 2009
  end-page: 347
  article-title: Signals, regulatory networks, and materials that build and break bacterial biofilms
  publication-title: Microbiol Mol Biol Rev
– volume: 358
  start-page: 135
  year: 2001
  end-page: 138
  article-title: Antibiotic resistance of bacteria in biofilms
  publication-title: Lancet
– volume: 5
  start-page: 279
  year: 1983
  end-page: 313
  article-title: Infections caused by
  publication-title: Rev Infect Dis
– volume: 191
  start-page: 3492
  year: 2009
  end-page: 3503
  article-title: rugose small‐colony variants have adaptations that likely promote persistence in the cystic fibrosis lung
  publication-title: J Bacteriol
– volume: 100
  start-page: 7907
  year: 2003
  end-page: 7912
  article-title: Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 biofilms
  publication-title: Proc Natl Acad Sci USA
– volume: 65
  start-page: 1474
  year: 2007
  end-page: 1484
  article-title: A cyclic‐di‐GMP receptor required for bacterial exopolysaccharide production
  publication-title: Mol Microbiol
– volume: 103
  start-page: 8487
  year: 2006
  end-page: 8492
  article-title: Genetic adaptation by to the airways of cystic fibrosis patients
  publication-title: Proc Natl Acad Sci USA
– volume: 6
  start-page: 726
  year: 2004
  end-page: 732
  article-title: Mini‐Tn7 transposons for site‐specific tagging of bacteria with fluorescent proteins
  publication-title: Environ Microbiol
– volume: 280
  start-page: 295
  year: 1998
  end-page: 298
  article-title: The involvement of cell‐to‐cell signals in the development of a bacterial biofilm
  publication-title: Science
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1365-2958.2007.05879.x
– ident: e_1_2_6_49_1
  doi: 10.1126/science.288.5469.1251
– ident: e_1_2_6_2_1
  doi: 10.1128/AEM.67.9.4048-4056.2001
– ident: e_1_2_6_59_1
  doi: 10.1016/S0140-6736(01)05321-1
– ident: e_1_2_6_50_1
  doi: 10.1146/annurev.micro.57.030502.090720
– ident: e_1_2_6_44_1
  doi: 10.1046/j.1365-2958.2003.03525.x
– ident: e_1_2_6_16_1
  doi: 10.1128/IAI.00786-08
– ident: e_1_2_6_10_1
  doi: 10.1128/JB.00727-07
– ident: e_1_2_6_56_1
  doi: 10.1038/35037627
– ident: e_1_2_6_27_1
  doi: 10.3109/10408419709115130
– ident: e_1_2_6_60_1
  doi: 10.1146/annurev.micro.56.012302.160705
– ident: e_1_2_6_13_1
  doi: 10.1371/journal.ppat.1001264
– ident: e_1_2_6_67_1
  doi: 10.1111/j.1462-2920.2011.02503.x
– ident: e_1_2_6_40_1
  doi: 10.1186/gb-2006-7-10-r90
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1462-2920.2011.02499.x
– ident: e_1_2_6_25_1
  doi: 10.1016/j.devcel.2004.08.020
– ident: e_1_2_6_58_1
  doi: 10.1128/JB.00119-09
– ident: e_1_2_6_61_1
  doi: 10.1371/journal.ppat.1000483
– ident: e_1_2_6_65_1
  doi: 10.1073/pnas.0832438100
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1365-2958.2009.06991.x
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1462-2920.2004.00656.x
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1462-2920.2011.02432.x
– ident: e_1_2_6_22_1
  doi: 10.1128/JB.186.14.4457-4465.2004
– ident: e_1_2_6_62_1
  doi: 10.1099/mic.0.27410-0
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1462-2920.2004.00605.x
– ident: e_1_2_6_19_1
  doi: 10.1016/j.micinf.2003.08.009
– ident: e_1_2_6_26_1
  doi: 10.1128/mr.60.3.539-574.1996
– ident: e_1_2_6_36_1
  doi: 10.1128/MMBR.00041-08
– ident: e_1_2_6_51_1
  doi: 10.1126/science.7604262
– ident: e_1_2_6_37_1
  doi: 10.1021/bp000117r
– ident: e_1_2_6_57_1
  doi: 10.1111/j.1574-6968.2001.tb10695.x
– ident: e_1_2_6_42_1
  doi: 10.1128/JB.01202-06
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1462-2920.2011.02447.x
– ident: e_1_2_6_14_1
  doi: 10.1126/science.284.5418.1318
– ident: e_1_2_6_39_1
  doi: 10.1128/JB.187.9.3214-3226.2005
– ident: e_1_2_6_8_1
  doi: 10.1128/mBio.00140-10
– ident: e_1_2_6_63_1
  doi: 10.1073/pnas.0507407103
– ident: e_1_2_6_64_1
  doi: 10.1128/JB.186.9.2724-2734.2004
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-2958.2009.06795.x
– ident: e_1_2_6_3_1
  doi: 10.1093/clinids/5.2.279
– ident: e_1_2_6_15_1
  doi: 10.1371/journal.pone.0014220
– ident: e_1_2_6_20_1
  doi: 10.3389/fmicb.2011.00167
– ident: e_1_2_6_6_1
  doi: 10.1128/JB.01020-07
– ident: e_1_2_6_18_1
  doi: 10.1126/science.280.5361.295
– ident: e_1_2_6_48_1
  doi: 10.1016/S0076-6879(99)10008-9
– ident: e_1_2_6_34_1
  doi: 10.1099/00221287-13-3-572
– ident: e_1_2_6_30_1
  doi: 10.1128/JB.183.18.5395-5401.2001
– ident: e_1_2_6_33_1
  doi: 10.1016/S0378-1119(98)00130-9
– ident: e_1_2_6_9_1
  doi: 10.1128/JB.00591-09
– ident: e_1_2_6_53_1
  doi: 10.1128/JB.00137-07
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1365-2958.2008.06281.x
– ident: e_1_2_6_11_1
  doi: 10.1128/JB.180.19.5183-5191.1998
– ident: e_1_2_6_54_1
  doi: 10.1016/S0076-6879(01)36576-X
– ident: e_1_2_6_21_1
  doi: 10.1046/j.1365-2958.2003.03877.x
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.0801499105
– ident: e_1_2_6_29_1
  doi: 10.1128/JB.00332-10
– ident: e_1_2_6_32_1
  doi: 10.1016/S0378-1097(04)00009-6
– ident: e_1_2_6_23_1
  doi: 10.1128/AEM.00637-11
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1365-2958.2010.07320.x
– ident: e_1_2_6_47_1
  doi: 10.1128/JB.185.9.2687-2689.2003
– ident: e_1_2_6_66_1
  doi: 10.1073/pnas.1231792100
– ident: e_1_2_6_17_1
  doi: 10.1128/JB.184.23.6481-6489.2002
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1365-2958.2009.06832.x
– ident: e_1_2_6_12_1
  doi: 10.1038/nprot.2006.24
– ident: e_1_2_6_68_1
  doi: 10.1073/pnas.96.7.4028
– ident: e_1_2_6_52_1
  doi: 10.1016/j.mib.2007.09.010
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1365-2958.2006.05421.x
SSID ssj0017370
Score 2.5949066
Snippet Summary Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to...
Extracellular polysaccharides comprise a major component of the biofilm matrix. Many species that are adept at biofilm formation have the capacity to produce...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1913
SubjectTerms Biofilms
Gene Expression Profiling
Gene Expression Regulation, Bacterial
Mutation
Polysaccharides, Bacterial - biosynthesis
Polysaccharides, Bacterial - chemistry
Polysaccharides, Bacterial - genetics
Pseudomonas aeruginosa
Pseudomonas aeruginosa - genetics
Pseudomonas aeruginosa - isolation & purification
Pseudomonas aeruginosa - metabolism
Pseudomonas aeruginosa - physiology
Species Specificity
Title The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix
URI https://api.istex.fr/ark:/67375/WNG-DLSQ9KBZ-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1462-2920.2011.02657.x
https://www.ncbi.nlm.nih.gov/pubmed/22176658
https://search.proquest.com/docview/1038609471
https://pubmed.ncbi.nlm.nih.gov/PMC3840794
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIiQuvKHhJSMhblkldmInR6CUikdVHhUVF8uviNVuk2rTlbb8emaSbMQuPSDELYpjK558Y884M98APBdVZdNAGT3WF3FmrYgRNyb2SeJ5VXqTeDqH_HgoD46zdyf5yRD_RLkwPT_EeOBGmtGt16TgxrbbSs5jqrY0MHFymasJ2ZOpUBTdt_d5ZJJKlejqxg1d0q2gnksH2tiprpLQV5eZoX9GU_5u5Xbb1P5NmK0n2EenzCbLcztxP7e4H_-PBG7BjcGaZS97-N2GK6G-A9f6-pYXd6FGELKjMGem9uyonbOzZn7RGkepXlMfWjbkAWJbWPoGNcK0zITFEt-2aQ3ryW2JGIQtAqW70VbA6Oh4WjO0XJmdUsXxU3ZKhQZW9-B4_83X1wfxUOAhdug1KYRGYSphXSGSKi-c4cGilyzRRExdVWZllfhEBi-LzCamcoUpg8jLQHV1ZMJ9Lu7DTt3UYReYE6VRChdr7JChz1v4MvPe52hv8lRKF0G6_pj6rOfx0Bv-D9ckR01y1J0c9SqCF91XHzuYxYzi4FSuvx2-1Xsfvnwq37_6rtMInq1hoVE76ZeLqUOzbDXRz0v0oBU-86CHyTga50TOmRcRqA0AjQ8Q8_dmSz390TGAC3TLcSGNQHb4-OsZadRtunr4rx0fwXW8zfsIyMewgzAIT9AqO7dPO337BW9KK0M
link.rule.ids 230,314,780,784,885,1375,27924,27925,46294,46718
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hVgguUF7FQGGREDdH9tpe20egj0DTqEArKi6rfVlETe0qbqSUX8-M7Vgk9IAQN0v7kD37ze7MeuYbgDdRUejQUUaPtpkfax35iBvl2yCwvMitCizdQx6NxfA0_nSWnHXlgCgXpuWH6C_cSDOa_ZoUnC6k17Wc-1RuqaPi5CJJB2hQbqL2hxTftful55IK06ipHNeNCdfCem6caeWs2iSxL24yRP-Mp_zdzm0Oqv37MF1-Yhufcj6YX-mB-bnG_vifZLAF9zqDlr1rEfgAbrnyIdxuS1xeP4IScciO3ZSp0rLjesouq-l1rQxle02sq1mXCohtbm4rVApVM-Vmc3zdqlas5bclbhA2c5TxRqcBo9vjScnQeGV6QkXHL9gF1RpYPIbT_b2TD0O_q_HgG3ScUkRHpopImywKiiQzijuNjrJAKzE0RR7nRWAD4azIYh2owmQqd1GSOyqtIwJuk-gJbJRV6Z4CM1Gu0hT3axwQo9ub2Ty21iZocvJQCONBuFxNedlSecgVF4hLkqMkOcpGjnLhwdtm2fsBanZOoXBpIr-ND-Tu6Ovn_PD9dxl68HqJC4kKSn9dVOmqeS2JgV6gE51in-0WJ_1snBM_Z5J5kK4gqO9A5N-rLeXkR0MCHqFnjnupB6IByF9_kUT1pqdn_zrwFdwZnhyN5Ojj-PA53MUuvA2IfAEbCAm3g0balX7ZKN8vKiYvZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hViAuvCnmuUiImyN7117bRyCEQksUHhUVl9U-RZTUjuJGSvn1zNiORUIPCHGzvA_Z4292Z9Yz3xDygnuvY4cZPdrmYaI1DwE3KrRRZJkvrIosnkN-HIvDk-TDaXraxT9hLkzLD9EfuKFmNOs1KvjC-l0lZyFWW-qYOJlIswHYk_twv0Ae_eHnnkoqznhTOK4bE-9E9Vw609ZWtY9SX19mh_4ZTvm7mdvsU6ObZLZ5wzY8ZTZYneuB-blD_vh_RHCL3OjMWfqqxd9tcsWVd8jVtsDlxV1SAgrpxM2pKi2d1HO6qOYXtTKY6zW1rqZdIiC0uZWtQCVUTZVbruBpq1rRlt0WmUHo0mG-G-4FFM-OpyUF05XqKZYcP6NnWGlgfY-cjN5-fXMYdhUeQgNuUwbYyJXn2uQ88mluFHMa3GQBNmJsfJEUPrKRcFbkiY6UN7kqHE8Lh4V1RMRsyu-TvbIq3QNCDS9UlsFqDQMScHpzWyTW2hQMThYLYQISbz6mXLREHnLLAWIS5ShRjrKRo1wH5GXz1fsBajnDQLgsld_G7-Tw-Mun4uj1dxkH5PkGFhLUE_-5qNJVq1oi_7wAFzqDPgctTPrZGEN2zjQPSLYFoL4DUn9vt5TTHw0FOAe_HFbSgIgGH3_9RhKUG68e_uvAZ-TaZDiSx-_HR4_IdejB2mjIx2QPEOGegIV2rp82qvcLbhwuEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Pel+and+Psl+polysaccharides+provide+Pseudomonas+aeruginosa+structural+redundancy+within+the+biofilm+matrix&rft.jtitle=Environmental+microbiology&rft.au=Colvin%2C+Kelly+M.&rft.au=Irie%2C+Yasuhiko&rft.au=Tart%2C+Catherine+S.&rft.au=Urbano%2C+Rodolfo&rft.date=2012-08-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=14&rft.issue=8&rft.spage=1913&rft.epage=1928&rft_id=info:doi/10.1111%2Fj.1462-2920.2011.02657.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_DLSQ9KBZ_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon