Identifying yield-related genes in maize based on ear trait plasticity

Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, part...

Full description

Saved in:
Bibliographic Details
Published inGenome Biology Vol. 24; no. 1; p. 94
Main Authors Liu, Minguo, Zhang, Shuaisong, Li, Wei, Zhao, Xiaoming, Wang, Xi-Qing
Format Journal Article
LanguageEnglish
Published England BioMed Central 25.04.2023
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.
AbstractList Abstract Background Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. Results Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. Conclusions Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.
Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.
BACKGROUND: Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. RESULTS: Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. CONCLUSIONS: Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.
BackgroundPhenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples.ResultsHere, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number.ConclusionsOur results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.
Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples.BACKGROUNDPhenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples.Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number.RESULTSHere, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number.Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.CONCLUSIONSOur results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.
ArticleNumber 94
Author Li, Wei
Zhao, Xiaoming
Zhang, Shuaisong
Wang, Xi-Qing
Liu, Minguo
Author_xml – sequence: 1
  givenname: Minguo
  surname: Liu
  fullname: Liu, Minguo
– sequence: 2
  givenname: Shuaisong
  surname: Zhang
  fullname: Zhang, Shuaisong
– sequence: 3
  givenname: Wei
  surname: Li
  fullname: Li, Wei
– sequence: 4
  givenname: Xiaoming
  surname: Zhao
  fullname: Zhao, Xiaoming
– sequence: 5
  givenname: Xi-Qing
  surname: Wang
  fullname: Wang, Xi-Qing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37098597$$D View this record in MEDLINE/PubMed
BookMark eNqFkktrVDEUx4NU7EO_gAu54MbN1bwfK5FidaDgRsFdyOPcMcOdpCZ3hPHTm3ZaabvQRUg4-Z1_Ts75n6KjXDIg9JLgt4Ro-a4RhoUZMWV9GaZG-QSdEK74qCT-fnTvfIxOW9tgTAyn8hk6ZgobLYw6QRerCHlJ0z7l9bBPMMexwuwWiMMaMrQh5WHr0m8YvGs9WPIArg5LdWkZrmbXlhTSsn-Onk5ubvDidj9D3y4-fj3_PF5--bQ6_3A5BinFMvrAjWSR9be5NJ6D4pw7oZiWUwyEGyojBENVnIL3QCfqgtZESC8xFT6wM7Q66MbiNvaqpq2re1tcsjeBUtfW1V7SDBa0nyJMHDNFOI5SO6FNlAorb7wQ0LXeH7Sudn4LMfQ-VDc_EH14k9MPuy6_LMGEKq5ZV3hzq1DLzx20xW5TCzDPLkPZNcuIYMRIQ_6PUo0lF31WuKOvH6Gbsqu5t7VTvRdME6M69ep-9X_LvhttB_QBCLW0VmGyfVBuSeX6M2nuv7DXLrIHF9nuInvjIit7Kn2Ueqf-j6Q_qHPI4w
CitedBy_id crossref_primary_10_1007_s00122_024_04798_4
crossref_primary_10_3390_plants13243476
Cites_doi 10.1038/s41467-019-13993-7
10.1038/s41587-019-0152-9
10.1186/s12864-018-5134-7
10.1016/S0065-2660(08)60048-6
10.1038/ng.2309
10.1111/pbr.12622
10.1007/s00122-011-1532-9
10.1093/pcp/pcy242
10.1016/j.tree.2005.06.001
10.1073/pnas.1310949110
10.5281/zenodo.7792895
10.1111/tpj.13320
10.3389/fpls.2017.00267
10.5281/zenodo.7796696
10.1186/s13007-018-0317-4
10.1007/s00122-009-1099-x
10.1111/tpj.15166
10.1111/tpj.13712
10.1007/s10584-018-2222-2
10.1146/annurev-ecolsys-110512-135806
10.1038/s41467-021-26123-z
10.1038/s41579-019-0178-5
10.1007/978-1-0716-0356-7
10.1111/pce.13956
10.1073/pnas.1902593116
10.1093/jxb/erv145
10.1007/s00122-019-03426-w
10.1016/j.gpb.2021.08.005
10.1007/978-1-4614-5052-8
10.1534/g3.115.026328
10.1007/s10681-005-9060-9
10.3389/fpls.2016.01949
10.3390/ijms23084201
10.1007/s00122-014-2276-0
10.1007/s00122-016-2733-z
10.1038/s41467-017-01450-2
10.1038/s41477-017-0007-7
10.1104/pp.112.205120
10.1007/s00122-005-0133-x
10.1186/s12864-020-07308-0
10.1007/s00122-021-03897-w
10.1111/j.1365-313X.2005.02591.x
10.1111/tpj.13828
10.2307/2411229
10.1104/pp.19.00767
ContentType Journal Article
Copyright 2023. The Author(s).
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: 2023. The Author(s).
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.1186/s13059-023-02937-6
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1474-760X
EndPage 94
ExternalDocumentID oai_doaj_org_article_e8bfdef4037140d68a589d6707b9b55e
PMC10127483
37098597
10_1186_s13059_023_02937_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: 2022ZD0401801
GroupedDBID ---
0R~
29H
4.4
53G
5GY
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
AAYXX
ABUWG
ACGFO
ACGFS
ACJQM
ACPRK
ADBBV
ADUKV
AEGXH
AFKRA
AFPKN
AHBYD
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIAM
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
EBD
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
IAO
IGS
IHR
ISR
ITC
KPI
LK8
M1P
M7P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
ROL
RPM
RSV
SJN
SOJ
SV3
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c665t-bc4963d3859469b4e7444a57386fdc14926dec927dfcbbe2f2ac88156b6025bc3
IEDL.DBID DOA
ISSN 1474-760X
1474-7596
IngestDate Wed Aug 27 01:04:21 EDT 2025
Thu Aug 21 18:38:06 EDT 2025
Fri Aug 22 20:24:13 EDT 2025
Sun Aug 24 02:55:25 EDT 2025
Fri Jul 25 10:22:11 EDT 2025
Thu Apr 03 07:07:46 EDT 2025
Tue Jul 01 03:10:51 EDT 2025
Thu Apr 24 22:53:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Phenotypic plasticity
Transgenic maize inbred population
Automated ear phenotyping platform
Maize
Ear phenotypes
MAIZTRO
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c665t-bc4963d3859469b4e7444a57386fdc14926dec927dfcbbe2f2ac88156b6025bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/e8bfdef4037140d68a589d6707b9b55e
PMID 37098597
PQID 2815638197
PQPubID 2040232
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_e8bfdef4037140d68a589d6707b9b55e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10127483
proquest_miscellaneous_3153196913
proquest_miscellaneous_2806457600
proquest_journals_2815638197
pubmed_primary_37098597
crossref_citationtrail_10_1186_s13059_023_02937_6
crossref_primary_10_1186_s13059_023_02937_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-25
PublicationDateYYYYMMDD 2023-04-25
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-25
  day: 25
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Genome Biology
PublicationTitleAlternate Genome Biol
PublicationYear 2023
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References Z Jia (2937_CR41) 2022; 23
2937_CR51
2937_CR50
Y Liu (2937_CR24) 2014; 127
S Rustgi (2937_CR15) 2020
Y Wang (2937_CR12) 2015; 66
2937_CR45
Q Yang (2937_CR44) 2013; 110
LM Avila (2937_CR46) 2018; 19
Y Gao (2937_CR32) 2017; 92
DL Des Marais (2937_CR6) 2013; 44
N Upadyayula (2937_CR25) 2006; 112
DA Hutchins (2937_CR3) 2019; 17
MA Gedik (2937_CR2) 2021; 71
MB Hufford (2937_CR47) 2012; 44
M Moshelion (2937_CR14) 2015; 33
2937_CR52
N Liu (2937_CR11) 2020; 38
R Makanza (2937_CR39) 2018; 14
M Pigliucci (2937_CR9) 2005; 20
Y Cao (2937_CR30) 2020; 11
A Kusmec (2937_CR7) 2017; 3
J Wu (2937_CR16) 2019; 116
LT Hickey (2937_CR38) 2019; 37
M Huang (2937_CR13) 2016; 129
J Yan (2937_CR19) 2006; 149
Z Shi (2937_CR21) 2018; 137
Z Zhang (2937_CR43) 2018; 93
C Li (2937_CR48) 2019; 132
Q Ning (2937_CR22) 2021; 12
C Warman (2937_CR28) 2021; 106
A Qurat-Ul (2937_CR1) 2015; 6
2937_CR29
J Wang (2937_CR37) 2021; 19
JL Gage (2937_CR10) 2017; 8
L Ma (2937_CR40) 2021; 134
S Sultan (2937_CR5) 2000; 5
Q Zhang (2937_CR34) 2019; 181
K Song (2937_CR42) 2017; 8
R Wu (2937_CR49) 1998; 52
JL Hatfield (2937_CR4) 2020; 163
S Eltaher (2937_CR17) 2021; 22
Y Wang (2937_CR31) 2021; 44
R Messmer (2937_CR18) 2009; 119
T Tanabata (2937_CR26) 2012; 160
Y Gao (2937_CR33) 2019; 60
2937_CR35
ND Miller (2937_CR27) 2017; 89
SA Flint-Garcia (2937_CR23) 2005; 44
AD Bradshaw (2937_CR8) 1965; 13
P Yadava (2937_CR36) 2017; 7
B Peng (2937_CR20) 2011; 122
References_xml – volume: 11
  start-page: 1
  year: 2020
  ident: 2937_CR30
  publication-title: Nat Comm
  doi: 10.1038/s41467-019-13993-7
– volume: 37
  start-page: 744
  year: 2019
  ident: 2937_CR38
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0152-9
– volume: 19
  start-page: 761
  year: 2018
  ident: 2937_CR46
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-5134-7
– volume: 13
  start-page: 115
  year: 1965
  ident: 2937_CR8
  publication-title: Adv Genet
  doi: 10.1016/S0065-2660(08)60048-6
– volume: 44
  start-page: 808
  year: 2012
  ident: 2937_CR47
  publication-title: Nat Genet
  doi: 10.1038/ng.2309
– volume: 137
  start-page: 706
  year: 2018
  ident: 2937_CR21
  publication-title: Plant Breeding
  doi: 10.1111/pbr.12622
– volume: 122
  start-page: 1305
  year: 2011
  ident: 2937_CR20
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-011-1532-9
– volume: 60
  start-page: 765
  year: 2019
  ident: 2937_CR33
  publication-title: Plant Cell Physiol
  doi: 10.1093/pcp/pcy242
– volume: 20
  start-page: 481
  year: 2005
  ident: 2937_CR9
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2005.06.001
– volume: 33
  start-page: 337
  year: 2015
  ident: 2937_CR14
  publication-title: Rends Biotechnol
– volume: 110
  start-page: 16969
  year: 2013
  ident: 2937_CR44
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1310949110
– ident: 2937_CR52
  doi: 10.5281/zenodo.7792895
– ident: 2937_CR50
– volume: 89
  start-page: 169
  year: 2017
  ident: 2937_CR27
  publication-title: Plant J
  doi: 10.1111/tpj.13320
– volume: 8
  start-page: 267
  year: 2017
  ident: 2937_CR42
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00267
– ident: 2937_CR51
  doi: 10.5281/zenodo.7796696
– volume: 14
  start-page: 49
  year: 2018
  ident: 2937_CR39
  publication-title: Plant Methods
  doi: 10.1186/s13007-018-0317-4
– volume: 119
  start-page: 913
  year: 2009
  ident: 2937_CR18
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-009-1099-x
– volume: 106
  start-page: 566
  year: 2021
  ident: 2937_CR28
  publication-title: Plant J
  doi: 10.1111/tpj.15166
– volume: 92
  start-page: 662
  year: 2017
  ident: 2937_CR32
  publication-title: Plant J
  doi: 10.1111/tpj.13712
– volume: 163
  start-page: 1719
  year: 2020
  ident: 2937_CR4
  publication-title: Clim Change
  doi: 10.1007/s10584-018-2222-2
– volume: 44
  start-page: 5
  year: 2013
  ident: 2937_CR6
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-110512-135806
– volume: 12
  start-page: 1
  year: 2021
  ident: 2937_CR22
  publication-title: Nat Comm
  doi: 10.1038/s41467-021-26123-z
– volume: 17
  start-page: 391
  year: 2019
  ident: 2937_CR3
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-019-0178-5
– volume-title: Biolistic DNA delivery in plants
  year: 2020
  ident: 2937_CR15
  doi: 10.1007/978-1-0716-0356-7
– volume: 44
  start-page: 559
  year: 2021
  ident: 2937_CR31
  publication-title: Plant Cell Environ
  doi: 10.1111/pce.13956
– volume: 116
  start-page: 23850
  year: 2019
  ident: 2937_CR16
  publication-title: P Natl Acad Sci USA
  doi: 10.1073/pnas.1902593116
– volume: 66
  start-page: 3275
  year: 2015
  ident: 2937_CR12
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erv145
– volume: 5
  start-page: 537
  year: 2000
  ident: 2937_CR5
  publication-title: Front Plant Sci
– volume: 132
  start-page: 3309
  year: 2019
  ident: 2937_CR48
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-019-03426-w
– volume: 19
  start-page: 629
  year: 2021
  ident: 2937_CR37
  publication-title: Genom Proteom Bioinf
  doi: 10.1016/j.gpb.2021.08.005
– ident: 2937_CR45
– ident: 2937_CR29
  doi: 10.1007/978-1-4614-5052-8
– ident: 2937_CR35
  doi: 10.1534/g3.115.026328
– volume: 149
  start-page: 121
  year: 2006
  ident: 2937_CR19
  publication-title: Euphytica
  doi: 10.1007/s10681-005-9060-9
– volume: 6
  start-page: 743
  year: 2015
  ident: 2937_CR1
  publication-title: Front Plant Sci
– volume: 7
  start-page: 1949
  year: 2017
  ident: 2937_CR36
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2016.01949
– volume: 23
  start-page: 4201
  year: 2022
  ident: 2937_CR41
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23084201
– volume: 127
  start-page: 1019
  year: 2014
  ident: 2937_CR24
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-014-2276-0
– volume: 129
  start-page: 1697
  year: 2016
  ident: 2937_CR13
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-016-2733-z
– volume: 8
  start-page: 1348
  year: 2017
  ident: 2937_CR10
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01450-2
– volume: 3
  start-page: 715
  year: 2017
  ident: 2937_CR7
  publication-title: Nat Plants
  doi: 10.1038/s41477-017-0007-7
– volume: 71
  start-page: 318
  year: 2021
  ident: 2937_CR2
  publication-title: Acta Agr Scand B-S P.
– volume: 160
  start-page: 1871
  year: 2012
  ident: 2937_CR26
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.205120
– volume: 112
  start-page: 592
  year: 2006
  ident: 2937_CR25
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-005-0133-x
– volume: 22
  start-page: 2
  year: 2021
  ident: 2937_CR17
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-07308-0
– volume: 134
  start-page: 3305
  year: 2021
  ident: 2937_CR40
  publication-title: Theor Appl Genet
  doi: 10.1007/s00122-021-03897-w
– volume: 44
  start-page: 1054
  year: 2005
  ident: 2937_CR23
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2005.02591.x
– volume: 38
  start-page: 1276
  year: 2020
  ident: 2937_CR11
  publication-title: Mol Biol Evol
– volume: 93
  start-page: 1032
  year: 2018
  ident: 2937_CR43
  publication-title: Plant J
  doi: 10.1111/tpj.13828
– volume: 52
  start-page: 967
  year: 1998
  ident: 2937_CR49
  publication-title: Evolution
  doi: 10.2307/2411229
– volume: 181
  start-page: 1441
  year: 2019
  ident: 2937_CR34
  publication-title: Plant Physiol
  doi: 10.1104/pp.19.00767
SSID ssj0019426
ssj0017866
Score 2.4365592
Snippet Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to...
BackgroundPhenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely...
BACKGROUND: Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely...
Abstract Background Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 94
SubjectTerms Accuracy
Agricultural production
Algorithms
Automated ear phenotyping platform
Automation
Chromosome Mapping
Climate change
Corn
corn ears
Datasets
Ear phenotypes
Efficiency
Genes
genetic background
genetically modified organisms
genome
Genomics
Genotype
Genotypes
grain yield
Inbreeding
Integrated software
Maize
MAIZTRO
Phenotype
Phenotypes
Phenotypic plasticity
Phenotypic variations
Phenotyping
Quantitative Trait Loci
seeds
Transgenic maize inbred population
Zea mays
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojwDbWUkbshqHn6eEKCuKiQ4UWlvVsaPshIk2256WH49HicbWAQ95JDYUZzxzHjGnvmGkDdBQZPUvmJcSsDdqsigMpFFmWyLWIFsSsxG_vxFnl_wT0uxnDbcNlNY5U4nZkXte4d75Kc1wpqge6Hera8YVo3C09WphMZdcg-hyzCkSy1nh6tSGm2V6cbwekw1wgBEYeQug0bL001S5MKwtHyly2De3N4qlcH8_2WB_h1I-cfKtHhEHk4mJX0_8sAhuRO6x-T-WGRy-4QsxlzcnM9EtxiwxnICS_D0EhUdXXX0R7v6GSiuaJ72HU3cT7F2xEDXybjGuOth-5RcLM6-fjxnU_UE5qQUAwPHk3D5RguTXGDgQXHOW4FFPqN3FQIF-uBMrXx0AKGOdes0EhlksoPANc_IQdd34QWhLgJo7qJsQuDBQJusBOFiW5YRSg2xINWOWtZN0OI4yu82uxha2pHCNlHYZgpbWZC38zvrEVjj1t4fcBLmngiKnR_015d2kjEb0lB8iHxEIfRSt0IbL1WpwIAQoSBHuym0k6Ru7G--KsjruTnJGB6ctF3ob7APovrhEeb_-zRV1mamagryfOSKebSNKk2ahvQFvccve7-z39KtvmWsb4RfU0mEXt4-9lfkQZ3Zl7NaHJGD4fomHCdraYCTLBK_AP4vD9I
  priority: 102
  providerName: ProQuest
Title Identifying yield-related genes in maize based on ear trait plasticity
URI https://www.ncbi.nlm.nih.gov/pubmed/37098597
https://www.proquest.com/docview/2815638197
https://www.proquest.com/docview/2806457600
https://www.proquest.com/docview/3153196913
https://pubmed.ncbi.nlm.nih.gov/PMC10127483
https://doaj.org/article/e8bfdef4037140d68a589d6707b9b55e
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JixQxFA46IngRd0vHJoI3CVNL1qMt0wyCgwwONF5CZdMGrR6cmkP7630vqW6mxeXioepQSVHJy1sred8j5FVUrgO1rxiX0uHfqsRcYxJLEnyL1DjZ1ZiN_P5Unpzzd0uxvFbqC8-EFXjgQrijqF0KMfECLRek7oU2QapaOeOEiKh9weZtg6lp_8CA4dmmyGh5dAmaWhgG9gkug4lxe2Yoo_X_zsX89aTkNdOzuEfuTj4jfVPGep_ciMMDcrtUkdw8JIuSbJsTlugGT6SxnKESA_2MmoyuBvqtX_2IFE1WoOuBAntTLA4x0gvwnvFg9bh5RM4Xxx_fnrCpPALzUoqROc9BekKnhYEY1_GoOOe9wCqeKfgGkQBD9KZVIXnnYpva3msEh3ESHB3nu8fkYFgP8SmhPjmnuU-yi5FH43pwA4RPfV0nV8MCVKTZUsv6CTscR_nV5hhCS1sobIHCNlPYyoq83r1zUZAz_tp7jouw64mo1_kB8IKdeMH-ixcqcrhdQjuJ4qVtccoYl6qKvNw1gxDhzkg_xPUV9kHYPtyj_HOfrsnqyjRdRZ4UrtiNtlO1gWWAL-g9ftmbzn7LsPqSwbwRX02BjDz7HwR4Tu60mck5a8UhORi_X8UX4DSNbkZuqqWakVvz49MPZ7MsLXA_m3_6CUG_F1k
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJxQ1D9uJDwhR6GpL2xVCrdSbiR27rATJ0k2Flh_Fb2Qmj4VF0FsPOWziXXvH84xnvgF47jKTotrPQi6lobdVPjSx8qGX6Fv42Mg0omrkw6mcHPP3J-JkA34OtTCUVjnoxFZRl7Wld-TbCcGaUHiRvZ5_C6lrFJ2uDi00OrbYd8vvGLItXu29w_19kSTj3aO3k7DvKhBaKUUTGsuR6co0FwpDQ8NdxjkvBDW_9KWNCUCvdFYlWemtMS7xSWFzmtxI9A-MTfF3r8AmTzGUGcHmzu70w8fVuUWWk3fUf1A86YqbKOVRKDnU7ORye4GmQ6gQDSZeiir11uxi2z7gXz7v36mbf9jC8U240Tux7E3Hdbdgw1W34WrX1nJ5B8Zd9W9bQcWWlCIXtiUzrmSnpFrZrGJfi9kPx8iGlqyuGBKWUbeKhs3RnadM72Z5F44vhbL3YFTVlXsAzHpjcm69TJ3jTpkC_RJhfRFF3kS58QHEA7W07cHMaZVfdBvU5FJ3FNZIYd1SWMsAXq6-M--gPC4cvUObsBpJMNztjfrsVPdSrR0upXSed7iHpcwLkatSZlFmlBHCBbA1bKHudcNC_-bkAJ6tHqNU01FNUbn6nMYQjiAdmv5_TBq3-lPFaQD3O65YrTbNIoXbgDPka_yy9nfWn1Szzy26OAG-ZSi0Dy9e-1O4Njk6PNAHe9P9R3A9aVmZh4nYglFzdu4eo6_WmCe9gDD4dNky-Qt1Bk4P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+yield-related+genes+in+maize+based+on+ear+trait+plasticity&rft.jtitle=Genome+biology&rft.au=Liu%2C+Minguo&rft.au=Zhang%2C+Shuaisong&rft.au=Li%2C+Wei&rft.au=Zhao%2C+Xiaoming&rft.date=2023-04-25&rft.issn=1474-760X&rft.volume=24&rft.issue=1+p.94-94&rft.spage=94&rft.epage=94&rft_id=info:doi/10.1186%2Fs13059-023-02937-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon