An empirical evaluation of functional alignment using inter-subject decoding
•Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods consistently improve inter-subject decoding on several datasets, with the best methods recovering half of the signal lost in anatomical-only align...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 245; p. 118683 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.12.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods consistently improve inter-subject decoding on several datasets, with the best methods recovering half of the signal lost in anatomical-only alignment.•For whole-brain alignment, piecewise alignment (performed in non-overlapping regions) is more accurate and much more efficient than searchlight alignment.•Shared Response Model and Optimal Transport yield highest decoding accuracy gains.
Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment—a class of methods that matches subjects’ neural signals based on their functional similarity—is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used. |
---|---|
AbstractList | •Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods consistently improve inter-subject decoding on several datasets, with the best methods recovering half of the signal lost in anatomical-only alignment.•For whole-brain alignment, piecewise alignment (performed in non-overlapping regions) is more accurate and much more efficient than searchlight alignment.•Shared Response Model and Optimal Transport yield highest decoding accuracy gains.
Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment—a class of methods that matches subjects’ neural signals based on their functional similarity—is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used. Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment—a class of methods that matches subjects’ neural signals based on their functional similarity—is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used. Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment-a class of methods that matches subjects' neural signals based on their functional similarity-is a promising strategy for addressing this variability. At present, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider piecewise Procrustes, searchlight Procrustes, piecewise Optimal Transport, Shared Response Modelling (SRM), and intra-subject alignment; as well as associated methodological choices such as ROI definition. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM performs best within a region-of-interest while piecewise Optimal Transport performs best at a whole-brain scale. We also benchmark the computational e ciency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of the methods used. Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment-a class of methods that matches subjects' neural signals based on their functional similarity-is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment-a class of methods that matches subjects' neural signals based on their functional similarity-is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used. |
ArticleNumber | 118683 |
Author | Richard, Hugo Thirion, Bertrand Bazeille, Thomas Poline, Jean-Baptiste DuPre, Elizabeth |
AuthorAffiliation | a Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France b Montréal Neurological Institute, McGill University, Montréal, Canada |
AuthorAffiliation_xml | – name: a Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France – name: b Montréal Neurological Institute, McGill University, Montréal, Canada |
Author_xml | – sequence: 1 givenname: Thomas surname: Bazeille fullname: Bazeille, Thomas organization: Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France – sequence: 2 givenname: Elizabeth surname: DuPre fullname: DuPre, Elizabeth organization: Montréal Neurological Institute, McGill University, Montréal, Canada – sequence: 3 givenname: Hugo surname: Richard fullname: Richard, Hugo organization: Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France – sequence: 4 givenname: Jean-Baptiste surname: Poline fullname: Poline, Jean-Baptiste organization: Montréal Neurological Institute, McGill University, Montréal, Canada – sequence: 5 givenname: Bertrand surname: Thirion fullname: Thirion, Bertrand email: bertrand.thirion@inria.fr organization: Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34715319$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-03044779$$DView record in HAL |
BookMark | eNqNkkFv1DAQhSNURNuFv4AicYFDFtuxHfsCLBXQSitxgbNlO5PUIWsvTrJS_z1O0wLd055izbz5xs57l9mZDx6yLMdojRHm77u1hykGt9MtrAkieI2x4KJ8ll1gJFkhWUXO5jMrC4GxPM8uh6FDCElMxYvsvKQVZiWWF9l243PY7V10Vvc5HHQ_6dEFn4cmbyZv53Nq6N61fgd-zKfB-TZ3foRYDJPpwI55DTbUqfwye97ofoBXD99V9vPrlx9X18X2-7ebq822sJyzsdCSIKgbzkuCKKaaEsEJQKMZKzmDiiIiJDINBySAm0bKhlhDuDCp11hTrrKbhVsH3al9TP8h3qmgnbovhNgqHUdne1BWpGlKSd2AoZJyw5CuGTHGICwrKRLr48LaT2YHtU1vjLp_An3a8e5WteGgMOasrIRMhHcL4fZo7nqzVXMNlYjSqpKHMmnfPmyL4fcEw6h2brDQ99pDmAZFmES4rDhCSfrmSNqFKSYzkopjRgWRyd5V9vr_6__d_-hwEnxYBDaGYYjQKOvGe4vTa1yvMFJzpFSn_kVKzZFSS6QSQBwBHnecMPp5GYUUhoODqAbrwFuoXUy5SW65UyCfjiC2d36O6y-4Ow3xB0feAdE |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2023_120395 crossref_primary_10_1162_imag_a_00170 crossref_primary_10_1002_hbm_26170 crossref_primary_10_1146_annurev_clinpsy_072220_014550 crossref_primary_10_1016_j_neuroimage_2023_120007 crossref_primary_10_1523_JNEUROSCI_0288_24_2024 crossref_primary_10_1007_s00117_022_01051_1 crossref_primary_10_1016_j_scib_2024_08_029 crossref_primary_10_1016_j_tics_2022_07_003 crossref_primary_10_1016_j_jneumeth_2023_109959 crossref_primary_10_1162_imag_a_00253 |
Cites_doi | 10.1093/cercor/bhw068 10.1038/s41592-018-0235-4 10.1016/j.neuroimage.2010.02.082 10.1007/s12021-017-9347-8 10.1146/annurev-neuro-080317-061906 10.1093/cercor/bhx179 10.7554/eLife.53385 10.3389/fninf.2013.00012 10.1093/gigascience/giw011 10.1073/pnas.1903403116 10.1101/600114 10.1371/journal.pbio.3000284 10.1016/j.neuroimage.2007.05.051 10.1523/JNEUROSCI.5023-14.2015 10.1016/j.neuroimage.2019.116458 10.1371/journal.pcbi.1006120 10.1038/sdata.2016.92 10.1007/s12021-008-9041-y 10.1016/j.neuroimage.2010.04.270 10.3389/fninf.2014.00014 10.3389/fninf.2016.00049 10.1371/journal.pbio.1002180 10.1093/cercor/3.4.313 10.1038/sdata.2018.105 10.1093/cercor/bhp085 10.1002/hbm.20210 10.1038/s41597-019-0052-3 10.1016/j.neuron.2011.08.026 10.1038/s41592-019-0686-2 10.1073/pnas.0600244103 10.1126/science.aad8127 10.7554/eLife.56601 10.1152/jn.00339.2011 10.1016/j.neuroimage.2014.08.029 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Dec 15, 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Dec 15, 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.neuroimage.2021.118683 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Mathematics Statistics Computer Science |
EISSN | 1095-9572 |
EndPage | 118683 |
ExternalDocumentID | oai_doaj_org_article_c899f442dfeb4946b50ad52bbb019798 PMC11653789 oai_HAL_hal_03044779v3 34715319 10_1016_j_neuroimage_2021_118683 S1053811921009563 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: R01 MH096906 – fundername: NIMH NIH HHS grantid: RF1 MH120021 – fundername: NIBIB NIH HHS grantid: P41 EB019936 – fundername: NIMH NIH HHS grantid: R01 MH083320 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c665t-a920edf66320414a42862eefa55365e7402890bf6e08e6bf99f2cb268be74fcb3 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:23:58 EDT 2025 Thu Aug 21 18:29:54 EDT 2025 Fri May 09 12:23:29 EDT 2025 Fri Jul 11 11:19:44 EDT 2025 Wed Aug 13 06:40:29 EDT 2025 Mon Jul 21 05:59:47 EDT 2025 Tue Jul 01 03:02:20 EDT 2025 Thu Apr 24 23:07:05 EDT 2025 Fri Feb 23 02:40:24 EST 2024 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional alignment fMRI Predictive modeling Inter-subject variability inter-subject variability predictive modeling functional alignment |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c665t-a920edf66320414a42862eefa55365e7402890bf6e08e6bf99f2cb268be74fcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-5018-7895 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811921009563 |
PMID | 34715319 |
PQID | 2615482905 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c899f442dfeb4946b50ad52bbb019798 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11653789 hal_primary_oai_HAL_hal_03044779v3 proquest_miscellaneous_2590137600 proquest_journals_2615482905 pubmed_primary_34715319 crossref_citationtrail_10_1016_j_neuroimage_2021_118683 crossref_primary_10_1016_j_neuroimage_2021_118683 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118683 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118683 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Langs, Golland, Tie, Rigolo, Golby (bib0029) 2010; 1 Abraham, Pedregosa, Eickenberg, Gervais, Mueller, Kossaifi, Gramfort, Thirion, Varoquaux (bib0001) 2014; 8 Paquola, De Wael, Wagstyl, Bethlehem, Hong, Seidlitz, Bullmore, Evans, Misic, Margulies (bib0035) 2019; 17 Tavor, Parker Jones, Mars, Smith, Behrens, Jbabdi (bib0044) 2016; 352 Yousefnezhad, Zhang (bib0050) 2017 Pinho, Amadon, Ruest, Fabre, Dohmatob, Denghien, Ginisty, Becuwe-Desmidt, Roger, Laurier, Joly-Testault, Médiouni-Cloarec, Doublé, Martins, Pinel, Eger, Varoquaux, Pallier, Dehaene, Hertz-Pannier, Thirion (bib0037) 2018; 5 Chen, Chen, Yeshurun, Hasson, Haxby, Ramadge (bib0011) 2015 Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bib0022) 2011; 72 Kriegeskorte, Goebel, Bandettini (bib0027) 2006; 103 Langs, Sweet, Lashkari, Tie, Rigolo, Golby, Golland (bib0030) 2014; 103 Aglieri, V., Cagna, B., Belin, P., Takerkart, S., 2019. InterTVA. a multimodal MRI dataset for the study of inter-individual differences in voice perception and identification. Kriegeskorte, Diedrichsen (bib0026) 2019; 42 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright (bib0048) 2020; 17 Buckner, Krienen, Castellanos, Diaz, Yeo (bib0008) 2011; 106 Jiahui, Feilong, Visconti di Oleggio Castello, Guntupalli, Chauhan, Haxby, Gobbini (bib0025) 2020; 216 Olivetti, Veeramachaneni, Avesani (bib0032) 2011 Heller, Golland, Malach, Benjamini (bib0024) 2007; 37 Boyle, J. A., Pinsard, B., Boukhdhir, A., Belleville, S., Brambatti, S., Chen, J., Cohen-Adad, J., Cyr, A., Fuente, A., Rainville, P., Bellec, P., 2020. The Courtois project on neuronal modelling: 2020 data release. Bellec, Rosa-Neto, Lyttelton, Benali, Evans (bib0004) 2010; 51 Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (bib0021) 2009; 7 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0036) 2011; 12 Dockés, Poldrack, Primet, Gözükan, Yarkoni, Suchanek, Thirion, Varoquaux (bib0014) 2020; 9 Rademacher, Caviness, Steinmetz, Galaburda (bib0039) 1993; 3 . Schaefer, Kong, Gordon, Laumann, Zuo, Holmes, Eickhoff, Yeo (bib0042) 2018; 28 Oosterhof, Wiestler, Downing, Diedrichsen (bib0033) 2011; 56 Hanke, Adelhöfer, Kottke, Iacovella, Sengupta, Kaule, Nigbur, Waite, Baumgartner, Stadler (bib0020) 2016; 3 Poldrack, Barch, Mitchell, Wager, Wagner, Devlin, Cumba, Koyejo, Milham (bib0038) 2013; 7 Kriegeskorte, Mur, Bandettini (bib0028) 2008; 2 Haxby, Guntupalli, Nastase, Feilong (bib0023) 2020; 9 Vázquez-Rodríguez, Suárez, Markello, Shafiei, Paquola, Hagmann, van den Heuvel, Bernhardt, Spreng, Misic (bib0047) 2019; 116 O’Connor, Potler, Kovacs, Xu, Ai, Pellman, Vanderwal, Parra, Cohen, Ghosh (bib0034) 2017; 6 Varoquaux, Gramfort, Pedregosa, Michel, Thirion (bib0046) 2011 Xu, Yousefnezhad, Zhang (bib0049) 2018 Chang, Gianaros, Manuck, Krishnan, Wager (bib0009) 2015; 13 Richard, H., Martin, L., Pinho, A. L., Pillow, J., Thirion, B., 2019. Fast shared response model for fMRI data. Churchland (bib0012) 1998; 95 Bilenko, Gallant (bib0005) 2016; 10 Schrouff, Monteiro, Portugal, Rosa, Phillips, Mourao-Miranda (bib0043) 2018; 16 Nastase, S. A., Gazzola, V., Hasson, U., Keysers, C., 2019. Measuring shared responses across subjects using intersubject correlation. Guntupalli, Feilong, Haxby (bib0018) 2018; 14 Güçlü, van Gerven (bib0017) 2015; 35 Botvinik-Nezer, Holzmeister, Camerer, Dreber, Huber, Johannesson, Kirchler, Iwanir, Mumford, Adcock (bib0006) 2020 Cuturi (bib0013) 2013 Guntupalli, Hanke, Halchenko, Connolly, Ramadge, Haxby (bib0019) 2016; 26 Presented at the 26th annual meeting of the Organization for Human Brain Mapping. Sabuncu, Bryan, Ramadge, Haxby (bib0041) 2010; 20 Bazeille, Richard, Janati, Thirion (bib0003) 2019 Thirion, Flandin, Pinel, Roche, Ciuciu, Poline (bib0045) 2006; 27 Chang, Pyles, Marcus, Gupta, Tarr, Aminoff (bib0010) 2019; 6 Esteban, Markiewicz, Blair, Moodie, Isik, Erramuzpe, Kent, Goncalves, DuPre, Snyder, Oya, Ghosh, Wright, Durnez, Poldrack, Gorgolewski (bib0015) 2019; 16 Etzel, Brough, Freund, Kizhner, Lin, Singh, Tang, Tay, Wang, Braver (bib0016) 2021 Botvinik-Nezer (10.1016/j.neuroimage.2021.118683_bib0006) 2020 Schrouff (10.1016/j.neuroimage.2021.118683_bib0043) 2018; 16 Chang (10.1016/j.neuroimage.2021.118683_bib0010) 2019; 6 Bazeille (10.1016/j.neuroimage.2021.118683_bib0003) 2019 Dockés (10.1016/j.neuroimage.2021.118683_bib0014) 2020; 9 Kriegeskorte (10.1016/j.neuroimage.2021.118683_bib0026) 2019; 42 Kriegeskorte (10.1016/j.neuroimage.2021.118683_bib0028) 2008; 2 10.1016/j.neuroimage.2021.118683_bib0031 Yousefnezhad (10.1016/j.neuroimage.2021.118683_sbref0050) 2017 Langs (10.1016/j.neuroimage.2021.118683_bib0029) 2010; 1 Haxby (10.1016/j.neuroimage.2021.118683_bib0022) 2011; 72 Güçlü (10.1016/j.neuroimage.2021.118683_bib0017) 2015; 35 Guntupalli (10.1016/j.neuroimage.2021.118683_bib0018) 2018; 14 Xu (10.1016/j.neuroimage.2021.118683_bib0049) 2018 Rademacher (10.1016/j.neuroimage.2021.118683_bib0039) 1993; 3 Paquola (10.1016/j.neuroimage.2021.118683_bib0035) 2019; 17 Esteban (10.1016/j.neuroimage.2021.118683_bib0015) 2019; 16 Vázquez-Rodríguez (10.1016/j.neuroimage.2021.118683_bib0047) 2019; 116 10.1016/j.neuroimage.2021.118683_bib0040 Chen (10.1016/j.neuroimage.2021.118683_bib0011) 2015 Poldrack (10.1016/j.neuroimage.2021.118683_bib0038) 2013; 7 10.1016/j.neuroimage.2021.118683_bib0002 10.1016/j.neuroimage.2021.118683_bib0007 Buckner (10.1016/j.neuroimage.2021.118683_sbref0008) 2011; 106 Etzel (10.1016/j.neuroimage.2021.118683_bib0016) 2021 Varoquaux (10.1016/j.neuroimage.2021.118683_bib0046) 2011 Guntupalli (10.1016/j.neuroimage.2021.118683_bib0019) 2016; 26 Oosterhof (10.1016/j.neuroimage.2021.118683_bib0033) 2011; 56 Cuturi (10.1016/j.neuroimage.2021.118683_bib0013) 2013 Schaefer (10.1016/j.neuroimage.2021.118683_bib0042) 2018; 28 Haxby (10.1016/j.neuroimage.2021.118683_bib0023) 2020; 9 Tavor (10.1016/j.neuroimage.2021.118683_bib0044) 2016; 352 Virtanen (10.1016/j.neuroimage.2021.118683_bib0048) 2020; 17 Langs (10.1016/j.neuroimage.2021.118683_bib0030) 2014; 103 Abraham (10.1016/j.neuroimage.2021.118683_bib0001) 2014; 8 Pedregosa (10.1016/j.neuroimage.2021.118683_bib0036) 2011; 12 Sabuncu (10.1016/j.neuroimage.2021.118683_bib0041) 2010; 20 Pinho (10.1016/j.neuroimage.2021.118683_bib0037) 2018; 5 Chang (10.1016/j.neuroimage.2021.118683_bib0009) 2015; 13 Churchland (10.1016/j.neuroimage.2021.118683_bib0012) 1998; 95 Bellec (10.1016/j.neuroimage.2021.118683_sbref0004) 2010; 51 Hanke (10.1016/j.neuroimage.2021.118683_bib0021) 2009; 7 Olivetti (10.1016/j.neuroimage.2021.118683_bib0032) 2011 Heller (10.1016/j.neuroimage.2021.118683_bib0024) 2007; 37 Hanke (10.1016/j.neuroimage.2021.118683_bib0020) 2016; 3 Thirion (10.1016/j.neuroimage.2021.118683_bib0045) 2006; 27 Bilenko (10.1016/j.neuroimage.2021.118683_bib0005) 2016; 10 Kriegeskorte (10.1016/j.neuroimage.2021.118683_bib0027) 2006; 103 Jiahui (10.1016/j.neuroimage.2021.118683_bib0025) 2020; 216 O’Connor (10.1016/j.neuroimage.2021.118683_bib0034) 2017; 6 |
References_xml | – volume: 16 start-page: 111 year: 2019 end-page: 116 ident: bib0015 article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI publication-title: Nat. Methods – volume: 56 start-page: 593 year: 2011 end-page: 600 ident: bib0033 article-title: A comparison of volume-based and surface-based multi-voxel pattern analysis publication-title: Neuroimage – start-page: 2292 year: 2013 end-page: 2300 ident: bib0013 article-title: Sinkhorn distances: lightspeed computation of optimal transport publication-title: Advances in Neural Information Processing Systems 26 – volume: 72 start-page: 404 year: 2011 end-page: 416 ident: bib0022 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron – volume: 9 start-page: e56601 year: 2020 ident: bib0023 article-title: Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies publication-title: Elife – volume: 16 start-page: 117 year: 2018 end-page: 143 ident: bib0043 article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models publication-title: Neuroinformatics – volume: 20 start-page: 130 year: 2010 end-page: 140 ident: bib0041 article-title: Function-based intersubject alignment of human cortical anatomy publication-title: Cereb. Cortex – start-page: 460 year: 2015 end-page: 468 ident: bib0011 article-title: A Reduced-Dimension fMRI shared response model publication-title: Advances in Neural Information Processing Systems 28 – volume: 216 start-page: 116458 year: 2020 ident: bib0025 article-title: Predicting individual face-selective topography using naturalistic stimuli publication-title: Neuroimage – start-page: 1058 year: 2018 end-page: 1068 ident: bib0049 article-title: Gradient hyperalignment for multi-subject fMRI data alignment publication-title: Pacific Rim International Conference on Artificial Intelligence – volume: 3 start-page: 160092 year: 2016 ident: bib0020 article-title: A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation publication-title: Sci Data – start-page: 1604 year: 2017 end-page: 1612 ident: bib0050 article-title: Deep hyperalignment publication-title: Advances in Neural Information Processing Systems 30 – volume: 13 start-page: e1002180 year: 2015 ident: bib0009 article-title: A sensitive and specific neural signature for Picture-Induced negative affect publication-title: PLoS Biol. – volume: 116 start-page: 21219 year: 2019 end-page: 21227 ident: bib0047 article-title: Gradients of structure–function tethering across neocortex publication-title: Proc. Natl. Acad. Sci. – volume: 106 start-page: 2322 year: 2011 end-page: 2345 ident: bib0008 article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. – start-page: 1 year: 2020 end-page: 7 ident: bib0006 article-title: Variability in the analysis of a single neuroimaging dataset by many teams publication-title: Nature – volume: 2 start-page: 4 year: 2008 ident: bib0028 article-title: Representational similarity analysis-connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – start-page: 237 year: 2019 end-page: 248 ident: bib0003 article-title: Local optimal transport for functional brain template estimation publication-title: Information Processing in Medical Imaging – volume: 6 start-page: 49 year: 2019 ident: bib0010 article-title: BOLD5000, a public fMRI dataset while viewing 5000 visual images publication-title: Sci. Data – volume: 9 start-page: e53385 year: 2020 ident: bib0014 article-title: Neuroquery, comprehensive meta-analysis of human brain mapping publication-title: eLife – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0036 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – reference: , Presented at the 26th annual meeting of the Organization for Human Brain Mapping. – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: bib0048 article-title: Scipy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat. Methods – volume: 1 start-page: 1225 year: 2010 end-page: 1233 ident: bib0029 article-title: Functional geometry alignment and localization of brain areas publication-title: Adv. Neural Inf. Process. Syst. – volume: 103 start-page: 3863 year: 2006 end-page: 3868 ident: bib0027 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 3095 year: 2018 end-page: 3114 ident: bib0042 article-title: Local-Global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cereb. Cortex – reference: Boyle, J. A., Pinsard, B., Boukhdhir, A., Belleville, S., Brambatti, S., Chen, J., Cohen-Adad, J., Cyr, A., Fuente, A., Rainville, P., Bellec, P., 2020. The Courtois project on neuronal modelling: 2020 data release. – volume: 5 start-page: 180105 year: 2018 ident: bib0037 article-title: Individual brain charting, a high-resolution fMRI dataset for cognitive mapping publication-title: Sci. Data – volume: 6 start-page: giw011 year: 2017 ident: bib0034 article-title: The healthy brain network serial scanning initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions publication-title: Gigascience – volume: 10 start-page: 49 year: 2016 ident: bib0005 article-title: Pyrcca: Regularized kernel canonical correlation analysis in python and its applications to neuroimaging publication-title: Front. Neuroinform. – volume: 352 start-page: 216 year: 2016 end-page: 220 ident: bib0044 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science – volume: 51 start-page: 1126 year: 2010 end-page: 1139 ident: bib0004 article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI publication-title: NeuroImage – volume: 17 start-page: e3000284 year: 2019 ident: bib0035 article-title: Microstructural and functional gradients are increasingly dissociated in transmodal cortices publication-title: PLoS Biol. – volume: 7 start-page: 12 year: 2013 ident: bib0038 article-title: Toward open sharing of task-based fMRI data: the openfMRI project publication-title: Front. Neuroinform. – reference: Richard, H., Martin, L., Pinho, A. L., Pillow, J., Thirion, B., 2019. Fast shared response model for fMRI data. – volume: 35 start-page: 10005 year: 2015 end-page: 10014 ident: bib0017 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. – volume: 14 start-page: e1006120 year: 2018 ident: bib0018 article-title: A computational model of shared fine-scale structure in the human connectome publication-title: PLoS Comput. Biol. – reference: Aglieri, V., Cagna, B., Belin, P., Takerkart, S., 2019. InterTVA. a multimodal MRI dataset for the study of inter-individual differences in voice perception and identification. – reference: Nastase, S. A., Gazzola, V., Hasson, U., Keysers, C., 2019. Measuring shared responses across subjects using intersubject correlation. – volume: 7 start-page: 37 year: 2009 end-page: 53 ident: bib0021 article-title: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics – reference: . – volume: 37 start-page: 1178 year: 2007 end-page: 1185 ident: bib0024 article-title: Conjunction group analysis: an alternative to mixed/random effect analysis publication-title: NeuroImage – year: 2021 ident: bib0016 article-title: The dual mechanisms of cognitive control dataset: atheoretically-guided within-subject task fMRI battery publication-title: bioRxiv – start-page: 33 year: 2011 end-page: 36 ident: bib0032 article-title: Testing for information with brain decoding publication-title: 2011 International Workshop on Pattern Recognition in NeuroImaging – volume: 42 start-page: 407 year: 2019 end-page: 432 ident: bib0026 article-title: Peeling the onion of brain representations publication-title: Annu. Rev. Neurosci. – volume: 26 start-page: 2919 year: 2016 end-page: 2934 ident: bib0019 article-title: A model of representational spaces in human cortex publication-title: Cereb. Cortex – start-page: 562 year: 2011 end-page: 573 ident: bib0046 article-title: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity publication-title: Information Processing in Medical Imaging – volume: 8 start-page: 14 year: 2014 ident: bib0001 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinform. – volume: 103 start-page: 462 year: 2014 end-page: 475 ident: bib0030 article-title: Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients publication-title: Neuroimage – volume: 27 start-page: 678 year: 2006 end-page: 693 ident: bib0045 article-title: Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets publication-title: Hum. Brain Mapp. – volume: 95 start-page: 5 year: 1998 end-page: 32 ident: bib0012 article-title: Conceptual similarity across sensory and neural diversity: the Fodor/Lepore challenge answered publication-title: J. Philos. – volume: 3 start-page: 313 year: 1993 end-page: 329 ident: bib0039 article-title: Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology publication-title: Cereb. Cortex – volume: 26 start-page: 2919 issue: 6 year: 2016 ident: 10.1016/j.neuroimage.2021.118683_bib0019 article-title: A model of representational spaces in human cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhw068 – volume: 16 start-page: 111 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118683_bib0015 article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI publication-title: Nat. Methods doi: 10.1038/s41592-018-0235-4 – volume: 51 start-page: 1126 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2021.118683_sbref0004 article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.082 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.neuroimage.2021.118683_bib0036 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 4 year: 2008 ident: 10.1016/j.neuroimage.2021.118683_bib0028 article-title: Representational similarity analysis-connecting the branches of systems neuroscience publication-title: Front. Syst. Neurosci. – start-page: 460 year: 2015 ident: 10.1016/j.neuroimage.2021.118683_bib0011 article-title: A Reduced-Dimension fMRI shared response model – volume: 16 start-page: 117 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2021.118683_bib0043 article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models publication-title: Neuroinformatics doi: 10.1007/s12021-017-9347-8 – volume: 42 start-page: 407 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118683_bib0026 article-title: Peeling the onion of brain representations publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev-neuro-080317-061906 – volume: 28 start-page: 3095 issue: 9 year: 2018 ident: 10.1016/j.neuroimage.2021.118683_bib0042 article-title: Local-Global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx179 – volume: 9 start-page: e53385 year: 2020 ident: 10.1016/j.neuroimage.2021.118683_bib0014 article-title: Neuroquery, comprehensive meta-analysis of human brain mapping publication-title: eLife doi: 10.7554/eLife.53385 – volume: 7 start-page: 12 year: 2013 ident: 10.1016/j.neuroimage.2021.118683_bib0038 article-title: Toward open sharing of task-based fMRI data: the openfMRI project publication-title: Front. Neuroinform. doi: 10.3389/fninf.2013.00012 – volume: 6 start-page: giw011 issue: 2 year: 2017 ident: 10.1016/j.neuroimage.2021.118683_bib0034 article-title: The healthy brain network serial scanning initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions publication-title: Gigascience doi: 10.1093/gigascience/giw011 – volume: 116 start-page: 21219 issue: 42 year: 2019 ident: 10.1016/j.neuroimage.2021.118683_bib0047 article-title: Gradients of structure–function tethering across neocortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1903403116 – volume: 1 start-page: 1225 year: 2010 ident: 10.1016/j.neuroimage.2021.118683_bib0029 article-title: Functional geometry alignment and localization of brain areas publication-title: Adv. Neural Inf. Process. Syst. – ident: 10.1016/j.neuroimage.2021.118683_bib0031 doi: 10.1101/600114 – volume: 17 start-page: e3000284 issue: 5 year: 2019 ident: 10.1016/j.neuroimage.2021.118683_bib0035 article-title: Microstructural and functional gradients are increasingly dissociated in transmodal cortices publication-title: PLoS Biol. doi: 10.1371/journal.pbio.3000284 – volume: 37 start-page: 1178 year: 2007 ident: 10.1016/j.neuroimage.2021.118683_bib0024 article-title: Conjunction group analysis: an alternative to mixed/random effect analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.05.051 – volume: 35 start-page: 10005 issue: 27 year: 2015 ident: 10.1016/j.neuroimage.2021.118683_bib0017 article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5023-14.2015 – volume: 216 start-page: 116458 year: 2020 ident: 10.1016/j.neuroimage.2021.118683_bib0025 article-title: Predicting individual face-selective topography using naturalistic stimuli publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116458 – volume: 14 start-page: e1006120 issue: 4 year: 2018 ident: 10.1016/j.neuroimage.2021.118683_bib0018 article-title: A computational model of shared fine-scale structure in the human connectome publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006120 – volume: 3 start-page: 160092 year: 2016 ident: 10.1016/j.neuroimage.2021.118683_bib0020 article-title: A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation publication-title: Sci Data doi: 10.1038/sdata.2016.92 – volume: 7 start-page: 37 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2021.118683_bib0021 article-title: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data publication-title: Neuroinformatics doi: 10.1007/s12021-008-9041-y – volume: 56 start-page: 593 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2021.118683_bib0033 article-title: A comparison of volume-based and surface-based multi-voxel pattern analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.270 – volume: 8 start-page: 14 year: 2014 ident: 10.1016/j.neuroimage.2021.118683_bib0001 article-title: Machine learning for neuroimaging with scikit-learn publication-title: Front. Neuroinform. doi: 10.3389/fninf.2014.00014 – volume: 10 start-page: 49 year: 2016 ident: 10.1016/j.neuroimage.2021.118683_bib0005 article-title: Pyrcca: Regularized kernel canonical correlation analysis in python and its applications to neuroimaging publication-title: Front. Neuroinform. doi: 10.3389/fninf.2016.00049 – start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.118683_bib0006 article-title: Variability in the analysis of a single neuroimaging dataset by many teams publication-title: Nature – volume: 13 start-page: e1002180 issue: 6 year: 2015 ident: 10.1016/j.neuroimage.2021.118683_bib0009 article-title: A sensitive and specific neural signature for Picture-Induced negative affect publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002180 – volume: 3 start-page: 313 issue: 4 year: 1993 ident: 10.1016/j.neuroimage.2021.118683_bib0039 article-title: Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology publication-title: Cereb. Cortex doi: 10.1093/cercor/3.4.313 – ident: 10.1016/j.neuroimage.2021.118683_bib0007 – start-page: 2292 year: 2013 ident: 10.1016/j.neuroimage.2021.118683_bib0013 article-title: Sinkhorn distances: lightspeed computation of optimal transport – start-page: 1058 year: 2018 ident: 10.1016/j.neuroimage.2021.118683_bib0049 article-title: Gradient hyperalignment for multi-subject fMRI data alignment – start-page: 1604 year: 2017 ident: 10.1016/j.neuroimage.2021.118683_sbref0050 article-title: Deep hyperalignment – start-page: 237 year: 2019 ident: 10.1016/j.neuroimage.2021.118683_bib0003 article-title: Local optimal transport for functional brain template estimation – volume: 5 start-page: 180105 year: 2018 ident: 10.1016/j.neuroimage.2021.118683_bib0037 article-title: Individual brain charting, a high-resolution fMRI dataset for cognitive mapping publication-title: Sci. Data doi: 10.1038/sdata.2018.105 – volume: 20 start-page: 130 year: 2010 ident: 10.1016/j.neuroimage.2021.118683_bib0041 article-title: Function-based intersubject alignment of human cortical anatomy publication-title: Cereb. Cortex doi: 10.1093/cercor/bhp085 – volume: 27 start-page: 678 issue: 8 year: 2006 ident: 10.1016/j.neuroimage.2021.118683_bib0045 article-title: Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20210 – volume: 6 start-page: 49 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118683_bib0010 article-title: BOLD5000, a public fMRI dataset while viewing 5000 visual images publication-title: Sci. Data doi: 10.1038/s41597-019-0052-3 – year: 2021 ident: 10.1016/j.neuroimage.2021.118683_bib0016 article-title: The dual mechanisms of cognitive control dataset: atheoretically-guided within-subject task fMRI battery publication-title: bioRxiv – volume: 72 start-page: 404 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2021.118683_bib0022 article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex publication-title: Neuron doi: 10.1016/j.neuron.2011.08.026 – volume: 17 start-page: 261 issue: 3 year: 2020 ident: 10.1016/j.neuroimage.2021.118683_bib0048 article-title: Scipy 1.0: fundamental algorithms for scientific computing in python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 103 start-page: 3863 issue: 10 year: 2006 ident: 10.1016/j.neuroimage.2021.118683_bib0027 article-title: Information-based functional brain mapping publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0600244103 – start-page: 33 year: 2011 ident: 10.1016/j.neuroimage.2021.118683_bib0032 article-title: Testing for information with brain decoding – volume: 352 start-page: 216 issue: 6282 year: 2016 ident: 10.1016/j.neuroimage.2021.118683_bib0044 article-title: Task-free MRI predicts individual differences in brain activity during task performance publication-title: Science doi: 10.1126/science.aad8127 – volume: 9 start-page: e56601 year: 2020 ident: 10.1016/j.neuroimage.2021.118683_bib0023 article-title: Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies publication-title: Elife doi: 10.7554/eLife.56601 – start-page: 562 year: 2011 ident: 10.1016/j.neuroimage.2021.118683_bib0046 article-title: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity – volume: 95 start-page: 5 issue: 1 year: 1998 ident: 10.1016/j.neuroimage.2021.118683_bib0012 article-title: Conceptual similarity across sensory and neural diversity: the Fodor/Lepore challenge answered publication-title: J. Philos. – volume: 106 start-page: 2322 issue: 5 year: 2011 ident: 10.1016/j.neuroimage.2021.118683_sbref0008 article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00339.2011 – ident: 10.1016/j.neuroimage.2021.118683_bib0002 – volume: 103 start-page: 462 year: 2014 ident: 10.1016/j.neuroimage.2021.118683_bib0030 article-title: Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.08.029 – ident: 10.1016/j.neuroimage.2021.118683_bib0040 |
SSID | ssj0009148 |
Score | 2.46795 |
Snippet | •Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods... Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles.... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118683 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Bioinformatics Brain - diagnostic imaging Brain architecture Brain Mapping - methods Brain research Computational neuroscience Computer Science Datasets fMRI Functional alignment Functional morphology Humans Inter-subject variability Magnetic Resonance Imaging - methods Mathematics Neural coding Performance evaluation Predictive modeling Statistics Structure-function relationships Usability |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgB8QF8U1oQQZxjUgc27HV04KoVqjlRKXerDgZt4totmp3-f3M2EnawIE9cI3trHcy8byXGT8z9kEpH0yo2hw6qHNKDOXGNiY3RlnkQ9BCS_udT77p5an8eqbO7hz1RTVhSR44Ge5ji4QgSCm6AF5aqb0qmk4J7z2Ck9rGbb4Y80YyNcrtIsof6nZSNVdUh1xd4juKnFCUuFIYbapZMIqa_bOYdP-CiiP_Rp5_FlDeiUhHj9mjAUryRfoLT9g96J-yBydDsvwZO170HC6vVlEEhN_KevN14BTO0ldAjkD8PJYEcKqBP-ckIHGd32w9faHhHdJTCm_P2enRl--fl_lweELeaq02eWNFAV1AQCEKWcoGaYYWAKFRqtIKahlTjD5oKAxoH9DKovVCG49tofXVC7bXr3t4xXjh8S4eRNUgfeksIKYq62CRqzVeBhsyVo9WdO2gLE4HXPx0YwnZD3drf0f2d8n-GSunkVdJXWOHMZ_oQU39SR87XkCvcYPXuH95Tcbs-JjduAUVF0280WqHCRxOYweYkuDHjqPfo1fNZr9cHDu6RllqWdf2F3Y6GJ3ODWvKjUOui_RS2EJl7N3UjKsBpXiaHtZb7ENbianOqcjYy-Sj009ViENoxc2YmXnvbC7zln51ERXHSaOpqo19_T9sv88ekj2oJqhUB2xvc72FN4jsNv5tfIl_AxonTeg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dj9QgFCXumhhfjN9WV4PGV2JLoUB8MKNxMzG7PrnJvJHSwuwYtx3nw9_vvS3tWE3MvBboMPRyOZd7OBDyVkoXdMgr5muvGCaGmDalZlpLA_GQr3yF550vvxbzK_FlIRdxw20baZWDT-wcdd1WuEf-DpA-gGtuUvlh_ZPhrVGYXY1XaJyQ2yhdhlatFuogupuJ_iiczJmGCpHJ0_O7Or3I1Q3MWogSeQa-Qxc6nyxPnYr_ZJU6uUa65L9Y9G9K5R9r1Pl9ci-CSzrrreEBueWbh-TOZUyfPyIXs4b6m_WqkwWhB6Fv2gaKC1y_L0gBmi87kgBFVvySoqTEhm33DvdsaA0BKy54j8nV-edvn-YsXqfAqqKQO1Yanvo6AMTgqchECYFHwb0PpZR5Ib0SXdLRhcKn2hcuGBN45XihHZSFyuVPyGnTNv4ZoamDtzjP8xICmtp4QFmZCgait9KJYEJC1DCKtopa43jlxQ87kMq-28P4Wxx_249_QrKx5brX2ziizUf8UGN9VMzuHrSbpY0T0FYQWAYheB28E0YUTqZlLblzDkCuMjohZvjMdjiUCm4UXrQ6ogPvx7YRuPSA5MjWb8CqJr2fzy4sPsO8tVDK_IJKZ4PR2ehltvYwJxLyeiwG_4BJn7Lx7R7q4OFiZD6lCXna2-j4UzkgE_TBCdET6530ZVrSrK47DXJUbcqVNs__368X5C7-U-T_ZPKMnO42e_8SUNzOveqm6m9vr0cQ priority: 102 providerName: ProQuest |
Title | An empirical evaluation of functional alignment using inter-subject decoding |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921009563 https://dx.doi.org/10.1016/j.neuroimage.2021.118683 https://www.ncbi.nlm.nih.gov/pubmed/34715319 https://www.proquest.com/docview/2615482905 https://www.proquest.com/docview/2590137600 https://inria.hal.science/hal-03044779 https://pubmed.ncbi.nlm.nih.gov/PMC11653789 https://doaj.org/article/c899f442dfeb4946b50ad52bbb019798 |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFB6VIiEuiL2GEhnE1cQezypOadUqQBshoFJuI489kxpRJ0oTjvx23vMWDJdIXBx5Fmc8fn7LzPc-E_KWc-uVT_PIFU5GuDEUKZ2pSCmuIR5yucsx3_lyJqZX7OOczw_IaZcLg7DKVvc3Or3W1m3JuJ3N8aosx1_BMwBzg3xe6CcIZPxkTKKUv_u1g3nohDXpcDyNsHWL5mkwXjVnZHkDby5EijQB_aGESgcmqmbyH1iqO9cImfzXH_0bVvmHnTp_SB60DmY4ae7hETlw1WNy77LdQn9CLiZV6G5WZU0NEu7IvsOlD9HINWuDIbjnixooECIyfhEircQ6ut1aXLcJCwha0eg9JVfnZ99Op1H7SYUoF4JvokzT2BUe3Awas4RlEHwI6pzPOE8Fd5LVG4_WCxcrJ6zX2tPcUqEs1Pncps_IYbWs3BEJYwtXsY6mGQQ1hXbgaSXSa4jgMsu89gGR3SyavOUbx89e_DAdsOy72c2_wfk3zfwHJOl7rhrOjT36nOCD6tsja3ZdsFwvTCs2Jofg0jNGC-8s00xYHmcFp9ZacHSlVgHR3WM2XWIqqFK4ULnHAN73fQcCvGfvNyBVg9FPJxcGy3Dvmkmpf0Kj407oTKtpbg1EwBB0Uh3zgLzuq0FH4MZPVrnlFtpggjGin-KAPG9ktP-rFLwT1MMBUQPpHYxlWFOV1zUPOTI3pVLpF_916y_JfTxDiFDCj8nhZr11r8DR29hR_SbDUc7liNydfPg0ncHvydns85dRvXjyG8IUV04 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbaIgEviJtAAYPgMSJx7MQWQmg5qi3d7VMr7ZuJE3u7qE22e4D4U_xGZnItAQntS1_jY73j8cw3nsOEvBLCOOmizLe5TXx0DPlSpdKXUiiwh2xmM8x3Hh_Hw1P-ZSImO-RXmwuDYZWtTKwEdV5meEf-BpA-gGumAvF-funjq1HoXW2f0KjZ4sj-_AEm2_Ld4SfY39eMHXw--Tj0m1cF_CyOxcpPFQts7kDTsoCHPAX8HTNrXSpEFAub8Mr3ZlxsA2lj45RyLDMslgbaXGYimHeXXAPFG6Cxl0ySTZHfkNepdyLyZRiqJnKojier6lPOLkBKgFXKQpBVMpZRTx1Wrwb0tOLuGYZn_ot9_w7h_EMnHtwmtxowSwc1990hO7a4S66PG3f9PTIaFNRezGdVGRK6KSxOS0dRodb3kBRMgWkVlEAxCn9KsYTFwl-uDd4R0RwMZFSw98nplRD6AdkrysI-IjQwMIuxLErBgMqVBVQXJk6BtZga7pTzSNJSUWdNbXN8YuNct0Fs3_SG_hrpr2v6eyTsRs7r-h5bjPmAG9X1xwrd1YdyMdXNgdcZGLKOc5Y7a7jisRFBmgtmjAFQnSjpEdVus26TYEFsw0SzLRbwthvbAKUaAG05-iVwVW_1w8FI4zf0k_MkUd-h037LdLqRaku9OYMeedE1gzxCJ1Na2HINfTCZGSOtAo88rHm0-6kIkBDKfI_IHvf21tJvKWZnVc1zrBIVJVI9_v-6npMbw5PxSI8Oj4-ekJv4rzH2KBT7ZG-1WNungCBX5ll1bCn5etVy4jdAeIPT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2Tpp4QdwXGGAQPEZLHDuxhRDq2KqOddWEmLQ3Eyd2V8TS0guIv8av45xcWgIS6ste40td-_ic7_h8PibklRDGSRdlvs1t4mNgyJcqlb6UQoE_ZDOb4X3ns2Hcv-AfLsXlFvnV3IVBWmWjE0tFnU8yPCM_AKQP4JqpQBy4mhZxftR7N_3m4wtSGGltntOoROTU_vwB7tv87ckRrPVrxnrHn973_fqFAT-LY7HwU8UCmzuwuizgIU8Bi8fMWpcKEcXCJryMwxkX20Da2DilHMsMi6WBMpeZCPrdJjsJekUdsnN4PDz_uE75G_LqIp6IfBmGquYRVeyyMlvl-Bp0BvioLATNJWMZtYxj-YZAy0ZuXyFZ818k_Deh8w8L2btDbtfQlnYrWbxLtmxxj-ye1cH7-2TQLai9no7LpCR0nWacThxF81qdSlJwDEYlRYEiJ39EMaHFzJ8vDZ4Y0RzcZTS3D8jFjUz1Q9IpJoXdIzQw0IuxLErBncqVBYwXJk6B75ga7pTzSNLMos7qTOf44MZX3VDavuj1_Gucf13Nv0fCVctple1jgzaHuFCr-pivu_wwmY10vf11Bm6t45zlzhqueGxEkOaCGWMAYidKekQ1y6ybK7GgxKGj8QYDeLNqW8OmCg5t2PolSFVr9P3uQOM3jJrzJFHfodJ-I3S61nFzvd6RHnmxKgbthCGntLCTJdTBq83Iuwo88qiS0dVPRYCL0AJ4RLaktzWWdkkxviozoGPOqCiR6vH_x_Wc7IKO0IOT4ekTcgv_NBKRQrFPOovZ0j4FOLkwz-p9S8nnm1YVvwEBZIlu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+evaluation+of+functional+alignment+using+inter-subject+decoding&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Bazeille%2C+Thomas&rft.au=DuPre%2C+Elizabeth&rft.au=Richard%2C+Hugo&rft.au=Poline%2C+Jean-Baptiste&rft.date=2021-12-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=245&rft.spage=118683&rft.epage=118683&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118683&rft_id=info%3Apmid%2F34715319&rft.externalDocID=PMC11653789 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |