An empirical evaluation of functional alignment using inter-subject decoding

•Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods consistently improve inter-subject decoding on several datasets, with the best methods recovering half of the signal lost in anatomical-only align...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 245; p. 118683
Main Authors Bazeille, Thomas, DuPre, Elizabeth, Richard, Hugo, Poline, Jean-Baptiste, Thirion, Bertrand
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.12.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods consistently improve inter-subject decoding on several datasets, with the best methods recovering half of the signal lost in anatomical-only alignment.•For whole-brain alignment, piecewise alignment (performed in non-overlapping regions) is more accurate and much more efficient than searchlight alignment.•Shared Response Model and Optimal Transport yield highest decoding accuracy gains. Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment—a class of methods that matches subjects’ neural signals based on their functional similarity—is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.
AbstractList •Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods consistently improve inter-subject decoding on several datasets, with the best methods recovering half of the signal lost in anatomical-only alignment.•For whole-brain alignment, piecewise alignment (performed in non-overlapping regions) is more accurate and much more efficient than searchlight alignment.•Shared Response Model and Optimal Transport yield highest decoding accuracy gains. Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment—a class of methods that matches subjects’ neural signals based on their functional similarity—is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.
Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment—a class of methods that matches subjects’ neural signals based on their functional similarity—is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.
Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment-a class of methods that matches subjects' neural signals based on their functional similarity-is a promising strategy for addressing this variability. At present, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider piecewise Procrustes, searchlight Procrustes, piecewise Optimal Transport, Shared Response Modelling (SRM), and intra-subject alignment; as well as associated methodological choices such as ROI definition. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM performs best within a region-of-interest while piecewise Optimal Transport performs best at a whole-brain scale. We also benchmark the computational e ciency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of the methods used.
Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment-a class of methods that matches subjects' neural signals based on their functional similarity-is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles. Functional alignment-a class of methods that matches subjects' neural signals based on their functional similarity-is a promising strategy for addressing this variability. To date, however, a range of functional alignment methods have been proposed and their relative performance is still unclear. In this work, we benchmark five functional alignment methods for inter-subject decoding on four publicly available datasets. Specifically, we consider three existing methods: piecewise Procrustes, searchlight Procrustes, and piecewise Optimal Transport. We also introduce and benchmark two new extensions of functional alignment methods: piecewise Shared Response Modelling (SRM), and intra-subject alignment. We find that functional alignment generally improves inter-subject decoding accuracy though the best performing method depends on the research context. Specifically, SRM and Optimal Transport perform well at both the region-of-interest level of analysis as well as at the whole-brain scale when aggregated through a piecewise scheme. We also benchmark the computational efficiency of each of the surveyed methods, providing insight into their usability and scalability. Taking inter-subject decoding accuracy as a quantification of inter-subject similarity, our results support the use of functional alignment to improve inter-subject comparisons in the face of variable structure-function organization. We provide open implementations of all methods used.
ArticleNumber 118683
Author Richard, Hugo
Thirion, Bertrand
Bazeille, Thomas
Poline, Jean-Baptiste
DuPre, Elizabeth
AuthorAffiliation a Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France
b Montréal Neurological Institute, McGill University, Montréal, Canada
AuthorAffiliation_xml – name: a Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France
– name: b Montréal Neurological Institute, McGill University, Montréal, Canada
Author_xml – sequence: 1
  givenname: Thomas
  surname: Bazeille
  fullname: Bazeille, Thomas
  organization: Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France
– sequence: 2
  givenname: Elizabeth
  surname: DuPre
  fullname: DuPre, Elizabeth
  organization: Montréal Neurological Institute, McGill University, Montréal, Canada
– sequence: 3
  givenname: Hugo
  surname: Richard
  fullname: Richard, Hugo
  organization: Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France
– sequence: 4
  givenname: Jean-Baptiste
  surname: Poline
  fullname: Poline, Jean-Baptiste
  organization: Montréal Neurological Institute, McGill University, Montréal, Canada
– sequence: 5
  givenname: Bertrand
  surname: Thirion
  fullname: Thirion, Bertrand
  email: bertrand.thirion@inria.fr
  organization: Université Paris-Saclay, Inria, CEA, Palaiseau 91120, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34715319$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-03044779$$DView record in HAL
BookMark eNqNkkFv1DAQhSNURNuFv4AicYFDFtuxHfsCLBXQSitxgbNlO5PUIWsvTrJS_z1O0wLd055izbz5xs57l9mZDx6yLMdojRHm77u1hykGt9MtrAkieI2x4KJ8ll1gJFkhWUXO5jMrC4GxPM8uh6FDCElMxYvsvKQVZiWWF9l243PY7V10Vvc5HHQ_6dEFn4cmbyZv53Nq6N61fgd-zKfB-TZ3foRYDJPpwI55DTbUqfwye97ofoBXD99V9vPrlx9X18X2-7ebq822sJyzsdCSIKgbzkuCKKaaEsEJQKMZKzmDiiIiJDINBySAm0bKhlhDuDCp11hTrrKbhVsH3al9TP8h3qmgnbovhNgqHUdne1BWpGlKSd2AoZJyw5CuGTHGICwrKRLr48LaT2YHtU1vjLp_An3a8e5WteGgMOasrIRMhHcL4fZo7nqzVXMNlYjSqpKHMmnfPmyL4fcEw6h2brDQ99pDmAZFmES4rDhCSfrmSNqFKSYzkopjRgWRyd5V9vr_6__d_-hwEnxYBDaGYYjQKOvGe4vTa1yvMFJzpFSn_kVKzZFSS6QSQBwBHnecMPp5GYUUhoODqAbrwFuoXUy5SW65UyCfjiC2d36O6y-4Ow3xB0feAdE
CitedBy_id crossref_primary_10_1016_j_neuroimage_2023_120395
crossref_primary_10_1162_imag_a_00170
crossref_primary_10_1002_hbm_26170
crossref_primary_10_1146_annurev_clinpsy_072220_014550
crossref_primary_10_1016_j_neuroimage_2023_120007
crossref_primary_10_1523_JNEUROSCI_0288_24_2024
crossref_primary_10_1007_s00117_022_01051_1
crossref_primary_10_1016_j_scib_2024_08_029
crossref_primary_10_1016_j_tics_2022_07_003
crossref_primary_10_1016_j_jneumeth_2023_109959
crossref_primary_10_1162_imag_a_00253
Cites_doi 10.1093/cercor/bhw068
10.1038/s41592-018-0235-4
10.1016/j.neuroimage.2010.02.082
10.1007/s12021-017-9347-8
10.1146/annurev-neuro-080317-061906
10.1093/cercor/bhx179
10.7554/eLife.53385
10.3389/fninf.2013.00012
10.1093/gigascience/giw011
10.1073/pnas.1903403116
10.1101/600114
10.1371/journal.pbio.3000284
10.1016/j.neuroimage.2007.05.051
10.1523/JNEUROSCI.5023-14.2015
10.1016/j.neuroimage.2019.116458
10.1371/journal.pcbi.1006120
10.1038/sdata.2016.92
10.1007/s12021-008-9041-y
10.1016/j.neuroimage.2010.04.270
10.3389/fninf.2014.00014
10.3389/fninf.2016.00049
10.1371/journal.pbio.1002180
10.1093/cercor/3.4.313
10.1038/sdata.2018.105
10.1093/cercor/bhp085
10.1002/hbm.20210
10.1038/s41597-019-0052-3
10.1016/j.neuron.2011.08.026
10.1038/s41592-019-0686-2
10.1073/pnas.0600244103
10.1126/science.aad8127
10.7554/eLife.56601
10.1152/jn.00339.2011
10.1016/j.neuroimage.2014.08.029
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Dec 15, 2021
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Dec 15, 2021
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.neuroimage.2021.118683
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest One Psychology
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Mathematics
Statistics
Computer Science
EISSN 1095-9572
EndPage 118683
ExternalDocumentID oai_doaj_org_article_c899f442dfeb4946b50ad52bbb019798
PMC11653789
oai_HAL_hal_03044779v3
34715319
10_1016_j_neuroimage_2021_118683
S1053811921009563
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: R01 MH096906
– fundername: NIMH NIH HHS
  grantid: RF1 MH120021
– fundername: NIBIB NIH HHS
  grantid: P41 EB019936
– fundername: NIMH NIH HHS
  grantid: R01 MH083320
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c665t-a920edf66320414a42862eefa55365e7402890bf6e08e6bf99f2cb268be74fcb3
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:23:58 EDT 2025
Thu Aug 21 18:29:54 EDT 2025
Fri May 09 12:23:29 EDT 2025
Fri Jul 11 11:19:44 EDT 2025
Wed Aug 13 06:40:29 EDT 2025
Mon Jul 21 05:59:47 EDT 2025
Tue Jul 01 03:02:20 EDT 2025
Thu Apr 24 23:07:05 EDT 2025
Fri Feb 23 02:40:24 EST 2024
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Functional alignment
fMRI
Predictive modeling
Inter-subject variability
inter-subject variability
predictive modeling
functional alignment
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c665t-a920edf66320414a42862eefa55365e7402890bf6e08e6bf99f2cb268be74fcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-5018-7895
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811921009563
PMID 34715319
PQID 2615482905
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c899f442dfeb4946b50ad52bbb019798
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11653789
hal_primary_oai_HAL_hal_03044779v3
proquest_miscellaneous_2590137600
proquest_journals_2615482905
pubmed_primary_34715319
crossref_citationtrail_10_1016_j_neuroimage_2021_118683
crossref_primary_10_1016_j_neuroimage_2021_118683
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118683
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118683
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Langs, Golland, Tie, Rigolo, Golby (bib0029) 2010; 1
Abraham, Pedregosa, Eickenberg, Gervais, Mueller, Kossaifi, Gramfort, Thirion, Varoquaux (bib0001) 2014; 8
Paquola, De Wael, Wagstyl, Bethlehem, Hong, Seidlitz, Bullmore, Evans, Misic, Margulies (bib0035) 2019; 17
Tavor, Parker Jones, Mars, Smith, Behrens, Jbabdi (bib0044) 2016; 352
Yousefnezhad, Zhang (bib0050) 2017
Pinho, Amadon, Ruest, Fabre, Dohmatob, Denghien, Ginisty, Becuwe-Desmidt, Roger, Laurier, Joly-Testault, Médiouni-Cloarec, Doublé, Martins, Pinel, Eger, Varoquaux, Pallier, Dehaene, Hertz-Pannier, Thirion (bib0037) 2018; 5
Chen, Chen, Yeshurun, Hasson, Haxby, Ramadge (bib0011) 2015
Haxby, Guntupalli, Connolly, Halchenko, Conroy, Gobbini, Hanke, Ramadge (bib0022) 2011; 72
Kriegeskorte, Goebel, Bandettini (bib0027) 2006; 103
Langs, Sweet, Lashkari, Tie, Rigolo, Golby, Golland (bib0030) 2014; 103
Aglieri, V., Cagna, B., Belin, P., Takerkart, S., 2019. InterTVA. a multimodal MRI dataset for the study of inter-individual differences in voice perception and identification.
Kriegeskorte, Diedrichsen (bib0026) 2019; 42
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright (bib0048) 2020; 17
Buckner, Krienen, Castellanos, Diaz, Yeo (bib0008) 2011; 106
Jiahui, Feilong, Visconti di Oleggio Castello, Guntupalli, Chauhan, Haxby, Gobbini (bib0025) 2020; 216
Olivetti, Veeramachaneni, Avesani (bib0032) 2011
Heller, Golland, Malach, Benjamini (bib0024) 2007; 37
Boyle, J. A., Pinsard, B., Boukhdhir, A., Belleville, S., Brambatti, S., Chen, J., Cohen-Adad, J., Cyr, A., Fuente, A., Rainville, P., Bellec, P., 2020. The Courtois project on neuronal modelling: 2020 data release.
Bellec, Rosa-Neto, Lyttelton, Benali, Evans (bib0004) 2010; 51
Hanke, Halchenko, Sederberg, Hanson, Haxby, Pollmann (bib0021) 2009; 7
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (bib0036) 2011; 12
Dockés, Poldrack, Primet, Gözükan, Yarkoni, Suchanek, Thirion, Varoquaux (bib0014) 2020; 9
Rademacher, Caviness, Steinmetz, Galaburda (bib0039) 1993; 3
.
Schaefer, Kong, Gordon, Laumann, Zuo, Holmes, Eickhoff, Yeo (bib0042) 2018; 28
Oosterhof, Wiestler, Downing, Diedrichsen (bib0033) 2011; 56
Hanke, Adelhöfer, Kottke, Iacovella, Sengupta, Kaule, Nigbur, Waite, Baumgartner, Stadler (bib0020) 2016; 3
Poldrack, Barch, Mitchell, Wager, Wagner, Devlin, Cumba, Koyejo, Milham (bib0038) 2013; 7
Kriegeskorte, Mur, Bandettini (bib0028) 2008; 2
Haxby, Guntupalli, Nastase, Feilong (bib0023) 2020; 9
Vázquez-Rodríguez, Suárez, Markello, Shafiei, Paquola, Hagmann, van den Heuvel, Bernhardt, Spreng, Misic (bib0047) 2019; 116
O’Connor, Potler, Kovacs, Xu, Ai, Pellman, Vanderwal, Parra, Cohen, Ghosh (bib0034) 2017; 6
Varoquaux, Gramfort, Pedregosa, Michel, Thirion (bib0046) 2011
Xu, Yousefnezhad, Zhang (bib0049) 2018
Chang, Gianaros, Manuck, Krishnan, Wager (bib0009) 2015; 13
Richard, H., Martin, L., Pinho, A. L., Pillow, J., Thirion, B., 2019. Fast shared response model for fMRI data.
Churchland (bib0012) 1998; 95
Bilenko, Gallant (bib0005) 2016; 10
Schrouff, Monteiro, Portugal, Rosa, Phillips, Mourao-Miranda (bib0043) 2018; 16
Nastase, S. A., Gazzola, V., Hasson, U., Keysers, C., 2019. Measuring shared responses across subjects using intersubject correlation.
Guntupalli, Feilong, Haxby (bib0018) 2018; 14
Güçlü, van Gerven (bib0017) 2015; 35
Botvinik-Nezer, Holzmeister, Camerer, Dreber, Huber, Johannesson, Kirchler, Iwanir, Mumford, Adcock (bib0006) 2020
Cuturi (bib0013) 2013
Guntupalli, Hanke, Halchenko, Connolly, Ramadge, Haxby (bib0019) 2016; 26
Presented at the 26th annual meeting of the Organization for Human Brain Mapping.
Sabuncu, Bryan, Ramadge, Haxby (bib0041) 2010; 20
Bazeille, Richard, Janati, Thirion (bib0003) 2019
Thirion, Flandin, Pinel, Roche, Ciuciu, Poline (bib0045) 2006; 27
Chang, Pyles, Marcus, Gupta, Tarr, Aminoff (bib0010) 2019; 6
Esteban, Markiewicz, Blair, Moodie, Isik, Erramuzpe, Kent, Goncalves, DuPre, Snyder, Oya, Ghosh, Wright, Durnez, Poldrack, Gorgolewski (bib0015) 2019; 16
Etzel, Brough, Freund, Kizhner, Lin, Singh, Tang, Tay, Wang, Braver (bib0016) 2021
Botvinik-Nezer (10.1016/j.neuroimage.2021.118683_bib0006) 2020
Schrouff (10.1016/j.neuroimage.2021.118683_bib0043) 2018; 16
Chang (10.1016/j.neuroimage.2021.118683_bib0010) 2019; 6
Bazeille (10.1016/j.neuroimage.2021.118683_bib0003) 2019
Dockés (10.1016/j.neuroimage.2021.118683_bib0014) 2020; 9
Kriegeskorte (10.1016/j.neuroimage.2021.118683_bib0026) 2019; 42
Kriegeskorte (10.1016/j.neuroimage.2021.118683_bib0028) 2008; 2
10.1016/j.neuroimage.2021.118683_bib0031
Yousefnezhad (10.1016/j.neuroimage.2021.118683_sbref0050) 2017
Langs (10.1016/j.neuroimage.2021.118683_bib0029) 2010; 1
Haxby (10.1016/j.neuroimage.2021.118683_bib0022) 2011; 72
Güçlü (10.1016/j.neuroimage.2021.118683_bib0017) 2015; 35
Guntupalli (10.1016/j.neuroimage.2021.118683_bib0018) 2018; 14
Xu (10.1016/j.neuroimage.2021.118683_bib0049) 2018
Rademacher (10.1016/j.neuroimage.2021.118683_bib0039) 1993; 3
Paquola (10.1016/j.neuroimage.2021.118683_bib0035) 2019; 17
Esteban (10.1016/j.neuroimage.2021.118683_bib0015) 2019; 16
Vázquez-Rodríguez (10.1016/j.neuroimage.2021.118683_bib0047) 2019; 116
10.1016/j.neuroimage.2021.118683_bib0040
Chen (10.1016/j.neuroimage.2021.118683_bib0011) 2015
Poldrack (10.1016/j.neuroimage.2021.118683_bib0038) 2013; 7
10.1016/j.neuroimage.2021.118683_bib0002
10.1016/j.neuroimage.2021.118683_bib0007
Buckner (10.1016/j.neuroimage.2021.118683_sbref0008) 2011; 106
Etzel (10.1016/j.neuroimage.2021.118683_bib0016) 2021
Varoquaux (10.1016/j.neuroimage.2021.118683_bib0046) 2011
Guntupalli (10.1016/j.neuroimage.2021.118683_bib0019) 2016; 26
Oosterhof (10.1016/j.neuroimage.2021.118683_bib0033) 2011; 56
Cuturi (10.1016/j.neuroimage.2021.118683_bib0013) 2013
Schaefer (10.1016/j.neuroimage.2021.118683_bib0042) 2018; 28
Haxby (10.1016/j.neuroimage.2021.118683_bib0023) 2020; 9
Tavor (10.1016/j.neuroimage.2021.118683_bib0044) 2016; 352
Virtanen (10.1016/j.neuroimage.2021.118683_bib0048) 2020; 17
Langs (10.1016/j.neuroimage.2021.118683_bib0030) 2014; 103
Abraham (10.1016/j.neuroimage.2021.118683_bib0001) 2014; 8
Pedregosa (10.1016/j.neuroimage.2021.118683_bib0036) 2011; 12
Sabuncu (10.1016/j.neuroimage.2021.118683_bib0041) 2010; 20
Pinho (10.1016/j.neuroimage.2021.118683_bib0037) 2018; 5
Chang (10.1016/j.neuroimage.2021.118683_bib0009) 2015; 13
Churchland (10.1016/j.neuroimage.2021.118683_bib0012) 1998; 95
Bellec (10.1016/j.neuroimage.2021.118683_sbref0004) 2010; 51
Hanke (10.1016/j.neuroimage.2021.118683_bib0021) 2009; 7
Olivetti (10.1016/j.neuroimage.2021.118683_bib0032) 2011
Heller (10.1016/j.neuroimage.2021.118683_bib0024) 2007; 37
Hanke (10.1016/j.neuroimage.2021.118683_bib0020) 2016; 3
Thirion (10.1016/j.neuroimage.2021.118683_bib0045) 2006; 27
Bilenko (10.1016/j.neuroimage.2021.118683_bib0005) 2016; 10
Kriegeskorte (10.1016/j.neuroimage.2021.118683_bib0027) 2006; 103
Jiahui (10.1016/j.neuroimage.2021.118683_bib0025) 2020; 216
O’Connor (10.1016/j.neuroimage.2021.118683_bib0034) 2017; 6
References_xml – volume: 16
  start-page: 111
  year: 2019
  end-page: 116
  ident: bib0015
  article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI
  publication-title: Nat. Methods
– volume: 56
  start-page: 593
  year: 2011
  end-page: 600
  ident: bib0033
  article-title: A comparison of volume-based and surface-based multi-voxel pattern analysis
  publication-title: Neuroimage
– start-page: 2292
  year: 2013
  end-page: 2300
  ident: bib0013
  article-title: Sinkhorn distances: lightspeed computation of optimal transport
  publication-title: Advances in Neural Information Processing Systems 26
– volume: 72
  start-page: 404
  year: 2011
  end-page: 416
  ident: bib0022
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
– volume: 9
  start-page: e56601
  year: 2020
  ident: bib0023
  article-title: Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies
  publication-title: Elife
– volume: 16
  start-page: 117
  year: 2018
  end-page: 143
  ident: bib0043
  article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models
  publication-title: Neuroinformatics
– volume: 20
  start-page: 130
  year: 2010
  end-page: 140
  ident: bib0041
  article-title: Function-based intersubject alignment of human cortical anatomy
  publication-title: Cereb. Cortex
– start-page: 460
  year: 2015
  end-page: 468
  ident: bib0011
  article-title: A Reduced-Dimension fMRI shared response model
  publication-title: Advances in Neural Information Processing Systems 28
– volume: 216
  start-page: 116458
  year: 2020
  ident: bib0025
  article-title: Predicting individual face-selective topography using naturalistic stimuli
  publication-title: Neuroimage
– start-page: 1058
  year: 2018
  end-page: 1068
  ident: bib0049
  article-title: Gradient hyperalignment for multi-subject fMRI data alignment
  publication-title: Pacific Rim International Conference on Artificial Intelligence
– volume: 3
  start-page: 160092
  year: 2016
  ident: bib0020
  article-title: A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation
  publication-title: Sci Data
– start-page: 1604
  year: 2017
  end-page: 1612
  ident: bib0050
  article-title: Deep hyperalignment
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 13
  start-page: e1002180
  year: 2015
  ident: bib0009
  article-title: A sensitive and specific neural signature for Picture-Induced negative affect
  publication-title: PLoS Biol.
– volume: 116
  start-page: 21219
  year: 2019
  end-page: 21227
  ident: bib0047
  article-title: Gradients of structure–function tethering across neocortex
  publication-title: Proc. Natl. Acad. Sci.
– volume: 106
  start-page: 2322
  year: 2011
  end-page: 2345
  ident: bib0008
  article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
– start-page: 1
  year: 2020
  end-page: 7
  ident: bib0006
  article-title: Variability in the analysis of a single neuroimaging dataset by many teams
  publication-title: Nature
– volume: 2
  start-page: 4
  year: 2008
  ident: bib0028
  article-title: Representational similarity analysis-connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– start-page: 237
  year: 2019
  end-page: 248
  ident: bib0003
  article-title: Local optimal transport for functional brain template estimation
  publication-title: Information Processing in Medical Imaging
– volume: 6
  start-page: 49
  year: 2019
  ident: bib0010
  article-title: BOLD5000, a public fMRI dataset while viewing 5000 visual images
  publication-title: Sci. Data
– volume: 9
  start-page: e53385
  year: 2020
  ident: bib0014
  article-title: Neuroquery, comprehensive meta-analysis of human brain mapping
  publication-title: eLife
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0036
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– reference: , Presented at the 26th annual meeting of the Organization for Human Brain Mapping.
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: bib0048
  article-title: Scipy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat. Methods
– volume: 1
  start-page: 1225
  year: 2010
  end-page: 1233
  ident: bib0029
  article-title: Functional geometry alignment and localization of brain areas
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 103
  start-page: 3863
  year: 2006
  end-page: 3868
  ident: bib0027
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 3095
  year: 2018
  end-page: 3114
  ident: bib0042
  article-title: Local-Global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cereb. Cortex
– reference: Boyle, J. A., Pinsard, B., Boukhdhir, A., Belleville, S., Brambatti, S., Chen, J., Cohen-Adad, J., Cyr, A., Fuente, A., Rainville, P., Bellec, P., 2020. The Courtois project on neuronal modelling: 2020 data release.
– volume: 5
  start-page: 180105
  year: 2018
  ident: bib0037
  article-title: Individual brain charting, a high-resolution fMRI dataset for cognitive mapping
  publication-title: Sci. Data
– volume: 6
  start-page: giw011
  year: 2017
  ident: bib0034
  article-title: The healthy brain network serial scanning initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions
  publication-title: Gigascience
– volume: 10
  start-page: 49
  year: 2016
  ident: bib0005
  article-title: Pyrcca: Regularized kernel canonical correlation analysis in python and its applications to neuroimaging
  publication-title: Front. Neuroinform.
– volume: 352
  start-page: 216
  year: 2016
  end-page: 220
  ident: bib0044
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
– volume: 51
  start-page: 1126
  year: 2010
  end-page: 1139
  ident: bib0004
  article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI
  publication-title: NeuroImage
– volume: 17
  start-page: e3000284
  year: 2019
  ident: bib0035
  article-title: Microstructural and functional gradients are increasingly dissociated in transmodal cortices
  publication-title: PLoS Biol.
– volume: 7
  start-page: 12
  year: 2013
  ident: bib0038
  article-title: Toward open sharing of task-based fMRI data: the openfMRI project
  publication-title: Front. Neuroinform.
– reference: Richard, H., Martin, L., Pinho, A. L., Pillow, J., Thirion, B., 2019. Fast shared response model for fMRI data.
– volume: 35
  start-page: 10005
  year: 2015
  end-page: 10014
  ident: bib0017
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
– volume: 14
  start-page: e1006120
  year: 2018
  ident: bib0018
  article-title: A computational model of shared fine-scale structure in the human connectome
  publication-title: PLoS Comput. Biol.
– reference: Aglieri, V., Cagna, B., Belin, P., Takerkart, S., 2019. InterTVA. a multimodal MRI dataset for the study of inter-individual differences in voice perception and identification.
– reference: Nastase, S. A., Gazzola, V., Hasson, U., Keysers, C., 2019. Measuring shared responses across subjects using intersubject correlation.
– volume: 7
  start-page: 37
  year: 2009
  end-page: 53
  ident: bib0021
  article-title: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
– reference: .
– volume: 37
  start-page: 1178
  year: 2007
  end-page: 1185
  ident: bib0024
  article-title: Conjunction group analysis: an alternative to mixed/random effect analysis
  publication-title: NeuroImage
– year: 2021
  ident: bib0016
  article-title: The dual mechanisms of cognitive control dataset: atheoretically-guided within-subject task fMRI battery
  publication-title: bioRxiv
– start-page: 33
  year: 2011
  end-page: 36
  ident: bib0032
  article-title: Testing for information with brain decoding
  publication-title: 2011 International Workshop on Pattern Recognition in NeuroImaging
– volume: 42
  start-page: 407
  year: 2019
  end-page: 432
  ident: bib0026
  article-title: Peeling the onion of brain representations
  publication-title: Annu. Rev. Neurosci.
– volume: 26
  start-page: 2919
  year: 2016
  end-page: 2934
  ident: bib0019
  article-title: A model of representational spaces in human cortex
  publication-title: Cereb. Cortex
– start-page: 562
  year: 2011
  end-page: 573
  ident: bib0046
  article-title: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity
  publication-title: Information Processing in Medical Imaging
– volume: 8
  start-page: 14
  year: 2014
  ident: bib0001
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinform.
– volume: 103
  start-page: 462
  year: 2014
  end-page: 475
  ident: bib0030
  article-title: Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients
  publication-title: Neuroimage
– volume: 27
  start-page: 678
  year: 2006
  end-page: 693
  ident: bib0045
  article-title: Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets
  publication-title: Hum. Brain Mapp.
– volume: 95
  start-page: 5
  year: 1998
  end-page: 32
  ident: bib0012
  article-title: Conceptual similarity across sensory and neural diversity: the Fodor/Lepore challenge answered
  publication-title: J. Philos.
– volume: 3
  start-page: 313
  year: 1993
  end-page: 329
  ident: bib0039
  article-title: Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology
  publication-title: Cereb. Cortex
– volume: 26
  start-page: 2919
  issue: 6
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118683_bib0019
  article-title: A model of representational spaces in human cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhw068
– volume: 16
  start-page: 111
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118683_bib0015
  article-title: fMRIPrep: a robust preprocessing pipeline for functional MRI
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0235-4
– volume: 51
  start-page: 1126
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118683_sbref0004
  article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.082
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118683_bib0036
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2021.118683_bib0028
  article-title: Representational similarity analysis-connecting the branches of systems neuroscience
  publication-title: Front. Syst. Neurosci.
– start-page: 460
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118683_bib0011
  article-title: A Reduced-Dimension fMRI shared response model
– volume: 16
  start-page: 117
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118683_bib0043
  article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-017-9347-8
– volume: 42
  start-page: 407
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118683_bib0026
  article-title: Peeling the onion of brain representations
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev-neuro-080317-061906
– volume: 28
  start-page: 3095
  issue: 9
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118683_bib0042
  article-title: Local-Global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx179
– volume: 9
  start-page: e53385
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118683_bib0014
  article-title: Neuroquery, comprehensive meta-analysis of human brain mapping
  publication-title: eLife
  doi: 10.7554/eLife.53385
– volume: 7
  start-page: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118683_bib0038
  article-title: Toward open sharing of task-based fMRI data: the openfMRI project
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2013.00012
– volume: 6
  start-page: giw011
  issue: 2
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118683_bib0034
  article-title: The healthy brain network serial scanning initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions
  publication-title: Gigascience
  doi: 10.1093/gigascience/giw011
– volume: 116
  start-page: 21219
  issue: 42
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118683_bib0047
  article-title: Gradients of structure–function tethering across neocortex
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1903403116
– volume: 1
  start-page: 1225
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118683_bib0029
  article-title: Functional geometry alignment and localization of brain areas
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.neuroimage.2021.118683_bib0031
  doi: 10.1101/600114
– volume: 17
  start-page: e3000284
  issue: 5
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118683_bib0035
  article-title: Microstructural and functional gradients are increasingly dissociated in transmodal cortices
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.3000284
– volume: 37
  start-page: 1178
  year: 2007
  ident: 10.1016/j.neuroimage.2021.118683_bib0024
  article-title: Conjunction group analysis: an alternative to mixed/random effect analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.05.051
– volume: 35
  start-page: 10005
  issue: 27
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118683_bib0017
  article-title: Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5023-14.2015
– volume: 216
  start-page: 116458
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118683_bib0025
  article-title: Predicting individual face-selective topography using naturalistic stimuli
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116458
– volume: 14
  start-page: e1006120
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118683_bib0018
  article-title: A computational model of shared fine-scale structure in the human connectome
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006120
– volume: 3
  start-page: 160092
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118683_bib0020
  article-title: A studyforrest extension, simultaneous fMRI and eye gaze recordings during prolonged natural stimulation
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.92
– volume: 7
  start-page: 37
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118683_bib0021
  article-title: PyMVPA: a Python toolbox for multivariate pattern analysis of fMRI data
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-008-9041-y
– volume: 56
  start-page: 593
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118683_bib0033
  article-title: A comparison of volume-based and surface-based multi-voxel pattern analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.270
– volume: 8
  start-page: 14
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118683_bib0001
  article-title: Machine learning for neuroimaging with scikit-learn
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2014.00014
– volume: 10
  start-page: 49
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118683_bib0005
  article-title: Pyrcca: Regularized kernel canonical correlation analysis in python and its applications to neuroimaging
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2016.00049
– start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118683_bib0006
  article-title: Variability in the analysis of a single neuroimaging dataset by many teams
  publication-title: Nature
– volume: 13
  start-page: e1002180
  issue: 6
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118683_bib0009
  article-title: A sensitive and specific neural signature for Picture-Induced negative affect
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002180
– volume: 3
  start-page: 313
  issue: 4
  year: 1993
  ident: 10.1016/j.neuroimage.2021.118683_bib0039
  article-title: Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/3.4.313
– ident: 10.1016/j.neuroimage.2021.118683_bib0007
– start-page: 2292
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118683_bib0013
  article-title: Sinkhorn distances: lightspeed computation of optimal transport
– start-page: 1058
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118683_bib0049
  article-title: Gradient hyperalignment for multi-subject fMRI data alignment
– start-page: 1604
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118683_sbref0050
  article-title: Deep hyperalignment
– start-page: 237
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118683_bib0003
  article-title: Local optimal transport for functional brain template estimation
– volume: 5
  start-page: 180105
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118683_bib0037
  article-title: Individual brain charting, a high-resolution fMRI dataset for cognitive mapping
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.105
– volume: 20
  start-page: 130
  year: 2010
  ident: 10.1016/j.neuroimage.2021.118683_bib0041
  article-title: Function-based intersubject alignment of human cortical anatomy
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhp085
– volume: 27
  start-page: 678
  issue: 8
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118683_bib0045
  article-title: Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20210
– volume: 6
  start-page: 49
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118683_bib0010
  article-title: BOLD5000, a public fMRI dataset while viewing 5000 visual images
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0052-3
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118683_bib0016
  article-title: The dual mechanisms of cognitive control dataset: atheoretically-guided within-subject task fMRI battery
  publication-title: bioRxiv
– volume: 72
  start-page: 404
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118683_bib0022
  article-title: A common, high-dimensional model of the representational space in human ventral temporal cortex
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.08.026
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118683_bib0048
  article-title: Scipy 1.0: fundamental algorithms for scientific computing in python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 103
  start-page: 3863
  issue: 10
  year: 2006
  ident: 10.1016/j.neuroimage.2021.118683_bib0027
  article-title: Information-based functional brain mapping
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0600244103
– start-page: 33
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118683_bib0032
  article-title: Testing for information with brain decoding
– volume: 352
  start-page: 216
  issue: 6282
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118683_bib0044
  article-title: Task-free MRI predicts individual differences in brain activity during task performance
  publication-title: Science
  doi: 10.1126/science.aad8127
– volume: 9
  start-page: e56601
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118683_bib0023
  article-title: Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies
  publication-title: Elife
  doi: 10.7554/eLife.56601
– start-page: 562
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118683_bib0046
  article-title: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity
– volume: 95
  start-page: 5
  issue: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2021.118683_bib0012
  article-title: Conceptual similarity across sensory and neural diversity: the Fodor/Lepore challenge answered
  publication-title: J. Philos.
– volume: 106
  start-page: 2322
  issue: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118683_sbref0008
  article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00339.2011
– ident: 10.1016/j.neuroimage.2021.118683_bib0002
– volume: 103
  start-page: 462
  year: 2014
  ident: 10.1016/j.neuroimage.2021.118683_bib0030
  article-title: Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.08.029
– ident: 10.1016/j.neuroimage.2021.118683_bib0040
SSID ssj0009148
Score 2.46795
Snippet •Methods that improve inter-subject decoding accuracy reduce inter-individual variability without losing signal specificity.•Functional alignment methods...
Inter-individual variability in the functional organization of the brain presents a major obstacle to identifying generalizable neural coding principles....
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118683
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Bioinformatics
Brain - diagnostic imaging
Brain architecture
Brain Mapping - methods
Brain research
Computational neuroscience
Computer Science
Datasets
fMRI
Functional alignment
Functional morphology
Humans
Inter-subject variability
Magnetic Resonance Imaging - methods
Mathematics
Neural coding
Performance evaluation
Predictive modeling
Statistics
Structure-function relationships
Usability
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgB8QF8U1oQQZxjUgc27HV04KoVqjlRKXerDgZt4totmp3-f3M2EnawIE9cI3trHcy8byXGT8z9kEpH0yo2hw6qHNKDOXGNiY3RlnkQ9BCS_udT77p5an8eqbO7hz1RTVhSR44Ge5ji4QgSCm6AF5aqb0qmk4J7z2Ck9rGbb4Y80YyNcrtIsof6nZSNVdUh1xd4juKnFCUuFIYbapZMIqa_bOYdP-CiiP_Rp5_FlDeiUhHj9mjAUryRfoLT9g96J-yBydDsvwZO170HC6vVlEEhN_KevN14BTO0ldAjkD8PJYEcKqBP-ckIHGd32w9faHhHdJTCm_P2enRl--fl_lweELeaq02eWNFAV1AQCEKWcoGaYYWAKFRqtIKahlTjD5oKAxoH9DKovVCG49tofXVC7bXr3t4xXjh8S4eRNUgfeksIKYq62CRqzVeBhsyVo9WdO2gLE4HXPx0YwnZD3drf0f2d8n-GSunkVdJXWOHMZ_oQU39SR87XkCvcYPXuH95Tcbs-JjduAUVF0280WqHCRxOYweYkuDHjqPfo1fNZr9cHDu6RllqWdf2F3Y6GJ3ODWvKjUOui_RS2EJl7N3UjKsBpXiaHtZb7ENbianOqcjYy-Sj009ViENoxc2YmXnvbC7zln51ERXHSaOpqo19_T9sv88ekj2oJqhUB2xvc72FN4jsNv5tfIl_AxonTeg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dj9QgFCXumhhfjN9WV4PGV2JLoUB8MKNxMzG7PrnJvJHSwuwYtx3nw9_vvS3tWE3MvBboMPRyOZd7OBDyVkoXdMgr5muvGCaGmDalZlpLA_GQr3yF550vvxbzK_FlIRdxw20baZWDT-wcdd1WuEf-DpA-gGtuUvlh_ZPhrVGYXY1XaJyQ2yhdhlatFuogupuJ_iiczJmGCpHJ0_O7Or3I1Q3MWogSeQa-Qxc6nyxPnYr_ZJU6uUa65L9Y9G9K5R9r1Pl9ci-CSzrrreEBueWbh-TOZUyfPyIXs4b6m_WqkwWhB6Fv2gaKC1y_L0gBmi87kgBFVvySoqTEhm33DvdsaA0BKy54j8nV-edvn-YsXqfAqqKQO1Yanvo6AMTgqchECYFHwb0PpZR5Ib0SXdLRhcKn2hcuGBN45XihHZSFyuVPyGnTNv4ZoamDtzjP8xICmtp4QFmZCgait9KJYEJC1DCKtopa43jlxQ87kMq-28P4Wxx_249_QrKx5brX2ziizUf8UGN9VMzuHrSbpY0T0FYQWAYheB28E0YUTqZlLblzDkCuMjohZvjMdjiUCm4UXrQ6ogPvx7YRuPSA5MjWb8CqJr2fzy4sPsO8tVDK_IJKZ4PR2ehltvYwJxLyeiwG_4BJn7Lx7R7q4OFiZD6lCXna2-j4UzkgE_TBCdET6530ZVrSrK47DXJUbcqVNs__368X5C7-U-T_ZPKMnO42e_8SUNzOveqm6m9vr0cQ
  priority: 102
  providerName: ProQuest
Title An empirical evaluation of functional alignment using inter-subject decoding
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921009563
https://dx.doi.org/10.1016/j.neuroimage.2021.118683
https://www.ncbi.nlm.nih.gov/pubmed/34715319
https://www.proquest.com/docview/2615482905
https://www.proquest.com/docview/2590137600
https://inria.hal.science/hal-03044779
https://pubmed.ncbi.nlm.nih.gov/PMC11653789
https://doaj.org/article/c899f442dfeb4946b50ad52bbb019798
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9NAFB6VIiEuiL2GEhnE1cQezypOadUqQBshoFJuI489kxpRJ0oTjvx23vMWDJdIXBx5Fmc8fn7LzPc-E_KWc-uVT_PIFU5GuDEUKZ2pSCmuIR5yucsx3_lyJqZX7OOczw_IaZcLg7DKVvc3Or3W1m3JuJ3N8aosx1_BMwBzg3xe6CcIZPxkTKKUv_u1g3nohDXpcDyNsHWL5mkwXjVnZHkDby5EijQB_aGESgcmqmbyH1iqO9cImfzXH_0bVvmHnTp_SB60DmY4ae7hETlw1WNy77LdQn9CLiZV6G5WZU0NEu7IvsOlD9HINWuDIbjnixooECIyfhEircQ6ut1aXLcJCwha0eg9JVfnZ99Op1H7SYUoF4JvokzT2BUe3Awas4RlEHwI6pzPOE8Fd5LVG4_WCxcrJ6zX2tPcUqEs1Pncps_IYbWs3BEJYwtXsY6mGQQ1hXbgaSXSa4jgMsu89gGR3SyavOUbx89e_DAdsOy72c2_wfk3zfwHJOl7rhrOjT36nOCD6tsja3ZdsFwvTCs2Jofg0jNGC-8s00xYHmcFp9ZacHSlVgHR3WM2XWIqqFK4ULnHAN73fQcCvGfvNyBVg9FPJxcGy3Dvmkmpf0Kj407oTKtpbg1EwBB0Uh3zgLzuq0FH4MZPVrnlFtpggjGin-KAPG9ktP-rFLwT1MMBUQPpHYxlWFOV1zUPOTI3pVLpF_916y_JfTxDiFDCj8nhZr11r8DR29hR_SbDUc7liNydfPg0ncHvydns85dRvXjyG8IUV04
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbaIgEviJtAAYPgMSJx7MQWQmg5qi3d7VMr7ZuJE3u7qE22e4D4U_xGZnItAQntS1_jY73j8cw3nsOEvBLCOOmizLe5TXx0DPlSpdKXUiiwh2xmM8x3Hh_Hw1P-ZSImO-RXmwuDYZWtTKwEdV5meEf-BpA-gGumAvF-funjq1HoXW2f0KjZ4sj-_AEm2_Ld4SfY39eMHXw--Tj0m1cF_CyOxcpPFQts7kDTsoCHPAX8HTNrXSpEFAub8Mr3ZlxsA2lj45RyLDMslgbaXGYimHeXXAPFG6Cxl0ySTZHfkNepdyLyZRiqJnKojier6lPOLkBKgFXKQpBVMpZRTx1Wrwb0tOLuGYZn_ot9_w7h_EMnHtwmtxowSwc1990hO7a4S66PG3f9PTIaFNRezGdVGRK6KSxOS0dRodb3kBRMgWkVlEAxCn9KsYTFwl-uDd4R0RwMZFSw98nplRD6AdkrysI-IjQwMIuxLErBgMqVBVQXJk6BtZga7pTzSNJSUWdNbXN8YuNct0Fs3_SG_hrpr2v6eyTsRs7r-h5bjPmAG9X1xwrd1YdyMdXNgdcZGLKOc5Y7a7jisRFBmgtmjAFQnSjpEdVus26TYEFsw0SzLRbwthvbAKUaAG05-iVwVW_1w8FI4zf0k_MkUd-h037LdLqRaku9OYMeedE1gzxCJ1Na2HINfTCZGSOtAo88rHm0-6kIkBDKfI_IHvf21tJvKWZnVc1zrBIVJVI9_v-6npMbw5PxSI8Oj4-ekJv4rzH2KBT7ZG-1WNungCBX5ll1bCn5etVy4jdAeIPT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2Tpp4QdwXGGAQPEZLHDuxhRDq2KqOddWEmLQ3Eyd2V8TS0guIv8av45xcWgIS6ste40td-_ic7_h8PibklRDGSRdlvs1t4mNgyJcqlb6UQoE_ZDOb4X3ns2Hcv-AfLsXlFvnV3IVBWmWjE0tFnU8yPCM_AKQP4JqpQBy4mhZxftR7N_3m4wtSGGltntOoROTU_vwB7tv87ckRrPVrxnrHn973_fqFAT-LY7HwU8UCmzuwuizgIU8Bi8fMWpcKEcXCJryMwxkX20Da2DilHMsMi6WBMpeZCPrdJjsJekUdsnN4PDz_uE75G_LqIp6IfBmGquYRVeyyMlvl-Bp0BvioLATNJWMZtYxj-YZAy0ZuXyFZ818k_Deh8w8L2btDbtfQlnYrWbxLtmxxj-ye1cH7-2TQLai9no7LpCR0nWacThxF81qdSlJwDEYlRYEiJ39EMaHFzJ8vDZ4Y0RzcZTS3D8jFjUz1Q9IpJoXdIzQw0IuxLErBncqVBYwXJk6B75ga7pTzSNLMos7qTOf44MZX3VDavuj1_Gucf13Nv0fCVctple1jgzaHuFCr-pivu_wwmY10vf11Bm6t45zlzhqueGxEkOaCGWMAYidKekQ1y6ybK7GgxKGj8QYDeLNqW8OmCg5t2PolSFVr9P3uQOM3jJrzJFHfodJ-I3S61nFzvd6RHnmxKgbthCGntLCTJdTBq83Iuwo88qiS0dVPRYCL0AJ4RLaktzWWdkkxviozoGPOqCiR6vH_x_Wc7IKO0IOT4ekTcgv_NBKRQrFPOovZ0j4FOLkwz-p9S8nnm1YVvwEBZIlu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+evaluation+of+functional+alignment+using+inter-subject+decoding&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Bazeille%2C+Thomas&rft.au=DuPre%2C+Elizabeth&rft.au=Richard%2C+Hugo&rft.au=Poline%2C+Jean-Baptiste&rft.date=2021-12-15&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=245&rft.spage=118683&rft.epage=118683&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118683&rft_id=info%3Apmid%2F34715319&rft.externalDocID=PMC11653789
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon