Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites

Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal th...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 6; no. 7; p. e1000998
Main Authors Schmidt, Nathan W, Butler, Noah S, Badovinac, Vladimir P, Harty, John T
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.07.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines.
AbstractList Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines. Plasmodium infections are a global health crisis resulting in 6300 million cases of malaria each year and 61 million deaths. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccines that induce sterilizing anti-malarial immunity in humans. Importantly, "whole parasite" anti-malarial RAS vaccines are currently under evaluation in clinical trials. In rodents, RAS-induced protection is largely mediated by CD8 T cells. However, the quantitative and qualitative characteristics of RAS-induced protective CD8 T cell responses are unknown. Here, we used surrogate markers of T cell activation to reveal the magnitude and kinetics of Plasmodium-specific CD8 T cell responses following RAS-immunization in both inbred and outbred mice. Our data show that, independent of host genetic background, extremely large memory CD8 T cell responses were required, but not always sufficient for sterilizing protection. These data have broad implications for evaluating total T cell responses to attenuated pathogen-vaccines and direct relevance for efforts to translate attenuated whole-Plasmodium vaccines to humans.
Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole- parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated wholeparasite vaccines.
Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines.
Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these “whole-parasite” vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti- Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines. Plasmodium infections are a global health crisis resulting in ∼300 million cases of malaria each year and ∼1 million deaths. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccines that induce sterilizing anti-malarial immunity in humans. Importantly, “whole parasite” anti-malarial RAS vaccines are currently under evaluation in clinical trials. In rodents, RAS-induced protection is largely mediated by CD8 T cells. However, the quantitative and qualitative characteristics of RAS-induced protective CD8 T cell responses are unknown. Here, we used surrogate markers of T cell activation to reveal the magnitude and kinetics of Plasmodium -specific CD8 T cell responses following RAS-immunization in both inbred and outbred mice. Our data show that, independent of host genetic background, extremely large memory CD8 T cell responses were required, but not always sufficient for sterilizing protection. These data have broad implications for evaluating total T cell responses to attenuated pathogen-vaccines and direct relevance for efforts to translate attenuated whole- Plasmodium vaccines to humans.
  Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines.
Audience Academic
Author Butler, Noah S
Badovinac, Vladimir P
Schmidt, Nathan W
Harty, John T
AuthorAffiliation Case Western Reserve University, United States of America
3 Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
2 Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
1 Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
AuthorAffiliation_xml – name: 3 Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
– name: 2 Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
– name: Case Western Reserve University, United States of America
– name: 1 Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
Author_xml – sequence: 1
  givenname: Nathan W
  surname: Schmidt
  fullname: Schmidt, Nathan W
  organization: Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
– sequence: 2
  givenname: Noah S
  surname: Butler
  fullname: Butler, Noah S
– sequence: 3
  givenname: Vladimir P
  surname: Badovinac
  fullname: Badovinac, Vladimir P
– sequence: 4
  givenname: John T
  surname: Harty
  fullname: Harty, John T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20657824$$D View this record in MEDLINE/PubMed
BookMark eNqVk9-L1DAQx4uceD_0PxAt-CA-dE3atE1fhGM9deFQ0PM5zKbTXo402UvS-_XqP27q9o5bEEQSSDL5zHfITOYw2TPWYJK8pGRBi5q-v7CjM6AXmw2EBSWENA1_khzQsiyyuqjZ3qP9fnLo_QUhjBa0epbs56Qqa56zg-TXyU1wOGC6_MjTs1Si1qnDy1FNRhN82lmXggkqG0CDU6BTra7QZT5Aj6kahtGocBsxre21Mv1suoOgrEmvVThPHbRqe4QQ0IwQsE39xjp7Z1VA_zx52oH2-GJej5Kfn07Oll-y02-fV8vj00xWFQsZypYXWFSccill2TVSclZzgoSVpACsWsLzBtcgZbOmeZvnnHRlQRBkW9UROUpeb3U32nox588LmvOG1BXLy0istkRr4UJsnBrA3QoLSvwxWNcLcEFJjQJjcEkqDshKFiM37ZpTRtucrqGVLI9aH-Zo43rAVsZsOtA7ors3Rp2L3l6JvCGsrpso8HYWcPZyRB_EoPxUIDBoRy_qkpVxMvZvsmCEkqqoI_lmS_YQ36BMZ2NoOdHiOC8YZZzQSW_xFyqOFgcl4zfsVLTvOLzbcYhMwJvQw-i9WP34_h_s112WbVnprPcOu4f0USKmLrivopi6QMxdEN1ePU79g9P9ty9-A0vXCEQ
CitedBy_id crossref_primary_10_1016_j_vaccine_2014_07_112
crossref_primary_10_1371_journal_pone_0024147
crossref_primary_10_1016_j_vaccine_2013_11_058
crossref_primary_10_4049_jimmunol_1401685
crossref_primary_10_3389_fmicb_2015_00047
crossref_primary_10_1371_journal_pone_0015948
crossref_primary_10_1128_JVI_03413_12
crossref_primary_10_1186_s41182_023_00516_w
crossref_primary_10_4049_jimmunol_1401724
crossref_primary_10_1016_j_pt_2011_01_002
crossref_primary_10_1016_j_pt_2020_06_001
crossref_primary_10_1038_s41541_021_00360_1
crossref_primary_10_1038_cti_2016_60
crossref_primary_10_4049_jimmunol_1601209
crossref_primary_10_1016_j_vaccine_2013_09_011
crossref_primary_10_1016_j_vaccine_2016_04_095
crossref_primary_10_1038_s41598_017_10480_1
crossref_primary_10_1126_sciimmunol_aaz8035
crossref_primary_10_3390_pathogens11121487
crossref_primary_10_1371_journal_pone_0048644
crossref_primary_10_1038_mt_2014_109
crossref_primary_10_4049_jimmunol_1003949
crossref_primary_10_1371_journal_ppat_1005945
crossref_primary_10_1371_journal_ppat_1004855
crossref_primary_10_4049_jimmunol_1303460
crossref_primary_10_1371_journal_ppat_1005786
crossref_primary_10_1016_j_celrep_2020_03_072
crossref_primary_10_1038_icb_2017_32
crossref_primary_10_1016_j_it_2012_02_001
crossref_primary_10_1128_IAI_01500_13
crossref_primary_10_1016_j_coi_2012_03_009
crossref_primary_10_1586_erv_12_92
crossref_primary_10_1128_IAI_01439_15
crossref_primary_10_3389_fimmu_2024_1344941
crossref_primary_10_3389_fimmu_2019_02153
crossref_primary_10_1016_j_it_2019_01_002
crossref_primary_10_1016_j_vaccine_2012_05_048
crossref_primary_10_4049_jimmunol_1100194
crossref_primary_10_4049_jimmunol_1400296
crossref_primary_10_4049_jimmunol_1402473
crossref_primary_10_1093_infdis_jir656
crossref_primary_10_1111_j_1600_065X_2010_00988_x
crossref_primary_10_1038_s41598_018_21369_y
crossref_primary_10_1098_rspb_2023_2280
crossref_primary_10_1016_j_coi_2011_05_009
crossref_primary_10_1073_pnas_1303858110
crossref_primary_10_3389_fimmu_2017_01527
crossref_primary_10_15252_emmm_202013390
crossref_primary_10_1093_femspd_ftx051
crossref_primary_10_1128_IAI_00088_18
crossref_primary_10_1016_j_it_2010_12_004
crossref_primary_10_4049_jimmunol_1800727
crossref_primary_10_3389_fcimb_2018_00247
crossref_primary_10_4049_jimmunol_1202861
crossref_primary_10_1038_s41577_019_0158_z
crossref_primary_10_3389_fmicb_2014_00741
crossref_primary_10_1016_j_vaccine_2023_11_023
crossref_primary_10_4049_jimmunol_1302030
crossref_primary_10_1371_journal_pone_0070842
crossref_primary_10_4049_jimmunol_1301063
crossref_primary_10_1016_j_bpj_2014_01_048
crossref_primary_10_4049_jimmunol_1203396
crossref_primary_10_1016_j_cmet_2016_12_011
crossref_primary_10_1016_j_pt_2013_03_008
crossref_primary_10_1111_pim_12386
crossref_primary_10_1016_j_vaccine_2011_07_081
crossref_primary_10_3389_fimmu_2022_869757
crossref_primary_10_1126_scitranslmed_aad9099
crossref_primary_10_1016_j_vaccine_2015_04_056
crossref_primary_10_4161_onci_23972
crossref_primary_10_1016_j_vaccine_2011_07_034
crossref_primary_10_1111_pim_12622
crossref_primary_10_1186_s12936_024_04978_z
crossref_primary_10_3389_fmicb_2015_00482
crossref_primary_10_3389_fimmu_2020_01377
crossref_primary_10_1038_s41467_019_12017_8
crossref_primary_10_1128_IAI_00236_19
crossref_primary_10_3389_fimmu_2019_00397
crossref_primary_10_1002_eji_201343794
crossref_primary_10_1172_JCI67388
crossref_primary_10_1016_j_molmed_2011_05_008
crossref_primary_10_1371_journal_ppat_1006569
crossref_primary_10_1128_IAI_00383_20
crossref_primary_10_3390_vaccines3040894
crossref_primary_10_1016_j_immuni_2010_10_005
crossref_primary_10_1128_IAI_02320_14
crossref_primary_10_3389_fmicb_2014_00272
crossref_primary_10_3389_fimmu_2017_01333
crossref_primary_10_1038_nm_4110
crossref_primary_10_1111_pim_12514
crossref_primary_10_1111_pim_12877
crossref_primary_10_1371_journal_pone_0190940
crossref_primary_10_1038_mt_2011_281
crossref_primary_10_4049_jimmunol_1800740
crossref_primary_10_3389_fimmu_2018_01137
crossref_primary_10_1098_rsob_210341
crossref_primary_10_3389_fcimb_2019_00215
crossref_primary_10_1111_pim_12000_x
crossref_primary_10_4049_jimmunol_1600155
crossref_primary_10_4049_jimmunol_1300310
crossref_primary_10_1002_eji_202048757
crossref_primary_10_1038_s41541_024_00883_3
crossref_primary_10_1007_s12026_014_8525_0
crossref_primary_10_1016_j_chom_2020_04_010
crossref_primary_10_4161_hv_23688
crossref_primary_10_1371_journal_pone_0036508
crossref_primary_10_1073_pnas_1303834110
crossref_primary_10_1097_QCO_0000000000000002
crossref_primary_10_1016_j_parint_2013_09_013
crossref_primary_10_1016_j_chom_2011_05_008
crossref_primary_10_1146_annurev_immunol_032713_120220
crossref_primary_10_1080_14760584_2021_1881485
crossref_primary_10_1371_journal_ppat_1011051
crossref_primary_10_1093_infdis_jir850
crossref_primary_10_1371_journal_ppat_1005219
crossref_primary_10_1016_j_celrep_2020_02_104
crossref_primary_10_1016_j_imlet_2014_03_011
crossref_primary_10_1080_14760584_2019_1561289
crossref_primary_10_1586_erv_13_11
crossref_primary_10_1126_scitranslmed_aap9128
crossref_primary_10_1016_j_vacrep_2016_07_002
crossref_primary_10_1038_s41564_018_0254_z
crossref_primary_10_1128_IAI_00871_13
crossref_primary_10_3389_fimmu_2018_00192
crossref_primary_10_1111_1348_0421_12948
crossref_primary_10_3389_fbinf_2021_770448
crossref_primary_10_1016_j_jconrel_2015_02_031
crossref_primary_10_1371_journal_ppat_1011720
crossref_primary_10_1371_journal_pone_0159449
crossref_primary_10_1016_j_isci_2023_108489
crossref_primary_10_1038_srep35997
crossref_primary_10_4049_jimmunol_1403017
crossref_primary_10_1093_infdis_jiw482
crossref_primary_10_1186_s12936_016_1295_5
crossref_primary_10_1016_j_coi_2016_06_008
crossref_primary_10_1111_imr_13202
crossref_primary_10_4049_jimmunol_1100302
crossref_primary_10_1098_rstb_2011_0091
crossref_primary_10_1126_science_1211548
Cites_doi 10.1371/journal.ppat.1000877
10.1093/milmed/134.9.1176
10.1086/519743
10.1111/j.1365-3024.2007.00976.x
10.1038/nrmicro1712
10.1126/science.288.5466.675
10.4049/jimmunol.149.6.2103
10.1002/eji.200324478
10.1371/journal.pone.0001371
10.1038/nature05361
10.1017/S0031182099003959
10.4269/ajtmh.1975.24.397
10.1038/462017a
10.1016/j.vaccine.2008.11.073
10.1016/j.immuni.2008.02.020
10.4049/jimmunol.171.4.2024
10.1371/journal.pone.0004480
10.1111/j.1462-5822.2008.01270.x
10.1371/journal.pmed.0030473
10.1073/pnas.0805452105
10.2307/3277136
10.1073/pnas.92.9.4066
10.1016/j.pt.2006.06.006
10.1016/S1074-7613(00)80540-3
10.1128/IAI.00566-07
10.1093/intimm/4.7.711
10.4049/jimmunol.0900302
10.1038/415680a
10.1038/216160a0
10.4049/jimmunol.0902874
10.1038/222488a0
10.1128/IAI.00225-07
10.1111/j.1365-2958.2008.06271.x
10.1016/j.vaccine.2009.08.025
10.1086/339409
10.1016/S0092-8674(02)01139-X
10.1038/341323a0
10.1086/519742
10.4049/jimmunol.163.2.884
10.1016/0166-6851(96)02574-1
10.1038/nature03342
10.4049/jimmunol.143.12.4263
10.1016/S0140-6736(05)71877-8
10.1038/330664a0
10.4049/jimmunol.165.3.1453
10.1038/ni889
ContentType Journal Article
Copyright COPYRIGHT 2010 Public Library of Science
Schmidt et al. 2010
2010 Schmidt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schmidt NW, Butler NS, Badovinac VP, Harty JT (2010) Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites. PLoS Pathog 6(7): e1000998. doi:10.1371/journal.ppat.1000998
Copyright_xml – notice: COPYRIGHT 2010 Public Library of Science
– notice: Schmidt et al. 2010
– notice: 2010 Schmidt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schmidt NW, Butler NS, Badovinac VP, Harty JT (2010) Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites. PLoS Pathog 6(7): e1000998. doi:10.1371/journal.ppat.1000998
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ISN
ISR
7X8
7T5
H94
5PM
DOA
DOI 10.1371/journal.ppat.1000998
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: Canada
Gale In Context: Science
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Plasmodium-Induced Total Memory CD8 T Cell Responses
EISSN 1553-7374
Editor Kazura, James W.
Editor_xml – sequence: 1
  givenname: James W.
  surname: Kazura
  fullname: Kazura, James W.
EndPage e1000998
ExternalDocumentID 1289076425
oai_doaj_org_article_ec84c068ae454d089db8141d21badc42
A234148014
10_1371_journal_ppat_1000998
20657824
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: 5-T32-AI0726024
– fundername: NIAID NIH HHS
  grantid: F32 AI084329
– fundername: NIAID NIH HHS
  grantid: AI83286
– fundername: NIAID NIH HHS
  grantid: 1-F32-AI084329
– fundername: NIAID NIH HHS
  grantid: R01 AI085515
– fundername: NIAID NIH HHS
  grantid: R01 AI083286
GroupedDBID ---
123
29O
2WC
3V.
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
ABDBF
ABUWG
ACGFO
ACIHN
ACPRK
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EAP
EAS
EBD
ECM
EIF
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
IPNFZ
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
MM.
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RIG
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
~8M
AAYXX
CITATION
7X8
7T5
H94
5PM
AAPBV
ABPTK
ID FETCH-LOGICAL-c664t-ecd83e36818ccc5f9cc84780e04503ae6d0829ebacc9b12d2280f530eacd67503
IEDL.DBID RPM
ISSN 1553-7374
1553-7366
IngestDate Sun Oct 01 00:11:11 EDT 2023
Tue Oct 22 15:12:50 EDT 2024
Tue Sep 17 21:19:58 EDT 2024
Fri Aug 16 02:35:38 EDT 2024
Fri Aug 16 01:39:36 EDT 2024
Fri Feb 23 00:10:09 EST 2024
Fri Feb 02 04:15:18 EST 2024
Thu Aug 01 20:13:08 EDT 2024
Thu Aug 01 19:37:23 EDT 2024
Fri Aug 23 00:55:34 EDT 2024
Sat Sep 28 07:51:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords CD8-Positive T-Lymphocytes
Immunization
Animals
Malaria Vaccines
Liver
Sporozoites
Vaccines, Attenuated
Antimalarials
Immunologic Memory
Mice
Immunity
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-ecd83e36818ccc5f9cc84780e04503ae6d0829ebacc9b12d2280f530eacd67503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: NWS NSB VPB JTH. Performed the experiments: NWS NSB. Analyzed the data: NWS NSB JTH. Contributed reagents/materials/analysis tools: VPB. Wrote the paper: NWS NSB JTH.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904779/
PMID 20657824
PQID 734010637
PQPubID 23479
ParticipantIDs plos_journals_1289076425
doaj_primary_oai_doaj_org_article_ec84c068ae454d089db8141d21badc42
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2904779
proquest_miscellaneous_754554544
proquest_miscellaneous_734010637
gale_infotracmisc_A234148014
gale_infotracacademiconefile_A234148014
gale_incontextgauss_ISR_A234148014
gale_incontextgauss_ISN_A234148014
crossref_primary_10_1371_journal_ppat_1000998
pubmed_primary_20657824
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS pathogens
PublicationTitleAlternate PLoS Pathog
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References 4987036 - Mil Med. 1969 Sep;134(10):1176-82
17624848 - J Infect Dis. 2007 Aug 15;196(4):608-16
18160479 - Infect Immun. 2008 Mar;76(3):1200-6
10340322 - Parasitology. 1999 Apr;118 ( Pt 4):335-8
4919047 - J Parasitol. 1968 Oct;54(5):1009-16
3120015 - Nature. 1987 Dec 17-23;330(6149):664-6
20463809 - PLoS Pathog. 2010 May;6(5):e1000877
16798089 - Trends Parasitol. 2006 Aug;22(8):353-8
18468462 - Immunity. 2008 May;28(5):710-22
2094578 - Bull World Health Organ. 1990;68 Suppl:13-6
12563257 - Nat Immunol. 2003 Mar;4(3):225-34
11832956 - Nature. 2002 Feb 7;415(6872):680-5
17624847 - J Infect Dis. 2007 Aug 15;196(4):599-607
7732032 - Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4066-8
10395683 - J Immunol. 1999 Jul 15;163(2):884-92
19068099 - Cell Microbiol. 2009 Mar;11(3):506-20
5768632 - Nature. 1969 May 3;222(5192):488-9
17571459 - Nat Rev Microbiol. 2007 Jul;5(7):487-9
2477703 - Nature. 1989 Sep 28;341(6240):323-6
17151604 - Nature. 2006 Dec 14;444(7121):937-40
15759000 - Nature. 2005 Mar 10;434(7030):214-7
18466298 - Mol Microbiol. 2008 Jul;69(1):152-63
808142 - Am J Trop Med Hyg. 1975 May;24(3):397-401
17147467 - PLoS Med. 2006 Dec;3(12):e473
2512354 - J Immunol. 1989 Dec 15;143(12):4263-6
10784451 - Science. 2000 Apr 28;288(5466):675-8
1498082 - Int Immunol. 1992 Jul;4(7):711-8
18159254 - PLoS One. 2007;2(12):e1371
19712771 - Vaccine. 2009 Oct 19;27(44):6103-6
19933864 - J Immunol. 2009 Dec 15;183(12):7672-81
12526810 - Cell. 2002 Dec 13;111(6):837-51
18780790 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14017-22
17944745 - Parasite Immunol. 2007 Nov;29(11):559-65
12902507 - J Immunol. 2003 Aug 15;171(4):2024-34
11930326 - J Infect Dis. 2002 Apr 15;185(8):1155-64
15048710 - Eur J Immunol. 2004 Apr;34(4):999-1010
17517871 - Infect Immun. 2007 Aug;75(8):3758-68
10903750 - J Immunol. 2000 Aug 1;165(3):1453-62
19812194 - J Immunol. 2009 Nov 1;183(9):5870-8
1517574 - J Immunol. 1992 Sep 15;149(6):2103-9
19214236 - PLoS One. 2009;4(2):e4480
6057225 - Nature. 1967 Oct 14;216(5111):160-2
9529152 - Immunity. 1998 Mar;8(3):353-62
15794969 - Lancet. 2005 Mar 26-Apr 1;365(9465):1147-52
19890296 - Nature. 2009 Nov 5;462(7269):19
19071177 - Vaccine. 2009 Jun 2;27(27):3675-80
8784767 - Mol Biochem Parasitol. 1996 Apr;77(1):7-17
CA Guerra (ref5) 2006; 22
D Rai (ref18) 2009; 183
AS Aly (ref46) 2008; 69
A Trimnell (ref37) 2009; 183
O Jobe (ref45) 2007; 196
SM Kaech (ref21) 2002; 111
LF Scheller (ref25) 1995; 92
SM Todryk (ref6) 2007; 5
DL Doolan (ref11) 2000; 165
AC Gruner (ref14) 2007; 2
P Romero (ref13) 1989; 341
NW Schmidt (ref42) 2009; 27
WR Weiss (ref20) 1989; 143
JD Miller (ref17) 2008; 28
AS Tarun (ref33) 2007; 196
AM Vaughan (ref47) 2009; 11
J Bryce (ref1) 2005; 365
D Butler (ref10) 2009; 462
DH Busch (ref22) 1998; 8
ZM Khan (ref34) 1992; 4
DF Clyde (ref7) 1975; 24
J Sachs (ref3) 2002; 415
WR Weiss (ref12) 1992; 149
KH Rieckmann (ref19) 1990; 68
H Tomiyama (ref40) 2004; 34
NW Schmidt (ref16) 2008; 105
R Chattopadhyay (ref36) 2009; 27
SI Hay (ref2) 2006; 3
D Berenzon (ref26) 2003; 171
M Labaied (ref31) 2007; 75
RS Nussenzweig (ref9) 1967; 216
CC Ku (ref41) 2000; 288
KA Kumar (ref15) 2006; 444
M Sedegah (ref32) 2007; 29
DL Doolan (ref30) 1999; 163
KA Kumar (ref35) 2009; 4
IA Cockburn (ref44) 2010; 6
JP Vanderberg (ref23) 1968; 54
GA Oliveira (ref29) 2008; 76
RW Snow (ref4) 2005; 434
EJ Wherry (ref39) 2003; 4
MR Briones (ref43) 1996; 77
RS Nussenzweig (ref28) 1969; 222
L Schofield (ref38) 1987; 330
R Nussenzweig (ref27) 1969; 134
SL Hoffman (ref8) 2002; 185
B Zechini (ref24) 1999; 118 ( Pt 4)
References_xml – volume: 6
  start-page: e1000877
  year: 2010
  ident: ref44
  article-title: Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000877
  contributor:
    fullname: IA Cockburn
– volume: 68
  start-page: 13
  year: 1990
  ident: ref19
  article-title: Human immunization with attenuated sporozoites.
  publication-title: Bull World Health Organ
  contributor:
    fullname: KH Rieckmann
– volume: 134
  start-page: 1176
  year: 1969
  ident: ref27
  article-title: Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. IV. Dose response, specificity and humoral immunity.
  publication-title: Mil Med
  doi: 10.1093/milmed/134.9.1176
  contributor:
    fullname: R Nussenzweig
– volume: 196
  start-page: 599
  year: 2007
  ident: ref45
  article-title: Genetically attenuated Plasmodium berghei liver stages induce sterile protracted protection that is mediated by major histocompatibility complex Class I-dependent interferon-gamma-producing CD8+ T cells.
  publication-title: J Infect Dis
  doi: 10.1086/519743
  contributor:
    fullname: O Jobe
– volume: 29
  start-page: 559
  year: 2007
  ident: ref32
  article-title: Cross-protection between attenuated Plasmodium berghei and P. yoelii sporozoites.
  publication-title: Parasite Immunol
  doi: 10.1111/j.1365-3024.2007.00976.x
  contributor:
    fullname: M Sedegah
– volume: 5
  start-page: 487
  year: 2007
  ident: ref6
  article-title: Malaria vaccines: the stage we are at.
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1712
  contributor:
    fullname: SM Todryk
– volume: 288
  start-page: 675
  year: 2000
  ident: ref41
  article-title: Control of homeostasis of CD8+ memory T cells by opposing cytokines.
  publication-title: Science
  doi: 10.1126/science.288.5466.675
  contributor:
    fullname: CC Ku
– volume: 149
  start-page: 2103
  year: 1992
  ident: ref12
  article-title: A T cell clone directed at the circumsporozoite protein which protects mice against both Plasmodium yoelii and Plasmodium berghei.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.149.6.2103
  contributor:
    fullname: WR Weiss
– volume: 34
  start-page: 999
  year: 2004
  ident: ref40
  article-title: Phenotypic classification of human CD8+ T cells reflecting their function: inverse correlation between quantitative expression of CD27 and cytotoxic effector function.
  publication-title: Eur J Immunol
  doi: 10.1002/eji.200324478
  contributor:
    fullname: H Tomiyama
– volume: 2
  start-page: e1371
  year: 2007
  ident: ref14
  article-title: Sterile protection against malaria is independent of immune responses to the circumsporozoite protein.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0001371
  contributor:
    fullname: AC Gruner
– volume: 444
  start-page: 937
  year: 2006
  ident: ref15
  article-title: The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites.
  publication-title: Nature
  doi: 10.1038/nature05361
  contributor:
    fullname: KA Kumar
– volume: 118 ( Pt 4)
  start-page: 335
  year: 1999
  ident: ref24
  article-title: Plasmodium berghei development in irradiated sporozoite-immunized C57BL6 mice.
  publication-title: Parasitology
  doi: 10.1017/S0031182099003959
  contributor:
    fullname: B Zechini
– volume: 24
  start-page: 397
  year: 1975
  ident: ref7
  article-title: Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites.
  publication-title: Am J Trop Med Hyg
  doi: 10.4269/ajtmh.1975.24.397
  contributor:
    fullname: DF Clyde
– volume: 462
  start-page: 19
  year: 2009
  ident: ref10
  article-title: Initiative targets malaria eradication.
  publication-title: Nature
  doi: 10.1038/462017a
  contributor:
    fullname: D Butler
– volume: 27
  start-page: 3675
  year: 2009
  ident: ref36
  article-title: The Effects of radiation on the safety and protective efficacy of an attenuated Plasmodium yoelii sporozoite malaria vaccine.
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2008.11.073
  contributor:
    fullname: R Chattopadhyay
– volume: 28
  start-page: 710
  year: 2008
  ident: ref17
  article-title: Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines.
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.02.020
  contributor:
    fullname: JD Miller
– volume: 171
  start-page: 2024
  year: 2003
  ident: ref26
  article-title: Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.171.4.2024
  contributor:
    fullname: D Berenzon
– volume: 4
  start-page: e4480
  year: 2009
  ident: ref35
  article-title: Conserved protective mechanisms in radiation and genetically attenuated uis3(-) and uis4(-) Plasmodium sporozoites.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0004480
  contributor:
    fullname: KA Kumar
– volume: 11
  start-page: 506
  year: 2009
  ident: ref47
  article-title: Type II fatty acid synthesis is essential only for malaria parasite late liver stage development.
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2008.01270.x
  contributor:
    fullname: AM Vaughan
– volume: 3
  start-page: e473
  year: 2006
  ident: ref2
  article-title: The Malaria Atlas Project: Developing Global Maps of Malaria Risk.
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.0030473
  contributor:
    fullname: SI Hay
– volume: 105
  start-page: 14017
  year: 2008
  ident: ref16
  article-title: Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0805452105
  contributor:
    fullname: NW Schmidt
– volume: 54
  start-page: 1009
  year: 1968
  ident: ref23
  article-title: Further studies on the Plasmodium berghei-Anopheles stephensi–rodent system of mammalian malaria.
  publication-title: J Parasitol
  doi: 10.2307/3277136
  contributor:
    fullname: JP Vanderberg
– volume: 92
  start-page: 4066
  year: 1995
  ident: ref25
  article-title: Maintenance of protective immunity against malaria by persistent hepatic parasites derived from irradiated sporozoites.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.9.4066
  contributor:
    fullname: LF Scheller
– volume: 22
  start-page: 353
  year: 2006
  ident: ref5
  article-title: Mapping the global extent of malaria in 2005.
  publication-title: Trends Parasitol
  doi: 10.1016/j.pt.2006.06.006
  contributor:
    fullname: CA Guerra
– volume: 8
  start-page: 353
  year: 1998
  ident: ref22
  article-title: Coordinate regulation of complex T cell populations responding to bacterial infection.
  publication-title: Immunity
  doi: 10.1016/S1074-7613(00)80540-3
  contributor:
    fullname: DH Busch
– volume: 76
  start-page: 1200
  year: 2008
  ident: ref29
  article-title: Class II-restricted protective immunity induced by malaria sporozoites.
  publication-title: Infect Immun
  doi: 10.1128/IAI.00566-07
  contributor:
    fullname: GA Oliveira
– volume: 4
  start-page: 711
  year: 1992
  ident: ref34
  article-title: Specific inflammatory cell infiltration of hepatic schizonts in BALB/c mice immunized with attenuated Plasmodium yoelii sporozoites.
  publication-title: Int Immunol
  doi: 10.1093/intimm/4.7.711
  contributor:
    fullname: ZM Khan
– volume: 183
  start-page: 5870
  year: 2009
  ident: ref37
  article-title: Genetically attenuated parasite vaccines induce contact-dependent CD8+ T cell killing of Plasmodium yoelii liver stage-infected hepatocytes.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0900302
  contributor:
    fullname: A Trimnell
– volume: 415
  start-page: 680
  year: 2002
  ident: ref3
  article-title: The economic and social burden of malaria.
  publication-title: Nature
  doi: 10.1038/415680a
  contributor:
    fullname: J Sachs
– volume: 216
  start-page: 160
  year: 1967
  ident: ref9
  article-title: Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei.
  publication-title: Nature
  doi: 10.1038/216160a0
  contributor:
    fullname: RS Nussenzweig
– volume: 183
  start-page: 7672
  year: 2009
  ident: ref18
  article-title: Tracking the Total CD8 T Cell Response to Infection Reveals Substantial Discordance in Magnitude and Kinetics between Inbred and Outbred Hosts.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0902874
  contributor:
    fullname: D Rai
– volume: 222
  start-page: 488
  year: 1969
  ident: ref28
  article-title: Specificity of protective immunity produced by x-irradiated Plasmodium berghei sporozoites.
  publication-title: Nature
  doi: 10.1038/222488a0
  contributor:
    fullname: RS Nussenzweig
– volume: 75
  start-page: 3758
  year: 2007
  ident: ref31
  article-title: Plasmodium yoelii sporozoites with simultaneous deletion of P52 and P36 are completely attenuated and confer sterile immunity against infection.
  publication-title: Infect Immun
  doi: 10.1128/IAI.00225-07
  contributor:
    fullname: M Labaied
– volume: 69
  start-page: 152
  year: 2008
  ident: ref46
  article-title: Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection.
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2008.06271.x
  contributor:
    fullname: AS Aly
– volume: 27
  start-page: 6103
  year: 2009
  ident: ref42
  article-title: CD8 T cell immunity to Plasmodium permits generation of protective antibodies after repeated sporozoite challenge.
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2009.08.025
  contributor:
    fullname: NW Schmidt
– volume: 185
  start-page: 1155
  year: 2002
  ident: ref8
  article-title: Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites.
  publication-title: J Infect Dis
  doi: 10.1086/339409
  contributor:
    fullname: SL Hoffman
– volume: 111
  start-page: 837
  year: 2002
  ident: ref21
  article-title: Molecular and functional profiling of memory CD8 T cell differentiation.
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)01139-X
  contributor:
    fullname: SM Kaech
– volume: 341
  start-page: 323
  year: 1989
  ident: ref13
  article-title: Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria.
  publication-title: Nature
  doi: 10.1038/341323a0
  contributor:
    fullname: P Romero
– volume: 196
  start-page: 608
  year: 2007
  ident: ref33
  article-title: Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells.
  publication-title: J Infect Dis
  doi: 10.1086/519742
  contributor:
    fullname: AS Tarun
– volume: 163
  start-page: 884
  year: 1999
  ident: ref30
  article-title: IL-12 and NK cells are required for antigen-specific adaptive immunity against malaria initiated by CD8+ T cells in the Plasmodium yoelii model.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.163.2.884
  contributor:
    fullname: DL Doolan
– volume: 77
  start-page: 7
  year: 1996
  ident: ref43
  article-title: The large difference in infectivity for mice of Plasmodium berghei and Plasmodium yoelii sporozoites cannot be correlated with their ability to enter into hepatocytes.
  publication-title: Mol Biochem Parasitol
  doi: 10.1016/0166-6851(96)02574-1
  contributor:
    fullname: MR Briones
– volume: 434
  start-page: 214
  year: 2005
  ident: ref4
  article-title: The global distribution of clinical episodes of Plasmodium falciparum malaria.
  publication-title: Nature
  doi: 10.1038/nature03342
  contributor:
    fullname: RW Snow
– volume: 143
  start-page: 4263
  year: 1989
  ident: ref20
  article-title: Genetic control of immunity to Plasmodium yoelii sporozoites.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.143.12.4263
  contributor:
    fullname: WR Weiss
– volume: 365
  start-page: 1147
  year: 2005
  ident: ref1
  article-title: WHO estimates of the causes of death in children.
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)71877-8
  contributor:
    fullname: J Bryce
– volume: 330
  start-page: 664
  year: 1987
  ident: ref38
  article-title: Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites.
  publication-title: Nature
  doi: 10.1038/330664a0
  contributor:
    fullname: L Schofield
– volume: 165
  start-page: 1453
  year: 2000
  ident: ref11
  article-title: The complexity of protective immunity against liver-stage malaria.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.165.3.1453
  contributor:
    fullname: DL Doolan
– volume: 4
  start-page: 225
  year: 2003
  ident: ref39
  article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets.
  publication-title: Nat Immunol
  doi: 10.1038/ni889
  contributor:
    fullname: EJ Wherry
SSID ssj0041316
Score 2.4926496
Snippet Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents....
Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents....
  Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents....
SourceID plos
doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e1000998
SubjectTerms Animals
Antimalarials - immunology
Care and treatment
CD8 lymphocytes
CD8-Positive T-Lymphocytes - immunology
Cellular immunity
Genetic aspects
Immunity
Immunization
Immunologic Memory
Immunology
Infectious Diseases/Protozoal Infections
Liver - immunology
Liver - parasitology
Malaria
Malaria Vaccines - administration & dosage
Malaria Vaccines - immunology
Mice
Parasites
Plasmodium berghei
Rodents
Sporozoites - immunology
Sporozoites - radiation effects
T cell receptors
Vaccination
Vaccines
Vaccines, Attenuated - immunology
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjMNjL2HezdUOMwZ68ypYsyY9d19IN1oethb4JWVK6QGqH2GFtX_eP705yQj328TLIS6wLQXfn0--ku58IecNUZcGYdSZ5PstEWSMHpM4zbYvaMhmc1Njv_PlEHp-JT-fl-a2rvrAmLNEDJ8XtBaeFY1LbIErhma58rXOR-yKvrXciRV9WbZKpFIMhMsdLT_FSnExxKYemOa7yvcFG75ZLi_TRCJH0aFGK3P3bCD1ZLtrud_Dz1yrKW8vS0QNyf8CTdD_N4yG5E5pH5G66YfL6MflxeNXjDiA9-KDpKcVteroKWP0btwU7CpiVgnLn2aWFHBeckS6wUiMD0HgR6Dx2j_TXILZYtN9hmRsepeZNiru4dIX0BvErcnU2a0CvnmK23N60AGi7J-Ts6PD04Dgb7l3InJSiz4LzmgcOJtPOuXJWObCB0iwA_GPcBumxITfU1rmqzguPjDqzkjOI4V7iuehTMmnaJuwQOuNWSA0orywqUQsLgt5BXPFc8YJVfkqyjeLNMtFrmHjGpiAtSRo0aCgzGGpK3qN1trJIjh0fgMuYwWXMv1xmSl6jbQ3SXzRYX3Nh111nPn49MfsFrOqRUeePQl9GQm8HoVkLPuDs0NMAk0darZHk7kgSXmI3Gt5BP9vMuTM5HgArSA7LKaEb3zP4KyyKa0K77oziAjN6rv4iAgAZPgL-4Fny1q3qCgCfAA9hRI38eKTb8Ugz_xYJyIuKCaWq5__DGC_IvVSQgRXQu2TSr9bhJeC8vn4VX-mfqGdR6g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGERIviN_rGMhCSDxlSmLHdh4QGmPTQGIPsEp7sxzb7SqVpEtSsfLKP86dk1YEbQipL40vbXJ3tj_bd98R8iaWuQFjFpFgyTTiWYEckCqJlEkLEwtvhcJ85y9n4nTCP19kFztkU7O1V2Bz49IO60lN6sXB9dX6PXT4d6Fqg0w2Nx0slwYJoRH0qDvkborUXBjMx7fnCjBih2KoWCwnkkyIPpnutl8ZTFaB0387co-Wi6q5CZb-HV35x3R18pA86HEmPewc4xHZ8eVjcq-rPLl-Qn4dX7e4M0iPPip6TnH7ntYeo4LDdmFDActSUPo8-m5AQeCkdIERHBGAyZmn85BV0q5BbLGofsD011_qkjop7u7SGmkPwlfk8CxXgGodRVVXPysAus1TMjk5Pj86jfp6DJEVgreRt04xz8CUylqbTXNrYW5TsQdYGDPjhcNEXV8Ya_MiSR0y7UwzFsPY7gSelz4jo7Iq_S6hU2a4UID-sjTnBTcg6CyMN45Jlsa5G5Noo3i97Gg3dDh7k7Bc6TSo0VC6N9SYfEDrbGWRNDtcqOqZ7vug9vC4NhbKeJ5xeNbcFSrhiUuTwjjL0zF5jbbVSItRYtzNzKyaRn_6dqYPU5jtA9POrUJfB0Jve6FpBT5gTZ_rAC-PdFsDyf2BJHRuO2jeRT_bvHOjEzwYlrBozMaEbnxP410YLFf6atVoyTiu9Jn8hwgAZ_hw-IPnnbduVZcCKAXYCC1y4McD3Q5byvllICZP85hLme_999u_IPe7aAwMf94no7Ze-ZcA8triVei3vwFhKVLx
  priority: 102
  providerName: Scholars Portal
Title Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites
URI https://www.ncbi.nlm.nih.gov/pubmed/20657824
https://search.proquest.com/docview/734010637
https://search.proquest.com/docview/754554544
https://pubmed.ncbi.nlm.nih.gov/PMC2904779
https://doaj.org/article/ec84c068ae454d089db8141d21badc42
http://dx.doi.org/10.1371/journal.ppat.1000998
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZtxmAvY7-brQtiDPbkxLZkyX5Ms5R2LKFkLfRNyLKSBlI71A5b97p_fHeyHeax7WEQArHPRNaddJ-ku-8Iee_LRIMyU0-wYOnxKEUOyDjwYh2m2hfWiBjznWdzcXbFP11H1wckanNhXNC-SdfDfHM7zNc3LrZye2tGbZzY6GI2CROfS5mMDskhGGi7RK-nX5iUXb1TrIfjSSZEky_HZDBq1DPcbjUyRyM6wnp9IbhhcJS845ocg_9-nu5tN0X5JxD6eyzlL87p9Al53KBKOq5b_5Qc2PwZeVjXmbx_Tn5Mv1W4D0gnH2N6SSd2s6ELizHAbnOwpIBc6Tiv1t5Mw0oXTJJ-xngND6DoytJzl0NS3YPYZlN8BWfXXKpTOCnu5dIFkhy4n-MKcPgOMGxGsYZ68b0AWFu-IFen08vJmddUX_CMELzyrMliZhkoLjbGRMvEGPBksW8BBPpMW5FhWq5NtTFJGoQZ8uosI-bDTJ4JPB19SXp5kdsjQpdMcxED1ovChKdcg2BmYHbJmGShn2R94rUdr7Y1yYZyJ20SFid1DyrUmWp01icnqJ29LFJkuwvF3Uo1hqIsNNf4ItaWRxzammRpHPAgC4NUZ4aHffIOdauQBCPHKJuV3pWlOv8yV-MQfLvj1fmr0KIj9KERWhZgA0Y3mQ3w8kiu1ZE87kjCUDad20doZ-07lyrAY2AJS8SoT2hrewqfwtC43Ba7UknGcV3P5D9EACbDh8MfvKqtdd91re33iezYcadvu3dgVDoa8mYUvv7vJ9-QR3UsBgY_H5NedbezbwHiVekABva1HJAHJ9P5xWLgNkrge8bjgRvsPwHTjlT1
link.rule.ids 230,315,730,783,787,867,888,2109,2228,24332,27938,27939,31734,33759,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGEYIXfo8VBlgIiae0Sew4yWMpm1ZoK1Q6tDfLcdxS0SXVkgq2V_5x7pykIhMggdSXxBc1js93n-277wh57YaxgsFMHMG8hcODBDkgI8-JlJ8oVxgtIsx3nkzFySl_fxac7ZGgyYWxQfs6WfWy9XkvW32xsZWbc91v4sT6HydDP3Z5GMb9G-QmzFdXNIv0ygCDWbYVT7EijhMyIeqMORZ6_XqAepuNQu5oxEdYsc8HRwyukreck-Xw31nqzmadF7-DodejKX9xT8f3yOemY1VUytfetkx6-uoa5-M_9_w-uVsDVjqomh-QPZM9JLeqEpaXj8iPo-8lbjHS4buIzunQrNd0ZjC82O47FhRAMR1k5cqZKFhEg7bTMYaCOIByl4aObHpKeQli63X-DfxofavKDqW4TUxnyJ9gLwclQPwtwOOUYnn2_CoHxFw8JqfHR_PhiVMXdnC0ELx0jE4jZhjoRKS1Dhax1uAkI9cAvnSZMiLFjF-TKK3jxPNTpOxZBMwFJ5EKPHjdJ50sz8wBoQumuIgARgZ-zBOuQDDVYLhSFjLfjdMucZoRlZuKv0PaQ7wQ1j3VF5SoDLJWhi55i8O-k0X2bXsjv1jKeiSkgdfVroiU4QGHd43TJPK4l_peolLN_S55hUojkV8jwwCepdoWhRx9msqBD7DBUvb8UWjWEnpTCy1yUC6t6qQJ6DzydrUkD1uSYCV0q_kAFbjpcyE9PGEOYfUZdAltlFriUxh1l5l8W8iQcdwyYOFfRACBw4_DHzyppsHu0zWTqkvC1gRpfdt2C6i9ZTiv1fzpfz_5ktw-mU_GcjyafnhG7lQhHxhjfUg65cXWPAckWSYvrN34CW5ecqM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCMQL32OFARZC4iltEjtO8li6VSus1VQ2aeLFchynVHRJtKSC7ZV_nLt8VMsEPEzqS5KLGtvnu5_tu98R8sH2QwWDGVmCOYnFvQg5IAPHCpQbKVsYLQLMd57NxeEp_3zmnV0r9VUF7etoNUjX54N09b2KrczP9bCNExsez8ZuaHPfD4d5nAzvknswZ-2gXajXRhhMc1X1FKviWD4TosmaY74zbAZpkOcK-aMRI2HVPhecMbhL3nFQFY__1lr38nVW_A2K3oyovOaiJo_Jt7ZxdWTKj8GmjAb66gbv461a_4Q8aoArHdUiT8kdkz4j9-tSlpfPye-DXyVuNdLxfkBP6Nis13RhMMy42n8sKIBjOkrLlTVTsJgGradHGBJiAdpdGjqt0lTKSxBbr7Of4E-bW3WWKMXtYrpAHoXqclQC1N8ATI4plmnPrjJAzsULcjo5OBkfWk2BB0sLwUvL6DhghoFuBFprLwm1BmcZ2AZwps2UETFm_ppIaR1GjhsjdU_iMRucRSzwAHaH9NIsNbuEJkxxEQCc9NyQR1yBYKzBgMXMZ64dxn1itaMq85rHQ1aHeT6sf-oelKgQslGIPvmEQ7-VRRbu6kZ2sZTNaEgDn6ttESjDPQ7fGsZR4HAndp1IxZq7ffIeFUciz0aKgTxLtSkKOf06lyMX4ENF3fNPoUVH6GMjlGSgYFo1yRPQeOTv6kjudSTBWujO411U4rbNhXTwpNmHVajXJ7RVbIlvYfRdarJNIX3GceuA-f8RASQOPw5_8LKeCtuuaydWn_idSdLp2-4TUP2K6bxR9Ve3fvMdeXC8P5FH0_mX1-RhHfmBodZ7pFdebMwbAJRl9LYyHX8A2uR1Iw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extreme+CD8+T+cell+requirements+for+anti-malarial+liver-stage+immunity+following+immunization+with+radiation+attenuated+sporozoites&rft.jtitle=PLoS+pathogens&rft.au=Schmidt%2C+Nathan+W&rft.au=Butler%2C+Noah+S&rft.au=Badovinac%2C+Vladimir+P&rft.au=Harty%2C+John+T&rft.date=2010-07-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=6&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.ppat.1000998&rft.externalDocID=A234148014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon