Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites
Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal th...
Saved in:
Published in | PLoS pathogens Vol. 6; no. 7; p. e1000998 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.07.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines. |
---|---|
AbstractList | Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines. Plasmodium infections are a global health crisis resulting in 6300 million cases of malaria each year and 61 million deaths. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccines that induce sterilizing anti-malarial immunity in humans. Importantly, "whole parasite" anti-malarial RAS vaccines are currently under evaluation in clinical trials. In rodents, RAS-induced protection is largely mediated by CD8 T cells. However, the quantitative and qualitative characteristics of RAS-induced protective CD8 T cell responses are unknown. Here, we used surrogate markers of T cell activation to reveal the magnitude and kinetics of Plasmodium-specific CD8 T cell responses following RAS-immunization in both inbred and outbred mice. Our data show that, independent of host genetic background, extremely large memory CD8 T cell responses were required, but not always sufficient for sterilizing protection. These data have broad implications for evaluating total T cell responses to attenuated pathogen-vaccines and direct relevance for efforts to translate attenuated whole-Plasmodium vaccines to humans. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole- parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated wholeparasite vaccines. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these “whole-parasite” vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti- Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines. Plasmodium infections are a global health crisis resulting in ∼300 million cases of malaria each year and ∼1 million deaths. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccines that induce sterilizing anti-malarial immunity in humans. Importantly, “whole parasite” anti-malarial RAS vaccines are currently under evaluation in clinical trials. In rodents, RAS-induced protection is largely mediated by CD8 T cells. However, the quantitative and qualitative characteristics of RAS-induced protective CD8 T cell responses are unknown. Here, we used surrogate markers of T cell activation to reveal the magnitude and kinetics of Plasmodium -specific CD8 T cell responses following RAS-immunization in both inbred and outbred mice. Our data show that, independent of host genetic background, extremely large memory CD8 T cell responses were required, but not always sufficient for sterilizing protection. These data have broad implications for evaluating total T cell responses to attenuated pathogen-vaccines and direct relevance for efforts to translate attenuated whole- Plasmodium vaccines to humans. Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these "whole-parasite" vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines. |
Audience | Academic |
Author | Butler, Noah S Badovinac, Vladimir P Schmidt, Nathan W Harty, John T |
AuthorAffiliation | Case Western Reserve University, United States of America 3 Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America 2 Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America 1 Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America |
AuthorAffiliation_xml | – name: 3 Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America – name: 2 Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America – name: Case Western Reserve University, United States of America – name: 1 Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America |
Author_xml | – sequence: 1 givenname: Nathan W surname: Schmidt fullname: Schmidt, Nathan W organization: Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America – sequence: 2 givenname: Noah S surname: Butler fullname: Butler, Noah S – sequence: 3 givenname: Vladimir P surname: Badovinac fullname: Badovinac, Vladimir P – sequence: 4 givenname: John T surname: Harty fullname: Harty, John T |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20657824$$D View this record in MEDLINE/PubMed |
BookMark | eNqVk9-L1DAQx4uceD_0PxAt-CA-dE3atE1fhGM9deFQ0PM5zKbTXo402UvS-_XqP27q9o5bEEQSSDL5zHfITOYw2TPWYJK8pGRBi5q-v7CjM6AXmw2EBSWENA1_khzQsiyyuqjZ3qP9fnLo_QUhjBa0epbs56Qqa56zg-TXyU1wOGC6_MjTs1Si1qnDy1FNRhN82lmXggkqG0CDU6BTra7QZT5Aj6kahtGocBsxre21Mv1suoOgrEmvVThPHbRqe4QQ0IwQsE39xjp7Z1VA_zx52oH2-GJej5Kfn07Oll-y02-fV8vj00xWFQsZypYXWFSccill2TVSclZzgoSVpACsWsLzBtcgZbOmeZvnnHRlQRBkW9UROUpeb3U32nox588LmvOG1BXLy0istkRr4UJsnBrA3QoLSvwxWNcLcEFJjQJjcEkqDshKFiM37ZpTRtucrqGVLI9aH-Zo43rAVsZsOtA7ors3Rp2L3l6JvCGsrpso8HYWcPZyRB_EoPxUIDBoRy_qkpVxMvZvsmCEkqqoI_lmS_YQ36BMZ2NoOdHiOC8YZZzQSW_xFyqOFgcl4zfsVLTvOLzbcYhMwJvQw-i9WP34_h_s112WbVnprPcOu4f0USKmLrivopi6QMxdEN1ePU79g9P9ty9-A0vXCEQ |
CitedBy_id | crossref_primary_10_1016_j_vaccine_2014_07_112 crossref_primary_10_1371_journal_pone_0024147 crossref_primary_10_1016_j_vaccine_2013_11_058 crossref_primary_10_4049_jimmunol_1401685 crossref_primary_10_3389_fmicb_2015_00047 crossref_primary_10_1371_journal_pone_0015948 crossref_primary_10_1128_JVI_03413_12 crossref_primary_10_1186_s41182_023_00516_w crossref_primary_10_4049_jimmunol_1401724 crossref_primary_10_1016_j_pt_2011_01_002 crossref_primary_10_1016_j_pt_2020_06_001 crossref_primary_10_1038_s41541_021_00360_1 crossref_primary_10_1038_cti_2016_60 crossref_primary_10_4049_jimmunol_1601209 crossref_primary_10_1016_j_vaccine_2013_09_011 crossref_primary_10_1016_j_vaccine_2016_04_095 crossref_primary_10_1038_s41598_017_10480_1 crossref_primary_10_1126_sciimmunol_aaz8035 crossref_primary_10_3390_pathogens11121487 crossref_primary_10_1371_journal_pone_0048644 crossref_primary_10_1038_mt_2014_109 crossref_primary_10_4049_jimmunol_1003949 crossref_primary_10_1371_journal_ppat_1005945 crossref_primary_10_1371_journal_ppat_1004855 crossref_primary_10_4049_jimmunol_1303460 crossref_primary_10_1371_journal_ppat_1005786 crossref_primary_10_1016_j_celrep_2020_03_072 crossref_primary_10_1038_icb_2017_32 crossref_primary_10_1016_j_it_2012_02_001 crossref_primary_10_1128_IAI_01500_13 crossref_primary_10_1016_j_coi_2012_03_009 crossref_primary_10_1586_erv_12_92 crossref_primary_10_1128_IAI_01439_15 crossref_primary_10_3389_fimmu_2024_1344941 crossref_primary_10_3389_fimmu_2019_02153 crossref_primary_10_1016_j_it_2019_01_002 crossref_primary_10_1016_j_vaccine_2012_05_048 crossref_primary_10_4049_jimmunol_1100194 crossref_primary_10_4049_jimmunol_1400296 crossref_primary_10_4049_jimmunol_1402473 crossref_primary_10_1093_infdis_jir656 crossref_primary_10_1111_j_1600_065X_2010_00988_x crossref_primary_10_1038_s41598_018_21369_y crossref_primary_10_1098_rspb_2023_2280 crossref_primary_10_1016_j_coi_2011_05_009 crossref_primary_10_1073_pnas_1303858110 crossref_primary_10_3389_fimmu_2017_01527 crossref_primary_10_15252_emmm_202013390 crossref_primary_10_1093_femspd_ftx051 crossref_primary_10_1128_IAI_00088_18 crossref_primary_10_1016_j_it_2010_12_004 crossref_primary_10_4049_jimmunol_1800727 crossref_primary_10_3389_fcimb_2018_00247 crossref_primary_10_4049_jimmunol_1202861 crossref_primary_10_1038_s41577_019_0158_z crossref_primary_10_3389_fmicb_2014_00741 crossref_primary_10_1016_j_vaccine_2023_11_023 crossref_primary_10_4049_jimmunol_1302030 crossref_primary_10_1371_journal_pone_0070842 crossref_primary_10_4049_jimmunol_1301063 crossref_primary_10_1016_j_bpj_2014_01_048 crossref_primary_10_4049_jimmunol_1203396 crossref_primary_10_1016_j_cmet_2016_12_011 crossref_primary_10_1016_j_pt_2013_03_008 crossref_primary_10_1111_pim_12386 crossref_primary_10_1016_j_vaccine_2011_07_081 crossref_primary_10_3389_fimmu_2022_869757 crossref_primary_10_1126_scitranslmed_aad9099 crossref_primary_10_1016_j_vaccine_2015_04_056 crossref_primary_10_4161_onci_23972 crossref_primary_10_1016_j_vaccine_2011_07_034 crossref_primary_10_1111_pim_12622 crossref_primary_10_1186_s12936_024_04978_z crossref_primary_10_3389_fmicb_2015_00482 crossref_primary_10_3389_fimmu_2020_01377 crossref_primary_10_1038_s41467_019_12017_8 crossref_primary_10_1128_IAI_00236_19 crossref_primary_10_3389_fimmu_2019_00397 crossref_primary_10_1002_eji_201343794 crossref_primary_10_1172_JCI67388 crossref_primary_10_1016_j_molmed_2011_05_008 crossref_primary_10_1371_journal_ppat_1006569 crossref_primary_10_1128_IAI_00383_20 crossref_primary_10_3390_vaccines3040894 crossref_primary_10_1016_j_immuni_2010_10_005 crossref_primary_10_1128_IAI_02320_14 crossref_primary_10_3389_fmicb_2014_00272 crossref_primary_10_3389_fimmu_2017_01333 crossref_primary_10_1038_nm_4110 crossref_primary_10_1111_pim_12514 crossref_primary_10_1111_pim_12877 crossref_primary_10_1371_journal_pone_0190940 crossref_primary_10_1038_mt_2011_281 crossref_primary_10_4049_jimmunol_1800740 crossref_primary_10_3389_fimmu_2018_01137 crossref_primary_10_1098_rsob_210341 crossref_primary_10_3389_fcimb_2019_00215 crossref_primary_10_1111_pim_12000_x crossref_primary_10_4049_jimmunol_1600155 crossref_primary_10_4049_jimmunol_1300310 crossref_primary_10_1002_eji_202048757 crossref_primary_10_1038_s41541_024_00883_3 crossref_primary_10_1007_s12026_014_8525_0 crossref_primary_10_1016_j_chom_2020_04_010 crossref_primary_10_4161_hv_23688 crossref_primary_10_1371_journal_pone_0036508 crossref_primary_10_1073_pnas_1303834110 crossref_primary_10_1097_QCO_0000000000000002 crossref_primary_10_1016_j_parint_2013_09_013 crossref_primary_10_1016_j_chom_2011_05_008 crossref_primary_10_1146_annurev_immunol_032713_120220 crossref_primary_10_1080_14760584_2021_1881485 crossref_primary_10_1371_journal_ppat_1011051 crossref_primary_10_1093_infdis_jir850 crossref_primary_10_1371_journal_ppat_1005219 crossref_primary_10_1016_j_celrep_2020_02_104 crossref_primary_10_1016_j_imlet_2014_03_011 crossref_primary_10_1080_14760584_2019_1561289 crossref_primary_10_1586_erv_13_11 crossref_primary_10_1126_scitranslmed_aap9128 crossref_primary_10_1016_j_vacrep_2016_07_002 crossref_primary_10_1038_s41564_018_0254_z crossref_primary_10_1128_IAI_00871_13 crossref_primary_10_3389_fimmu_2018_00192 crossref_primary_10_1111_1348_0421_12948 crossref_primary_10_3389_fbinf_2021_770448 crossref_primary_10_1016_j_jconrel_2015_02_031 crossref_primary_10_1371_journal_ppat_1011720 crossref_primary_10_1371_journal_pone_0159449 crossref_primary_10_1016_j_isci_2023_108489 crossref_primary_10_1038_srep35997 crossref_primary_10_4049_jimmunol_1403017 crossref_primary_10_1093_infdis_jiw482 crossref_primary_10_1186_s12936_016_1295_5 crossref_primary_10_1016_j_coi_2016_06_008 crossref_primary_10_1111_imr_13202 crossref_primary_10_4049_jimmunol_1100302 crossref_primary_10_1098_rstb_2011_0091 crossref_primary_10_1126_science_1211548 |
Cites_doi | 10.1371/journal.ppat.1000877 10.1093/milmed/134.9.1176 10.1086/519743 10.1111/j.1365-3024.2007.00976.x 10.1038/nrmicro1712 10.1126/science.288.5466.675 10.4049/jimmunol.149.6.2103 10.1002/eji.200324478 10.1371/journal.pone.0001371 10.1038/nature05361 10.1017/S0031182099003959 10.4269/ajtmh.1975.24.397 10.1038/462017a 10.1016/j.vaccine.2008.11.073 10.1016/j.immuni.2008.02.020 10.4049/jimmunol.171.4.2024 10.1371/journal.pone.0004480 10.1111/j.1462-5822.2008.01270.x 10.1371/journal.pmed.0030473 10.1073/pnas.0805452105 10.2307/3277136 10.1073/pnas.92.9.4066 10.1016/j.pt.2006.06.006 10.1016/S1074-7613(00)80540-3 10.1128/IAI.00566-07 10.1093/intimm/4.7.711 10.4049/jimmunol.0900302 10.1038/415680a 10.1038/216160a0 10.4049/jimmunol.0902874 10.1038/222488a0 10.1128/IAI.00225-07 10.1111/j.1365-2958.2008.06271.x 10.1016/j.vaccine.2009.08.025 10.1086/339409 10.1016/S0092-8674(02)01139-X 10.1038/341323a0 10.1086/519742 10.4049/jimmunol.163.2.884 10.1016/0166-6851(96)02574-1 10.1038/nature03342 10.4049/jimmunol.143.12.4263 10.1016/S0140-6736(05)71877-8 10.1038/330664a0 10.4049/jimmunol.165.3.1453 10.1038/ni889 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2010 Public Library of Science Schmidt et al. 2010 2010 Schmidt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schmidt NW, Butler NS, Badovinac VP, Harty JT (2010) Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites. PLoS Pathog 6(7): e1000998. doi:10.1371/journal.ppat.1000998 |
Copyright_xml | – notice: COPYRIGHT 2010 Public Library of Science – notice: Schmidt et al. 2010 – notice: 2010 Schmidt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schmidt NW, Butler NS, Badovinac VP, Harty JT (2010) Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites. PLoS Pathog 6(7): e1000998. doi:10.1371/journal.ppat.1000998 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION ISN ISR 7X8 7T5 H94 5PM DOA |
DOI | 10.1371/journal.ppat.1000998 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Gale In Context: Canada Gale In Context: Science MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Plasmodium-Induced Total Memory CD8 T Cell Responses |
EISSN | 1553-7374 |
Editor | Kazura, James W. |
Editor_xml | – sequence: 1 givenname: James W. surname: Kazura fullname: Kazura, James W. |
EndPage | e1000998 |
ExternalDocumentID | 1289076425 oai_doaj_org_article_ec84c068ae454d089db8141d21badc42 A234148014 10_1371_journal_ppat_1000998 20657824 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: 5-T32-AI0726024 – fundername: NIAID NIH HHS grantid: F32 AI084329 – fundername: NIAID NIH HHS grantid: AI83286 – fundername: NIAID NIH HHS grantid: 1-F32-AI084329 – fundername: NIAID NIH HHS grantid: R01 AI085515 – fundername: NIAID NIH HHS grantid: R01 AI083286 |
GroupedDBID | --- 123 29O 2WC 3V. 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ ABDBF ABUWG ACGFO ACIHN ACPRK ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CGR CS3 CUY CVF DIK DU5 E3Z EAP EAS EBD ECM EIF EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR IPNFZ ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. M~E NPM O5R O5S OK1 P2P PGMZT PIMPY PQQKQ PROAC PSQYO QN7 RIG RNS RPM SV3 TR2 TUS UKHRP WOW ~8M AAYXX CITATION 7X8 7T5 H94 5PM AAPBV ABPTK |
ID | FETCH-LOGICAL-c664t-ecd83e36818ccc5f9cc84780e04503ae6d0829ebacc9b12d2280f530eacd67503 |
IEDL.DBID | RPM |
ISSN | 1553-7374 1553-7366 |
IngestDate | Sun Oct 01 00:11:11 EDT 2023 Tue Oct 22 15:12:50 EDT 2024 Tue Sep 17 21:19:58 EDT 2024 Fri Aug 16 02:35:38 EDT 2024 Fri Aug 16 01:39:36 EDT 2024 Fri Feb 23 00:10:09 EST 2024 Fri Feb 02 04:15:18 EST 2024 Thu Aug 01 20:13:08 EDT 2024 Thu Aug 01 19:37:23 EDT 2024 Fri Aug 23 00:55:34 EDT 2024 Sat Sep 28 07:51:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | CD8-Positive T-Lymphocytes Immunization Animals Malaria Vaccines Liver Sporozoites Vaccines, Attenuated Antimalarials Immunologic Memory Mice Immunity |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-ecd83e36818ccc5f9cc84780e04503ae6d0829ebacc9b12d2280f530eacd67503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: NWS NSB VPB JTH. Performed the experiments: NWS NSB. Analyzed the data: NWS NSB JTH. Contributed reagents/materials/analysis tools: VPB. Wrote the paper: NWS NSB JTH. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904779/ |
PMID | 20657824 |
PQID | 734010637 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1289076425 doaj_primary_oai_doaj_org_article_ec84c068ae454d089db8141d21badc42 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2904779 proquest_miscellaneous_754554544 proquest_miscellaneous_734010637 gale_infotracmisc_A234148014 gale_infotracacademiconefile_A234148014 gale_incontextgauss_ISR_A234148014 gale_incontextgauss_ISN_A234148014 crossref_primary_10_1371_journal_ppat_1000998 pubmed_primary_20657824 |
PublicationCentury | 2000 |
PublicationDate | 2010-07-01 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | 4987036 - Mil Med. 1969 Sep;134(10):1176-82 17624848 - J Infect Dis. 2007 Aug 15;196(4):608-16 18160479 - Infect Immun. 2008 Mar;76(3):1200-6 10340322 - Parasitology. 1999 Apr;118 ( Pt 4):335-8 4919047 - J Parasitol. 1968 Oct;54(5):1009-16 3120015 - Nature. 1987 Dec 17-23;330(6149):664-6 20463809 - PLoS Pathog. 2010 May;6(5):e1000877 16798089 - Trends Parasitol. 2006 Aug;22(8):353-8 18468462 - Immunity. 2008 May;28(5):710-22 2094578 - Bull World Health Organ. 1990;68 Suppl:13-6 12563257 - Nat Immunol. 2003 Mar;4(3):225-34 11832956 - Nature. 2002 Feb 7;415(6872):680-5 17624847 - J Infect Dis. 2007 Aug 15;196(4):599-607 7732032 - Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4066-8 10395683 - J Immunol. 1999 Jul 15;163(2):884-92 19068099 - Cell Microbiol. 2009 Mar;11(3):506-20 5768632 - Nature. 1969 May 3;222(5192):488-9 17571459 - Nat Rev Microbiol. 2007 Jul;5(7):487-9 2477703 - Nature. 1989 Sep 28;341(6240):323-6 17151604 - Nature. 2006 Dec 14;444(7121):937-40 15759000 - Nature. 2005 Mar 10;434(7030):214-7 18466298 - Mol Microbiol. 2008 Jul;69(1):152-63 808142 - Am J Trop Med Hyg. 1975 May;24(3):397-401 17147467 - PLoS Med. 2006 Dec;3(12):e473 2512354 - J Immunol. 1989 Dec 15;143(12):4263-6 10784451 - Science. 2000 Apr 28;288(5466):675-8 1498082 - Int Immunol. 1992 Jul;4(7):711-8 18159254 - PLoS One. 2007;2(12):e1371 19712771 - Vaccine. 2009 Oct 19;27(44):6103-6 19933864 - J Immunol. 2009 Dec 15;183(12):7672-81 12526810 - Cell. 2002 Dec 13;111(6):837-51 18780790 - Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14017-22 17944745 - Parasite Immunol. 2007 Nov;29(11):559-65 12902507 - J Immunol. 2003 Aug 15;171(4):2024-34 11930326 - J Infect Dis. 2002 Apr 15;185(8):1155-64 15048710 - Eur J Immunol. 2004 Apr;34(4):999-1010 17517871 - Infect Immun. 2007 Aug;75(8):3758-68 10903750 - J Immunol. 2000 Aug 1;165(3):1453-62 19812194 - J Immunol. 2009 Nov 1;183(9):5870-8 1517574 - J Immunol. 1992 Sep 15;149(6):2103-9 19214236 - PLoS One. 2009;4(2):e4480 6057225 - Nature. 1967 Oct 14;216(5111):160-2 9529152 - Immunity. 1998 Mar;8(3):353-62 15794969 - Lancet. 2005 Mar 26-Apr 1;365(9465):1147-52 19890296 - Nature. 2009 Nov 5;462(7269):19 19071177 - Vaccine. 2009 Jun 2;27(27):3675-80 8784767 - Mol Biochem Parasitol. 1996 Apr;77(1):7-17 CA Guerra (ref5) 2006; 22 D Rai (ref18) 2009; 183 AS Aly (ref46) 2008; 69 A Trimnell (ref37) 2009; 183 O Jobe (ref45) 2007; 196 SM Kaech (ref21) 2002; 111 LF Scheller (ref25) 1995; 92 SM Todryk (ref6) 2007; 5 DL Doolan (ref11) 2000; 165 AC Gruner (ref14) 2007; 2 P Romero (ref13) 1989; 341 NW Schmidt (ref42) 2009; 27 WR Weiss (ref20) 1989; 143 JD Miller (ref17) 2008; 28 AS Tarun (ref33) 2007; 196 AM Vaughan (ref47) 2009; 11 J Bryce (ref1) 2005; 365 D Butler (ref10) 2009; 462 DH Busch (ref22) 1998; 8 ZM Khan (ref34) 1992; 4 DF Clyde (ref7) 1975; 24 J Sachs (ref3) 2002; 415 WR Weiss (ref12) 1992; 149 KH Rieckmann (ref19) 1990; 68 H Tomiyama (ref40) 2004; 34 NW Schmidt (ref16) 2008; 105 R Chattopadhyay (ref36) 2009; 27 SI Hay (ref2) 2006; 3 D Berenzon (ref26) 2003; 171 M Labaied (ref31) 2007; 75 RS Nussenzweig (ref9) 1967; 216 CC Ku (ref41) 2000; 288 KA Kumar (ref15) 2006; 444 M Sedegah (ref32) 2007; 29 DL Doolan (ref30) 1999; 163 KA Kumar (ref35) 2009; 4 IA Cockburn (ref44) 2010; 6 JP Vanderberg (ref23) 1968; 54 GA Oliveira (ref29) 2008; 76 RW Snow (ref4) 2005; 434 EJ Wherry (ref39) 2003; 4 MR Briones (ref43) 1996; 77 RS Nussenzweig (ref28) 1969; 222 L Schofield (ref38) 1987; 330 R Nussenzweig (ref27) 1969; 134 SL Hoffman (ref8) 2002; 185 B Zechini (ref24) 1999; 118 ( Pt 4) |
References_xml | – volume: 6 start-page: e1000877 year: 2010 ident: ref44 article-title: Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites. publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000877 contributor: fullname: IA Cockburn – volume: 68 start-page: 13 year: 1990 ident: ref19 article-title: Human immunization with attenuated sporozoites. publication-title: Bull World Health Organ contributor: fullname: KH Rieckmann – volume: 134 start-page: 1176 year: 1969 ident: ref27 article-title: Protective immunity produced by the injection of x-irradiated sporozoites of Plasmodium berghei. IV. Dose response, specificity and humoral immunity. publication-title: Mil Med doi: 10.1093/milmed/134.9.1176 contributor: fullname: R Nussenzweig – volume: 196 start-page: 599 year: 2007 ident: ref45 article-title: Genetically attenuated Plasmodium berghei liver stages induce sterile protracted protection that is mediated by major histocompatibility complex Class I-dependent interferon-gamma-producing CD8+ T cells. publication-title: J Infect Dis doi: 10.1086/519743 contributor: fullname: O Jobe – volume: 29 start-page: 559 year: 2007 ident: ref32 article-title: Cross-protection between attenuated Plasmodium berghei and P. yoelii sporozoites. publication-title: Parasite Immunol doi: 10.1111/j.1365-3024.2007.00976.x contributor: fullname: M Sedegah – volume: 5 start-page: 487 year: 2007 ident: ref6 article-title: Malaria vaccines: the stage we are at. publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1712 contributor: fullname: SM Todryk – volume: 288 start-page: 675 year: 2000 ident: ref41 article-title: Control of homeostasis of CD8+ memory T cells by opposing cytokines. publication-title: Science doi: 10.1126/science.288.5466.675 contributor: fullname: CC Ku – volume: 149 start-page: 2103 year: 1992 ident: ref12 article-title: A T cell clone directed at the circumsporozoite protein which protects mice against both Plasmodium yoelii and Plasmodium berghei. publication-title: J Immunol doi: 10.4049/jimmunol.149.6.2103 contributor: fullname: WR Weiss – volume: 34 start-page: 999 year: 2004 ident: ref40 article-title: Phenotypic classification of human CD8+ T cells reflecting their function: inverse correlation between quantitative expression of CD27 and cytotoxic effector function. publication-title: Eur J Immunol doi: 10.1002/eji.200324478 contributor: fullname: H Tomiyama – volume: 2 start-page: e1371 year: 2007 ident: ref14 article-title: Sterile protection against malaria is independent of immune responses to the circumsporozoite protein. publication-title: PLoS One doi: 10.1371/journal.pone.0001371 contributor: fullname: AC Gruner – volume: 444 start-page: 937 year: 2006 ident: ref15 article-title: The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. publication-title: Nature doi: 10.1038/nature05361 contributor: fullname: KA Kumar – volume: 118 ( Pt 4) start-page: 335 year: 1999 ident: ref24 article-title: Plasmodium berghei development in irradiated sporozoite-immunized C57BL6 mice. publication-title: Parasitology doi: 10.1017/S0031182099003959 contributor: fullname: B Zechini – volume: 24 start-page: 397 year: 1975 ident: ref7 article-title: Immunization of man against falciparum and vivax malaria by use of attenuated sporozoites. publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.1975.24.397 contributor: fullname: DF Clyde – volume: 462 start-page: 19 year: 2009 ident: ref10 article-title: Initiative targets malaria eradication. publication-title: Nature doi: 10.1038/462017a contributor: fullname: D Butler – volume: 27 start-page: 3675 year: 2009 ident: ref36 article-title: The Effects of radiation on the safety and protective efficacy of an attenuated Plasmodium yoelii sporozoite malaria vaccine. publication-title: Vaccine doi: 10.1016/j.vaccine.2008.11.073 contributor: fullname: R Chattopadhyay – volume: 28 start-page: 710 year: 2008 ident: ref17 article-title: Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. publication-title: Immunity doi: 10.1016/j.immuni.2008.02.020 contributor: fullname: JD Miller – volume: 171 start-page: 2024 year: 2003 ident: ref26 article-title: Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. publication-title: J Immunol doi: 10.4049/jimmunol.171.4.2024 contributor: fullname: D Berenzon – volume: 4 start-page: e4480 year: 2009 ident: ref35 article-title: Conserved protective mechanisms in radiation and genetically attenuated uis3(-) and uis4(-) Plasmodium sporozoites. publication-title: PLoS One doi: 10.1371/journal.pone.0004480 contributor: fullname: KA Kumar – volume: 11 start-page: 506 year: 2009 ident: ref47 article-title: Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2008.01270.x contributor: fullname: AM Vaughan – volume: 3 start-page: e473 year: 2006 ident: ref2 article-title: The Malaria Atlas Project: Developing Global Maps of Malaria Risk. publication-title: PLoS Med doi: 10.1371/journal.pmed.0030473 contributor: fullname: SI Hay – volume: 105 start-page: 14017 year: 2008 ident: ref16 article-title: Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0805452105 contributor: fullname: NW Schmidt – volume: 54 start-page: 1009 year: 1968 ident: ref23 article-title: Further studies on the Plasmodium berghei-Anopheles stephensi–rodent system of mammalian malaria. publication-title: J Parasitol doi: 10.2307/3277136 contributor: fullname: JP Vanderberg – volume: 92 start-page: 4066 year: 1995 ident: ref25 article-title: Maintenance of protective immunity against malaria by persistent hepatic parasites derived from irradiated sporozoites. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.9.4066 contributor: fullname: LF Scheller – volume: 22 start-page: 353 year: 2006 ident: ref5 article-title: Mapping the global extent of malaria in 2005. publication-title: Trends Parasitol doi: 10.1016/j.pt.2006.06.006 contributor: fullname: CA Guerra – volume: 8 start-page: 353 year: 1998 ident: ref22 article-title: Coordinate regulation of complex T cell populations responding to bacterial infection. publication-title: Immunity doi: 10.1016/S1074-7613(00)80540-3 contributor: fullname: DH Busch – volume: 76 start-page: 1200 year: 2008 ident: ref29 article-title: Class II-restricted protective immunity induced by malaria sporozoites. publication-title: Infect Immun doi: 10.1128/IAI.00566-07 contributor: fullname: GA Oliveira – volume: 4 start-page: 711 year: 1992 ident: ref34 article-title: Specific inflammatory cell infiltration of hepatic schizonts in BALB/c mice immunized with attenuated Plasmodium yoelii sporozoites. publication-title: Int Immunol doi: 10.1093/intimm/4.7.711 contributor: fullname: ZM Khan – volume: 183 start-page: 5870 year: 2009 ident: ref37 article-title: Genetically attenuated parasite vaccines induce contact-dependent CD8+ T cell killing of Plasmodium yoelii liver stage-infected hepatocytes. publication-title: J Immunol doi: 10.4049/jimmunol.0900302 contributor: fullname: A Trimnell – volume: 415 start-page: 680 year: 2002 ident: ref3 article-title: The economic and social burden of malaria. publication-title: Nature doi: 10.1038/415680a contributor: fullname: J Sachs – volume: 216 start-page: 160 year: 1967 ident: ref9 article-title: Protective immunity produced by the injection of x-irradiated sporozoites of plasmodium berghei. publication-title: Nature doi: 10.1038/216160a0 contributor: fullname: RS Nussenzweig – volume: 183 start-page: 7672 year: 2009 ident: ref18 article-title: Tracking the Total CD8 T Cell Response to Infection Reveals Substantial Discordance in Magnitude and Kinetics between Inbred and Outbred Hosts. publication-title: J Immunol doi: 10.4049/jimmunol.0902874 contributor: fullname: D Rai – volume: 222 start-page: 488 year: 1969 ident: ref28 article-title: Specificity of protective immunity produced by x-irradiated Plasmodium berghei sporozoites. publication-title: Nature doi: 10.1038/222488a0 contributor: fullname: RS Nussenzweig – volume: 75 start-page: 3758 year: 2007 ident: ref31 article-title: Plasmodium yoelii sporozoites with simultaneous deletion of P52 and P36 are completely attenuated and confer sterile immunity against infection. publication-title: Infect Immun doi: 10.1128/IAI.00225-07 contributor: fullname: M Labaied – volume: 69 start-page: 152 year: 2008 ident: ref46 article-title: Targeted deletion of SAP1 abolishes the expression of infectivity factors necessary for successful malaria parasite liver infection. publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2008.06271.x contributor: fullname: AS Aly – volume: 27 start-page: 6103 year: 2009 ident: ref42 article-title: CD8 T cell immunity to Plasmodium permits generation of protective antibodies after repeated sporozoite challenge. publication-title: Vaccine doi: 10.1016/j.vaccine.2009.08.025 contributor: fullname: NW Schmidt – volume: 185 start-page: 1155 year: 2002 ident: ref8 article-title: Protection of humans against malaria by immunization with radiation-attenuated Plasmodium falciparum sporozoites. publication-title: J Infect Dis doi: 10.1086/339409 contributor: fullname: SL Hoffman – volume: 111 start-page: 837 year: 2002 ident: ref21 article-title: Molecular and functional profiling of memory CD8 T cell differentiation. publication-title: Cell doi: 10.1016/S0092-8674(02)01139-X contributor: fullname: SM Kaech – volume: 341 start-page: 323 year: 1989 ident: ref13 article-title: Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. publication-title: Nature doi: 10.1038/341323a0 contributor: fullname: P Romero – volume: 196 start-page: 608 year: 2007 ident: ref33 article-title: Protracted sterile protection with Plasmodium yoelii pre-erythrocytic genetically attenuated parasite malaria vaccines is independent of significant liver-stage persistence and is mediated by CD8+ T cells. publication-title: J Infect Dis doi: 10.1086/519742 contributor: fullname: AS Tarun – volume: 163 start-page: 884 year: 1999 ident: ref30 article-title: IL-12 and NK cells are required for antigen-specific adaptive immunity against malaria initiated by CD8+ T cells in the Plasmodium yoelii model. publication-title: J Immunol doi: 10.4049/jimmunol.163.2.884 contributor: fullname: DL Doolan – volume: 77 start-page: 7 year: 1996 ident: ref43 article-title: The large difference in infectivity for mice of Plasmodium berghei and Plasmodium yoelii sporozoites cannot be correlated with their ability to enter into hepatocytes. publication-title: Mol Biochem Parasitol doi: 10.1016/0166-6851(96)02574-1 contributor: fullname: MR Briones – volume: 434 start-page: 214 year: 2005 ident: ref4 article-title: The global distribution of clinical episodes of Plasmodium falciparum malaria. publication-title: Nature doi: 10.1038/nature03342 contributor: fullname: RW Snow – volume: 143 start-page: 4263 year: 1989 ident: ref20 article-title: Genetic control of immunity to Plasmodium yoelii sporozoites. publication-title: J Immunol doi: 10.4049/jimmunol.143.12.4263 contributor: fullname: WR Weiss – volume: 365 start-page: 1147 year: 2005 ident: ref1 article-title: WHO estimates of the causes of death in children. publication-title: Lancet doi: 10.1016/S0140-6736(05)71877-8 contributor: fullname: J Bryce – volume: 330 start-page: 664 year: 1987 ident: ref38 article-title: Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. publication-title: Nature doi: 10.1038/330664a0 contributor: fullname: L Schofield – volume: 165 start-page: 1453 year: 2000 ident: ref11 article-title: The complexity of protective immunity against liver-stage malaria. publication-title: J Immunol doi: 10.4049/jimmunol.165.3.1453 contributor: fullname: DL Doolan – volume: 4 start-page: 225 year: 2003 ident: ref39 article-title: Lineage relationship and protective immunity of memory CD8 T cell subsets. publication-title: Nat Immunol doi: 10.1038/ni889 contributor: fullname: EJ Wherry |
SSID | ssj0041316 |
Score | 2.4926496 |
Snippet | Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents.... Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents.... Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents.... |
SourceID | plos doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e1000998 |
SubjectTerms | Animals Antimalarials - immunology Care and treatment CD8 lymphocytes CD8-Positive T-Lymphocytes - immunology Cellular immunity Genetic aspects Immunity Immunization Immunologic Memory Immunology Infectious Diseases/Protozoal Infections Liver - immunology Liver - parasitology Malaria Malaria Vaccines - administration & dosage Malaria Vaccines - immunology Mice Parasites Plasmodium berghei Rodents Sporozoites - immunology Sporozoites - radiation effects T cell receptors Vaccination Vaccines Vaccines, Attenuated - immunology |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBcjMNjL2HezdUOMwZ68ypYsyY9d19IN1oethb4JWVK6QGqH2GFtX_eP705yQj328TLIS6wLQXfn0--ku58IecNUZcGYdSZ5PstEWSMHpM4zbYvaMhmc1Njv_PlEHp-JT-fl-a2rvrAmLNEDJ8XtBaeFY1LbIErhma58rXOR-yKvrXciRV9WbZKpFIMhMsdLT_FSnExxKYemOa7yvcFG75ZLi_TRCJH0aFGK3P3bCD1ZLtrud_Dz1yrKW8vS0QNyf8CTdD_N4yG5E5pH5G66YfL6MflxeNXjDiA9-KDpKcVteroKWP0btwU7CpiVgnLn2aWFHBeckS6wUiMD0HgR6Dx2j_TXILZYtN9hmRsepeZNiru4dIX0BvErcnU2a0CvnmK23N60AGi7J-Ts6PD04Dgb7l3InJSiz4LzmgcOJtPOuXJWObCB0iwA_GPcBumxITfU1rmqzguPjDqzkjOI4V7iuehTMmnaJuwQOuNWSA0orywqUQsLgt5BXPFc8YJVfkqyjeLNMtFrmHjGpiAtSRo0aCgzGGpK3qN1trJIjh0fgMuYwWXMv1xmSl6jbQ3SXzRYX3Nh111nPn49MfsFrOqRUeePQl9GQm8HoVkLPuDs0NMAk0darZHk7kgSXmI3Gt5BP9vMuTM5HgArSA7LKaEb3zP4KyyKa0K77oziAjN6rv4iAgAZPgL-4Fny1q3qCgCfAA9hRI38eKTb8Ugz_xYJyIuKCaWq5__DGC_IvVSQgRXQu2TSr9bhJeC8vn4VX-mfqGdR6g priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZGERIviN_rGMhCSDxlSmLHdh4QGmPTQGIPsEp7sxzb7SqVpEtSsfLKP86dk1YEbQipL40vbXJ3tj_bd98R8iaWuQFjFpFgyTTiWYEckCqJlEkLEwtvhcJ85y9n4nTCP19kFztkU7O1V2Bz49IO60lN6sXB9dX6PXT4d6Fqg0w2Nx0slwYJoRH0qDvkborUXBjMx7fnCjBih2KoWCwnkkyIPpnutl8ZTFaB0387co-Wi6q5CZb-HV35x3R18pA86HEmPewc4xHZ8eVjcq-rPLl-Qn4dX7e4M0iPPip6TnH7ntYeo4LDdmFDActSUPo8-m5AQeCkdIERHBGAyZmn85BV0q5BbLGofsD011_qkjop7u7SGmkPwlfk8CxXgGodRVVXPysAus1TMjk5Pj86jfp6DJEVgreRt04xz8CUylqbTXNrYW5TsQdYGDPjhcNEXV8Ya_MiSR0y7UwzFsPY7gSelz4jo7Iq_S6hU2a4UID-sjTnBTcg6CyMN45Jlsa5G5Noo3i97Gg3dDh7k7Bc6TSo0VC6N9SYfEDrbGWRNDtcqOqZ7vug9vC4NhbKeJ5xeNbcFSrhiUuTwjjL0zF5jbbVSItRYtzNzKyaRn_6dqYPU5jtA9POrUJfB0Jve6FpBT5gTZ_rAC-PdFsDyf2BJHRuO2jeRT_bvHOjEzwYlrBozMaEbnxP410YLFf6atVoyTiu9Jn8hwgAZ_hw-IPnnbduVZcCKAXYCC1y4McD3Q5byvllICZP85hLme_999u_IPe7aAwMf94no7Ze-ZcA8triVei3vwFhKVLx priority: 102 providerName: Scholars Portal |
Title | Extreme CD8 T cell requirements for anti-malarial liver-stage immunity following immunization with radiation attenuated sporozoites |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20657824 https://search.proquest.com/docview/734010637 https://search.proquest.com/docview/754554544 https://pubmed.ncbi.nlm.nih.gov/PMC2904779 https://doaj.org/article/ec84c068ae454d089db8141d21badc42 http://dx.doi.org/10.1371/journal.ppat.1000998 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZtxmAvY7-brQtiDPbkxLZkyX5Ms5R2LKFkLfRNyLKSBlI71A5b97p_fHeyHeax7WEQArHPRNaddJ-ku-8Iee_LRIMyU0-wYOnxKEUOyDjwYh2m2hfWiBjznWdzcXbFP11H1wckanNhXNC-SdfDfHM7zNc3LrZye2tGbZzY6GI2CROfS5mMDskhGGi7RK-nX5iUXb1TrIfjSSZEky_HZDBq1DPcbjUyRyM6wnp9IbhhcJS845ocg_9-nu5tN0X5JxD6eyzlL87p9Al53KBKOq5b_5Qc2PwZeVjXmbx_Tn5Mv1W4D0gnH2N6SSd2s6ELizHAbnOwpIBc6Tiv1t5Mw0oXTJJ-xngND6DoytJzl0NS3YPYZlN8BWfXXKpTOCnu5dIFkhy4n-MKcPgOMGxGsYZ68b0AWFu-IFen08vJmddUX_CMELzyrMliZhkoLjbGRMvEGPBksW8BBPpMW5FhWq5NtTFJGoQZ8uosI-bDTJ4JPB19SXp5kdsjQpdMcxED1ovChKdcg2BmYHbJmGShn2R94rUdr7Y1yYZyJ20SFid1DyrUmWp01icnqJ29LFJkuwvF3Uo1hqIsNNf4ItaWRxzammRpHPAgC4NUZ4aHffIOdauQBCPHKJuV3pWlOv8yV-MQfLvj1fmr0KIj9KERWhZgA0Y3mQ3w8kiu1ZE87kjCUDad20doZ-07lyrAY2AJS8SoT2hrewqfwtC43Ba7UknGcV3P5D9EACbDh8MfvKqtdd91re33iezYcadvu3dgVDoa8mYUvv7vJ9-QR3UsBgY_H5NedbezbwHiVekABva1HJAHJ9P5xWLgNkrge8bjgRvsPwHTjlT1 |
link.rule.ids | 230,315,730,783,787,867,888,2109,2228,24332,27938,27939,31734,33759,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZGEYIXfo8VBlgIiae0Sew4yWMpm1ZoK1Q6tDfLcdxS0SXVkgq2V_5x7pykIhMggdSXxBc1js93n-277wh57YaxgsFMHMG8hcODBDkgI8-JlJ8oVxgtIsx3nkzFySl_fxac7ZGgyYWxQfs6WfWy9XkvW32xsZWbc91v4sT6HydDP3Z5GMb9G-QmzFdXNIv0ygCDWbYVT7EijhMyIeqMORZ6_XqAepuNQu5oxEdYsc8HRwyukreck-Xw31nqzmadF7-DodejKX9xT8f3yOemY1VUytfetkx6-uoa5-M_9_w-uVsDVjqomh-QPZM9JLeqEpaXj8iPo-8lbjHS4buIzunQrNd0ZjC82O47FhRAMR1k5cqZKFhEg7bTMYaCOIByl4aObHpKeQli63X-DfxofavKDqW4TUxnyJ9gLwclQPwtwOOUYnn2_CoHxFw8JqfHR_PhiVMXdnC0ELx0jE4jZhjoRKS1Dhax1uAkI9cAvnSZMiLFjF-TKK3jxPNTpOxZBMwFJ5EKPHjdJ50sz8wBoQumuIgARgZ-zBOuQDDVYLhSFjLfjdMucZoRlZuKv0PaQ7wQ1j3VF5SoDLJWhi55i8O-k0X2bXsjv1jKeiSkgdfVroiU4QGHd43TJPK4l_peolLN_S55hUojkV8jwwCepdoWhRx9msqBD7DBUvb8UWjWEnpTCy1yUC6t6qQJ6DzydrUkD1uSYCV0q_kAFbjpcyE9PGEOYfUZdAltlFriUxh1l5l8W8iQcdwyYOFfRACBw4_DHzyppsHu0zWTqkvC1gRpfdt2C6i9ZTiv1fzpfz_5ktw-mU_GcjyafnhG7lQhHxhjfUg65cXWPAckWSYvrN34CW5ecqM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegCMQL32OFARZC4iltEjtO8li6VSus1VQ2aeLFchynVHRJtKSC7ZV_nLt8VMsEPEzqS5KLGtvnu5_tu98R8sH2QwWDGVmCOYnFvQg5IAPHCpQbKVsYLQLMd57NxeEp_3zmnV0r9VUF7etoNUjX54N09b2KrczP9bCNExsez8ZuaHPfD4d5nAzvknswZ-2gXajXRhhMc1X1FKviWD4TosmaY74zbAZpkOcK-aMRI2HVPhecMbhL3nFQFY__1lr38nVW_A2K3oyovOaiJo_Jt7ZxdWTKj8GmjAb66gbv461a_4Q8aoArHdUiT8kdkz4j9-tSlpfPye-DXyVuNdLxfkBP6Nis13RhMMy42n8sKIBjOkrLlTVTsJgGradHGBJiAdpdGjqt0lTKSxBbr7Of4E-bW3WWKMXtYrpAHoXqclQC1N8ATI4plmnPrjJAzsULcjo5OBkfWk2BB0sLwUvL6DhghoFuBFprLwm1BmcZ2AZwps2UETFm_ppIaR1GjhsjdU_iMRucRSzwAHaH9NIsNbuEJkxxEQCc9NyQR1yBYKzBgMXMZ64dxn1itaMq85rHQ1aHeT6sf-oelKgQslGIPvmEQ7-VRRbu6kZ2sZTNaEgDn6ttESjDPQ7fGsZR4HAndp1IxZq7ffIeFUciz0aKgTxLtSkKOf06lyMX4ENF3fNPoUVH6GMjlGSgYFo1yRPQeOTv6kjudSTBWujO411U4rbNhXTwpNmHVajXJ7RVbIlvYfRdarJNIX3GceuA-f8RASQOPw5_8LKeCtuuaydWn_idSdLp2-4TUP2K6bxR9Ve3fvMdeXC8P5FH0_mX1-RhHfmBodZ7pFdebMwbAJRl9LYyHX8A2uR1Iw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extreme+CD8+T+cell+requirements+for+anti-malarial+liver-stage+immunity+following+immunization+with+radiation+attenuated+sporozoites&rft.jtitle=PLoS+pathogens&rft.au=Schmidt%2C+Nathan+W&rft.au=Butler%2C+Noah+S&rft.au=Badovinac%2C+Vladimir+P&rft.au=Harty%2C+John+T&rft.date=2010-07-01&rft.pub=Public+Library+of+Science&rft.issn=1553-7366&rft.eissn=1553-7374&rft.volume=6&rft.issue=7&rft_id=info:doi/10.1371%2Fjournal.ppat.1000998&rft.externalDocID=A234148014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |