Statistical power: Implications for planning MEG studies

•We simulated evoked MEG experiments with variable number of subjects and trials.•We tested signal detectability at sensor-level (by amplitude, squared amplitude, GFP).•Statistical power varied by source distance, orientation & between-subject variability.•Consider source detectability at sensor...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 233; p. 117894
Main Authors Chaumon, Maximilien, Puce, Aina, George, Nathalie
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.06.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2021.117894

Cover

Loading…
Abstract •We simulated evoked MEG experiments with variable number of subjects and trials.•We tested signal detectability at sensor-level (by amplitude, squared amplitude, GFP).•Statistical power varied by source distance, orientation & between-subject variability.•Consider source detectability at sensor-level when designing MEG studies.•Sample size for MEG studies? Consider source with lowest expected statistical power. Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study.
AbstractList •We simulated evoked MEG experiments with variable number of subjects and trials.•We tested signal detectability at sensor-level (by amplitude, squared amplitude, GFP).•Statistical power varied by source distance, orientation & between-subject variability.•Consider source detectability at sensor-level when designing MEG studies.•Sample size for MEG studies? Consider source with lowest expected statistical power. Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study.
Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated ''experiments'' using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the ''signal condition'', but not in the ''noise condition'', and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study.
Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study.Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study.
Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study.
ArticleNumber 117894
Author Puce, Aina
George, Nathalie
Chaumon, Maximilien
AuthorAffiliation 1. Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France
2. Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, 1101 East 10th St, Bloomington, IN 47405, USA
AuthorAffiliation_xml – name: 2. Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, 1101 East 10th St, Bloomington, IN 47405, USA
– name: 1. Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France
Author_xml – sequence: 1
  givenname: Maximilien
  orcidid: 0000-0001-9664-8861
  surname: Chaumon
  fullname: Chaumon, Maximilien
  email: maximilien.chaumon@icm-institute.org
  organization: Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), 47 Boulevard de l’hôpital, 75013 Paris, France
– sequence: 2
  givenname: Aina
  surname: Puce
  fullname: Puce, Aina
  organization: Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, 1101 East 10th St, Bloomington, IN 47405, United States
– sequence: 3
  givenname: Nathalie
  surname: George
  fullname: George, Nathalie
  organization: Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), 47 Boulevard de l’hôpital, 75013 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33737245$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03006219$$DView record in HAL
BookMark eNqNkk1v1DAQhiNURD_gL6BIXOCwi79ixxwQpSrtSos4AGfLcSZbh6wd7GRR_z1O01K6p73Esf3OM56Z9zQ7ct5BluUYLTHC_H27dDAGb7d6A0uCCF5iLErJnmUnGMliIQtBjqb_gi5KjOVxdhpjixCSmJUvsmNKBRWEFSdZ-X3Qg42DNbrLe_8Hwod8te27tB-sdzFvfMj7Tjtn3Sb_enmVx2GsLcSX2fNGdxFe3a9n2c8vlz8urhfrb1eri_P1wnDOhvQtKMW8gKaukGBVSVCBoGINpVwTMIQAYA6GN6wxUIiKS10yQaUx3BDJ6Fm2mrm1163qQ6o53Cqvrbo78GGjdEjP70DhlLGqBSVIGFYKJokpRW0wrTDHWkBifZxZ_VhtoTbghqC7J9CnN87eqI3fqTK1jQqRAO9mwM1e2PX5Wk1niCLECZY7krRv75MF_3uEOKitjQa61EvwY1SkQJRThAVK0jd70taPwaW2JhUWlDEui6R6_f_r_-V_GOZjeSb4GAM0ytjhboypGNspjNTkHtWqR_eoyT1qdk8ClHuAhxwHhH6eQyF5YWchqGgsOAO1DWCGNCx7COTTHsR01k3W_AW3hyH-Altu-RE
CitedBy_id crossref_primary_10_1111_head_14867
crossref_primary_10_1016_j_neuroimage_2022_119056
crossref_primary_10_1093_cercor_bhae353
crossref_primary_10_7554_eLife_85980
crossref_primary_10_1016_j_neurom_2025_01_011
crossref_primary_10_1016_j_neuropsychologia_2025_109068
crossref_primary_10_1152_jn_00240_2022
crossref_primary_10_1016_j_neuroscience_2024_11_018
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_3389_frsps_2024_1447842
Cites_doi 10.1016/j.neuroimage.2006.06.054
10.1016/j.cnp.2017.07.002
10.1207/s15327957pspr0203_4
10.1016/0013-4694(80)90419-8
10.1111/j.1469-8986.1993.tb02081.x
10.1016/j.ijpsycho.2016.06.015
10.1016/j.neuroimage.2004.01.023
10.1007/s10548-010-0154-x
10.1093/cercor/bhx244
10.1006/nimg.2002.1102
10.1111/psyp.13437
10.1002/hbm.20571
10.1088/0031-9155/32/1/004
10.1111/psyp.12616
10.3389/fnins.2018.00530
10.1038/nn.2303
10.1016/j.neuroimage.2012.10.001
10.1016/j.neuroimage.2012.01.021
10.1103/RevModPhys.65.413
10.1016/j.neuroimage.2010.06.010
10.1016/j.neuroimage.2013.05.056
10.1002/hbm.20851
10.1111/psyp.12639
10.1111/psyp.12147
10.1111/1469-8986.3720127
10.1038/nn.4502
10.1016/j.clinph.2009.07.045
10.1007/s13534-017-0019-2
10.1111/psyp.12787
10.1016/j.clinph.2018.03.042
10.1111/psyp.13049
10.1016/j.cortex.2015.03.022
10.1016/j.jneumeth.2007.03.024
10.1016/j.neuroimage.2013.04.127
10.1038/nature18933
10.1016/j.clinph.2013.03.024
10.1016/j.neuroimage.2015.02.003
10.1371/journal.pbio.2000797
10.1016/j.neuroimage.2012.02.018
10.1162/jocn_a_00810
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
2021. The Author(s)
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
– notice: 2021. The Author(s)
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.neuroimage.2021.117894
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


ProQuest One Psychology

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
EISSN 1095-9572
EndPage 117894
ExternalDocumentID oai_doaj_org_article_1664bd73207c487492c87dc13b161a7e
PMC8148377
oai_HAL_hal_03006219v2
33737245
10_1016_j_neuroimage_2021_117894
S1053811921001713
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB030896
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRLJ
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
WUQ
XPP
YK3
Z5R
ZMT
ZU3
~G-
3V.
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
LCYCR
NCXOZ
RIG
ZA5
AAYXX
AGRNS
ALIPV
CITATION
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c664t-c6533165efdb074b82050eb4f336a2ec22ee16ec6f4fce57b69a84739cc6c2943
IEDL.DBID DOA
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:29:24 EDT 2025
Thu Aug 21 18:22:46 EDT 2025
Fri May 09 12:29:52 EDT 2025
Mon Jul 21 10:42:53 EDT 2025
Wed Aug 13 08:06:55 EDT 2025
Thu Apr 03 07:08:06 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Tue Jul 01 03:02:18 EDT 2025
Fri Feb 23 02:47:19 EST 2024
Tue Aug 26 18:33:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Source modeling
Simulation
Orientation
Statistical power
MEG
Distance
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-c6533165efdb074b82050eb4f336a2ec22ee16ec6f4fce57b69a84739cc6c2943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AP and NG: Conceptualization, Writing - original draft, Writing - review and editing, Supervision, Funding acquisition
MC : Conceptualization, Methodology, Software, Validation, Formal analysis, Data Curation, Writing - original draft, Writing - review and editing, Visualization.
Authors' contributions
ORCID 0000-0001-9664-8861
0000-0002-1556-973X
0000-0002-0716-4185
OpenAccessLink https://doaj.org/article/1664bd73207c487492c87dc13b161a7e
PMID 33737245
PQID 2517344695
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1664bd73207c487492c87dc13b161a7e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8148377
hal_primary_oai_HAL_hal_03006219v2
proquest_miscellaneous_2503630170
proquest_journals_2517344695
pubmed_primary_33737245
crossref_citationtrail_10_1016_j_neuroimage_2021_117894
crossref_primary_10_1016_j_neuroimage_2021_117894
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_117894
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_117894
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Kilner (bib0031) 2013
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib0022) 1993; 65
Kerr (bib0030) 1998; 2
Foster, Deardorff (bib0014) 2017; 105
Groppe (bib0020) 2017; 54
Kappenman, Keil (bib0028) 2017; 54
Pivik, Broughton, Coppola, Davidson, Fox, Nuwer (bib0046) 1993; 30
Jas, Larson, Engemann, Leppäkangas, Taulu, Hämäläinen, Gramfort (bib0026) 2018; 12
Ochiai, Grimault, Scavarda, Roch, Hori, Rivière, Mangin, Régis (bib0042) 2004; 22
Luck (bib0037) 2012; 1
Maris, Oostenveld (bib0039) 2007; 164
Chambers, Dienes, McIntosh, Rotshtein, Willmes (bib0008) 2015; 66
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0018) 2013; 80
Destrieux, Fischl, Dale, Halgren (bib0011) 2010; 53
Keil, Debener, Gratton, Junghöfer, Kappenman, Luck, Luu, Miller, Yee (bib0029) 2014; 51
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss (bib0050) 2012; 62
Boudewyn, Luck, Farrens, Kappenman (bib0005) 2018; 55
Oostenveld, Fries, Maris, Schoffelen (bib0043) 2011; 1
Clayson, Carbine, Baldwin, Larson (bib0009) 2019
Hillebrand, Barnes (bib0025) 2002; 16
Szucs, Ioannidis (bib0049) 2017; 15
Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Essen (bib0017) 2016; 536
Fischl (bib0013) 2012; 62
Baker, Vilidaite, Lygo, Smith, Flack, Gouws, Andrews (bib0003) 2019
Kane, Acharya, Beniczky, Caboclo, Finnigan, Kaplan, Shibasaki, Pressler, van Putten (bib0027) 2017; 2
Medaglia, Lynall, Bassett (bib0040) 2015; 27
Bassett, Sporns (bib0004) 2017; 20
Picton, Bentin, Berg, Donchin, Hillyard, Johnson, Miller, Ritter, Ruchkin, Rugg, Taylor (bib0045) 2000; 37
Goldenholz, Ahlfors, Hämäläinen, Sharon, Ishitobi, Vaina, Stufflebeam (bib0019) 2009; 30
Fuchs, Kastner, Tech, Wagner, Gasca (bib0015) 2017; 7
Pernet, Garrido, Gramfort, Maurits, Michel, Pang, Salmelin, Schoffelen, Valdes-Sosa, Puce (bib0044) 2020
Ahlfors, Han, Belliveau, Hämäläinen (bib0001) 2010; 23
Hari, Baillet, Barnes, Burgess, Forss, Gross, Hämäläinen, Jensen, Kakigi, Mauguière, Nakasato, Puce, Romani, Schnitzler, Taulu (bib0023) 2018; 129
Caspers, Geyer, Schleicher, Mohlberg, Amunts, Zilles (bib0007) 2006; 33
Luck (bib0036) 2005
Luck, Gaspelin (bib0038) 2017; 54
Larson-Prior, Oostenveld, Della Penna, Michalareas, Prior, Babajani-Feremi, Schoffelen, Marzetti, de Pasquale, Di Pompeo, Stout, Woolrich, Luo, Bucholz, Fries, Pizzella, Romani, Corbetta, Snyder (bib0034) 2013; 80
Gross, Baillet, Barnes, Henson, Hillebrand, Jensen, Jerbi, Litvak, Maess, Oostenveld, Parkkonen, Taylor, van Wassenhove, Wibral, Schoffelen (bib0021) 2013; 65
Kriegeskorte, Simmons, Bellgowan, Baker (bib0032) 2009; 12
Hari, Puce (bib0024) 2017
Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib0006) 2013
Sarvas (bib0047) 1987; 32
Ahlfors, Han, Lin, Witzel, Belliveau, Hämäläinen, Halgren (bib0002) 2010; 31
Croxson, Forkel, Cerliani, Thiebaut de Schotten (bib0010) 2018; 28
Lehmann, Skrandies (bib0035) 1980; 48
Duncan, Barry, Connolly, Fischer, Michie, Näätänen, Polich, Reinvang, Van Petten (bib0012) 2009; 120
Simonsohn, Nelson, Simmons (bib0048) 2013
Gelman, Loken (bib0016) 2013
Murakami, Okada (bib0041) 2015; 111
Larson, Carbine (bib0033) 2017; 111
Sarvas (10.1016/j.neuroimage.2021.117894_bib0047) 1987; 32
Groppe (10.1016/j.neuroimage.2021.117894_bib0020) 2017; 54
Gross (10.1016/j.neuroimage.2021.117894_bib0021) 2013; 65
Kappenman (10.1016/j.neuroimage.2021.117894_bib0028) 2017; 54
Keil (10.1016/j.neuroimage.2021.117894_bib0029) 2014; 51
Destrieux (10.1016/j.neuroimage.2021.117894_bib0011) 2010; 53
Lehmann (10.1016/j.neuroimage.2021.117894_bib0035) 1980; 48
Kriegeskorte (10.1016/j.neuroimage.2021.117894_bib0032) 2009; 12
Kane (10.1016/j.neuroimage.2021.117894_bib0027) 2017; 2
Duncan (10.1016/j.neuroimage.2021.117894_bib0012) 2009; 120
Hari (10.1016/j.neuroimage.2021.117894_bib0024) 2017
Jas (10.1016/j.neuroimage.2021.117894_bib0026) 2018; 12
Pernet (10.1016/j.neuroimage.2021.117894_bib0044) 2020
Szucs (10.1016/j.neuroimage.2021.117894_bib0049) 2017; 15
Gelman (10.1016/j.neuroimage.2021.117894_bib0016) 2013
Luck (10.1016/j.neuroimage.2021.117894_bib0037) 2012; 1
Luck (10.1016/j.neuroimage.2021.117894_bib0036) 2005
Hämäläinen (10.1016/j.neuroimage.2021.117894_bib0022) 1993; 65
Picton (10.1016/j.neuroimage.2021.117894_bib0045) 2000; 37
Hillebrand (10.1016/j.neuroimage.2021.117894_bib0025) 2002; 16
Simonsohn (10.1016/j.neuroimage.2021.117894_bib0048) 2013
Foster (10.1016/j.neuroimage.2021.117894_bib0014) 2017; 105
Kerr (10.1016/j.neuroimage.2021.117894_bib0030) 1998; 2
Fuchs (10.1016/j.neuroimage.2021.117894_bib0015) 2017; 7
Ahlfors (10.1016/j.neuroimage.2021.117894_bib0001) 2010; 23
Larson (10.1016/j.neuroimage.2021.117894_bib0033) 2017; 111
Bassett (10.1016/j.neuroimage.2021.117894_bib0004) 2017; 20
Glasser (10.1016/j.neuroimage.2021.117894_bib0017) 2016; 536
Boudewyn (10.1016/j.neuroimage.2021.117894_bib0005) 2018; 55
Chambers (10.1016/j.neuroimage.2021.117894_bib0008) 2015; 66
Luck (10.1016/j.neuroimage.2021.117894_bib0038) 2017; 54
Medaglia (10.1016/j.neuroimage.2021.117894_bib0040) 2015; 27
Baker (10.1016/j.neuroimage.2021.117894_bib0003) 2019
Button (10.1016/j.neuroimage.2021.117894_bib0006) 2013
Pivik (10.1016/j.neuroimage.2021.117894_bib0046) 1993; 30
Goldenholz (10.1016/j.neuroimage.2021.117894_bib0019) 2009; 30
Kilner (10.1016/j.neuroimage.2021.117894_bib0031) 2013
Oostenveld (10.1016/j.neuroimage.2021.117894_bib0043) 2011; 1
Glasser (10.1016/j.neuroimage.2021.117894_bib0018) 2013; 80
Ahlfors (10.1016/j.neuroimage.2021.117894_bib0002) 2010; 31
Clayson (10.1016/j.neuroimage.2021.117894_bib0009) 2019
Croxson (10.1016/j.neuroimage.2021.117894_bib0010) 2018; 28
Caspers (10.1016/j.neuroimage.2021.117894_bib0007) 2006; 33
Ochiai (10.1016/j.neuroimage.2021.117894_bib0042) 2004; 22
Van Essen (10.1016/j.neuroimage.2021.117894_bib0050) 2012; 62
Larson-Prior (10.1016/j.neuroimage.2021.117894_bib0034) 2013; 80
Murakami (10.1016/j.neuroimage.2021.117894_bib0041) 2015; 111
Fischl (10.1016/j.neuroimage.2021.117894_bib0013) 2012; 62
Hari (10.1016/j.neuroimage.2021.117894_bib0023) 2018; 129
Maris (10.1016/j.neuroimage.2021.117894_bib0039) 2007; 164
References_xml – start-page: 1
  year: 2020
  end-page: 11
  ident: bib0044
  article-title: Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research
  publication-title: Nat. Neurosci.
– year: 2013
  ident: bib0016
  article-title: The garden of forking paths: why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time
  publication-title: Dep. Stat., Columbia Univ.
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib0018
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
– volume: 65
  start-page: 349
  year: 2013
  end-page: 363
  ident: bib0021
  article-title: Good practice for conducting and reporting MEG research
  publication-title: Neuroimage
– volume: 33
  start-page: 430
  year: 2006
  end-page: 448
  ident: bib0007
  article-title: The human inferior parietal cortex: cytoarchitectonic parcellation and inter-individual variability
  publication-title: Neuroimage
– volume: 105
  start-page: 203
  year: 2017
  end-page: 206
  ident: bib0014
  article-title: Open science framework (OSF)
  publication-title: J. Med. Lib. Assoc. : JMLA
– year: 2013
  ident: bib0031
  article-title: Bias in a common EEG and MEG statistical analysis and how to avoid it
  publication-title: Clin. Neurophysiol.
– volume: 53
  start-page: 1
  year: 2010
  end-page: 15
  ident: bib0011
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
– volume: 54
  start-page: 146
  year: 2017
  end-page: 157
  ident: bib0038
  article-title: How to get statistically significant effects in any ERP experiment (and why you shouldn't)
  publication-title: Psychophysiology
– volume: 1
  start-page: 523
  year: 2012
  end-page: 546
  ident: bib0037
  article-title: Event-related potentials
  publication-title: APA Handb. Res. Methods Psychol.
– volume: 129
  start-page: 1720
  year: 2018
  end-page: 1747
  ident: bib0023
  article-title: IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG)
  publication-title: Clin. Neurophysiol.
– volume: 27
  start-page: 1471
  year: 2015
  end-page: 1491
  ident: bib0040
  article-title: Cognitive network neuroscience
  publication-title: J. Cogn. Neurosci.
– volume: 55
  start-page: e13049
  year: 2018
  ident: bib0005
  article-title: How many trials does it take to get a significant ERP effect? It depends
  publication-title: Psychophysiology
– volume: 30
  start-page: 1077
  year: 2009
  end-page: 1086
  ident: bib0019
  article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography
  publication-title: Hum. Brain Mapp.
– volume: 120
  start-page: 1883
  year: 2009
  end-page: 1908
  ident: bib0012
  article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400
  publication-title: Clin. Neurophysiol.
– volume: 7
  start-page: 185
  year: 2017
  end-page: 191
  ident: bib0015
  article-title: MEG and EEG dipole clusters from extended cortical sources
  publication-title: Biomed. Eng. Lett.
– volume: 2
  start-page: 196
  year: 1998
  end-page: 217
  ident: bib0030
  article-title: HARKing: hypothesizing after the results are known
  publication-title: Pers. Soc. Psychol. Rev.
– year: 2005
  ident: bib0036
  article-title: Ten simple rules for designing ERP experiments
  publication-title: Event-Relat. Potentials: Methods Handb.
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib0050
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 31
  start-page: 140
  year: 2010
  end-page: 149
  ident: bib0002
  article-title: Cancellation of EEG and MEG signals generated by extended and distributed sources
  publication-title: Hum. Brain Mapp.
– volume: 54
  start-page: 3
  year: 2017
  end-page: 5
  ident: bib0028
  article-title: Introduction to the special issue on recentering science: replication, robustness, and reproducibility in psychophysiology
  publication-title: Psychophysiology
– volume: 20
  start-page: 353
  year: 2017
  end-page: 364
  ident: bib0004
  article-title: Network neuroscience
  publication-title: Nat. Neurosci.
– volume: 536
  start-page: 171
  year: 2016
  end-page: 178
  ident: bib0017
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
– volume: 16
  start-page: 638
  year: 2002
  end-page: 650
  ident: bib0025
  article-title: A Quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex
  publication-title: Neuroimage
– volume: 15
  year: 2017
  ident: bib0049
  article-title: Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature
  publication-title: PLoS Biol.
– year: 2019
  ident: bib0003
  article-title: Power Contours: Optimising Sample Size and Precision in Experimental Psychology and Human Neuroscience
– volume: 48
  start-page: 609
  year: 1980
  end-page: 621
  ident: bib0035
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 164
  start-page: 177
  year: 2007
  end-page: 190
  ident: bib0039
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: J. Neurosci. Methods
– volume: 37
  start-page: 127
  year: 2000
  end-page: 152
  ident: bib0045
  article-title: Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria
  publication-title: Psychophysiology
– year: 2013
  ident: bib0006
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
– volume: 54
  start-page: 139
  year: 2017
  end-page: 145
  ident: bib0020
  article-title: Combating the scientific decline effect with confidence (intervals)
  publication-title: Psychophysiology
– volume: 1
  year: 2011
  ident: bib0043
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Intell. Neurosci.
– volume: 12
  start-page: 535
  year: 2009
  end-page: 540
  ident: bib0032
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nat. Neurosci.
– volume: 32
  start-page: 11
  year: 1987
  end-page: 22
  ident: bib0047
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
– volume: 62
  start-page: 774
  year: 2012
  end-page: 781
  ident: bib0013
  article-title: FreeSurfer
  publication-title: Neuroimage
– year: 2017
  ident: bib0024
  article-title: MEG-EEG Primer
– volume: 51
  start-page: 1
  year: 2014
  end-page: 21
  ident: bib0029
  article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography
  publication-title: Psychophysiology
– volume: 111
  start-page: 33
  year: 2017
  end-page: 41
  ident: bib0033
  article-title: Sample size calculations in human electrophysiology (EEG and ERP) studies: a systematic review and recommendations for increased rigor
  publication-title: Int. J. Psychophysiol.
– volume: 66
  start-page: A1
  year: 2015
  end-page: A2
  ident: bib0008
  article-title: Registered reports: realigning incentives in scientific publishing
  publication-title: Cortex
– volume: 28
  start-page: 3829
  year: 2018
  end-page: 3841
  ident: bib0010
  article-title: Structural variability across the primate brain: a cross-species comparison
  publication-title: Cereb. Cortex
– volume: 23
  start-page: 227
  year: 2010
  end-page: 232
  ident: bib0001
  article-title: Sensitivity of MEG and EEG to source orientation
  publication-title: Brain Topogr.
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bib0022
  article-title: Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– year: 2013
  ident: bib0048
  article-title: (SSRN scholarly paper ID 2256237)
  publication-title: Soc. Sci. Res. Netw.
– volume: 22
  start-page: 706
  year: 2004
  end-page: 719
  ident: bib0042
  article-title: Sulcal pattern and morphology of the superior temporal sulcus
  publication-title: Neuroimage
– volume: 80
  start-page: 190
  year: 2013
  end-page: 201
  ident: bib0034
  article-title: Adding dynamics to the human connectome project with MEG
  publication-title: Neuroimage
– volume: 12
  year: 2018
  ident: bib0026
  article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices
  publication-title: Front. Neurosci.
– year: 2019
  ident: bib0009
  article-title: Methodological reporting behavior, sample sizes, and statistical power in studies of event-related potentials: barriers to reproducibility and replicability
  publication-title: Psychophysiology
– volume: 2
  start-page: 170
  year: 2017
  end-page: 185
  ident: bib0027
  article-title: A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings
  publication-title: Clin. Neurophysiol. Pract.
– volume: 30
  start-page: 547
  year: 1993
  end-page: 558
  ident: bib0046
  article-title: Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts
  publication-title: Psychophysiology
– volume: 111
  start-page: 49
  year: 2015
  end-page: 58
  ident: bib0041
  article-title: Invariance in current dipole moment density across brain structures and species: physiological constraint for neuroimaging
  publication-title: Neuroimage
– volume: 33
  start-page: 430
  issue: 2
  year: 2006
  ident: 10.1016/j.neuroimage.2021.117894_bib0007
  article-title: The human inferior parietal cortex: cytoarchitectonic parcellation and inter-individual variability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.06.054
– volume: 2
  start-page: 170
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0027
  article-title: A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings
  publication-title: Clin. Neurophysiol. Pract.
  doi: 10.1016/j.cnp.2017.07.002
– volume: 2
  start-page: 196
  issue: 3
  year: 1998
  ident: 10.1016/j.neuroimage.2021.117894_bib0030
  article-title: HARKing: hypothesizing after the results are known
  publication-title: Pers. Soc. Psychol. Rev.
  doi: 10.1207/s15327957pspr0203_4
– volume: 48
  start-page: 609
  issue: 6
  year: 1980
  ident: 10.1016/j.neuroimage.2021.117894_bib0035
  article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(80)90419-8
– volume: 1
  year: 2011
  ident: 10.1016/j.neuroimage.2021.117894_bib0043
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Intell. Neurosci.
– year: 2019
  ident: 10.1016/j.neuroimage.2021.117894_bib0003
– volume: 1
  start-page: 523
  year: 2012
  ident: 10.1016/j.neuroimage.2021.117894_bib0037
  article-title: Event-related potentials
  publication-title: APA Handb. Res. Methods Psychol.
– year: 2005
  ident: 10.1016/j.neuroimage.2021.117894_bib0036
  article-title: Ten simple rules for designing ERP experiments
  publication-title: Event-Relat. Potentials: Methods Handb.
– volume: 30
  start-page: 547
  issue: 6
  year: 1993
  ident: 10.1016/j.neuroimage.2021.117894_bib0046
  article-title: Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1993.tb02081.x
– volume: 111
  start-page: 33
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0033
  article-title: Sample size calculations in human electrophysiology (EEG and ERP) studies: a systematic review and recommendations for increased rigor
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2016.06.015
– volume: 22
  start-page: 706
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2021.117894_bib0042
  article-title: Sulcal pattern and morphology of the superior temporal sulcus
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.01.023
– volume: 23
  start-page: 227
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2021.117894_bib0001
  article-title: Sensitivity of MEG and EEG to source orientation
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-010-0154-x
– volume: 28
  start-page: 3829
  issue: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2021.117894_bib0010
  article-title: Structural variability across the primate brain: a cross-species comparison
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhx244
– volume: 16
  start-page: 638
  issue: 3, Part A
  year: 2002
  ident: 10.1016/j.neuroimage.2021.117894_bib0025
  article-title: A Quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1102
– year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0024
– volume: 105
  start-page: 203
  issue: 2
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0014
  article-title: Open science framework (OSF)
  publication-title: J. Med. Lib. Assoc. : JMLA
– year: 2019
  ident: 10.1016/j.neuroimage.2021.117894_bib0009
  article-title: Methodological reporting behavior, sample sizes, and statistical power in studies of event-related potentials: barriers to reproducibility and replicability
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13437
– volume: 30
  start-page: 1077
  issue: 4
  year: 2009
  ident: 10.1016/j.neuroimage.2021.117894_bib0019
  article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20571
– volume: 32
  start-page: 11
  issue: 1
  year: 1987
  ident: 10.1016/j.neuroimage.2021.117894_bib0047
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– volume: 54
  start-page: 139
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0020
  article-title: Combating the scientific decline effect with confidence (intervals)
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12616
– volume: 12
  year: 2018
  ident: 10.1016/j.neuroimage.2021.117894_bib0026
  article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00530
– volume: 12
  start-page: 535
  issue: 5
  year: 2009
  ident: 10.1016/j.neuroimage.2021.117894_bib0032
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2303
– year: 2013
  ident: 10.1016/j.neuroimage.2021.117894_bib0006
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
– volume: 65
  start-page: 349
  year: 2013
  ident: 10.1016/j.neuroimage.2021.117894_bib0021
  article-title: Good practice for conducting and reporting MEG research
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.001
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2021.117894_bib0013
  article-title: FreeSurfer
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 65
  start-page: 413
  issue: 2
  year: 1993
  ident: 10.1016/j.neuroimage.2021.117894_bib0022
  article-title: Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– volume: 53
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2021.117894_bib0011
  article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.010
– volume: 80
  start-page: 190
  year: 2013
  ident: 10.1016/j.neuroimage.2021.117894_bib0034
  article-title: Adding dynamics to the human connectome project with MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.056
– volume: 31
  start-page: 140
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2021.117894_bib0002
  article-title: Cancellation of EEG and MEG signals generated by extended and distributed sources
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20851
– volume: 54
  start-page: 146
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0038
  article-title: How to get statistically significant effects in any ERP experiment (and why you shouldn't)
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12639
– volume: 51
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2021.117894_bib0029
  article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12147
– volume: 37
  start-page: 127
  issue: 02
  year: 2000
  ident: 10.1016/j.neuroimage.2021.117894_bib0045
  article-title: Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720127
– volume: 20
  start-page: 353
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0004
  article-title: Network neuroscience
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4502
– volume: 120
  start-page: 1883
  issue: 11
  year: 2009
  ident: 10.1016/j.neuroimage.2021.117894_bib0012
  article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.07.045
– volume: 7
  start-page: 185
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0015
  article-title: MEG and EEG dipole clusters from extended cortical sources
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-017-0019-2
– volume: 54
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0028
  article-title: Introduction to the special issue on recentering science: replication, robustness, and reproducibility in psychophysiology
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12787
– year: 2013
  ident: 10.1016/j.neuroimage.2021.117894_bib0016
  article-title: The garden of forking paths: why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time
  publication-title: Dep. Stat., Columbia Univ.
– volume: 129
  start-page: 1720
  issue: 8
  year: 2018
  ident: 10.1016/j.neuroimage.2021.117894_bib0023
  article-title: IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG)
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.03.042
– year: 2013
  ident: 10.1016/j.neuroimage.2021.117894_bib0048
  article-title: P-curve: a key to the file drawer (SSRN scholarly paper ID 2256237)
  publication-title: Soc. Sci. Res. Netw.
– volume: 55
  start-page: e13049
  issue: 6
  year: 2018
  ident: 10.1016/j.neuroimage.2021.117894_bib0005
  article-title: How many trials does it take to get a significant ERP effect? It depends
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13049
– volume: 66
  start-page: A1
  year: 2015
  ident: 10.1016/j.neuroimage.2021.117894_bib0008
  article-title: Registered reports: realigning incentives in scientific publishing
  publication-title: Cortex
  doi: 10.1016/j.cortex.2015.03.022
– start-page: 1
  year: 2020
  ident: 10.1016/j.neuroimage.2021.117894_bib0044
  article-title: Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research
  publication-title: Nat. Neurosci.
– volume: 164
  start-page: 177
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2021.117894_bib0039
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2021.117894_bib0018
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 536
  start-page: 171
  issue: 7615
  year: 2016
  ident: 10.1016/j.neuroimage.2021.117894_bib0017
  article-title: A multi-modal parcellation of human cerebral cortex
  publication-title: Nature
  doi: 10.1038/nature18933
– year: 2013
  ident: 10.1016/j.neuroimage.2021.117894_bib0031
  article-title: Bias in a common EEG and MEG statistical analysis and how to avoid it
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2013.03.024
– volume: 111
  start-page: 49
  year: 2015
  ident: 10.1016/j.neuroimage.2021.117894_bib0041
  article-title: Invariance in current dipole moment density across brain structures and species: physiological constraint for neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.003
– volume: 15
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2021.117894_bib0049
  article-title: Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2000797
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2021.117894_bib0050
  article-title: The human connectome project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 27
  start-page: 1471
  issue: 8
  year: 2015
  ident: 10.1016/j.neuroimage.2021.117894_bib0040
  article-title: Cognitive network neuroscience
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_00810
SSID ssj0009148
Score 2.4261801
Snippet •We simulated evoked MEG experiments with variable number of subjects and trials.•We tested signal detectability at sensor-level (by amplitude, squared...
Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 117894
SubjectTerms Cognitive science
Datasets
Distance
Experiments
Life Sciences
Medical imaging
MEG
Methodology
Neurons and Cognition
Neuroscience
Orientation
Physiology
Pipelines
Sensors
Simulation
Software
Source modeling
Statistical power
Statistics
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKD4gL4ptAiwLiGnZjO3ZMT6VqWRDLBSr1ZiXOmAZBdtVuOfLbmXGctIHLSlwixfEkzmQyM5af3zD2uuAgSsdl1mB8yCQU86zyoskM9yUHDElNWMFfflaLU_nxrDjbYUfDXhiCVUbf3_v04K1jyyxqc7Zu29kXzAww3BCfVyB9IcZPKTVZ-Zvf1zAPk8t-O1whMuod0Tw9xitwRrY_8c_FmSLPaQWzNHISogKT_yRS3TonyOS_-ejfsMobcerkHrsbE8z0sH-H-2wHugfs9jIuoT9kJaWXgZ0Ze62pRtrb9MMNWHmKWWy6jqWM0uXx-_Syhxo-Yqcnx1-PFlksn5A5peQGj5jK5aoA39SYKNQY64s51NILoSoOjnOAXIFTXnoHha6VqTBWCeOcctxI8ZjtdqsOnrLUeHCVlxoqnL05A5X2vlEACp9UC2USpgeNWRe5xanExQ87gMi-22tdW9K17XWdsHyUXPf8GlvIvKOPMvYnhuzQsLr4ZqOJ2Bx1UDda8Ll2OCmThrtSNy4XNea4lYaEmeGT2mETKrpNvFG7xQAORtmJsW4p_QotaDL6xeEnS23ocecKY8gvnrC9wcBs9CqXlujlBM7fTZGwl-Nl9Ae0yFN1sLqiPrQ0T6xICXvS2-P4KCGoKJFEaT2x1MlYple69jxwjpc5lR7Qz_7rzZ-zO3TWI-322O7m4gr2Mafb1C_CT_sHbkhJ_A
  priority: 102
  providerName: Elsevier
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYkNBeJhi_AgMFxGtEYzt2DA9ooI2CKE9M6puVOGdWxNKydvz93MVOuoCE-lKpia9xL-e7c-7Ld4y9KjiI0nGZNRgfMgnFJKu8aDLDfckBQ1LTVfBnX9X0XH6eF_P4wG0dYZW9T-wcdbN09Iz8NVFrCdy7mOLd6ldGXaOouhpbaOyx20RdRpAuPddb0t1chlfhCpGVOCAieQK-q-OLXFziqsVdIs-pelkaOQpPHYv_KErtXRBc8t9c9G9I5Y0YdXaXHcbkMj0J1nCP3YL2iN2ZxfL5ETug1DIwM99n5fAFRVbULO1N-ukGvjzFdDZdxZ5G6ez0Y7oOmMMH7Pzs9NuHaRb7KGROKbnBT8zpclWAb2rMGGoM-sUEaumFUBUHxzlArsApL72DQtfKVBi0hHFOOW6keMj222ULj1lqPLjKSw0VbuOcgUp73ygAhVeqhTIJ0736rIsk49Tr4qft0WQ_7FbxlhRvg-ITlg-Sq0C0sYPMe7pDw3iiyu4OLK--27jybI46qBst-EQ73J1Jw12pG5eLGpPdSkPCTH9_bf82KvpP_KHFDhN4O8jGjCVkIjtKv0RzGs1-evLF0jF0vROFweQ3T9hxb202upe13S6GhL0YTqNjoGpP1cLymsZQjZ7okRL2KBjncCkhqDuRRGk9MtvRXMZn2sVFRz5e5tSDQD_5_7SesgP6owFTd8z2N1fX8Ayzt039vFuifwBCXUMZ
  priority: 102
  providerName: ProQuest
Title Statistical power: Implications for planning MEG studies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921001713
https://dx.doi.org/10.1016/j.neuroimage.2021.117894
https://www.ncbi.nlm.nih.gov/pubmed/33737245
https://www.proquest.com/docview/2517344695
https://www.proquest.com/docview/2503630170
https://hal.science/hal-03006219
https://pubmed.ncbi.nlm.nih.gov/PMC8148377
https://doaj.org/article/1664bd73207c487492c87dc13b161a7e
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbYkBAvE78XGFVAvAYa27FjeOpQRwe0QohJfbMS56wVsaxiHY_87dzFSWjggT7wkkiJL3YuZ99n3eU7xl5kHETuuEwq9A-JhGycFF5UieE-54AuqWoi-POFmp3J98tsuVXqi3LCAj1wUNyrVClZVlrwsXYIrqXhLteVS0WJWKXQQKsv-rxuM9XR7SLKb_N2QjZXww65usA5intCnlKsMjdy4Iwazv6BT9o7p-TIv5HnnwmUWx7p5A47aKFkPAmvcJfdgPoeuzVvg-X3WU5AsuFhxlZrqob2Oj7dSiCPEa_G67ZoUTyfvouvQlLhA3Z2Mv3ydpa0hRISh9rZ4BFBW6oy8FWJkKBEr56NoZReCFVwcJwDpAqc8tI7yHSpTIFeSRjnlONGiodsv76s4ZDFxoMrvNRQ4D7NGSi095UCUNhTKZSJmO40Zl3LIk7FLL7ZLl3sq_2ta0u6tkHXEUt7yXVg0thB5pg-St-euLCbC2ghtrUQ-y8LiZjpPqntfjfFBRIftNphAG962RaSBKixo_RztKDB6GeTj5au4do6VugtfvCIHXUGZtv148oSkZzAnbrJIvasv40zn8I5RQ2X19SGgvDEfxSxR8Ee-66EoPJDEqX1wFIHYxneqVfnDbt4nlKRAf34f6j-CbtN6gipdUdsf_P9Gp4iiNuUI7b38meKR73UI3ZzcvphtsDz8XTx6fOomcu_AMoRSXU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnQR7QTC-AgMCgseIxnacGITQBh0tayuENmlvJnEurAjasnYg_in-Rs5xki4gob7sJVI-LnHP5_vo_XwH8DRiyBPDRJCTfQgERt0gLXgeKFYkDMkk5WUGfzSW_WPx_iQ62YDf9V4YC6usdWKpqPOZsf-RP7eltTjFLip6Pf8e2K5RNrtat9BwYnGIv35SyLZ4NXhL8_uMsYPe0Zt-UHUVCIyUYklH8nBCGWGRZ2Q_MzKBURczUXAuU4aGMcRQopGFKAxGcSZVSiqcK2OkYUpweu8mbAlOoUwHtvZ74w8fV2V-Q-E230U8SMJQVdghhygrK1ROvpGeoLiUhTZfmijRMohl34CWXdw8tQDNf73fv0GcF6ziwXW4Vrmz_p6TvxuwgdMduDKqEvY7sG2dWVcL-iYkzQmRzG17thf-4AKi3ScH2p9XXZT8Ue-dv3Aox1twfCk8vg2d6WyKd8FXBZq0EDGmFDgahWlcFLlElPSljEvlQVyzT5uqrLntrvFV1_i1L3rFeG0Zrx3jPQgbyrkr7bEGzb6doeZ5W5y7vDA7-6yrta5D4kGWx5x1Y0PxoFDMJHFuQp6Re53G6IGq51fX-19JY9OLJmsM4GVDW_lIzvdZk_oJiVNr9P29obbXSNl3JZmvH8yD3VradKXQFnq1_Dx43NwmVWTzS-kUZ-f2GYsKsAWZPLjjhLP5FOe2H5Ig6rgltq2xtO9MJ6dlufMktF0P4nv_H9YjuNo_Gg31cDA-vA_b9kc7RN8udJZn5_iAfMdl9rBasD58umwd8QdXCIGS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IU17QTC-AgMCgsdo9UfsGITQYCstWycemNQ3kzg2G4K2rB2If42_jrs4SReQUF_2Eikfl7jn8330fr4j5FnKHM8sE0kJ9iERLu0luedlopnPmAOTVFYZ_NGxHJyI9-N0vEZ-N3thEFbZ6MRKUZdTi_-R72JpLQ6xi053fQ2L-LDffz37nmAHKcy0Nu00gogcul8_IXybvxruw1w_Z6x_8PHtIKk7DCRWSrGAI3g7VKbOlwXY0gLMYdpzhfCcy5w5y5hzVDorvfDWpaqQOgd1zrW10jItOLx3nVxTPKW4xtRYLQv-UhG24aU8ySjVNYooYMuqWpVn30BjQITKKGZOMy06prHqINCxkOunCNX81w_-G855yT72b5DrtWMb7wVJvEnW3GSbbI7q1P022UK3NlSFvkWy9gRIZtio7UU8vIRtj8GVjmd1P6V4dPAunge8421yciUcvkM2JtOJu0di7Z3NvVAuhxDSapcr70vpnIQvFVzqiKiGfcbWBc6xz8ZX0yDZvpgl4w0y3gTGR4S2lLNQ5GMFmjc4Q-3zWKa7ujA9_2zqVW8o8KAoFWc9ZSEyFJrZTJWW8gIc7Vy5iOhmfk2zExZ0N7zobIUBvGxpa28peEErUj8FceqMfrB3ZPAaqP2eBEP2g0Vkp5E2U6u2uVkuxIg8aW-DUsJMUz5x0wt8BvEBWJopIneDcLaf4hw7IwmgVh2x7Yyle2dydloVPs8o9j9Q9_8_rMdkEzSDORoeHz4gW_ibA7Rvh2wszi_cQ3AiF8WjarXG5NNVq4c_5WmEYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+power%3A+Implications+for+planning+MEG+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Chaumon%2C+Maximilien&rft.au=Puce%2C+Aina&rft.au=George%2C+Nathalie&rft.date=2021-06-01&rft.eissn=1095-9572&rft.volume=233&rft.spage=117894&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.117894&rft_id=info%3Apmid%2F33737245&rft.externalDocID=33737245
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon