Statistical power: Implications for planning MEG studies
•We simulated evoked MEG experiments with variable number of subjects and trials.•We tested signal detectability at sensor-level (by amplitude, squared amplitude, GFP).•Statistical power varied by source distance, orientation & between-subject variability.•Consider source detectability at sensor...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 233; p. 117894 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.06.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2021.117894 |
Cover
Loading…
Abstract | •We simulated evoked MEG experiments with variable number of subjects and trials.•We tested signal detectability at sensor-level (by amplitude, squared amplitude, GFP).•Statistical power varied by source distance, orientation & between-subject variability.•Consider source detectability at sensor-level when designing MEG studies.•Sample size for MEG studies? Consider source with lowest expected statistical power.
Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study. |
---|---|
AbstractList | •We simulated evoked MEG experiments with variable number of subjects and trials.•We tested signal detectability at sensor-level (by amplitude, squared amplitude, GFP).•Statistical power varied by source distance, orientation & between-subject variability.•Consider source detectability at sensor-level when designing MEG studies.•Sample size for MEG studies? Consider source with lowest expected statistical power.
Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study. Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated ''experiments'' using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the ''signal condition'', but not in the ''noise condition'', and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study. Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study.Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study. Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG sensor-level data. More specifically, we simulated "experiments" using the MEG resting-state dataset of the Human Connectome Project (HCP). We divided the data in two conditions, injected a dipolar source at a known anatomical location in the "signal condition", but not in the "noise condition", and detected significant differences at sensor level with classical paired t-tests across subjects, using amplitude, squared amplitude, and global field power (GFP) measures. Group-level detectability of these simulated effects varied drastically with anatomical origin. We thus examined in detail which spatial properties of the sources affected detectability, looking specifically at the distance from closest sensor and orientation of the source, and at the variability of these parameters across subjects. In line with previous single-subject studies, we found that the most detectable effects originate from source locations that are closest to the sensors and oriented tangentially with respect to the head surface. In addition, cross-subject variability in orientation also affected group-level detectability, boosting detection in regions where this variability was small and hindering detection in regions where it was large. Incidentally, we observed a considerable covariation of source position, orientation, and their cross-subject variability in individual brain anatomical space, making it difficult to assess the impact of each of these variables independently of one another. We thus also performed simulations where we controlled spatial properties independently of individual anatomy. These additional simulations confirmed the strong impact of distance and orientation and further showed that orientation variability across subjects affects detectability, whereas position variability does not. Importantly, our study indicates that strict unequivocal recommendations as to the ideal number of trials and subjects for any experiment cannot be realistically provided for neurophysiological studies and should be adapted according to the brain regions under study. |
ArticleNumber | 117894 |
Author | Puce, Aina George, Nathalie Chaumon, Maximilien |
AuthorAffiliation | 1. Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France 2. Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, 1101 East 10th St, Bloomington, IN 47405, USA |
AuthorAffiliation_xml | – name: 2. Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, 1101 East 10th St, Bloomington, IN 47405, USA – name: 1. Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), Paris, France |
Author_xml | – sequence: 1 givenname: Maximilien orcidid: 0000-0001-9664-8861 surname: Chaumon fullname: Chaumon, Maximilien email: maximilien.chaumon@icm-institute.org organization: Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), 47 Boulevard de l’hôpital, 75013 Paris, France – sequence: 2 givenname: Aina surname: Puce fullname: Puce, Aina organization: Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, 1101 East 10th St, Bloomington, IN 47405, United States – sequence: 3 givenname: Nathalie surname: George fullname: George, Nathalie organization: Institut du Cerveau, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Centre MEG-EEG, Centre de NeuroImagerie Recherche (CENIR), 47 Boulevard de l’hôpital, 75013 Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33737245$$D View this record in MEDLINE/PubMed https://hal.science/hal-03006219$$DView record in HAL |
BookMark | eNqNkk1v1DAQhiNURD_gL6BIXOCwi79ixxwQpSrtSos4AGfLcSZbh6wd7GRR_z1O01K6p73Esf3OM56Z9zQ7ct5BluUYLTHC_H27dDAGb7d6A0uCCF5iLErJnmUnGMliIQtBjqb_gi5KjOVxdhpjixCSmJUvsmNKBRWEFSdZ-X3Qg42DNbrLe_8Hwod8te27tB-sdzFvfMj7Tjtn3Sb_enmVx2GsLcSX2fNGdxFe3a9n2c8vlz8urhfrb1eri_P1wnDOhvQtKMW8gKaukGBVSVCBoGINpVwTMIQAYA6GN6wxUIiKS10yQaUx3BDJ6Fm2mrm1163qQ6o53Cqvrbo78GGjdEjP70DhlLGqBSVIGFYKJokpRW0wrTDHWkBifZxZ_VhtoTbghqC7J9CnN87eqI3fqTK1jQqRAO9mwM1e2PX5Wk1niCLECZY7krRv75MF_3uEOKitjQa61EvwY1SkQJRThAVK0jd70taPwaW2JhUWlDEui6R6_f_r_-V_GOZjeSb4GAM0ytjhboypGNspjNTkHtWqR_eoyT1qdk8ClHuAhxwHhH6eQyF5YWchqGgsOAO1DWCGNCx7COTTHsR01k3W_AW3hyH-Altu-RE |
CitedBy_id | crossref_primary_10_1111_head_14867 crossref_primary_10_1016_j_neuroimage_2022_119056 crossref_primary_10_1093_cercor_bhae353 crossref_primary_10_7554_eLife_85980 crossref_primary_10_1016_j_neurom_2025_01_011 crossref_primary_10_1016_j_neuropsychologia_2025_109068 crossref_primary_10_1152_jn_00240_2022 crossref_primary_10_1016_j_neuroscience_2024_11_018 crossref_primary_10_1016_j_neuroimage_2022_119438 crossref_primary_10_3389_frsps_2024_1447842 |
Cites_doi | 10.1016/j.neuroimage.2006.06.054 10.1016/j.cnp.2017.07.002 10.1207/s15327957pspr0203_4 10.1016/0013-4694(80)90419-8 10.1111/j.1469-8986.1993.tb02081.x 10.1016/j.ijpsycho.2016.06.015 10.1016/j.neuroimage.2004.01.023 10.1007/s10548-010-0154-x 10.1093/cercor/bhx244 10.1006/nimg.2002.1102 10.1111/psyp.13437 10.1002/hbm.20571 10.1088/0031-9155/32/1/004 10.1111/psyp.12616 10.3389/fnins.2018.00530 10.1038/nn.2303 10.1016/j.neuroimage.2012.10.001 10.1016/j.neuroimage.2012.01.021 10.1103/RevModPhys.65.413 10.1016/j.neuroimage.2010.06.010 10.1016/j.neuroimage.2013.05.056 10.1002/hbm.20851 10.1111/psyp.12639 10.1111/psyp.12147 10.1111/1469-8986.3720127 10.1038/nn.4502 10.1016/j.clinph.2009.07.045 10.1007/s13534-017-0019-2 10.1111/psyp.12787 10.1016/j.clinph.2018.03.042 10.1111/psyp.13049 10.1016/j.cortex.2015.03.022 10.1016/j.jneumeth.2007.03.024 10.1016/j.neuroimage.2013.04.127 10.1038/nature18933 10.1016/j.clinph.2013.03.024 10.1016/j.neuroimage.2015.02.003 10.1371/journal.pbio.2000797 10.1016/j.neuroimage.2012.02.018 10.1162/jocn_a_00810 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. 2021. The Author(s) Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2021. The Author(s) – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.neuroimage.2021.117894 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics |
EISSN | 1095-9572 |
EndPage | 117894 |
ExternalDocumentID | oai_doaj_org_article_1664bd73207c487492c87dc13b161a7e PMC8148377 oai_HAL_hal_03006219v2 33737245 10_1016_j_neuroimage_2021_117894 S1053811921001713 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB030896 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRLJ AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CAG CCPQU COF CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SSH SSN SSZ T5K TEORI UKHRP UV1 WUQ XPP YK3 Z5R ZMT ZU3 ~G- 3V. 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG LCYCR NCXOZ RIG ZA5 AAYXX AGRNS ALIPV CITATION NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c664t-c6533165efdb074b82050eb4f336a2ec22ee16ec6f4fce57b69a84739cc6c2943 |
IEDL.DBID | DOA |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:29:24 EDT 2025 Thu Aug 21 18:22:46 EDT 2025 Fri May 09 12:29:52 EDT 2025 Mon Jul 21 10:42:53 EDT 2025 Wed Aug 13 08:06:55 EDT 2025 Thu Apr 03 07:08:06 EDT 2025 Thu Apr 24 22:49:23 EDT 2025 Tue Jul 01 03:02:18 EDT 2025 Fri Feb 23 02:47:19 EST 2024 Tue Aug 26 18:33:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Source modeling Simulation Orientation Statistical power MEG Distance |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-c6533165efdb074b82050eb4f336a2ec22ee16ec6f4fce57b69a84739cc6c2943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AP and NG: Conceptualization, Writing - original draft, Writing - review and editing, Supervision, Funding acquisition MC : Conceptualization, Methodology, Software, Validation, Formal analysis, Data Curation, Writing - original draft, Writing - review and editing, Visualization. Authors' contributions |
ORCID | 0000-0001-9664-8861 0000-0002-1556-973X 0000-0002-0716-4185 |
OpenAccessLink | https://doaj.org/article/1664bd73207c487492c87dc13b161a7e |
PMID | 33737245 |
PQID | 2517344695 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1664bd73207c487492c87dc13b161a7e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8148377 hal_primary_oai_HAL_hal_03006219v2 proquest_miscellaneous_2503630170 proquest_journals_2517344695 pubmed_primary_33737245 crossref_citationtrail_10_1016_j_neuroimage_2021_117894 crossref_primary_10_1016_j_neuroimage_2021_117894 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_117894 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_117894 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Kilner (bib0031) 2013 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib0022) 1993; 65 Kerr (bib0030) 1998; 2 Foster, Deardorff (bib0014) 2017; 105 Groppe (bib0020) 2017; 54 Kappenman, Keil (bib0028) 2017; 54 Pivik, Broughton, Coppola, Davidson, Fox, Nuwer (bib0046) 1993; 30 Jas, Larson, Engemann, Leppäkangas, Taulu, Hämäläinen, Gramfort (bib0026) 2018; 12 Ochiai, Grimault, Scavarda, Roch, Hori, Rivière, Mangin, Régis (bib0042) 2004; 22 Luck (bib0037) 2012; 1 Maris, Oostenveld (bib0039) 2007; 164 Chambers, Dienes, McIntosh, Rotshtein, Willmes (bib0008) 2015; 66 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni, Van Essen, Jenkinson (bib0018) 2013; 80 Destrieux, Fischl, Dale, Halgren (bib0011) 2010; 53 Keil, Debener, Gratton, Junghöfer, Kappenman, Luck, Luu, Miller, Yee (bib0029) 2014; 51 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz, Chang, Chen, Corbetta, Curtiss (bib0050) 2012; 62 Boudewyn, Luck, Farrens, Kappenman (bib0005) 2018; 55 Oostenveld, Fries, Maris, Schoffelen (bib0043) 2011; 1 Clayson, Carbine, Baldwin, Larson (bib0009) 2019 Hillebrand, Barnes (bib0025) 2002; 16 Szucs, Ioannidis (bib0049) 2017; 15 Glasser, Coalson, Robinson, Hacker, Harwell, Yacoub, Ugurbil, Andersson, Beckmann, Jenkinson, Smith, Essen (bib0017) 2016; 536 Fischl (bib0013) 2012; 62 Baker, Vilidaite, Lygo, Smith, Flack, Gouws, Andrews (bib0003) 2019 Kane, Acharya, Beniczky, Caboclo, Finnigan, Kaplan, Shibasaki, Pressler, van Putten (bib0027) 2017; 2 Medaglia, Lynall, Bassett (bib0040) 2015; 27 Bassett, Sporns (bib0004) 2017; 20 Picton, Bentin, Berg, Donchin, Hillyard, Johnson, Miller, Ritter, Ruchkin, Rugg, Taylor (bib0045) 2000; 37 Goldenholz, Ahlfors, Hämäläinen, Sharon, Ishitobi, Vaina, Stufflebeam (bib0019) 2009; 30 Fuchs, Kastner, Tech, Wagner, Gasca (bib0015) 2017; 7 Pernet, Garrido, Gramfort, Maurits, Michel, Pang, Salmelin, Schoffelen, Valdes-Sosa, Puce (bib0044) 2020 Ahlfors, Han, Belliveau, Hämäläinen (bib0001) 2010; 23 Hari, Baillet, Barnes, Burgess, Forss, Gross, Hämäläinen, Jensen, Kakigi, Mauguière, Nakasato, Puce, Romani, Schnitzler, Taulu (bib0023) 2018; 129 Caspers, Geyer, Schleicher, Mohlberg, Amunts, Zilles (bib0007) 2006; 33 Luck (bib0036) 2005 Luck, Gaspelin (bib0038) 2017; 54 Larson-Prior, Oostenveld, Della Penna, Michalareas, Prior, Babajani-Feremi, Schoffelen, Marzetti, de Pasquale, Di Pompeo, Stout, Woolrich, Luo, Bucholz, Fries, Pizzella, Romani, Corbetta, Snyder (bib0034) 2013; 80 Gross, Baillet, Barnes, Henson, Hillebrand, Jensen, Jerbi, Litvak, Maess, Oostenveld, Parkkonen, Taylor, van Wassenhove, Wibral, Schoffelen (bib0021) 2013; 65 Kriegeskorte, Simmons, Bellgowan, Baker (bib0032) 2009; 12 Hari, Puce (bib0024) 2017 Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib0006) 2013 Sarvas (bib0047) 1987; 32 Ahlfors, Han, Lin, Witzel, Belliveau, Hämäläinen, Halgren (bib0002) 2010; 31 Croxson, Forkel, Cerliani, Thiebaut de Schotten (bib0010) 2018; 28 Lehmann, Skrandies (bib0035) 1980; 48 Duncan, Barry, Connolly, Fischer, Michie, Näätänen, Polich, Reinvang, Van Petten (bib0012) 2009; 120 Simonsohn, Nelson, Simmons (bib0048) 2013 Gelman, Loken (bib0016) 2013 Murakami, Okada (bib0041) 2015; 111 Larson, Carbine (bib0033) 2017; 111 Sarvas (10.1016/j.neuroimage.2021.117894_bib0047) 1987; 32 Groppe (10.1016/j.neuroimage.2021.117894_bib0020) 2017; 54 Gross (10.1016/j.neuroimage.2021.117894_bib0021) 2013; 65 Kappenman (10.1016/j.neuroimage.2021.117894_bib0028) 2017; 54 Keil (10.1016/j.neuroimage.2021.117894_bib0029) 2014; 51 Destrieux (10.1016/j.neuroimage.2021.117894_bib0011) 2010; 53 Lehmann (10.1016/j.neuroimage.2021.117894_bib0035) 1980; 48 Kriegeskorte (10.1016/j.neuroimage.2021.117894_bib0032) 2009; 12 Kane (10.1016/j.neuroimage.2021.117894_bib0027) 2017; 2 Duncan (10.1016/j.neuroimage.2021.117894_bib0012) 2009; 120 Hari (10.1016/j.neuroimage.2021.117894_bib0024) 2017 Jas (10.1016/j.neuroimage.2021.117894_bib0026) 2018; 12 Pernet (10.1016/j.neuroimage.2021.117894_bib0044) 2020 Szucs (10.1016/j.neuroimage.2021.117894_bib0049) 2017; 15 Gelman (10.1016/j.neuroimage.2021.117894_bib0016) 2013 Luck (10.1016/j.neuroimage.2021.117894_bib0037) 2012; 1 Luck (10.1016/j.neuroimage.2021.117894_bib0036) 2005 Hämäläinen (10.1016/j.neuroimage.2021.117894_bib0022) 1993; 65 Picton (10.1016/j.neuroimage.2021.117894_bib0045) 2000; 37 Hillebrand (10.1016/j.neuroimage.2021.117894_bib0025) 2002; 16 Simonsohn (10.1016/j.neuroimage.2021.117894_bib0048) 2013 Foster (10.1016/j.neuroimage.2021.117894_bib0014) 2017; 105 Kerr (10.1016/j.neuroimage.2021.117894_bib0030) 1998; 2 Fuchs (10.1016/j.neuroimage.2021.117894_bib0015) 2017; 7 Ahlfors (10.1016/j.neuroimage.2021.117894_bib0001) 2010; 23 Larson (10.1016/j.neuroimage.2021.117894_bib0033) 2017; 111 Bassett (10.1016/j.neuroimage.2021.117894_bib0004) 2017; 20 Glasser (10.1016/j.neuroimage.2021.117894_bib0017) 2016; 536 Boudewyn (10.1016/j.neuroimage.2021.117894_bib0005) 2018; 55 Chambers (10.1016/j.neuroimage.2021.117894_bib0008) 2015; 66 Luck (10.1016/j.neuroimage.2021.117894_bib0038) 2017; 54 Medaglia (10.1016/j.neuroimage.2021.117894_bib0040) 2015; 27 Baker (10.1016/j.neuroimage.2021.117894_bib0003) 2019 Button (10.1016/j.neuroimage.2021.117894_bib0006) 2013 Pivik (10.1016/j.neuroimage.2021.117894_bib0046) 1993; 30 Goldenholz (10.1016/j.neuroimage.2021.117894_bib0019) 2009; 30 Kilner (10.1016/j.neuroimage.2021.117894_bib0031) 2013 Oostenveld (10.1016/j.neuroimage.2021.117894_bib0043) 2011; 1 Glasser (10.1016/j.neuroimage.2021.117894_bib0018) 2013; 80 Ahlfors (10.1016/j.neuroimage.2021.117894_bib0002) 2010; 31 Clayson (10.1016/j.neuroimage.2021.117894_bib0009) 2019 Croxson (10.1016/j.neuroimage.2021.117894_bib0010) 2018; 28 Caspers (10.1016/j.neuroimage.2021.117894_bib0007) 2006; 33 Ochiai (10.1016/j.neuroimage.2021.117894_bib0042) 2004; 22 Van Essen (10.1016/j.neuroimage.2021.117894_bib0050) 2012; 62 Larson-Prior (10.1016/j.neuroimage.2021.117894_bib0034) 2013; 80 Murakami (10.1016/j.neuroimage.2021.117894_bib0041) 2015; 111 Fischl (10.1016/j.neuroimage.2021.117894_bib0013) 2012; 62 Hari (10.1016/j.neuroimage.2021.117894_bib0023) 2018; 129 Maris (10.1016/j.neuroimage.2021.117894_bib0039) 2007; 164 |
References_xml | – start-page: 1 year: 2020 end-page: 11 ident: bib0044 article-title: Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research publication-title: Nat. Neurosci. – year: 2013 ident: bib0016 article-title: The garden of forking paths: why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time publication-title: Dep. Stat., Columbia Univ. – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib0018 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 65 start-page: 349 year: 2013 end-page: 363 ident: bib0021 article-title: Good practice for conducting and reporting MEG research publication-title: Neuroimage – volume: 33 start-page: 430 year: 2006 end-page: 448 ident: bib0007 article-title: The human inferior parietal cortex: cytoarchitectonic parcellation and inter-individual variability publication-title: Neuroimage – volume: 105 start-page: 203 year: 2017 end-page: 206 ident: bib0014 article-title: Open science framework (OSF) publication-title: J. Med. Lib. Assoc. : JMLA – year: 2013 ident: bib0031 article-title: Bias in a common EEG and MEG statistical analysis and how to avoid it publication-title: Clin. Neurophysiol. – volume: 53 start-page: 1 year: 2010 end-page: 15 ident: bib0011 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage – volume: 54 start-page: 146 year: 2017 end-page: 157 ident: bib0038 article-title: How to get statistically significant effects in any ERP experiment (and why you shouldn't) publication-title: Psychophysiology – volume: 1 start-page: 523 year: 2012 end-page: 546 ident: bib0037 article-title: Event-related potentials publication-title: APA Handb. Res. Methods Psychol. – volume: 129 start-page: 1720 year: 2018 end-page: 1747 ident: bib0023 article-title: IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) publication-title: Clin. Neurophysiol. – volume: 27 start-page: 1471 year: 2015 end-page: 1491 ident: bib0040 article-title: Cognitive network neuroscience publication-title: J. Cogn. Neurosci. – volume: 55 start-page: e13049 year: 2018 ident: bib0005 article-title: How many trials does it take to get a significant ERP effect? It depends publication-title: Psychophysiology – volume: 30 start-page: 1077 year: 2009 end-page: 1086 ident: bib0019 article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography publication-title: Hum. Brain Mapp. – volume: 120 start-page: 1883 year: 2009 end-page: 1908 ident: bib0012 article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400 publication-title: Clin. Neurophysiol. – volume: 7 start-page: 185 year: 2017 end-page: 191 ident: bib0015 article-title: MEG and EEG dipole clusters from extended cortical sources publication-title: Biomed. Eng. Lett. – volume: 2 start-page: 196 year: 1998 end-page: 217 ident: bib0030 article-title: HARKing: hypothesizing after the results are known publication-title: Pers. Soc. Psychol. Rev. – year: 2005 ident: bib0036 article-title: Ten simple rules for designing ERP experiments publication-title: Event-Relat. Potentials: Methods Handb. – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib0050 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage – volume: 31 start-page: 140 year: 2010 end-page: 149 ident: bib0002 article-title: Cancellation of EEG and MEG signals generated by extended and distributed sources publication-title: Hum. Brain Mapp. – volume: 54 start-page: 3 year: 2017 end-page: 5 ident: bib0028 article-title: Introduction to the special issue on recentering science: replication, robustness, and reproducibility in psychophysiology publication-title: Psychophysiology – volume: 20 start-page: 353 year: 2017 end-page: 364 ident: bib0004 article-title: Network neuroscience publication-title: Nat. Neurosci. – volume: 536 start-page: 171 year: 2016 end-page: 178 ident: bib0017 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature – volume: 16 start-page: 638 year: 2002 end-page: 650 ident: bib0025 article-title: A Quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex publication-title: Neuroimage – volume: 15 year: 2017 ident: bib0049 article-title: Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature publication-title: PLoS Biol. – year: 2019 ident: bib0003 article-title: Power Contours: Optimising Sample Size and Precision in Experimental Psychology and Human Neuroscience – volume: 48 start-page: 609 year: 1980 end-page: 621 ident: bib0035 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 164 start-page: 177 year: 2007 end-page: 190 ident: bib0039 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods – volume: 37 start-page: 127 year: 2000 end-page: 152 ident: bib0045 article-title: Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria publication-title: Psychophysiology – year: 2013 ident: bib0006 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. – volume: 54 start-page: 139 year: 2017 end-page: 145 ident: bib0020 article-title: Combating the scientific decline effect with confidence (intervals) publication-title: Psychophysiology – volume: 1 year: 2011 ident: bib0043 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Intell. Neurosci. – volume: 12 start-page: 535 year: 2009 end-page: 540 ident: bib0032 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nat. Neurosci. – volume: 32 start-page: 11 year: 1987 end-page: 22 ident: bib0047 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. – volume: 62 start-page: 774 year: 2012 end-page: 781 ident: bib0013 article-title: FreeSurfer publication-title: Neuroimage – year: 2017 ident: bib0024 article-title: MEG-EEG Primer – volume: 51 start-page: 1 year: 2014 end-page: 21 ident: bib0029 article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography publication-title: Psychophysiology – volume: 111 start-page: 33 year: 2017 end-page: 41 ident: bib0033 article-title: Sample size calculations in human electrophysiology (EEG and ERP) studies: a systematic review and recommendations for increased rigor publication-title: Int. J. Psychophysiol. – volume: 66 start-page: A1 year: 2015 end-page: A2 ident: bib0008 article-title: Registered reports: realigning incentives in scientific publishing publication-title: Cortex – volume: 28 start-page: 3829 year: 2018 end-page: 3841 ident: bib0010 article-title: Structural variability across the primate brain: a cross-species comparison publication-title: Cereb. Cortex – volume: 23 start-page: 227 year: 2010 end-page: 232 ident: bib0001 article-title: Sensitivity of MEG and EEG to source orientation publication-title: Brain Topogr. – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bib0022 article-title: Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. – year: 2013 ident: bib0048 article-title: (SSRN scholarly paper ID 2256237) publication-title: Soc. Sci. Res. Netw. – volume: 22 start-page: 706 year: 2004 end-page: 719 ident: bib0042 article-title: Sulcal pattern and morphology of the superior temporal sulcus publication-title: Neuroimage – volume: 80 start-page: 190 year: 2013 end-page: 201 ident: bib0034 article-title: Adding dynamics to the human connectome project with MEG publication-title: Neuroimage – volume: 12 year: 2018 ident: bib0026 article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices publication-title: Front. Neurosci. – year: 2019 ident: bib0009 article-title: Methodological reporting behavior, sample sizes, and statistical power in studies of event-related potentials: barriers to reproducibility and replicability publication-title: Psychophysiology – volume: 2 start-page: 170 year: 2017 end-page: 185 ident: bib0027 article-title: A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings publication-title: Clin. Neurophysiol. Pract. – volume: 30 start-page: 547 year: 1993 end-page: 558 ident: bib0046 article-title: Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts publication-title: Psychophysiology – volume: 111 start-page: 49 year: 2015 end-page: 58 ident: bib0041 article-title: Invariance in current dipole moment density across brain structures and species: physiological constraint for neuroimaging publication-title: Neuroimage – volume: 33 start-page: 430 issue: 2 year: 2006 ident: 10.1016/j.neuroimage.2021.117894_bib0007 article-title: The human inferior parietal cortex: cytoarchitectonic parcellation and inter-individual variability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.06.054 – volume: 2 start-page: 170 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0027 article-title: A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings publication-title: Clin. Neurophysiol. Pract. doi: 10.1016/j.cnp.2017.07.002 – volume: 2 start-page: 196 issue: 3 year: 1998 ident: 10.1016/j.neuroimage.2021.117894_bib0030 article-title: HARKing: hypothesizing after the results are known publication-title: Pers. Soc. Psychol. Rev. doi: 10.1207/s15327957pspr0203_4 – volume: 48 start-page: 609 issue: 6 year: 1980 ident: 10.1016/j.neuroimage.2021.117894_bib0035 article-title: Reference-free identification of components of checkerboard-evoked multichannel potential fields publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(80)90419-8 – volume: 1 year: 2011 ident: 10.1016/j.neuroimage.2021.117894_bib0043 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Intell. Neurosci. – year: 2019 ident: 10.1016/j.neuroimage.2021.117894_bib0003 – volume: 1 start-page: 523 year: 2012 ident: 10.1016/j.neuroimage.2021.117894_bib0037 article-title: Event-related potentials publication-title: APA Handb. Res. Methods Psychol. – year: 2005 ident: 10.1016/j.neuroimage.2021.117894_bib0036 article-title: Ten simple rules for designing ERP experiments publication-title: Event-Relat. Potentials: Methods Handb. – volume: 30 start-page: 547 issue: 6 year: 1993 ident: 10.1016/j.neuroimage.2021.117894_bib0046 article-title: Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1993.tb02081.x – volume: 111 start-page: 33 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0033 article-title: Sample size calculations in human electrophysiology (EEG and ERP) studies: a systematic review and recommendations for increased rigor publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2016.06.015 – volume: 22 start-page: 706 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2021.117894_bib0042 article-title: Sulcal pattern and morphology of the superior temporal sulcus publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.01.023 – volume: 23 start-page: 227 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2021.117894_bib0001 article-title: Sensitivity of MEG and EEG to source orientation publication-title: Brain Topogr. doi: 10.1007/s10548-010-0154-x – volume: 28 start-page: 3829 issue: 11 year: 2018 ident: 10.1016/j.neuroimage.2021.117894_bib0010 article-title: Structural variability across the primate brain: a cross-species comparison publication-title: Cereb. Cortex doi: 10.1093/cercor/bhx244 – volume: 16 start-page: 638 issue: 3, Part A year: 2002 ident: 10.1016/j.neuroimage.2021.117894_bib0025 article-title: A Quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex publication-title: Neuroimage doi: 10.1006/nimg.2002.1102 – year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0024 – volume: 105 start-page: 203 issue: 2 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0014 article-title: Open science framework (OSF) publication-title: J. Med. Lib. Assoc. : JMLA – year: 2019 ident: 10.1016/j.neuroimage.2021.117894_bib0009 article-title: Methodological reporting behavior, sample sizes, and statistical power in studies of event-related potentials: barriers to reproducibility and replicability publication-title: Psychophysiology doi: 10.1111/psyp.13437 – volume: 30 start-page: 1077 issue: 4 year: 2009 ident: 10.1016/j.neuroimage.2021.117894_bib0019 article-title: Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20571 – volume: 32 start-page: 11 issue: 1 year: 1987 ident: 10.1016/j.neuroimage.2021.117894_bib0047 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 – volume: 54 start-page: 139 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0020 article-title: Combating the scientific decline effect with confidence (intervals) publication-title: Psychophysiology doi: 10.1111/psyp.12616 – volume: 12 year: 2018 ident: 10.1016/j.neuroimage.2021.117894_bib0026 article-title: A reproducible MEG/EEG group study with the MNE software: recommendations, quality assessments, and good practices publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00530 – volume: 12 start-page: 535 issue: 5 year: 2009 ident: 10.1016/j.neuroimage.2021.117894_bib0032 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nat. Neurosci. doi: 10.1038/nn.2303 – year: 2013 ident: 10.1016/j.neuroimage.2021.117894_bib0006 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. – volume: 65 start-page: 349 year: 2013 ident: 10.1016/j.neuroimage.2021.117894_bib0021 article-title: Good practice for conducting and reporting MEG research publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.10.001 – volume: 62 start-page: 774 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.117894_bib0013 article-title: FreeSurfer publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 65 start-page: 413 issue: 2 year: 1993 ident: 10.1016/j.neuroimage.2021.117894_bib0022 article-title: Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – volume: 53 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2021.117894_bib0011 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.010 – volume: 80 start-page: 190 year: 2013 ident: 10.1016/j.neuroimage.2021.117894_bib0034 article-title: Adding dynamics to the human connectome project with MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.056 – volume: 31 start-page: 140 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2021.117894_bib0002 article-title: Cancellation of EEG and MEG signals generated by extended and distributed sources publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20851 – volume: 54 start-page: 146 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0038 article-title: How to get statistically significant effects in any ERP experiment (and why you shouldn't) publication-title: Psychophysiology doi: 10.1111/psyp.12639 – volume: 51 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2021.117894_bib0029 article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography publication-title: Psychophysiology doi: 10.1111/psyp.12147 – volume: 37 start-page: 127 issue: 02 year: 2000 ident: 10.1016/j.neuroimage.2021.117894_bib0045 article-title: Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria publication-title: Psychophysiology doi: 10.1111/1469-8986.3720127 – volume: 20 start-page: 353 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0004 article-title: Network neuroscience publication-title: Nat. Neurosci. doi: 10.1038/nn.4502 – volume: 120 start-page: 1883 issue: 11 year: 2009 ident: 10.1016/j.neuroimage.2021.117894_bib0012 article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.07.045 – volume: 7 start-page: 185 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0015 article-title: MEG and EEG dipole clusters from extended cortical sources publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-017-0019-2 – volume: 54 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0028 article-title: Introduction to the special issue on recentering science: replication, robustness, and reproducibility in psychophysiology publication-title: Psychophysiology doi: 10.1111/psyp.12787 – year: 2013 ident: 10.1016/j.neuroimage.2021.117894_bib0016 article-title: The garden of forking paths: why multiple comparisons can be a problem, even when there is no “fishing expedition” or “p-hacking” and the research hypothesis was posited ahead of time publication-title: Dep. Stat., Columbia Univ. – volume: 129 start-page: 1720 issue: 8 year: 2018 ident: 10.1016/j.neuroimage.2021.117894_bib0023 article-title: IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.03.042 – year: 2013 ident: 10.1016/j.neuroimage.2021.117894_bib0048 article-title: P-curve: a key to the file drawer (SSRN scholarly paper ID 2256237) publication-title: Soc. Sci. Res. Netw. – volume: 55 start-page: e13049 issue: 6 year: 2018 ident: 10.1016/j.neuroimage.2021.117894_bib0005 article-title: How many trials does it take to get a significant ERP effect? It depends publication-title: Psychophysiology doi: 10.1111/psyp.13049 – volume: 66 start-page: A1 year: 2015 ident: 10.1016/j.neuroimage.2021.117894_bib0008 article-title: Registered reports: realigning incentives in scientific publishing publication-title: Cortex doi: 10.1016/j.cortex.2015.03.022 – start-page: 1 year: 2020 ident: 10.1016/j.neuroimage.2021.117894_bib0044 article-title: Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research publication-title: Nat. Neurosci. – volume: 164 start-page: 177 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2021.117894_bib0039 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2007.03.024 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2021.117894_bib0018 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 536 start-page: 171 issue: 7615 year: 2016 ident: 10.1016/j.neuroimage.2021.117894_bib0017 article-title: A multi-modal parcellation of human cerebral cortex publication-title: Nature doi: 10.1038/nature18933 – year: 2013 ident: 10.1016/j.neuroimage.2021.117894_bib0031 article-title: Bias in a common EEG and MEG statistical analysis and how to avoid it publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2013.03.024 – volume: 111 start-page: 49 year: 2015 ident: 10.1016/j.neuroimage.2021.117894_bib0041 article-title: Invariance in current dipole moment density across brain structures and species: physiological constraint for neuroimaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.02.003 – volume: 15 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2021.117894_bib0049 article-title: Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2000797 – volume: 62 start-page: 2222 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2021.117894_bib0050 article-title: The human connectome project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 27 start-page: 1471 issue: 8 year: 2015 ident: 10.1016/j.neuroimage.2021.117894_bib0040 article-title: Cognitive network neuroscience publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_00810 |
SSID | ssj0009148 |
Score | 2.4261801 |
Snippet | •We simulated evoked MEG experiments with variable number of subjects and trials.•We tested signal detectability at sensor-level (by amplitude, squared... Statistical power is key for robust, replicable science. Here, we systematically explored how numbers of trials and subjects affect statistical power in MEG... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 117894 |
SubjectTerms | Cognitive science Datasets Distance Experiments Life Sciences Medical imaging MEG Methodology Neurons and Cognition Neuroscience Orientation Physiology Pipelines Sensors Simulation Software Source modeling Statistical power Statistics |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVKD4gL4ptAiwLiGnZjO3ZMT6VqWRDLBSr1ZiXOmAZBdtVuOfLbmXGctIHLSlwixfEkzmQyM5af3zD2uuAgSsdl1mB8yCQU86zyoskM9yUHDElNWMFfflaLU_nxrDjbYUfDXhiCVUbf3_v04K1jyyxqc7Zu29kXzAww3BCfVyB9IcZPKTVZ-Zvf1zAPk8t-O1whMuod0Tw9xitwRrY_8c_FmSLPaQWzNHISogKT_yRS3TonyOS_-ejfsMobcerkHrsbE8z0sH-H-2wHugfs9jIuoT9kJaWXgZ0Ze62pRtrb9MMNWHmKWWy6jqWM0uXx-_Syhxo-Yqcnx1-PFlksn5A5peQGj5jK5aoA39SYKNQY64s51NILoSoOjnOAXIFTXnoHha6VqTBWCeOcctxI8ZjtdqsOnrLUeHCVlxoqnL05A5X2vlEACp9UC2USpgeNWRe5xanExQ87gMi-22tdW9K17XWdsHyUXPf8GlvIvKOPMvYnhuzQsLr4ZqOJ2Bx1UDda8Ll2OCmThrtSNy4XNea4lYaEmeGT2mETKrpNvFG7xQAORtmJsW4p_QotaDL6xeEnS23ocecKY8gvnrC9wcBs9CqXlujlBM7fTZGwl-Nl9Ae0yFN1sLqiPrQ0T6xICXvS2-P4KCGoKJFEaT2x1MlYple69jxwjpc5lR7Qz_7rzZ-zO3TWI-322O7m4gr2Mafb1C_CT_sHbkhJ_A priority: 102 providerName: Elsevier – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELbYkNBeJhi_AgMFxGtEYzt2DA9ooI2CKE9M6puVOGdWxNKydvz93MVOuoCE-lKpia9xL-e7c-7Ld4y9KjiI0nGZNRgfMgnFJKu8aDLDfckBQ1LTVfBnX9X0XH6eF_P4wG0dYZW9T-wcdbN09Iz8NVFrCdy7mOLd6ldGXaOouhpbaOyx20RdRpAuPddb0t1chlfhCpGVOCAieQK-q-OLXFziqsVdIs-pelkaOQpPHYv_KErtXRBc8t9c9G9I5Y0YdXaXHcbkMj0J1nCP3YL2iN2ZxfL5ETug1DIwM99n5fAFRVbULO1N-ukGvjzFdDZdxZ5G6ez0Y7oOmMMH7Pzs9NuHaRb7KGROKbnBT8zpclWAb2rMGGoM-sUEaumFUBUHxzlArsApL72DQtfKVBi0hHFOOW6keMj222ULj1lqPLjKSw0VbuOcgUp73ygAhVeqhTIJ0736rIsk49Tr4qft0WQ_7FbxlhRvg-ITlg-Sq0C0sYPMe7pDw3iiyu4OLK--27jybI46qBst-EQ73J1Jw12pG5eLGpPdSkPCTH9_bf82KvpP_KHFDhN4O8jGjCVkIjtKv0RzGs1-evLF0jF0vROFweQ3T9hxb202upe13S6GhL0YTqNjoGpP1cLymsZQjZ7okRL2KBjncCkhqDuRRGk9MtvRXMZn2sVFRz5e5tSDQD_5_7SesgP6owFTd8z2N1fX8Ayzt039vFuifwBCXUMZ priority: 102 providerName: ProQuest |
Title | Statistical power: Implications for planning MEG studies |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921001713 https://dx.doi.org/10.1016/j.neuroimage.2021.117894 https://www.ncbi.nlm.nih.gov/pubmed/33737245 https://www.proquest.com/docview/2517344695 https://www.proquest.com/docview/2503630170 https://hal.science/hal-03006219 https://pubmed.ncbi.nlm.nih.gov/PMC8148377 https://doaj.org/article/1664bd73207c487492c87dc13b161a7e |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELbYkBAvE78XGFVAvAYa27FjeOpQRwe0QohJfbMS56wVsaxiHY_87dzFSWjggT7wkkiJL3YuZ99n3eU7xl5kHETuuEwq9A-JhGycFF5UieE-54AuqWoi-POFmp3J98tsuVXqi3LCAj1wUNyrVClZVlrwsXYIrqXhLteVS0WJWKXQQKsv-rxuM9XR7SLKb_N2QjZXww65usA5intCnlKsMjdy4Iwazv6BT9o7p-TIv5HnnwmUWx7p5A47aKFkPAmvcJfdgPoeuzVvg-X3WU5AsuFhxlZrqob2Oj7dSiCPEa_G67ZoUTyfvouvQlLhA3Z2Mv3ydpa0hRISh9rZ4BFBW6oy8FWJkKBEr56NoZReCFVwcJwDpAqc8tI7yHSpTIFeSRjnlONGiodsv76s4ZDFxoMrvNRQ4D7NGSi095UCUNhTKZSJmO40Zl3LIk7FLL7ZLl3sq_2ta0u6tkHXEUt7yXVg0thB5pg-St-euLCbC2ghtrUQ-y8LiZjpPqntfjfFBRIftNphAG962RaSBKixo_RztKDB6GeTj5au4do6VugtfvCIHXUGZtv148oSkZzAnbrJIvasv40zn8I5RQ2X19SGgvDEfxSxR8Ee-66EoPJDEqX1wFIHYxneqVfnDbt4nlKRAf34f6j-CbtN6gipdUdsf_P9Gp4iiNuUI7b38meKR73UI3ZzcvphtsDz8XTx6fOomcu_AMoRSXU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tnQR7QTC-AgMCgseIxnacGITQBh0tayuENmlvJnEurAjasnYg_in-Rs5xki4gob7sJVI-LnHP5_vo_XwH8DRiyBPDRJCTfQgERt0gLXgeKFYkDMkk5WUGfzSW_WPx_iQ62YDf9V4YC6usdWKpqPOZsf-RP7eltTjFLip6Pf8e2K5RNrtat9BwYnGIv35SyLZ4NXhL8_uMsYPe0Zt-UHUVCIyUYklH8nBCGWGRZ2Q_MzKBURczUXAuU4aGMcRQopGFKAxGcSZVSiqcK2OkYUpweu8mbAlOoUwHtvZ74w8fV2V-Q-E230U8SMJQVdghhygrK1ROvpGeoLiUhTZfmijRMohl34CWXdw8tQDNf73fv0GcF6ziwXW4Vrmz_p6TvxuwgdMduDKqEvY7sG2dWVcL-iYkzQmRzG17thf-4AKi3ScH2p9XXZT8Ue-dv3Aox1twfCk8vg2d6WyKd8FXBZq0EDGmFDgahWlcFLlElPSljEvlQVyzT5uqrLntrvFV1_i1L3rFeG0Zrx3jPQgbyrkr7bEGzb6doeZ5W5y7vDA7-6yrta5D4kGWx5x1Y0PxoFDMJHFuQp6Re53G6IGq51fX-19JY9OLJmsM4GVDW_lIzvdZk_oJiVNr9P29obbXSNl3JZmvH8yD3VradKXQFnq1_Dx43NwmVWTzS-kUZ-f2GYsKsAWZPLjjhLP5FOe2H5Ig6rgltq2xtO9MJ6dlufMktF0P4nv_H9YjuNo_Gg31cDA-vA_b9kc7RN8udJZn5_iAfMdl9rBasD58umwd8QdXCIGS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IU17QTC-AgMCgsdo9UfsGITQYCstWycemNQ3kzg2G4K2rB2If42_jrs4SReQUF_2Eikfl7jn8330fr4j5FnKHM8sE0kJ9iERLu0luedlopnPmAOTVFYZ_NGxHJyI9-N0vEZ-N3thEFbZ6MRKUZdTi_-R72JpLQ6xi053fQ2L-LDffz37nmAHKcy0Nu00gogcul8_IXybvxruw1w_Z6x_8PHtIKk7DCRWSrGAI3g7VKbOlwXY0gLMYdpzhfCcy5w5y5hzVDorvfDWpaqQOgd1zrW10jItOLx3nVxTPKW4xtRYLQv-UhG24aU8ySjVNYooYMuqWpVn30BjQITKKGZOMy06prHqINCxkOunCNX81w_-G855yT72b5DrtWMb7wVJvEnW3GSbbI7q1P022UK3NlSFvkWy9gRIZtio7UU8vIRtj8GVjmd1P6V4dPAunge8421yciUcvkM2JtOJu0di7Z3NvVAuhxDSapcr70vpnIQvFVzqiKiGfcbWBc6xz8ZX0yDZvpgl4w0y3gTGR4S2lLNQ5GMFmjc4Q-3zWKa7ujA9_2zqVW8o8KAoFWc9ZSEyFJrZTJWW8gIc7Vy5iOhmfk2zExZ0N7zobIUBvGxpa28peEErUj8FceqMfrB3ZPAaqP2eBEP2g0Vkp5E2U6u2uVkuxIg8aW-DUsJMUz5x0wt8BvEBWJopIneDcLaf4hw7IwmgVh2x7Yyle2dydloVPs8o9j9Q9_8_rMdkEzSDORoeHz4gW_ibA7Rvh2wszi_cQ3AiF8WjarXG5NNVq4c_5WmEYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+power%3A+Implications+for+planning+MEG+studies&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Chaumon%2C+Maximilien&rft.au=Puce%2C+Aina&rft.au=George%2C+Nathalie&rft.date=2021-06-01&rft.eissn=1095-9572&rft.volume=233&rft.spage=117894&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.117894&rft_id=info%3Apmid%2F33737245&rft.externalDocID=33737245 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |