Vapour-mediated sensing and motility in two-component droplets

Droplets of mixed water and propylene glycol deposited on clean glass exhibit a contact angle but do not suffer from contact line pinning; their motion can be controlled by the vapour emitted from neighbouring droplets to create a variety of autonomous fluidic machines with integrated sensing and mo...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 519; no. 7544; pp. 446 - 450
Main Authors Cira, N. J., Benusiglio, A., Prakash, M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.03.2015
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Droplets of mixed water and propylene glycol deposited on clean glass exhibit a contact angle but do not suffer from contact line pinning; their motion can be controlled by the vapour emitted from neighbouring droplets to create a variety of autonomous fluidic machines with integrated sensing and motility capabilities. 'Dancing' droplets aid liquid handling The ability to control the movement of fluid droplets is of practical use in many applications including microfluidic liquid handling. Existing techniques demand large energy gradients on the solid surfaces on which the droplets are placed or a carefully prepared surface to overcome contact line pinning (an effect which usually limits droplet motion). This paper reports a previously unrecognized phenomenon that could provide a convenient means of manipulating fluid droplets. Droplets consisting of two miscible components in which one component has both a higher vapour pressure and higher surface tension than the other — such as water and propylene glycol — exhibit a contact angle when deposited on a high-energy surface (clean glass), but rest on a fluid film so do not suffer from contact line pinning. The droplets are stabilized by evaporation-induced surface tension gradients and can move under the influence of tiny forces, including the vapour emitted by neighbouring droplets. A wide range of interesting interactions is recorded — for example, one droplet bouncing off another, a droplet 'chasing' another in a circle and a rainbow of different droplets sorted according to their surface tensions. Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings 1 and lubrication 2 . Liquid behaviour on a surface can range from complete spreading, as in the ‘tears of wine’ effect 3 , 4 , to minimal wetting as observed on a superhydrophobic lotus leaf 5 . Controlling droplet movement is important in microfluidic liquid handling 6 , on self-cleaning surfaces 7 and in heat transfer 8 . Droplet motion can be achieved by gradients of surface energy 9 , 10 , 11 , 12 , 13 . However, existing techniques require either a large gradient or a carefully prepared surface 9 to overcome the effects of contact line pinning, which usually limit droplet motion 14 . Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.
AbstractList Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings (1) and lubrication (2). Liquid behaviour on a surface can range from complete spreading, as in the 'tears of wine' effect (3,4), to minimal wetting as observed on a superhydrophobic lotus leaf (5). Controlling droplet movement is important in microfluidic liquid handling (6), on self-cleaning surfaces (7) and in heat transfer (8). Droplet motion can be achieved by gradients of surface energy (9-13). However, existing techniques require either a large gradient or a carefully prepared surface (9) to overcome the effects of contact line pinning, which usually limit droplet motion (14). Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.
Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings1 and lubrication2. Liquid behaviour on a surface can range from complete spreading, as in the 'tears of wine' effect3,4, to minimal wetting as observed on a superhydrophobic lotus leaf5. Controlling droplet movement is important in microfluidic liquid handling6, on self-cleaning surfaces7 and in heat transfer8. Droplet motion can be achieved by gradients of surface energy9-13. However, existing techniques require either a large gradient or a carefully prepared surface9 to overcome the effects of contact line pinning, which usually limit droplet motion14. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.
Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the 'tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.
Controlling the wetting behaviour of liquids on surfaces is import- ant for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the ‘tears of wine’ effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy.However,existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well- chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.
Droplets of mixed water and propylene glycol deposited on clean glass exhibit a contact angle but do not suffer from contact line pinning; their motion can be controlled by the vapour emitted from neighbouring droplets to create a variety of autonomous fluidic machines with integrated sensing and motility capabilities. 'Dancing' droplets aid liquid handling The ability to control the movement of fluid droplets is of practical use in many applications including microfluidic liquid handling. Existing techniques demand large energy gradients on the solid surfaces on which the droplets are placed or a carefully prepared surface to overcome contact line pinning (an effect which usually limits droplet motion). This paper reports a previously unrecognized phenomenon that could provide a convenient means of manipulating fluid droplets. Droplets consisting of two miscible components in which one component has both a higher vapour pressure and higher surface tension than the other — such as water and propylene glycol — exhibit a contact angle when deposited on a high-energy surface (clean glass), but rest on a fluid film so do not suffer from contact line pinning. The droplets are stabilized by evaporation-induced surface tension gradients and can move under the influence of tiny forces, including the vapour emitted by neighbouring droplets. A wide range of interesting interactions is recorded — for example, one droplet bouncing off another, a droplet 'chasing' another in a circle and a rainbow of different droplets sorted according to their surface tensions. Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings 1 and lubrication 2 . Liquid behaviour on a surface can range from complete spreading, as in the ‘tears of wine’ effect 3 , 4 , to minimal wetting as observed on a superhydrophobic lotus leaf 5 . Controlling droplet movement is important in microfluidic liquid handling 6 , on self-cleaning surfaces 7 and in heat transfer 8 . Droplet motion can be achieved by gradients of surface energy 9 , 10 , 11 , 12 , 13 . However, existing techniques require either a large gradient or a carefully prepared surface 9 to overcome the effects of contact line pinning, which usually limit droplet motion 14 . Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.
Audience Academic
Author Prakash, M.
Cira, N. J.
Benusiglio, A.
Author_xml – sequence: 1
  givenname: N. J.
  surname: Cira
  fullname: Cira, N. J.
  organization: Department of Bioengineering, Stanford University, 450 Serra Mall, California 94305, USA
– sequence: 2
  givenname: A.
  surname: Benusiglio
  fullname: Benusiglio, A.
  organization: Department of Bioengineering, Stanford University, 450 Serra Mall, California 94305, USA
– sequence: 3
  givenname: M.
  surname: Prakash
  fullname: Prakash, M.
  email: manup@stanford.edu
  organization: Department of Bioengineering, Stanford University, 450 Serra Mall, California 94305, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25762146$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01338286$$DView record in HAL
BookMark eNp10s1rFDEUAPAgFbutnrzLoBeLTs3XJNmLsCxqC4uCVj2GzCSzpswk0ySj9r83y9Z2t0yZwED4vfeSl3cEDpx3BoDnCJ4iSMQ7p9IYDKKY40dghihnJWWCH4AZhFiUUBB2CI5ivIQQVojTJ-AQV5xhRNkMvP-hBj-GsjfaqmR0EY2L1q0L5XTR-2Q7m64L64r0x5eN74dc26VCBz90JsWn4HGrumie3fyPwfePHy6WZ-Xqy6fz5WJVNozRVNa00pBrJmBLsCBVq_OqhYAMU4jmhDI414zNaV1VhuKaIGxQrduWG1JhhckxONnm_aU6OQTbq3AtvbLybLGSmz2ICBFYsN8o29dbOwR_NZqYZG9jY7pOOePHKBFjPFecc5Hpq3v0MjfD5ZtsFWZI4Du1Vp2R1rU-BdVsksoFhRxjRvGmbDmh1saZoLrctdbm7T3_csI3g72Su-h0AuVPm942k1lP9gKySeZvWqsxRnn-7eu-ffOwXVz8XH7e1y9uejXWeVpuX-H_LN2la4KPMZj2liAoN5MqdyY1a3RPNzapZPMZgrLdAzFvtzExZ3ZrE3aea4L_A_bD86E
CODEN NATUAS
CitedBy_id crossref_primary_10_1016_j_xcrp_2022_101222
crossref_primary_10_1063_5_0142115
crossref_primary_10_1162_artl_a_00330
crossref_primary_10_1016_j_talanta_2023_125015
crossref_primary_10_1039_D1SM00231G
crossref_primary_10_1146_annurev_chembioeng_101121_085056
crossref_primary_10_1073_pnas_1817172116
crossref_primary_10_1021_acs_langmuir_0c03571
crossref_primary_10_1038_s41467_022_28998_y
crossref_primary_10_1021_acs_langmuir_1c01490
crossref_primary_10_1063_1_5139002
crossref_primary_10_1007_s00348_019_2784_4
crossref_primary_10_1021_acs_langmuir_3c01678
crossref_primary_10_1021_acs_langmuir_6b03600
crossref_primary_10_1021_acsanm_0c00990
crossref_primary_10_1021_acs_langmuir_1c02462
crossref_primary_10_1021_acs_langmuir_6b01782
crossref_primary_10_1016_j_physrep_2022_02_005
crossref_primary_10_1039_C5LC90071A
crossref_primary_10_1038_srep45687
crossref_primary_10_1146_annurev_fluid_022321_114001
crossref_primary_10_1063_5_0107471
crossref_primary_10_1186_s43074_023_00095_3
crossref_primary_10_1021_acs_jpclett_4c01977
crossref_primary_10_1016_j_device_2024_100465
crossref_primary_10_1039_D1NR03467G
crossref_primary_10_3390_ma17174196
crossref_primary_10_1021_acs_langmuir_9b02592
crossref_primary_10_1016_j_cej_2023_142549
crossref_primary_10_1002_adma_202207421
crossref_primary_10_1021_acs_langmuir_8b00184
crossref_primary_10_1162_artl_a_00340
crossref_primary_10_1038_srep37042
crossref_primary_10_1021_acs_langmuir_1c02572
crossref_primary_10_1103_PhysRevLett_131_038201
crossref_primary_10_1039_C7SM02361H
crossref_primary_10_1007_s42235_018_0036_6
crossref_primary_10_1021_acs_langmuir_9b02587
crossref_primary_10_1063_1_5005873
crossref_primary_10_1021_acs_langmuir_4c04255
crossref_primary_10_1063_5_0074123
crossref_primary_10_1007_s00339_021_04619_1
crossref_primary_10_1021_acs_jpclett_3c01854
crossref_primary_10_1073_pnas_2203510119
crossref_primary_10_1002_admi_202101309
crossref_primary_10_1126_sciadv_abc1693
crossref_primary_10_1103_PhysRevE_102_023102
crossref_primary_10_1016_j_jcis_2019_01_106
crossref_primary_10_1021_acs_jpclett_4c01031
crossref_primary_10_1039_D2CP02542F
crossref_primary_10_1002_adma_201806501
crossref_primary_10_1002_anie_201710668
crossref_primary_10_1073_pnas_2206994120
crossref_primary_10_1103_PhysRevE_96_032607
crossref_primary_10_1039_D1NR07479B
crossref_primary_10_1063_1_5127284
crossref_primary_10_1063_1_4935251
crossref_primary_10_1016_j_jcp_2017_03_049
crossref_primary_10_1007_s00396_022_05008_7
crossref_primary_10_1021_acs_jpcc_8b08492
crossref_primary_10_1038_s41557_020_00581_2
crossref_primary_10_1016_j_cocis_2022_101623
crossref_primary_10_1002_anie_201603639
crossref_primary_10_1021_acs_langmuir_3c02534
crossref_primary_10_1021_acs_langmuir_3c02776
crossref_primary_10_1103_PhysRevLett_129_084501
crossref_primary_10_3390_pr11040983
crossref_primary_10_1021_acs_langmuir_7b01414
crossref_primary_10_1039_C9TA04770K
crossref_primary_10_1103_PhysRevLett_124_258002
crossref_primary_10_1039_D0CS00268B
crossref_primary_10_1002_advs_202304733
crossref_primary_10_3389_fphy_2021_735651
crossref_primary_10_1002_ange_201710668
crossref_primary_10_1038_s41467_017_01161_8
crossref_primary_10_1016_j_porgcoat_2022_107022
crossref_primary_10_3390_polym11020257
crossref_primary_10_1039_D3LC00806A
crossref_primary_10_1002_advs_202207702
crossref_primary_10_1007_s40544_021_0533_1
crossref_primary_10_1039_C9SM00072K
crossref_primary_10_1016_j_apsusc_2020_145976
crossref_primary_10_1021_acs_langmuir_0c03256
crossref_primary_10_1073_pnas_2121985119
crossref_primary_10_1039_C7TA09475B
crossref_primary_10_1140_epjst_e2019_900127_x
crossref_primary_10_1016_j_molliq_2022_120729
crossref_primary_10_1016_j_porgcoat_2022_106857
crossref_primary_10_1063_5_0037120
crossref_primary_10_5650_jos_ess21091
crossref_primary_10_1038_nphys3643
crossref_primary_10_1002_admi_202001756
crossref_primary_10_1016_j_molliq_2022_118514
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120499
crossref_primary_10_1039_D1SM00414J
crossref_primary_10_1016_j_cub_2020_08_020
crossref_primary_10_1021_acs_langmuir_9b02775
crossref_primary_10_1103_PhysRevE_102_042603
crossref_primary_10_1002_cnma_201800075
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118560
crossref_primary_10_1021_acsami_0c20546
crossref_primary_10_1038_s41467_020_18555_w
crossref_primary_10_1039_C8SM02584C
crossref_primary_10_1039_D0SM00070A
crossref_primary_10_1063_1_4996986
crossref_primary_10_1016_j_colsurfa_2022_128398
crossref_primary_10_1021_acsnano_4c16960
crossref_primary_10_1103_PhysRevLett_127_024501
crossref_primary_10_1002_advs_202300866
crossref_primary_10_1021_acs_langmuir_7b03061
crossref_primary_10_1039_C5SC03184B
crossref_primary_10_1140_epje_s10189_024_00426_7
crossref_primary_10_1126_sciadv_abe6960
crossref_primary_10_1103_PhysRevLett_127_024502
crossref_primary_10_1002_adfm_201707490
crossref_primary_10_1021_acs_langmuir_4c03631
crossref_primary_10_1103_PhysRevFluids_10_013604
crossref_primary_10_1021_acsami_9b09219
crossref_primary_10_1002_anie_201604868
crossref_primary_10_3390_ijms242417462
crossref_primary_10_1016_j_jechem_2024_11_078
crossref_primary_10_1088_2399_6528_ac0100
crossref_primary_10_1002_adma_201503000
crossref_primary_10_1016_j_apmt_2018_08_001
crossref_primary_10_1016_j_colcom_2019_100197
crossref_primary_10_1038_s41467_019_09201_1
crossref_primary_10_1063_5_0071930
crossref_primary_10_1021_acs_iecr_4c00623
crossref_primary_10_1016_j_colsurfa_2019_01_027
crossref_primary_10_1016_j_cej_2018_07_073
crossref_primary_10_1021_acsnano_9b09137
crossref_primary_10_1021_acs_jpclett_8b01742
crossref_primary_10_1039_D0CP01004A
crossref_primary_10_1016_j_elstat_2020_103541
crossref_primary_10_1038_srep37888
crossref_primary_10_1007_s12274_024_6651_0
crossref_primary_10_1016_j_jcis_2021_01_007
crossref_primary_10_1016_j_physd_2021_132949
crossref_primary_10_1140_epjs_s11734_022_00726_z
crossref_primary_10_1038_s41467_024_47889_y
crossref_primary_10_1016_j_apsusc_2020_146052
crossref_primary_10_1021_acs_langmuir_1c01274
crossref_primary_10_1021_acs_langmuir_9b03727
crossref_primary_10_1093_nsr_nwac164
crossref_primary_10_1021_acs_langmuir_1c03457
crossref_primary_10_1002_chem_201902757
crossref_primary_10_1126_sciadv_abq1677
crossref_primary_10_1002_aisy_202300083
crossref_primary_10_1088_2399_6528_aac341
crossref_primary_10_1073_pnas_2020014118
crossref_primary_10_1021_acs_chemrev_2c00045
crossref_primary_10_1021_acs_langmuir_7b04295
crossref_primary_10_1002_advs_201901846
crossref_primary_10_1088_1361_6439_ac1845
crossref_primary_10_1039_D3NR05593K
crossref_primary_10_1111_ics_12816
crossref_primary_10_1002_adma_201604681
crossref_primary_10_1002_nano_202000151
crossref_primary_10_1021_acsami_4c14849
crossref_primary_10_1162_ARTL_a_00243
crossref_primary_10_1039_D4CC02580F
crossref_primary_10_1002_adma_202102349
crossref_primary_10_1038_s41467_022_30834_2
crossref_primary_10_1038_s44286_023_00001_5
crossref_primary_10_1039_D2SM00497F
crossref_primary_10_1016_j_colsurfa_2020_125555
crossref_primary_10_1021_acs_jpclett_0c02419
crossref_primary_10_1002_adma_202108567
crossref_primary_10_34133_2020_6472313
crossref_primary_10_1016_j_snb_2024_135775
crossref_primary_10_1002_adma_202300486
crossref_primary_10_1002_admi_202001441
crossref_primary_10_1021_acs_accounts_6b00499
crossref_primary_10_1016_j_cossms_2022_101017
crossref_primary_10_1080_01457632_2025_2452749
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104397
crossref_primary_10_1073_pnas_2214657120
crossref_primary_10_1021_acs_langmuir_4c01366
crossref_primary_10_1039_D3LC00582H
crossref_primary_10_1017_jfm_2017_312
crossref_primary_10_1002_adma_202201840
crossref_primary_10_1016_j_ces_2024_120530
crossref_primary_10_1021_acs_langmuir_7b03896
crossref_primary_10_1038_s41557_020_00575_0
crossref_primary_10_1109_LMAG_2016_2613065
crossref_primary_10_1021_acs_langmuir_7b01354
crossref_primary_10_1016_j_matdes_2019_108152
crossref_primary_10_1038_srep37671
crossref_primary_10_1002_ange_201604868
crossref_primary_10_1038_s41427_022_00431_2
crossref_primary_10_1088_2053_1583_aac9ff
crossref_primary_10_1016_j_jcis_2024_06_015
crossref_primary_10_1063_1_5140626
crossref_primary_10_1016_j_cej_2021_133206
crossref_primary_10_1016_j_xinn_2023_100508
crossref_primary_10_1016_j_jcis_2021_04_006
crossref_primary_10_1002_adfm_202000138
crossref_primary_10_1021_acsnano_4c17716
crossref_primary_10_1017_jfm_2019_390
crossref_primary_10_1016_j_cell_2016_05_026
crossref_primary_10_1021_acsomega_1c03052
crossref_primary_10_1039_C6SM01565D
crossref_primary_10_1103_PhysRevX_7_021036
crossref_primary_10_1021_acs_langmuir_4c04647
crossref_primary_10_1021_acs_langmuir_7b01120
crossref_primary_10_1063_1_5054632
crossref_primary_10_1016_j_jcis_2020_10_110
crossref_primary_10_1126_sciadv_aba3636
crossref_primary_10_1021_acs_langmuir_6b04514
crossref_primary_10_1021_acsami_5b07006
crossref_primary_10_1021_acsnano_8b04039
crossref_primary_10_1016_j_apmt_2020_100597
crossref_primary_10_1073_pnas_1821493116
crossref_primary_10_1021_acs_jpcb_7b11903
crossref_primary_10_2139_ssrn_4182149
crossref_primary_10_1021_acssuschemeng_7b01462
crossref_primary_10_1021_acs_langmuir_1c01765
crossref_primary_10_1021_acs_langmuir_8b03724
crossref_primary_10_1016_j_apsusc_2015_09_085
crossref_primary_10_1103_PhysRevE_93_063115
crossref_primary_10_1063_5_0064714
crossref_primary_10_1038_s41378_024_00745_x
crossref_primary_10_1021_acs_langmuir_4c02358
crossref_primary_10_1021_acsomega_9b01533
crossref_primary_10_1021_acs_langmuir_2c03344
crossref_primary_10_1002_adfm_202301072
crossref_primary_10_1021_acs_langmuir_5b02482
crossref_primary_10_1002_adfm_202314815
crossref_primary_10_1038_s41598_023_39094_6
crossref_primary_10_1103_PhysRevE_94_042215
crossref_primary_10_1002_adma_202418711
crossref_primary_10_1016_j_colsurfa_2015_07_013
crossref_primary_10_1038_s41467_022_33424_4
crossref_primary_10_3390_systems10020044
crossref_primary_10_1002_ange_201603639
crossref_primary_10_1021_acs_langmuir_9b03800
crossref_primary_10_1126_sciadv_abb5528
crossref_primary_10_1016_j_colsurfa_2016_03_073
crossref_primary_10_3390_systems10020041
crossref_primary_10_1039_C7SM01917C
crossref_primary_10_1002_adma_202311729
crossref_primary_10_1021_acs_langmuir_9b03385
crossref_primary_10_1002_adma_202407034
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105073
crossref_primary_10_1021_acs_langmuir_8b02187
crossref_primary_10_3390_ma8115427
crossref_primary_10_1002_adma_202008557
crossref_primary_10_1002_dro2_12
crossref_primary_10_1007_s10404_020_02376_w
crossref_primary_10_1103_PhysRevFluids_4_041601
crossref_primary_10_1021_acsaem_7b00011
crossref_primary_10_1021_acs_langmuir_3c00634
crossref_primary_10_3390_systems10030071
crossref_primary_10_1002_admi_202101164
crossref_primary_10_7566_JPSJ_86_101004
crossref_primary_10_1016_j_jcis_2016_10_030
crossref_primary_10_1002_admi_201700009
crossref_primary_10_1073_pnas_2216900119
crossref_primary_10_1140_epje_i2019_11759_1
crossref_primary_10_1103_PhysRevE_106_024604
crossref_primary_10_5650_jos_ess21266
crossref_primary_10_1039_C6RA17486H
crossref_primary_10_1021_acs_langmuir_0c00148
crossref_primary_10_1103_PhysRevFluids_7_L022001
crossref_primary_10_1017_jfm_2021_1030
crossref_primary_10_1016_j_jcis_2018_11_055
crossref_primary_10_1002_anie_201607514
crossref_primary_10_1063_5_0128808
crossref_primary_10_1103_PhysRevApplied_11_014065
crossref_primary_10_1002_aisy_202300108
crossref_primary_10_1039_D2NA00421F
crossref_primary_10_1080_14686996_2022_2116293
crossref_primary_10_1126_sciadv_abi7607
crossref_primary_10_1017_jfm_2024_265
crossref_primary_10_1039_C5SM02765A
crossref_primary_10_1039_C6SM00329J
crossref_primary_10_1016_j_nanoen_2020_105647
crossref_primary_10_3390_systems10020026
crossref_primary_10_1007_s10118_021_2619_7
crossref_primary_10_1039_D3SM00389B
crossref_primary_10_7566_JPSJ_94_044006
crossref_primary_10_1021_acs_analchem_2c00178
crossref_primary_10_3390_systems10020029
crossref_primary_10_1016_j_jcis_2017_10_084
crossref_primary_10_1109_TPS_2017_2750482
crossref_primary_10_1039_C7SM00888K
crossref_primary_10_1016_j_progpolymsci_2020_101339
crossref_primary_10_1016_j_colsurfa_2023_132119
crossref_primary_10_1103_PhysRevLett_126_244501
crossref_primary_10_1155_2018_5214924
crossref_primary_10_1016_j_jcis_2022_06_158
crossref_primary_10_1073_pnas_2103215118
crossref_primary_10_1039_D3MH01774E
crossref_primary_10_1016_j_colsurfa_2022_128798
crossref_primary_10_1039_C7NR06642B
crossref_primary_10_3390_systems10030052
crossref_primary_10_1039_D4SM00475B
crossref_primary_10_1002_adma_201704477
crossref_primary_10_1007_s00707_022_03230_6
crossref_primary_10_1063_5_0041346
crossref_primary_10_1063_5_0235219
crossref_primary_10_1002_admi_202000161
crossref_primary_10_1021_acs_langmuir_7b00740
crossref_primary_10_1021_acs_iecr_0c05873
crossref_primary_10_1039_C5SC02338F
crossref_primary_10_1021_acs_langmuir_9b00522
crossref_primary_10_1103_PhysRevFluids_3_073605
crossref_primary_10_1017_jfm_2024_1108
crossref_primary_10_1038_srep26593
crossref_primary_10_1016_j_jpowsour_2017_07_079
crossref_primary_10_1021_acsomega_8b02376
crossref_primary_10_1021_acsnano_0c07417
crossref_primary_10_1021_acs_langmuir_9b03690
crossref_primary_10_1021_acssuschemeng_0c03688
crossref_primary_10_1088_1674_1056_ac7f8c
crossref_primary_10_1016_j_surfin_2023_102811
crossref_primary_10_1021_jacs_3c12882
crossref_primary_10_1063_5_0159895
crossref_primary_10_1162_artl_a_00395
crossref_primary_10_1021_acsami_1c00517
crossref_primary_10_1002_adfm_202212158
crossref_primary_10_1021_acs_langmuir_6b03024
crossref_primary_10_1073_pnas_2120432119
crossref_primary_10_12677_MOS_2022_113044
crossref_primary_10_1021_acs_langmuir_7b01600
crossref_primary_10_1002_ange_201607514
crossref_primary_10_1021_acs_langmuir_3c01893
crossref_primary_10_1021_acs_energyfuels_1c01239
crossref_primary_10_1021_jacs_6b02952
crossref_primary_10_1016_j_cis_2019_07_007
crossref_primary_10_32604_fdmp_2021_014126
crossref_primary_10_1039_C6SM01167E
crossref_primary_10_3390_fluids8050138
crossref_primary_10_1016_j_device_2024_100523
crossref_primary_10_1016_j_jcis_2023_06_113
crossref_primary_10_1016_j_cej_2023_143659
crossref_primary_10_1103_PhysRevLett_118_074504
crossref_primary_10_3788_CJL241060
crossref_primary_10_1007_s13160_020_00427_x
crossref_primary_10_1016_j_snb_2016_03_049
crossref_primary_10_1016_j_pmatsci_2024_101358
crossref_primary_10_1002_adma_201802172
crossref_primary_10_1021_acsami_8b13216
crossref_primary_10_1038_srep40300
crossref_primary_10_1038_s41467_020_15713_y
crossref_primary_10_3390_ma9040253
crossref_primary_10_1140_epje_i2015_15126_0
crossref_primary_10_1017_jfm_2020_1073
crossref_primary_10_1021_acs_jpcc_9b04353
crossref_primary_10_1021_acs_langmuir_1c00455
crossref_primary_10_1038_s41467_023_38366_z
crossref_primary_10_1103_PhysRevLett_119_044502
crossref_primary_10_1088_1361_6633_ab052b
crossref_primary_10_1016_j_jcis_2019_11_006
Cites_doi 10.1021/ie50320a024
10.1073/pnas.1307122110
10.1126/science.288.5471.1624
10.1126/science.283.5398.57
10.1007/s004250050096
10.1021/la00032a052
10.1021/la00076a013
10.1063/1.1308534
10.1126/science.291.5504.633
10.1080/14786445508641982
10.1021/je00007a016
10.1039/tf9383400554
10.1021/jp0118322
10.1002/andp.18712190702
10.1039/B711226B
10.1038/39827
10.1126/science.256.5063.1539
10.1007/978-0-387-21656-0
10.1021/la800630w
10.1103/PhysRevE.89.062316
10.1021/la0475270
10.1103/PhysRevLett.99.234502
10.1021/j100889a012
10.1021/la1007457
10.1021/la030049t
10.1038/352126a0
10.1021/la00086a025
10.1088/0022-3727/12/9/009
10.1021/ba-1964-0043.ch024
10.1016/0166-6622(89)80045-9
10.1021/ba-1964-0043.ch026
ContentType Journal Article
Copyright Springer Nature Limited 2015
COPYRIGHT 2015 Nature Publishing Group
Copyright Nature Publishing Group Mar 26, 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Nature Limited 2015
– notice: COPYRIGHT 2015 Nature Publishing Group
– notice: Copyright Nature Publishing Group Mar 26, 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
ATWCN
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
1XC
VOOES
DOI 10.1038/nature14272
DatabaseName CrossRef
PubMed
Gale In Context: Middle School
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary Curriculum
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological science database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 450
ExternalDocumentID oai_HAL_hal_01338286v1
3639150521
A407226421
25762146
10_1038_nature14272
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
00M
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
3V.
4.4
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88A
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
A8Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAKAS
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABAWZ
ABDBF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACUHS
ACWUS
ADBBV
ADFRT
ADUKH
ADYSU
ADZCM
AENEX
AEUYN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGNAY
AGSOS
AHMBA
AHSBF
AIDAL
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APEBS
ARAPS
ARMCB
ARTTT
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BCU
BDKGC
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CJ0
CS3
D1I
D1J
D1K
DO4
DU5
DWQXO
E.-
E.L
EAD
EAP
EAS
EAZ
EBC
EBD
EBO
EBS
ECC
EE.
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
EPS
ESE
ESN
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
I-F
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
ITC
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M0L
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEJ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P-O
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PM3
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TEORI
TH9
TN5
TSG
TUS
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
ZE2
ZKB
~02
~7V
~88
~8M
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
ADGHP
ADXHL
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
AEIIB
PMFND
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
SOI
7X8
1XC
UMC
VOOES
ID FETCH-LOGICAL-c664t-b45d07d680f32835fd5fdb88062401934609d6694b55e42b312e1bdff7e352a23
IEDL.DBID 8FG
ISSN 0028-0836
IngestDate Fri May 09 12:31:45 EDT 2025
Fri Jul 11 03:54:30 EDT 2025
Fri Jul 25 08:58:50 EDT 2025
Tue Jun 17 21:37:19 EDT 2025
Thu Jun 12 23:46:43 EDT 2025
Tue Jun 10 15:34:57 EDT 2025
Tue Jun 10 20:24:26 EDT 2025
Fri Jun 27 04:46:57 EDT 2025
Fri Jun 27 04:36:30 EDT 2025
Mon Jul 21 06:01:25 EDT 2025
Tue Jul 01 03:21:31 EDT 2025
Thu Apr 24 22:51:04 EDT 2025
Fri Feb 21 02:37:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7544
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-b45d07d680f32835fd5fdb88062401934609d6694b55e42b312e1bdff7e352a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8046-8388
OpenAccessLink https://hal.science/hal-01338286
PMID 25762146
PQID 1667326182
PQPubID 40569
PageCount 5
ParticipantIDs hal_primary_oai_HAL_hal_01338286v1
proquest_miscellaneous_1667346978
proquest_journals_1667326182
gale_infotracmisc_A407226421
gale_infotracgeneralonefile_A407226421
gale_infotraccpiq_407226421
gale_infotracacademiconefile_A407226421
gale_incontextgauss_ISR_A407226421
gale_incontextgauss_ATWCN_A407226421
pubmed_primary_25762146
crossref_primary_10_1038_nature14272
crossref_citationtrail_10_1038_nature14272
springer_journals_10_1038_nature14272
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-26
PublicationDateYYYYMMDD 2015-03-26
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-26
  day: 26
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2015
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Bernett, Zisman (CR21) 1964; 43
Gallardo (CR11) 1999; 283
Chaudhury, Whitesides (CR9) 1992; 256
Carles, Cazabat (CR24) 1989; 41
Dettre, Johnson (CR14) 1965; 69
Brochard (CR26) 1989; 5
Thomson (CR3) 1855; 10
de Gennes, Brochard-Wyart, Quéré (CR15) 2004
Hu, Larson (CR19) 2005; 21
Tanner (CR20) 1979; 12
Theriot, Mitchison (CR30) 1991; 352
Barthlott, Neinhuis (CR5) 1997; 202
Truskett, Stebe (CR18) 2003; 19
Pesach, Marmur (CR22) 1987; 3
CR2
Riegler, Lazar (CR28) 2008; 24
Hoke, Patton (CR16) 1992; 37
Saha, Golestanian, Ramaswamy (CR29) 2014; 89
Brzoska, Brochard-Wyart, Rondelez (CR12) 1993; 9
Pollack, Fair, Shenderov (CR6) 2000; 77
Zhang, Shi, Niu, Jiang, Wang (CR7) 2008; 18
Style (CR13) 2013; 110
Wenzel (CR1) 1936; 28
Deegan (CR17) 1997; 389
Marangoni (CR4) 1871; 219
Karpitschka, Riegler (CR27) 2010; 26
Ichimura, Oh, Nakagawa (CR10) 2000; 288
Daniel, Chaudhury, Chen (CR8) 2001; 291
Hu, Larson (CR25) 2002; 106
Berg (CR31) 2004
Ristenpart, Kim, Domingues, Wan, Stone (CR32) 2007; 99
Bangham, Saweris (CR23) 1938; 34
H Hu (BFnature14272_CR19) 2005; 21
S Daniel (BFnature14272_CR8) 2001; 291
RW Style (BFnature14272_CR13) 2013; 110
C Marangoni (BFnature14272_CR4) 1871; 219
LH Tanner (BFnature14272_CR20) 1979; 12
P Carles (BFnature14272_CR24) 1989; 41
WD Ristenpart (BFnature14272_CR32) 2007; 99
K Ichimura (BFnature14272_CR10) 2000; 288
H Hu (BFnature14272_CR25) 2002; 106
JA Theriot (BFnature14272_CR30) 1991; 352
S Karpitschka (BFnature14272_CR27) 2010; 26
W Barthlott (BFnature14272_CR5) 1997; 202
DH Bangham (BFnature14272_CR23) 1938; 34
BFnature14272_CR2
MK Bernett (BFnature14272_CR21) 1964; 43
HCE Berg (BFnature14272_CR31) 2004
BC Hoke (BFnature14272_CR16) 1992; 37
F Brochard (BFnature14272_CR26) 1989; 5
RD Deegan (BFnature14272_CR17) 1997; 389
JB Brzoska (BFnature14272_CR12) 1993; 9
P-G de Gennes (BFnature14272_CR15) 2004
H Riegler (BFnature14272_CR28) 2008; 24
V Truskett (BFnature14272_CR18) 2003; 19
D Pesach (BFnature14272_CR22) 1987; 3
RH Dettre (BFnature14272_CR14) 1965; 69
MG Pollack (BFnature14272_CR6) 2000; 77
J Thomson (BFnature14272_CR3) 1855; 10
BS Gallardo (BFnature14272_CR11) 1999; 283
MK Chaudhury (BFnature14272_CR9) 1992; 256
X Zhang (BFnature14272_CR7) 2008; 18
RN Wenzel (BFnature14272_CR1) 1936; 28
S Saha (BFnature14272_CR29) 2014; 89
18233371 - Phys Rev Lett. 2007 Dec 7;99(23):234502
17836321 - Science. 1992 Jun 12;256(5063):1539-41
25019785 - Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062316
11158672 - Science. 2001 Jan 26;291(5504):633-6
9872739 - Science. 1999 Jan 1;283(5398):57-60
23798415 - Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12541-4
20557061 - Langmuir. 2010 Jul 20;26(14):11823-9
15835963 - Langmuir. 2005 Apr 26;21(9):3972-80
18517232 - Langmuir. 2008 Jun 1;24(13):6395-8
2067574 - Nature. 1991 Jul 11;352(6331):126-31
10834837 - Science. 2000 Jun 2;288(5471):1624-6
References_xml – volume: 28
  start-page: 988
  year: 1936
  end-page: 994
  ident: CR1
  article-title: Resistance of solid surfaces to wetting by water
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50320a024
– volume: 110
  start-page: 12541
  year: 2013
  end-page: 12544
  ident: CR13
  article-title: Patterning droplets with durotaxis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1307122110
– volume: 288
  start-page: 1624
  year: 2000
  end-page: 1626
  ident: CR10
  article-title: Light-driven motion of liquids on a photoresponsive surface
  publication-title: Science
  doi: 10.1126/science.288.5471.1624
– volume: 283
  start-page: 57
  year: 1999
  end-page: 60
  ident: CR11
  article-title: Electrochemical principles for active control of liquids on submillimeter scales
  publication-title: Science
  doi: 10.1126/science.283.5398.57
– ident: CR2
– volume: 202
  start-page: 1
  year: 1997
  end-page: 8
  ident: CR5
  article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces
  publication-title: Planta
  doi: 10.1007/s004250050096
– volume: 9
  start-page: 2220
  year: 1993
  end-page: 2224
  ident: CR12
  article-title: Motions of droplets on hydrophobic model surfaces induced by thermal gradients
  publication-title: Langmuir
  doi: 10.1021/la00032a052
– volume: 3
  start-page: 519
  year: 1987
  end-page: 524
  ident: CR22
  article-title: Marangoni effects in the spreading of liquid mixtures on a solid
  publication-title: Langmuir
  doi: 10.1021/la00076a013
– volume: 77
  start-page: 1725
  year: 2000
  end-page: 1726
  ident: CR6
  article-title: Electrowetting-based actuation of liquid droplets for microfluidic applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1308534
– volume: 291
  start-page: 633
  year: 2001
  end-page: 636
  ident: CR8
  article-title: Fast drop movements resulting from the phase change on a gradient surface
  publication-title: Science
  doi: 10.1126/science.291.5504.633
– volume: 10
  start-page: 330
  year: 1855
  ident: CR3
  article-title: On certain curious motions observable at the surfaces of wine and other alcoholic liquors
  publication-title: Phil. Mag.
  doi: 10.1080/14786445508641982
– volume: 37
  start-page: 331
  year: 1992
  end-page: 333
  ident: CR16
  article-title: Surface tensions of propylene-glycol plus water
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00007a016
– volume: 34
  start-page: 0554
  year: 1938
  end-page: 0569
  ident: CR23
  article-title: The behaviour of liquid drops and adsorbed films at cleavage surfaces of mica
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9383400554
– volume: 106
  start-page: 1334
  year: 2002
  end-page: 1344
  ident: CR25
  article-title: Evaporation of a sessile droplet on a substrate
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0118322
– volume: 219
  start-page: 337
  year: 1871
  end-page: 354
  ident: CR4
  article-title: Über die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18712190702
– volume: 18
  start-page: 621
  year: 2008
  end-page: 633
  ident: CR7
  article-title: Superhydrophobic surfaces: from structural control to functional application
  publication-title: J. Mater. Chem.
  doi: 10.1039/B711226B
– volume: 389
  start-page: 827
  year: 1997
  end-page: 829
  ident: CR17
  article-title: Capillary flow as the cause of ring stains from dried liquid drops
  publication-title: Nature
  doi: 10.1038/39827
– volume: 256
  start-page: 1539
  year: 1992
  end-page: 1541
  ident: CR9
  article-title: How to make water run uphill
  publication-title: Science
  doi: 10.1126/science.256.5063.1539
– year: 2004
  ident: CR15
  publication-title: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
  doi: 10.1007/978-0-387-21656-0
– volume: 24
  start-page: 6395
  year: 2008
  end-page: 6398
  ident: CR28
  article-title: Delayed coalescence behavior of droplets with completely miscible liquids
  publication-title: Langmuir
  doi: 10.1021/la800630w
– volume: 89
  start-page: 062316
  year: 2014
  ident: CR29
  article-title: Clusters, asters and collective oscillations in chemotactic colloids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.062316
– volume: 21
  start-page: 3972
  year: 2005
  end-page: 3980
  ident: CR19
  article-title: Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet
  publication-title: Langmuir
  doi: 10.1021/la0475270
– volume: 99
  start-page: 234502
  year: 2007
  ident: CR32
  article-title: Influence of substrate conductivity on circulation reversal in evaporating drops
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.234502
– volume: 69
  start-page: 1507
  year: 1965
  end-page: 1515
  ident: CR14
  article-title: Contact angle hysteresis. IV. Contact angle measurements on heterogeneous surfaces
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100889a012
– volume: 26
  start-page: 11823
  year: 2010
  end-page: 11829
  ident: CR27
  article-title: Quantitative experimental study on the transition between fast and delayed coalescence of sessile droplets with different but completely miscible liquids
  publication-title: Langmuir
  doi: 10.1021/la1007457
– volume: 19
  start-page: 8271
  year: 2003
  end-page: 8279
  ident: CR18
  article-title: Influence of surfactants on an evaporating drop: Fluorescence images and particle deposition patterns
  publication-title: Langmuir
  doi: 10.1021/la030049t
– volume: 352
  start-page: 126
  year: 1991
  end-page: 131
  ident: CR30
  article-title: Actin microfilament dynamics in locomoting cells
  publication-title: Nature
  doi: 10.1038/352126a0
– volume: 5
  start-page: 432
  year: 1989
  end-page: 438
  ident: CR26
  article-title: Motions of droplets on solid surfaces induced by chemical or thermal gradients
  publication-title: Langmuir
  doi: 10.1021/la00086a025
– volume: 12
  start-page: 1473
  year: 1979
  end-page: 1484
  ident: CR20
  article-title: Spreading of silicone oil drops on horizontal surfaces
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/12/9/009
– volume: 43
  start-page: 332
  year: 1964
  end-page: 340
  ident: CR21
  article-title: Prevention of liquid spreading or creeping. Contact angle, wettability and adhesion
  publication-title: Adv. Chem. Ser.
  doi: 10.1021/ba-1964-0043.ch024
– volume: 41
  start-page: 97
  year: 1989
  end-page: 105
  ident: CR24
  article-title: Spreading involving the Marangoni effect—some preliminary results
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(89)80045-9
– year: 2004
  ident: CR31
  publication-title: in Motion
– volume-title: in Motion
  year: 2004
  ident: BFnature14272_CR31
– volume: 18
  start-page: 621
  year: 2008
  ident: BFnature14272_CR7
  publication-title: J. Mater. Chem.
  doi: 10.1039/B711226B
– volume: 43
  start-page: 332
  year: 1964
  ident: BFnature14272_CR21
  publication-title: Adv. Chem. Ser.
  doi: 10.1021/ba-1964-0043.ch024
– volume: 12
  start-page: 1473
  year: 1979
  ident: BFnature14272_CR20
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/12/9/009
– volume: 77
  start-page: 1725
  year: 2000
  ident: BFnature14272_CR6
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1308534
– volume: 389
  start-page: 827
  year: 1997
  ident: BFnature14272_CR17
  publication-title: Nature
  doi: 10.1038/39827
– volume: 3
  start-page: 519
  year: 1987
  ident: BFnature14272_CR22
  publication-title: Langmuir
  doi: 10.1021/la00076a013
– volume: 10
  start-page: 330
  year: 1855
  ident: BFnature14272_CR3
  publication-title: Phil. Mag.
  doi: 10.1080/14786445508641982
– volume: 288
  start-page: 1624
  year: 2000
  ident: BFnature14272_CR10
  publication-title: Science
  doi: 10.1126/science.288.5471.1624
– volume: 89
  start-page: 062316
  year: 2014
  ident: BFnature14272_CR29
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.89.062316
– volume: 99
  start-page: 234502
  year: 2007
  ident: BFnature14272_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.234502
– volume: 19
  start-page: 8271
  year: 2003
  ident: BFnature14272_CR18
  publication-title: Langmuir
  doi: 10.1021/la030049t
– volume: 202
  start-page: 1
  year: 1997
  ident: BFnature14272_CR5
  publication-title: Planta
  doi: 10.1007/s004250050096
– volume: 9
  start-page: 2220
  year: 1993
  ident: BFnature14272_CR12
  publication-title: Langmuir
  doi: 10.1021/la00032a052
– volume: 24
  start-page: 6395
  year: 2008
  ident: BFnature14272_CR28
  publication-title: Langmuir
  doi: 10.1021/la800630w
– volume: 106
  start-page: 1334
  year: 2002
  ident: BFnature14272_CR25
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0118322
– volume: 5
  start-page: 432
  year: 1989
  ident: BFnature14272_CR26
  publication-title: Langmuir
  doi: 10.1021/la00086a025
– volume: 256
  start-page: 1539
  year: 1992
  ident: BFnature14272_CR9
  publication-title: Science
  doi: 10.1126/science.256.5063.1539
– volume: 352
  start-page: 126
  year: 1991
  ident: BFnature14272_CR30
  publication-title: Nature
  doi: 10.1038/352126a0
– volume: 283
  start-page: 57
  year: 1999
  ident: BFnature14272_CR11
  publication-title: Science
  doi: 10.1126/science.283.5398.57
– volume-title: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
  year: 2004
  ident: BFnature14272_CR15
  doi: 10.1007/978-0-387-21656-0
– volume: 219
  start-page: 337
  year: 1871
  ident: BFnature14272_CR4
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18712190702
– volume: 34
  start-page: 0554
  year: 1938
  ident: BFnature14272_CR23
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9383400554
– volume: 26
  start-page: 11823
  year: 2010
  ident: BFnature14272_CR27
  publication-title: Langmuir
  doi: 10.1021/la1007457
– volume: 291
  start-page: 633
  year: 2001
  ident: BFnature14272_CR8
  publication-title: Science
  doi: 10.1126/science.291.5504.633
– volume: 41
  start-page: 97
  year: 1989
  ident: BFnature14272_CR24
  publication-title: Colloids Surf.
  doi: 10.1016/0166-6622(89)80045-9
– volume: 69
  start-page: 1507
  year: 1965
  ident: BFnature14272_CR14
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100889a012
– ident: BFnature14272_CR2
  doi: 10.1021/ba-1964-0043.ch026
– volume: 37
  start-page: 331
  year: 1992
  ident: BFnature14272_CR16
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00007a016
– volume: 28
  start-page: 988
  year: 1936
  ident: BFnature14272_CR1
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50320a024
– volume: 21
  start-page: 3972
  year: 2005
  ident: BFnature14272_CR19
  publication-title: Langmuir
  doi: 10.1021/la0475270
– volume: 110
  start-page: 12541
  year: 2013
  ident: BFnature14272_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1307122110
– reference: 25019785 - Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062316
– reference: 17836321 - Science. 1992 Jun 12;256(5063):1539-41
– reference: 11158672 - Science. 2001 Jan 26;291(5504):633-6
– reference: 9872739 - Science. 1999 Jan 1;283(5398):57-60
– reference: 18233371 - Phys Rev Lett. 2007 Dec 7;99(23):234502
– reference: 23798415 - Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12541-4
– reference: 20557061 - Langmuir. 2010 Jul 20;26(14):11823-9
– reference: 2067574 - Nature. 1991 Jul 11;352(6331):126-31
– reference: 15835963 - Langmuir. 2005 Apr 26;21(9):3972-80
– reference: 10834837 - Science. 2000 Jun 2;288(5471):1624-6
– reference: 18517232 - Langmuir. 2008 Jun 1;24(13):6395-8
SSID ssj0005174
Score 2.6171725
Snippet Droplets of mixed water and propylene glycol deposited on clean glass exhibit a contact angle but do not suffer from contact line pinning; their motion can be...
Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and...
Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings (1) and...
Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings1 and...
Controlling the wetting behaviour of liquids on surfaces is import- ant for a variety of industrial applications such as water-repellent coatings and...
SourceID hal
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 446
SubjectTerms 101/62
119/118
13/56
631/57/343/1361
639/301/1005/190
639/301/923/1030
639/766/189
Analysis
Contact angle
Evaporation
Fluid mechanics
Food colorings
Humanities and Social Sciences
letter
Liquids
Materials science
Mechanics
Microfluidics
Motility
multidisciplinary
Physics
Properties
Science
Surface energy
Surface tension
Thin films
Title Vapour-mediated sensing and motility in two-component droplets
URI https://link.springer.com/article/10.1038/nature14272
https://www.ncbi.nlm.nih.gov/pubmed/25762146
https://www.proquest.com/docview/1667326182
https://www.proquest.com/docview/1667346978
https://hal.science/hal-01338286
Volume 519
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfoJiReEBtfYaMKiG_JWuI4jvsCKtVKQahCY4O-WYntlEko6ZYU_n3uUqdr6ECq-lBfHSd357vYP_-OkGeaWaQpD6kFjVMucktlrDUNueGJ4CYUaYO2mIrJGf80i2duwa1ysMp2TmwmalNqXCM_CrE-JaT7kr1bXFCsGoW7q66ERo_shhBpENIlxx-uIB5_sTC783lBJI9WtJkhZwnrRCQ3L_d-ICxyO-fc2i9twtD4Drnt8kd_uFL4Hrlhi31ys8Fx6mqf7DlfrfxXjlD69V3y9lu6gP_R5pQIZJh-haj1Yu6nhfERjIepuH9e-PXvkiLGvCwgFPnmEsHldXWPnI2PT0cT6uomUC0Er2nGYxMkRsggj5BOLTfwycBRBYRvSNi4CAZGiAHP4thylkUhs2Fm8jyxkI6lLLpPdgq40kPia5kaadIwkTEHbxdpovOByW1kojwymnnkTfvslHak4ljb4qdqNrcjqTYetAem0QovVlwa_xBDJShkpygQ_jJPl1WlhqffR1M1REI3hqdzPfL0OrGPX086Qi-dUF7CuHTqDh3A3SHvVUfyoCOpF-cXaqP1Rad1vlLhdd0cdgTBWXV30GBZ67tHbu_J8LPC3wJcLWBS_MI-WsNTbkap1JX9e-TJuhm7R5RcYculk-FikEiPPFgZ7PpS-GKJRdw98ry14I3Ot7Xw6P-DOCC3IHWMEY3HxCHZqS-X9jGkZ3XWJ71klsC3HIX9xh_7ZPf98fTLyR8dgDe2
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxMZX2ICAGF9StMRxHPcBUDUoLSt9gA72ZhLbKZNQ0i0tE_8UfyN3idM1dPA2KU_xxXHsy90l_t3vCHmiqEGa8sAzsOIe45nxRKSUFzDNYs50wJMKbTHi_QP24TA6XCO_m1wYhFU2NrEy1LpQ-I98N8D6lBDuC_pmeuxh1SjcXW1KaNRqsW9-ncInW_lq8BbWd4fS3rvxXt-zVQU8xTmbeSmLtB9rLvwsRLKxTMORghpzcG4QzjDudzTnHZZGkWE0DQNqglRnWWwgWEmQ6ABM_mUWgifHzPTe-zNIyV-szzYf0A_Fbk3TGTAa05YHtH7g0neEYa7GuCv7s5Xb690g12286nZrBdsgaybfJFcq3KgqN8mGtQ2l-9wSWL-4SV5_SaZwnVdlpUBE65aIks8nbpJrF8F_GPq7R7k7Oy08xLQXObg-V58gmH1W3iIHFzKjt8l6Dne6S1wlEi10EsQiYmBdeBKrrKMzE-owC7WiDnnZzJ1UlsQca2n8kNVmeijk0kQ7oIqN8LTm7viHGC6CRDaMHOE2k2RelrI7_ro3kl0kkKOYDeyQx-eJDT5_agk9s0JZAeNSiU1ygKdDnq2W5FZLUk2PjuVS69NW66RewvO62W4JgnFQ7UGDZi2eHrnE-92hxHM-_p2ggv_EPhrFk9aClfLsfXPIo0Uzdo-ovNwUcyvDeCcWDrlTK-ziVvghi0XjHbLTaPBS56urcO__g3hIrvbHH4dyOBjtb5FrELZGiASkfJusz07m5j6EhrP0QfU-uuTbRRuAP1nob6A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZX2ICAGAykqInjOO4DoKqjatlUIdhgbyaxnTIJJd3SMvGv8ddxlziloYO3SX2qL44_zudz_LvfEfJMUYM05YFnYMY9xjPjiUgpL2CaxZzpgCcV2mLMh0fs_XF0vEZ-NbEwCKtsbGJlqHWh8Bt5J8D8lODuC9rJLCziw97g7fTUwwxSeNPapNOoVWTf_DyH41v5erQHc71D6eDdYX_o2QwDnuKczbyURdqPNRd-FiLxWKbhl4JKc9jowLVh3O9qzrssjSLDaBoG1ASpzrLYgOOSIOkBmP-rMfQW15joL8FL_mKAtrGBfig6NWVnwGhMW7uh3ROufENI5qq_u3JXW22Bg1vkpvVd3V6tbBtkzeSb5FqFIVXlJtmwdqJ0dy2Z9cvb5M3nZArPeVWECni3bomI-XziJrl2EQiIxwD3JHdn54WH-PYih23Q1WcIbJ-Vd8jRpYzoXbKew5vuE1eJRAudBLGIGFgansQq6-rMhDrMQq2oQ141YyeVJTTHvBrfZXWxHgq5NNAOqGUjPK15PP4hhpMgkRkjRx2bJPOylL3DL_2x7CGZHMXIYIc8vUhs9OljS-iFFcoKaJdKbMAD9A45t1qSWy1JNT05lUulz1ulk3oKL6pmuyUIhkK1Gw2ateg98ooPewcS__PxSwUV_AfW0SietNaslH_WnkOeLIqxekTo5aaYWxnGu7FwyL1aYRevwkMtJpB3yE6jwUuVr87Cg_834jG5DktfHozG-1vkBniwUQ0K3Cbrs7O5eQhe4ix9VC1Hl3y97PX_G2Vlc5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vapour-mediated+sensing+and+motility+in+two-component+droplets&rft.jtitle=Nature+%28London%29&rft.au=Cira%2C+Nate+J.&rft.au=Benusiglio%2C+Adrien&rft.au=Prakash%2C+Manu&rft.date=2015-03-26&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038%2Fnature14272&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01338286v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon