Vapour-mediated sensing and motility in two-component droplets
Droplets of mixed water and propylene glycol deposited on clean glass exhibit a contact angle but do not suffer from contact line pinning; their motion can be controlled by the vapour emitted from neighbouring droplets to create a variety of autonomous fluidic machines with integrated sensing and mo...
Saved in:
Published in | Nature (London) Vol. 519; no. 7544; pp. 446 - 450 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.03.2015
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Droplets of mixed water and propylene glycol deposited on clean glass exhibit a contact angle but do not suffer from contact line pinning; their motion can be controlled by the vapour emitted from neighbouring droplets to create a variety of autonomous fluidic machines with integrated sensing and motility capabilities.
'Dancing' droplets aid liquid handling
The ability to control the movement of fluid droplets is of practical use in many applications including microfluidic liquid handling. Existing techniques demand large energy gradients on the solid surfaces on which the droplets are placed or a carefully prepared surface to overcome contact line pinning (an effect which usually limits droplet motion). This paper reports a previously unrecognized phenomenon that could provide a convenient means of manipulating fluid droplets. Droplets consisting of two miscible components in which one component has both a higher vapour pressure and higher surface tension than the other — such as water and propylene glycol — exhibit a contact angle when deposited on a high-energy surface (clean glass), but rest on a fluid film so do not suffer from contact line pinning. The droplets are stabilized by evaporation-induced surface tension gradients and can move under the influence of tiny forces, including the vapour emitted by neighbouring droplets. A wide range of interesting interactions is recorded — for example, one droplet bouncing off another, a droplet 'chasing' another in a circle and a rainbow of different droplets sorted according to their surface tensions.
Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings
1
and lubrication
2
. Liquid behaviour on a surface can range from complete spreading, as in the ‘tears of wine’ effect
3
,
4
, to minimal wetting as observed on a superhydrophobic lotus leaf
5
. Controlling droplet movement is important in microfluidic liquid handling
6
, on self-cleaning surfaces
7
and in heat transfer
8
. Droplet motion can be achieved by gradients of surface energy
9
,
10
,
11
,
12
,
13
. However, existing techniques require either a large gradient or a carefully prepared surface
9
to overcome the effects of contact line pinning, which usually limit droplet motion
14
. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials. |
---|---|
AbstractList | Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings (1) and lubrication (2). Liquid behaviour on a surface can range from complete spreading, as in the 'tears of wine' effect (3,4), to minimal wetting as observed on a superhydrophobic lotus leaf (5). Controlling droplet movement is important in microfluidic liquid handling (6), on self-cleaning surfaces (7) and in heat transfer (8). Droplet motion can be achieved by gradients of surface energy (9-13). However, existing techniques require either a large gradient or a carefully prepared surface (9) to overcome the effects of contact line pinning, which usually limit droplet motion (14). Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials. Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings1 and lubrication2. Liquid behaviour on a surface can range from complete spreading, as in the 'tears of wine' effect3,4, to minimal wetting as observed on a superhydrophobic lotus leaf5. Controlling droplet movement is important in microfluidic liquid handling6, on self-cleaning surfaces7 and in heat transfer8. Droplet motion can be achieved by gradients of surface energy9-13. However, existing techniques require either a large gradient or a carefully prepared surface9 to overcome the effects of contact line pinning, which usually limit droplet motion14. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials. Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the 'tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials. Controlling the wetting behaviour of liquids on surfaces is import- ant for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the ‘tears of wine’ effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy.However,existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well- chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials. Droplets of mixed water and propylene glycol deposited on clean glass exhibit a contact angle but do not suffer from contact line pinning; their motion can be controlled by the vapour emitted from neighbouring droplets to create a variety of autonomous fluidic machines with integrated sensing and motility capabilities. 'Dancing' droplets aid liquid handling The ability to control the movement of fluid droplets is of practical use in many applications including microfluidic liquid handling. Existing techniques demand large energy gradients on the solid surfaces on which the droplets are placed or a carefully prepared surface to overcome contact line pinning (an effect which usually limits droplet motion). This paper reports a previously unrecognized phenomenon that could provide a convenient means of manipulating fluid droplets. Droplets consisting of two miscible components in which one component has both a higher vapour pressure and higher surface tension than the other — such as water and propylene glycol — exhibit a contact angle when deposited on a high-energy surface (clean glass), but rest on a fluid film so do not suffer from contact line pinning. The droplets are stabilized by evaporation-induced surface tension gradients and can move under the influence of tiny forces, including the vapour emitted by neighbouring droplets. A wide range of interesting interactions is recorded — for example, one droplet bouncing off another, a droplet 'chasing' another in a circle and a rainbow of different droplets sorted according to their surface tensions. Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings 1 and lubrication 2 . Liquid behaviour on a surface can range from complete spreading, as in the ‘tears of wine’ effect 3 , 4 , to minimal wetting as observed on a superhydrophobic lotus leaf 5 . Controlling droplet movement is important in microfluidic liquid handling 6 , on self-cleaning surfaces 7 and in heat transfer 8 . Droplet motion can be achieved by gradients of surface energy 9 , 10 , 11 , 12 , 13 . However, existing techniques require either a large gradient or a carefully prepared surface 9 to overcome the effects of contact line pinning, which usually limit droplet motion 14 . Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials. |
Audience | Academic |
Author | Prakash, M. Cira, N. J. Benusiglio, A. |
Author_xml | – sequence: 1 givenname: N. J. surname: Cira fullname: Cira, N. J. organization: Department of Bioengineering, Stanford University, 450 Serra Mall, California 94305, USA – sequence: 2 givenname: A. surname: Benusiglio fullname: Benusiglio, A. organization: Department of Bioengineering, Stanford University, 450 Serra Mall, California 94305, USA – sequence: 3 givenname: M. surname: Prakash fullname: Prakash, M. email: manup@stanford.edu organization: Department of Bioengineering, Stanford University, 450 Serra Mall, California 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25762146$$D View this record in MEDLINE/PubMed https://hal.science/hal-01338286$$DView record in HAL |
BookMark | eNp10s1rFDEUAPAgFbutnrzLoBeLTs3XJNmLsCxqC4uCVj2GzCSzpswk0ySj9r83y9Z2t0yZwED4vfeSl3cEDpx3BoDnCJ4iSMQ7p9IYDKKY40dghihnJWWCH4AZhFiUUBB2CI5ivIQQVojTJ-AQV5xhRNkMvP-hBj-GsjfaqmR0EY2L1q0L5XTR-2Q7m64L64r0x5eN74dc26VCBz90JsWn4HGrumie3fyPwfePHy6WZ-Xqy6fz5WJVNozRVNa00pBrJmBLsCBVq_OqhYAMU4jmhDI414zNaV1VhuKaIGxQrduWG1JhhckxONnm_aU6OQTbq3AtvbLybLGSmz2ICBFYsN8o29dbOwR_NZqYZG9jY7pOOePHKBFjPFecc5Hpq3v0MjfD5ZtsFWZI4Du1Vp2R1rU-BdVsksoFhRxjRvGmbDmh1saZoLrctdbm7T3_csI3g72Su-h0AuVPm942k1lP9gKySeZvWqsxRnn-7eu-ffOwXVz8XH7e1y9uejXWeVpuX-H_LN2la4KPMZj2liAoN5MqdyY1a3RPNzapZPMZgrLdAzFvtzExZ3ZrE3aea4L_A_bD86E |
CODEN | NATUAS |
CitedBy_id | crossref_primary_10_1016_j_xcrp_2022_101222 crossref_primary_10_1063_5_0142115 crossref_primary_10_1162_artl_a_00330 crossref_primary_10_1016_j_talanta_2023_125015 crossref_primary_10_1039_D1SM00231G crossref_primary_10_1146_annurev_chembioeng_101121_085056 crossref_primary_10_1073_pnas_1817172116 crossref_primary_10_1021_acs_langmuir_0c03571 crossref_primary_10_1038_s41467_022_28998_y crossref_primary_10_1021_acs_langmuir_1c01490 crossref_primary_10_1063_1_5139002 crossref_primary_10_1007_s00348_019_2784_4 crossref_primary_10_1021_acs_langmuir_3c01678 crossref_primary_10_1021_acs_langmuir_6b03600 crossref_primary_10_1021_acsanm_0c00990 crossref_primary_10_1021_acs_langmuir_1c02462 crossref_primary_10_1021_acs_langmuir_6b01782 crossref_primary_10_1016_j_physrep_2022_02_005 crossref_primary_10_1039_C5LC90071A crossref_primary_10_1038_srep45687 crossref_primary_10_1146_annurev_fluid_022321_114001 crossref_primary_10_1063_5_0107471 crossref_primary_10_1186_s43074_023_00095_3 crossref_primary_10_1021_acs_jpclett_4c01977 crossref_primary_10_1016_j_device_2024_100465 crossref_primary_10_1039_D1NR03467G crossref_primary_10_3390_ma17174196 crossref_primary_10_1021_acs_langmuir_9b02592 crossref_primary_10_1016_j_cej_2023_142549 crossref_primary_10_1002_adma_202207421 crossref_primary_10_1021_acs_langmuir_8b00184 crossref_primary_10_1162_artl_a_00340 crossref_primary_10_1038_srep37042 crossref_primary_10_1021_acs_langmuir_1c02572 crossref_primary_10_1103_PhysRevLett_131_038201 crossref_primary_10_1039_C7SM02361H crossref_primary_10_1007_s42235_018_0036_6 crossref_primary_10_1021_acs_langmuir_9b02587 crossref_primary_10_1063_1_5005873 crossref_primary_10_1021_acs_langmuir_4c04255 crossref_primary_10_1063_5_0074123 crossref_primary_10_1007_s00339_021_04619_1 crossref_primary_10_1021_acs_jpclett_3c01854 crossref_primary_10_1073_pnas_2203510119 crossref_primary_10_1002_admi_202101309 crossref_primary_10_1126_sciadv_abc1693 crossref_primary_10_1103_PhysRevE_102_023102 crossref_primary_10_1016_j_jcis_2019_01_106 crossref_primary_10_1021_acs_jpclett_4c01031 crossref_primary_10_1039_D2CP02542F crossref_primary_10_1002_adma_201806501 crossref_primary_10_1002_anie_201710668 crossref_primary_10_1073_pnas_2206994120 crossref_primary_10_1103_PhysRevE_96_032607 crossref_primary_10_1039_D1NR07479B crossref_primary_10_1063_1_5127284 crossref_primary_10_1063_1_4935251 crossref_primary_10_1016_j_jcp_2017_03_049 crossref_primary_10_1007_s00396_022_05008_7 crossref_primary_10_1021_acs_jpcc_8b08492 crossref_primary_10_1038_s41557_020_00581_2 crossref_primary_10_1016_j_cocis_2022_101623 crossref_primary_10_1002_anie_201603639 crossref_primary_10_1021_acs_langmuir_3c02534 crossref_primary_10_1021_acs_langmuir_3c02776 crossref_primary_10_1103_PhysRevLett_129_084501 crossref_primary_10_3390_pr11040983 crossref_primary_10_1021_acs_langmuir_7b01414 crossref_primary_10_1039_C9TA04770K crossref_primary_10_1103_PhysRevLett_124_258002 crossref_primary_10_1039_D0CS00268B crossref_primary_10_1002_advs_202304733 crossref_primary_10_3389_fphy_2021_735651 crossref_primary_10_1002_ange_201710668 crossref_primary_10_1038_s41467_017_01161_8 crossref_primary_10_1016_j_porgcoat_2022_107022 crossref_primary_10_3390_polym11020257 crossref_primary_10_1039_D3LC00806A crossref_primary_10_1002_advs_202207702 crossref_primary_10_1007_s40544_021_0533_1 crossref_primary_10_1039_C9SM00072K crossref_primary_10_1016_j_apsusc_2020_145976 crossref_primary_10_1021_acs_langmuir_0c03256 crossref_primary_10_1073_pnas_2121985119 crossref_primary_10_1039_C7TA09475B crossref_primary_10_1140_epjst_e2019_900127_x crossref_primary_10_1016_j_molliq_2022_120729 crossref_primary_10_1016_j_porgcoat_2022_106857 crossref_primary_10_1063_5_0037120 crossref_primary_10_5650_jos_ess21091 crossref_primary_10_1038_nphys3643 crossref_primary_10_1002_admi_202001756 crossref_primary_10_1016_j_molliq_2022_118514 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120499 crossref_primary_10_1039_D1SM00414J crossref_primary_10_1016_j_cub_2020_08_020 crossref_primary_10_1021_acs_langmuir_9b02775 crossref_primary_10_1103_PhysRevE_102_042603 crossref_primary_10_1002_cnma_201800075 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118560 crossref_primary_10_1021_acsami_0c20546 crossref_primary_10_1038_s41467_020_18555_w crossref_primary_10_1039_C8SM02584C crossref_primary_10_1039_D0SM00070A crossref_primary_10_1063_1_4996986 crossref_primary_10_1016_j_colsurfa_2022_128398 crossref_primary_10_1021_acsnano_4c16960 crossref_primary_10_1103_PhysRevLett_127_024501 crossref_primary_10_1002_advs_202300866 crossref_primary_10_1021_acs_langmuir_7b03061 crossref_primary_10_1039_C5SC03184B crossref_primary_10_1140_epje_s10189_024_00426_7 crossref_primary_10_1126_sciadv_abe6960 crossref_primary_10_1103_PhysRevLett_127_024502 crossref_primary_10_1002_adfm_201707490 crossref_primary_10_1021_acs_langmuir_4c03631 crossref_primary_10_1103_PhysRevFluids_10_013604 crossref_primary_10_1021_acsami_9b09219 crossref_primary_10_1002_anie_201604868 crossref_primary_10_3390_ijms242417462 crossref_primary_10_1016_j_jechem_2024_11_078 crossref_primary_10_1088_2399_6528_ac0100 crossref_primary_10_1002_adma_201503000 crossref_primary_10_1016_j_apmt_2018_08_001 crossref_primary_10_1016_j_colcom_2019_100197 crossref_primary_10_1038_s41467_019_09201_1 crossref_primary_10_1063_5_0071930 crossref_primary_10_1021_acs_iecr_4c00623 crossref_primary_10_1016_j_colsurfa_2019_01_027 crossref_primary_10_1016_j_cej_2018_07_073 crossref_primary_10_1021_acsnano_9b09137 crossref_primary_10_1021_acs_jpclett_8b01742 crossref_primary_10_1039_D0CP01004A crossref_primary_10_1016_j_elstat_2020_103541 crossref_primary_10_1038_srep37888 crossref_primary_10_1007_s12274_024_6651_0 crossref_primary_10_1016_j_jcis_2021_01_007 crossref_primary_10_1016_j_physd_2021_132949 crossref_primary_10_1140_epjs_s11734_022_00726_z crossref_primary_10_1038_s41467_024_47889_y crossref_primary_10_1016_j_apsusc_2020_146052 crossref_primary_10_1021_acs_langmuir_1c01274 crossref_primary_10_1021_acs_langmuir_9b03727 crossref_primary_10_1093_nsr_nwac164 crossref_primary_10_1021_acs_langmuir_1c03457 crossref_primary_10_1002_chem_201902757 crossref_primary_10_1126_sciadv_abq1677 crossref_primary_10_1002_aisy_202300083 crossref_primary_10_1088_2399_6528_aac341 crossref_primary_10_1073_pnas_2020014118 crossref_primary_10_1021_acs_chemrev_2c00045 crossref_primary_10_1021_acs_langmuir_7b04295 crossref_primary_10_1002_advs_201901846 crossref_primary_10_1088_1361_6439_ac1845 crossref_primary_10_1039_D3NR05593K crossref_primary_10_1111_ics_12816 crossref_primary_10_1002_adma_201604681 crossref_primary_10_1002_nano_202000151 crossref_primary_10_1021_acsami_4c14849 crossref_primary_10_1162_ARTL_a_00243 crossref_primary_10_1039_D4CC02580F crossref_primary_10_1002_adma_202102349 crossref_primary_10_1038_s41467_022_30834_2 crossref_primary_10_1038_s44286_023_00001_5 crossref_primary_10_1039_D2SM00497F crossref_primary_10_1016_j_colsurfa_2020_125555 crossref_primary_10_1021_acs_jpclett_0c02419 crossref_primary_10_1002_adma_202108567 crossref_primary_10_34133_2020_6472313 crossref_primary_10_1016_j_snb_2024_135775 crossref_primary_10_1002_adma_202300486 crossref_primary_10_1002_admi_202001441 crossref_primary_10_1021_acs_accounts_6b00499 crossref_primary_10_1016_j_cossms_2022_101017 crossref_primary_10_1080_01457632_2025_2452749 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104397 crossref_primary_10_1073_pnas_2214657120 crossref_primary_10_1021_acs_langmuir_4c01366 crossref_primary_10_1039_D3LC00582H crossref_primary_10_1017_jfm_2017_312 crossref_primary_10_1002_adma_202201840 crossref_primary_10_1016_j_ces_2024_120530 crossref_primary_10_1021_acs_langmuir_7b03896 crossref_primary_10_1038_s41557_020_00575_0 crossref_primary_10_1109_LMAG_2016_2613065 crossref_primary_10_1021_acs_langmuir_7b01354 crossref_primary_10_1016_j_matdes_2019_108152 crossref_primary_10_1038_srep37671 crossref_primary_10_1002_ange_201604868 crossref_primary_10_1038_s41427_022_00431_2 crossref_primary_10_1088_2053_1583_aac9ff crossref_primary_10_1016_j_jcis_2024_06_015 crossref_primary_10_1063_1_5140626 crossref_primary_10_1016_j_cej_2021_133206 crossref_primary_10_1016_j_xinn_2023_100508 crossref_primary_10_1016_j_jcis_2021_04_006 crossref_primary_10_1002_adfm_202000138 crossref_primary_10_1021_acsnano_4c17716 crossref_primary_10_1017_jfm_2019_390 crossref_primary_10_1016_j_cell_2016_05_026 crossref_primary_10_1021_acsomega_1c03052 crossref_primary_10_1039_C6SM01565D crossref_primary_10_1103_PhysRevX_7_021036 crossref_primary_10_1021_acs_langmuir_4c04647 crossref_primary_10_1021_acs_langmuir_7b01120 crossref_primary_10_1063_1_5054632 crossref_primary_10_1016_j_jcis_2020_10_110 crossref_primary_10_1126_sciadv_aba3636 crossref_primary_10_1021_acs_langmuir_6b04514 crossref_primary_10_1021_acsami_5b07006 crossref_primary_10_1021_acsnano_8b04039 crossref_primary_10_1016_j_apmt_2020_100597 crossref_primary_10_1073_pnas_1821493116 crossref_primary_10_1021_acs_jpcb_7b11903 crossref_primary_10_2139_ssrn_4182149 crossref_primary_10_1021_acssuschemeng_7b01462 crossref_primary_10_1021_acs_langmuir_1c01765 crossref_primary_10_1021_acs_langmuir_8b03724 crossref_primary_10_1016_j_apsusc_2015_09_085 crossref_primary_10_1103_PhysRevE_93_063115 crossref_primary_10_1063_5_0064714 crossref_primary_10_1038_s41378_024_00745_x crossref_primary_10_1021_acs_langmuir_4c02358 crossref_primary_10_1021_acsomega_9b01533 crossref_primary_10_1021_acs_langmuir_2c03344 crossref_primary_10_1002_adfm_202301072 crossref_primary_10_1021_acs_langmuir_5b02482 crossref_primary_10_1002_adfm_202314815 crossref_primary_10_1038_s41598_023_39094_6 crossref_primary_10_1103_PhysRevE_94_042215 crossref_primary_10_1002_adma_202418711 crossref_primary_10_1016_j_colsurfa_2015_07_013 crossref_primary_10_1038_s41467_022_33424_4 crossref_primary_10_3390_systems10020044 crossref_primary_10_1002_ange_201603639 crossref_primary_10_1021_acs_langmuir_9b03800 crossref_primary_10_1126_sciadv_abb5528 crossref_primary_10_1016_j_colsurfa_2016_03_073 crossref_primary_10_3390_systems10020041 crossref_primary_10_1039_C7SM01917C crossref_primary_10_1002_adma_202311729 crossref_primary_10_1021_acs_langmuir_9b03385 crossref_primary_10_1002_adma_202407034 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105073 crossref_primary_10_1021_acs_langmuir_8b02187 crossref_primary_10_3390_ma8115427 crossref_primary_10_1002_adma_202008557 crossref_primary_10_1002_dro2_12 crossref_primary_10_1007_s10404_020_02376_w crossref_primary_10_1103_PhysRevFluids_4_041601 crossref_primary_10_1021_acsaem_7b00011 crossref_primary_10_1021_acs_langmuir_3c00634 crossref_primary_10_3390_systems10030071 crossref_primary_10_1002_admi_202101164 crossref_primary_10_7566_JPSJ_86_101004 crossref_primary_10_1016_j_jcis_2016_10_030 crossref_primary_10_1002_admi_201700009 crossref_primary_10_1073_pnas_2216900119 crossref_primary_10_1140_epje_i2019_11759_1 crossref_primary_10_1103_PhysRevE_106_024604 crossref_primary_10_5650_jos_ess21266 crossref_primary_10_1039_C6RA17486H crossref_primary_10_1021_acs_langmuir_0c00148 crossref_primary_10_1103_PhysRevFluids_7_L022001 crossref_primary_10_1017_jfm_2021_1030 crossref_primary_10_1016_j_jcis_2018_11_055 crossref_primary_10_1002_anie_201607514 crossref_primary_10_1063_5_0128808 crossref_primary_10_1103_PhysRevApplied_11_014065 crossref_primary_10_1002_aisy_202300108 crossref_primary_10_1039_D2NA00421F crossref_primary_10_1080_14686996_2022_2116293 crossref_primary_10_1126_sciadv_abi7607 crossref_primary_10_1017_jfm_2024_265 crossref_primary_10_1039_C5SM02765A crossref_primary_10_1039_C6SM00329J crossref_primary_10_1016_j_nanoen_2020_105647 crossref_primary_10_3390_systems10020026 crossref_primary_10_1007_s10118_021_2619_7 crossref_primary_10_1039_D3SM00389B crossref_primary_10_7566_JPSJ_94_044006 crossref_primary_10_1021_acs_analchem_2c00178 crossref_primary_10_3390_systems10020029 crossref_primary_10_1016_j_jcis_2017_10_084 crossref_primary_10_1109_TPS_2017_2750482 crossref_primary_10_1039_C7SM00888K crossref_primary_10_1016_j_progpolymsci_2020_101339 crossref_primary_10_1016_j_colsurfa_2023_132119 crossref_primary_10_1103_PhysRevLett_126_244501 crossref_primary_10_1155_2018_5214924 crossref_primary_10_1016_j_jcis_2022_06_158 crossref_primary_10_1073_pnas_2103215118 crossref_primary_10_1039_D3MH01774E crossref_primary_10_1016_j_colsurfa_2022_128798 crossref_primary_10_1039_C7NR06642B crossref_primary_10_3390_systems10030052 crossref_primary_10_1039_D4SM00475B crossref_primary_10_1002_adma_201704477 crossref_primary_10_1007_s00707_022_03230_6 crossref_primary_10_1063_5_0041346 crossref_primary_10_1063_5_0235219 crossref_primary_10_1002_admi_202000161 crossref_primary_10_1021_acs_langmuir_7b00740 crossref_primary_10_1021_acs_iecr_0c05873 crossref_primary_10_1039_C5SC02338F crossref_primary_10_1021_acs_langmuir_9b00522 crossref_primary_10_1103_PhysRevFluids_3_073605 crossref_primary_10_1017_jfm_2024_1108 crossref_primary_10_1038_srep26593 crossref_primary_10_1016_j_jpowsour_2017_07_079 crossref_primary_10_1021_acsomega_8b02376 crossref_primary_10_1021_acsnano_0c07417 crossref_primary_10_1021_acs_langmuir_9b03690 crossref_primary_10_1021_acssuschemeng_0c03688 crossref_primary_10_1088_1674_1056_ac7f8c crossref_primary_10_1016_j_surfin_2023_102811 crossref_primary_10_1021_jacs_3c12882 crossref_primary_10_1063_5_0159895 crossref_primary_10_1162_artl_a_00395 crossref_primary_10_1021_acsami_1c00517 crossref_primary_10_1002_adfm_202212158 crossref_primary_10_1021_acs_langmuir_6b03024 crossref_primary_10_1073_pnas_2120432119 crossref_primary_10_12677_MOS_2022_113044 crossref_primary_10_1021_acs_langmuir_7b01600 crossref_primary_10_1002_ange_201607514 crossref_primary_10_1021_acs_langmuir_3c01893 crossref_primary_10_1021_acs_energyfuels_1c01239 crossref_primary_10_1021_jacs_6b02952 crossref_primary_10_1016_j_cis_2019_07_007 crossref_primary_10_32604_fdmp_2021_014126 crossref_primary_10_1039_C6SM01167E crossref_primary_10_3390_fluids8050138 crossref_primary_10_1016_j_device_2024_100523 crossref_primary_10_1016_j_jcis_2023_06_113 crossref_primary_10_1016_j_cej_2023_143659 crossref_primary_10_1103_PhysRevLett_118_074504 crossref_primary_10_3788_CJL241060 crossref_primary_10_1007_s13160_020_00427_x crossref_primary_10_1016_j_snb_2016_03_049 crossref_primary_10_1016_j_pmatsci_2024_101358 crossref_primary_10_1002_adma_201802172 crossref_primary_10_1021_acsami_8b13216 crossref_primary_10_1038_srep40300 crossref_primary_10_1038_s41467_020_15713_y crossref_primary_10_3390_ma9040253 crossref_primary_10_1140_epje_i2015_15126_0 crossref_primary_10_1017_jfm_2020_1073 crossref_primary_10_1021_acs_jpcc_9b04353 crossref_primary_10_1021_acs_langmuir_1c00455 crossref_primary_10_1038_s41467_023_38366_z crossref_primary_10_1103_PhysRevLett_119_044502 crossref_primary_10_1088_1361_6633_ab052b crossref_primary_10_1016_j_jcis_2019_11_006 |
Cites_doi | 10.1021/ie50320a024 10.1073/pnas.1307122110 10.1126/science.288.5471.1624 10.1126/science.283.5398.57 10.1007/s004250050096 10.1021/la00032a052 10.1021/la00076a013 10.1063/1.1308534 10.1126/science.291.5504.633 10.1080/14786445508641982 10.1021/je00007a016 10.1039/tf9383400554 10.1021/jp0118322 10.1002/andp.18712190702 10.1039/B711226B 10.1038/39827 10.1126/science.256.5063.1539 10.1007/978-0-387-21656-0 10.1021/la800630w 10.1103/PhysRevE.89.062316 10.1021/la0475270 10.1103/PhysRevLett.99.234502 10.1021/j100889a012 10.1021/la1007457 10.1021/la030049t 10.1038/352126a0 10.1021/la00086a025 10.1088/0022-3727/12/9/009 10.1021/ba-1964-0043.ch024 10.1016/0166-6622(89)80045-9 10.1021/ba-1964-0043.ch026 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2015 COPYRIGHT 2015 Nature Publishing Group Copyright Nature Publishing Group Mar 26, 2015 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Nature Limited 2015 – notice: COPYRIGHT 2015 Nature Publishing Group – notice: Copyright Nature Publishing Group Mar 26, 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM ATWCN 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 1XC VOOES |
DOI | 10.1038/nature14272 |
DatabaseName | CrossRef PubMed Gale In Context: Middle School ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary Curriculum ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database ProQuest Health & Medical Collection Medical Database Psychology Database Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological science database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 450 |
ExternalDocumentID | oai_HAL_hal_01338286v1 3639150521 A407226421 25762146 10_1038_nature14272 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 00M 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 3V. 4.4 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z A8Z AAEEF AAHBH AAHTB AAIKC AAKAB AAKAS AAMNW AASDW AAYEP AAYZH AAZLF ABAWZ ABDBF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACUHS ACWUS ADBBV ADFRT ADUKH ADYSU ADZCM AENEX AEUYN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGNAY AGSOS AHMBA AHSBF AIDAL AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH APEBS ARAPS ARMCB ARTTT ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B0M BBNVY BCU BDKGC BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BLC BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DO4 DU5 DWQXO E.- E.L EAD EAP EAS EAZ EBC EBD EBO EBS ECC EE. EJD EMB EMF EMH EMK EMOBN EPL EPS ESE ESN ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ I-F IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M0L M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEJ NEPJS O9- OBC OES OHH OMK OVD P-O P2P P62 PATMY PCBAR PDBOC PKN PM3 PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TEORI TH9 TN5 TSG TUS TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ZE2 ZKB ~02 ~7V ~88 ~8M ~KM AARCD AAYXX ABFSG ACMFV ACSTC ADGHP ADXHL AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB AEIIB PMFND 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 SOI 7X8 1XC UMC VOOES |
ID | FETCH-LOGICAL-c664t-b45d07d680f32835fd5fdb88062401934609d6694b55e42b312e1bdff7e352a23 |
IEDL.DBID | 8FG |
ISSN | 0028-0836 |
IngestDate | Fri May 09 12:31:45 EDT 2025 Fri Jul 11 03:54:30 EDT 2025 Fri Jul 25 08:58:50 EDT 2025 Tue Jun 17 21:37:19 EDT 2025 Thu Jun 12 23:46:43 EDT 2025 Tue Jun 10 15:34:57 EDT 2025 Tue Jun 10 20:24:26 EDT 2025 Fri Jun 27 04:46:57 EDT 2025 Fri Jun 27 04:36:30 EDT 2025 Mon Jul 21 06:01:25 EDT 2025 Tue Jul 01 03:21:31 EDT 2025 Thu Apr 24 22:51:04 EDT 2025 Fri Feb 21 02:37:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7544 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-b45d07d680f32835fd5fdb88062401934609d6694b55e42b312e1bdff7e352a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8046-8388 |
OpenAccessLink | https://hal.science/hal-01338286 |
PMID | 25762146 |
PQID | 1667326182 |
PQPubID | 40569 |
PageCount | 5 |
ParticipantIDs | hal_primary_oai_HAL_hal_01338286v1 proquest_miscellaneous_1667346978 proquest_journals_1667326182 gale_infotracmisc_A407226421 gale_infotracgeneralonefile_A407226421 gale_infotraccpiq_407226421 gale_infotracacademiconefile_A407226421 gale_incontextgauss_ISR_A407226421 gale_incontextgauss_ATWCN_A407226421 pubmed_primary_25762146 crossref_primary_10_1038_nature14272 crossref_citationtrail_10_1038_nature14272 springer_journals_10_1038_nature14272 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-26 |
PublicationDateYYYYMMDD | 2015-03-26 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2015 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Bernett, Zisman (CR21) 1964; 43 Gallardo (CR11) 1999; 283 Chaudhury, Whitesides (CR9) 1992; 256 Carles, Cazabat (CR24) 1989; 41 Dettre, Johnson (CR14) 1965; 69 Brochard (CR26) 1989; 5 Thomson (CR3) 1855; 10 de Gennes, Brochard-Wyart, Quéré (CR15) 2004 Hu, Larson (CR19) 2005; 21 Tanner (CR20) 1979; 12 Theriot, Mitchison (CR30) 1991; 352 Barthlott, Neinhuis (CR5) 1997; 202 Truskett, Stebe (CR18) 2003; 19 Pesach, Marmur (CR22) 1987; 3 CR2 Riegler, Lazar (CR28) 2008; 24 Hoke, Patton (CR16) 1992; 37 Saha, Golestanian, Ramaswamy (CR29) 2014; 89 Brzoska, Brochard-Wyart, Rondelez (CR12) 1993; 9 Pollack, Fair, Shenderov (CR6) 2000; 77 Zhang, Shi, Niu, Jiang, Wang (CR7) 2008; 18 Style (CR13) 2013; 110 Wenzel (CR1) 1936; 28 Deegan (CR17) 1997; 389 Marangoni (CR4) 1871; 219 Karpitschka, Riegler (CR27) 2010; 26 Ichimura, Oh, Nakagawa (CR10) 2000; 288 Daniel, Chaudhury, Chen (CR8) 2001; 291 Hu, Larson (CR25) 2002; 106 Berg (CR31) 2004 Ristenpart, Kim, Domingues, Wan, Stone (CR32) 2007; 99 Bangham, Saweris (CR23) 1938; 34 H Hu (BFnature14272_CR19) 2005; 21 S Daniel (BFnature14272_CR8) 2001; 291 RW Style (BFnature14272_CR13) 2013; 110 C Marangoni (BFnature14272_CR4) 1871; 219 LH Tanner (BFnature14272_CR20) 1979; 12 P Carles (BFnature14272_CR24) 1989; 41 WD Ristenpart (BFnature14272_CR32) 2007; 99 K Ichimura (BFnature14272_CR10) 2000; 288 H Hu (BFnature14272_CR25) 2002; 106 JA Theriot (BFnature14272_CR30) 1991; 352 S Karpitschka (BFnature14272_CR27) 2010; 26 W Barthlott (BFnature14272_CR5) 1997; 202 DH Bangham (BFnature14272_CR23) 1938; 34 BFnature14272_CR2 MK Bernett (BFnature14272_CR21) 1964; 43 HCE Berg (BFnature14272_CR31) 2004 BC Hoke (BFnature14272_CR16) 1992; 37 F Brochard (BFnature14272_CR26) 1989; 5 RD Deegan (BFnature14272_CR17) 1997; 389 JB Brzoska (BFnature14272_CR12) 1993; 9 P-G de Gennes (BFnature14272_CR15) 2004 H Riegler (BFnature14272_CR28) 2008; 24 V Truskett (BFnature14272_CR18) 2003; 19 D Pesach (BFnature14272_CR22) 1987; 3 RH Dettre (BFnature14272_CR14) 1965; 69 MG Pollack (BFnature14272_CR6) 2000; 77 J Thomson (BFnature14272_CR3) 1855; 10 BS Gallardo (BFnature14272_CR11) 1999; 283 MK Chaudhury (BFnature14272_CR9) 1992; 256 X Zhang (BFnature14272_CR7) 2008; 18 RN Wenzel (BFnature14272_CR1) 1936; 28 S Saha (BFnature14272_CR29) 2014; 89 18233371 - Phys Rev Lett. 2007 Dec 7;99(23):234502 17836321 - Science. 1992 Jun 12;256(5063):1539-41 25019785 - Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062316 11158672 - Science. 2001 Jan 26;291(5504):633-6 9872739 - Science. 1999 Jan 1;283(5398):57-60 23798415 - Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12541-4 20557061 - Langmuir. 2010 Jul 20;26(14):11823-9 15835963 - Langmuir. 2005 Apr 26;21(9):3972-80 18517232 - Langmuir. 2008 Jun 1;24(13):6395-8 2067574 - Nature. 1991 Jul 11;352(6331):126-31 10834837 - Science. 2000 Jun 2;288(5471):1624-6 |
References_xml | – volume: 28 start-page: 988 year: 1936 end-page: 994 ident: CR1 article-title: Resistance of solid surfaces to wetting by water publication-title: Ind. Eng. Chem. doi: 10.1021/ie50320a024 – volume: 110 start-page: 12541 year: 2013 end-page: 12544 ident: CR13 article-title: Patterning droplets with durotaxis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1307122110 – volume: 288 start-page: 1624 year: 2000 end-page: 1626 ident: CR10 article-title: Light-driven motion of liquids on a photoresponsive surface publication-title: Science doi: 10.1126/science.288.5471.1624 – volume: 283 start-page: 57 year: 1999 end-page: 60 ident: CR11 article-title: Electrochemical principles for active control of liquids on submillimeter scales publication-title: Science doi: 10.1126/science.283.5398.57 – ident: CR2 – volume: 202 start-page: 1 year: 1997 end-page: 8 ident: CR5 article-title: Purity of the sacred lotus, or escape from contamination in biological surfaces publication-title: Planta doi: 10.1007/s004250050096 – volume: 9 start-page: 2220 year: 1993 end-page: 2224 ident: CR12 article-title: Motions of droplets on hydrophobic model surfaces induced by thermal gradients publication-title: Langmuir doi: 10.1021/la00032a052 – volume: 3 start-page: 519 year: 1987 end-page: 524 ident: CR22 article-title: Marangoni effects in the spreading of liquid mixtures on a solid publication-title: Langmuir doi: 10.1021/la00076a013 – volume: 77 start-page: 1725 year: 2000 end-page: 1726 ident: CR6 article-title: Electrowetting-based actuation of liquid droplets for microfluidic applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.1308534 – volume: 291 start-page: 633 year: 2001 end-page: 636 ident: CR8 article-title: Fast drop movements resulting from the phase change on a gradient surface publication-title: Science doi: 10.1126/science.291.5504.633 – volume: 10 start-page: 330 year: 1855 ident: CR3 article-title: On certain curious motions observable at the surfaces of wine and other alcoholic liquors publication-title: Phil. Mag. doi: 10.1080/14786445508641982 – volume: 37 start-page: 331 year: 1992 end-page: 333 ident: CR16 article-title: Surface tensions of propylene-glycol plus water publication-title: J. Chem. Eng. Data doi: 10.1021/je00007a016 – volume: 34 start-page: 0554 year: 1938 end-page: 0569 ident: CR23 article-title: The behaviour of liquid drops and adsorbed films at cleavage surfaces of mica publication-title: Trans. Faraday Soc. doi: 10.1039/tf9383400554 – volume: 106 start-page: 1334 year: 2002 end-page: 1344 ident: CR25 article-title: Evaporation of a sessile droplet on a substrate publication-title: J. Phys. Chem. B doi: 10.1021/jp0118322 – volume: 219 start-page: 337 year: 1871 end-page: 354 ident: CR4 article-title: Über die Ausbreitung der Tropfen einer Flüssigkeit auf der Oberfläche einer anderen publication-title: Ann. Phys. doi: 10.1002/andp.18712190702 – volume: 18 start-page: 621 year: 2008 end-page: 633 ident: CR7 article-title: Superhydrophobic surfaces: from structural control to functional application publication-title: J. Mater. Chem. doi: 10.1039/B711226B – volume: 389 start-page: 827 year: 1997 end-page: 829 ident: CR17 article-title: Capillary flow as the cause of ring stains from dried liquid drops publication-title: Nature doi: 10.1038/39827 – volume: 256 start-page: 1539 year: 1992 end-page: 1541 ident: CR9 article-title: How to make water run uphill publication-title: Science doi: 10.1126/science.256.5063.1539 – year: 2004 ident: CR15 publication-title: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves doi: 10.1007/978-0-387-21656-0 – volume: 24 start-page: 6395 year: 2008 end-page: 6398 ident: CR28 article-title: Delayed coalescence behavior of droplets with completely miscible liquids publication-title: Langmuir doi: 10.1021/la800630w – volume: 89 start-page: 062316 year: 2014 ident: CR29 article-title: Clusters, asters and collective oscillations in chemotactic colloids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.062316 – volume: 21 start-page: 3972 year: 2005 end-page: 3980 ident: CR19 article-title: Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet publication-title: Langmuir doi: 10.1021/la0475270 – volume: 99 start-page: 234502 year: 2007 ident: CR32 article-title: Influence of substrate conductivity on circulation reversal in evaporating drops publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.234502 – volume: 69 start-page: 1507 year: 1965 end-page: 1515 ident: CR14 article-title: Contact angle hysteresis. IV. Contact angle measurements on heterogeneous surfaces publication-title: J. Phys. Chem. doi: 10.1021/j100889a012 – volume: 26 start-page: 11823 year: 2010 end-page: 11829 ident: CR27 article-title: Quantitative experimental study on the transition between fast and delayed coalescence of sessile droplets with different but completely miscible liquids publication-title: Langmuir doi: 10.1021/la1007457 – volume: 19 start-page: 8271 year: 2003 end-page: 8279 ident: CR18 article-title: Influence of surfactants on an evaporating drop: Fluorescence images and particle deposition patterns publication-title: Langmuir doi: 10.1021/la030049t – volume: 352 start-page: 126 year: 1991 end-page: 131 ident: CR30 article-title: Actin microfilament dynamics in locomoting cells publication-title: Nature doi: 10.1038/352126a0 – volume: 5 start-page: 432 year: 1989 end-page: 438 ident: CR26 article-title: Motions of droplets on solid surfaces induced by chemical or thermal gradients publication-title: Langmuir doi: 10.1021/la00086a025 – volume: 12 start-page: 1473 year: 1979 end-page: 1484 ident: CR20 article-title: Spreading of silicone oil drops on horizontal surfaces publication-title: J. Phys. D doi: 10.1088/0022-3727/12/9/009 – volume: 43 start-page: 332 year: 1964 end-page: 340 ident: CR21 article-title: Prevention of liquid spreading or creeping. Contact angle, wettability and adhesion publication-title: Adv. Chem. Ser. doi: 10.1021/ba-1964-0043.ch024 – volume: 41 start-page: 97 year: 1989 end-page: 105 ident: CR24 article-title: Spreading involving the Marangoni effect—some preliminary results publication-title: Colloids Surf. doi: 10.1016/0166-6622(89)80045-9 – year: 2004 ident: CR31 publication-title: in Motion – volume-title: in Motion year: 2004 ident: BFnature14272_CR31 – volume: 18 start-page: 621 year: 2008 ident: BFnature14272_CR7 publication-title: J. Mater. Chem. doi: 10.1039/B711226B – volume: 43 start-page: 332 year: 1964 ident: BFnature14272_CR21 publication-title: Adv. Chem. Ser. doi: 10.1021/ba-1964-0043.ch024 – volume: 12 start-page: 1473 year: 1979 ident: BFnature14272_CR20 publication-title: J. Phys. D doi: 10.1088/0022-3727/12/9/009 – volume: 77 start-page: 1725 year: 2000 ident: BFnature14272_CR6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1308534 – volume: 389 start-page: 827 year: 1997 ident: BFnature14272_CR17 publication-title: Nature doi: 10.1038/39827 – volume: 3 start-page: 519 year: 1987 ident: BFnature14272_CR22 publication-title: Langmuir doi: 10.1021/la00076a013 – volume: 10 start-page: 330 year: 1855 ident: BFnature14272_CR3 publication-title: Phil. Mag. doi: 10.1080/14786445508641982 – volume: 288 start-page: 1624 year: 2000 ident: BFnature14272_CR10 publication-title: Science doi: 10.1126/science.288.5471.1624 – volume: 89 start-page: 062316 year: 2014 ident: BFnature14272_CR29 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.062316 – volume: 99 start-page: 234502 year: 2007 ident: BFnature14272_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.234502 – volume: 19 start-page: 8271 year: 2003 ident: BFnature14272_CR18 publication-title: Langmuir doi: 10.1021/la030049t – volume: 202 start-page: 1 year: 1997 ident: BFnature14272_CR5 publication-title: Planta doi: 10.1007/s004250050096 – volume: 9 start-page: 2220 year: 1993 ident: BFnature14272_CR12 publication-title: Langmuir doi: 10.1021/la00032a052 – volume: 24 start-page: 6395 year: 2008 ident: BFnature14272_CR28 publication-title: Langmuir doi: 10.1021/la800630w – volume: 106 start-page: 1334 year: 2002 ident: BFnature14272_CR25 publication-title: J. Phys. Chem. B doi: 10.1021/jp0118322 – volume: 5 start-page: 432 year: 1989 ident: BFnature14272_CR26 publication-title: Langmuir doi: 10.1021/la00086a025 – volume: 256 start-page: 1539 year: 1992 ident: BFnature14272_CR9 publication-title: Science doi: 10.1126/science.256.5063.1539 – volume: 352 start-page: 126 year: 1991 ident: BFnature14272_CR30 publication-title: Nature doi: 10.1038/352126a0 – volume: 283 start-page: 57 year: 1999 ident: BFnature14272_CR11 publication-title: Science doi: 10.1126/science.283.5398.57 – volume-title: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves year: 2004 ident: BFnature14272_CR15 doi: 10.1007/978-0-387-21656-0 – volume: 219 start-page: 337 year: 1871 ident: BFnature14272_CR4 publication-title: Ann. Phys. doi: 10.1002/andp.18712190702 – volume: 34 start-page: 0554 year: 1938 ident: BFnature14272_CR23 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9383400554 – volume: 26 start-page: 11823 year: 2010 ident: BFnature14272_CR27 publication-title: Langmuir doi: 10.1021/la1007457 – volume: 291 start-page: 633 year: 2001 ident: BFnature14272_CR8 publication-title: Science doi: 10.1126/science.291.5504.633 – volume: 41 start-page: 97 year: 1989 ident: BFnature14272_CR24 publication-title: Colloids Surf. doi: 10.1016/0166-6622(89)80045-9 – volume: 69 start-page: 1507 year: 1965 ident: BFnature14272_CR14 publication-title: J. Phys. Chem. doi: 10.1021/j100889a012 – ident: BFnature14272_CR2 doi: 10.1021/ba-1964-0043.ch026 – volume: 37 start-page: 331 year: 1992 ident: BFnature14272_CR16 publication-title: J. Chem. Eng. Data doi: 10.1021/je00007a016 – volume: 28 start-page: 988 year: 1936 ident: BFnature14272_CR1 publication-title: Ind. Eng. Chem. doi: 10.1021/ie50320a024 – volume: 21 start-page: 3972 year: 2005 ident: BFnature14272_CR19 publication-title: Langmuir doi: 10.1021/la0475270 – volume: 110 start-page: 12541 year: 2013 ident: BFnature14272_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1307122110 – reference: 25019785 - Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062316 – reference: 17836321 - Science. 1992 Jun 12;256(5063):1539-41 – reference: 11158672 - Science. 2001 Jan 26;291(5504):633-6 – reference: 9872739 - Science. 1999 Jan 1;283(5398):57-60 – reference: 18233371 - Phys Rev Lett. 2007 Dec 7;99(23):234502 – reference: 23798415 - Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12541-4 – reference: 20557061 - Langmuir. 2010 Jul 20;26(14):11823-9 – reference: 2067574 - Nature. 1991 Jul 11;352(6331):126-31 – reference: 15835963 - Langmuir. 2005 Apr 26;21(9):3972-80 – reference: 10834837 - Science. 2000 Jun 2;288(5471):1624-6 – reference: 18517232 - Langmuir. 2008 Jun 1;24(13):6395-8 |
SSID | ssj0005174 |
Score | 2.6171725 |
Snippet | Droplets of mixed water and propylene glycol deposited on clean glass exhibit a contact angle but do not suffer from contact line pinning; their motion can be... Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and... Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings (1) and... Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings1 and... Controlling the wetting behaviour of liquids on surfaces is import- ant for a variety of industrial applications such as water-repellent coatings and... |
SourceID | hal proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 446 |
SubjectTerms | 101/62 119/118 13/56 631/57/343/1361 639/301/1005/190 639/301/923/1030 639/766/189 Analysis Contact angle Evaporation Fluid mechanics Food colorings Humanities and Social Sciences letter Liquids Materials science Mechanics Microfluidics Motility multidisciplinary Physics Properties Science Surface energy Surface tension Thin films |
Title | Vapour-mediated sensing and motility in two-component droplets |
URI | https://link.springer.com/article/10.1038/nature14272 https://www.ncbi.nlm.nih.gov/pubmed/25762146 https://www.proquest.com/docview/1667326182 https://www.proquest.com/docview/1667346978 https://hal.science/hal-01338286 |
Volume | 519 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfoJiReEBtfYaMKiG_JWuI4jvsCKtVKQahCY4O-WYntlEko6ZYU_n3uUqdr6ECq-lBfHSd357vYP_-OkGeaWaQpD6kFjVMucktlrDUNueGJ4CYUaYO2mIrJGf80i2duwa1ysMp2TmwmalNqXCM_CrE-JaT7kr1bXFCsGoW7q66ERo_shhBpENIlxx-uIB5_sTC783lBJI9WtJkhZwnrRCQ3L_d-ICxyO-fc2i9twtD4Drnt8kd_uFL4Hrlhi31ys8Fx6mqf7DlfrfxXjlD69V3y9lu6gP_R5pQIZJh-haj1Yu6nhfERjIepuH9e-PXvkiLGvCwgFPnmEsHldXWPnI2PT0cT6uomUC0Er2nGYxMkRsggj5BOLTfwycBRBYRvSNi4CAZGiAHP4thylkUhs2Fm8jyxkI6lLLpPdgq40kPia5kaadIwkTEHbxdpovOByW1kojwymnnkTfvslHak4ljb4qdqNrcjqTYetAem0QovVlwa_xBDJShkpygQ_jJPl1WlhqffR1M1REI3hqdzPfL0OrGPX086Qi-dUF7CuHTqDh3A3SHvVUfyoCOpF-cXaqP1Rad1vlLhdd0cdgTBWXV30GBZ67tHbu_J8LPC3wJcLWBS_MI-WsNTbkap1JX9e-TJuhm7R5RcYculk-FikEiPPFgZ7PpS-GKJRdw98ry14I3Ot7Xw6P-DOCC3IHWMEY3HxCHZqS-X9jGkZ3XWJ71klsC3HIX9xh_7ZPf98fTLyR8dgDe2 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxMZX2ICAGF9StMRxHPcBUDUoLSt9gA72ZhLbKZNQ0i0tE_8UfyN3idM1dPA2KU_xxXHsy90l_t3vCHmiqEGa8sAzsOIe45nxRKSUFzDNYs50wJMKbTHi_QP24TA6XCO_m1wYhFU2NrEy1LpQ-I98N8D6lBDuC_pmeuxh1SjcXW1KaNRqsW9-ncInW_lq8BbWd4fS3rvxXt-zVQU8xTmbeSmLtB9rLvwsRLKxTMORghpzcG4QzjDudzTnHZZGkWE0DQNqglRnWWwgWEmQ6ABM_mUWgifHzPTe-zNIyV-szzYf0A_Fbk3TGTAa05YHtH7g0neEYa7GuCv7s5Xb690g12286nZrBdsgaybfJFcq3KgqN8mGtQ2l-9wSWL-4SV5_SaZwnVdlpUBE65aIks8nbpJrF8F_GPq7R7k7Oy08xLQXObg-V58gmH1W3iIHFzKjt8l6Dne6S1wlEi10EsQiYmBdeBKrrKMzE-owC7WiDnnZzJ1UlsQca2n8kNVmeijk0kQ7oIqN8LTm7viHGC6CRDaMHOE2k2RelrI7_ro3kl0kkKOYDeyQx-eJDT5_agk9s0JZAeNSiU1ygKdDnq2W5FZLUk2PjuVS69NW66RewvO62W4JgnFQ7UGDZi2eHrnE-92hxHM-_p2ggv_EPhrFk9aClfLsfXPIo0Uzdo-ovNwUcyvDeCcWDrlTK-ziVvghi0XjHbLTaPBS56urcO__g3hIrvbHH4dyOBjtb5FrELZGiASkfJusz07m5j6EhrP0QfU-uuTbRRuAP1nob6A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIgXxMZX2ICAGAykqInjOO4DoKqjatlUIdhgbyaxnTIJJd3SMvGv8ddxlziloYO3SX2qL44_zudz_LvfEfJMUYM05YFnYMY9xjPjiUgpL2CaxZzpgCcV2mLMh0fs_XF0vEZ-NbEwCKtsbGJlqHWh8Bt5J8D8lODuC9rJLCziw97g7fTUwwxSeNPapNOoVWTf_DyH41v5erQHc71D6eDdYX_o2QwDnuKczbyURdqPNRd-FiLxWKbhl4JKc9jowLVh3O9qzrssjSLDaBoG1ASpzrLYgOOSIOkBmP-rMfQW15joL8FL_mKAtrGBfig6NWVnwGhMW7uh3ROufENI5qq_u3JXW22Bg1vkpvVd3V6tbBtkzeSb5FqFIVXlJtmwdqJ0dy2Z9cvb5M3nZArPeVWECni3bomI-XziJrl2EQiIxwD3JHdn54WH-PYih23Q1WcIbJ-Vd8jRpYzoXbKew5vuE1eJRAudBLGIGFgansQq6-rMhDrMQq2oQ141YyeVJTTHvBrfZXWxHgq5NNAOqGUjPK15PP4hhpMgkRkjRx2bJPOylL3DL_2x7CGZHMXIYIc8vUhs9OljS-iFFcoKaJdKbMAD9A45t1qSWy1JNT05lUulz1ulk3oKL6pmuyUIhkK1Gw2ateg98ooPewcS__PxSwUV_AfW0SietNaslH_WnkOeLIqxekTo5aaYWxnGu7FwyL1aYRevwkMtJpB3yE6jwUuVr87Cg_834jG5DktfHozG-1vkBniwUQ0K3Cbrs7O5eQhe4ix9VC1Hl3y97PX_G2Vlc5o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vapour-mediated+sensing+and+motility+in+two-component+droplets&rft.jtitle=Nature+%28London%29&rft.au=Cira%2C+Nate+J.&rft.au=Benusiglio%2C+Adrien&rft.au=Prakash%2C+Manu&rft.date=2015-03-26&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038%2Fnature14272&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01338286v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |