Genome-wide analysis and functional annotation of chromatin-enriched noncoding RNAs in rice during somatic cell regeneration
Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RN...
Saved in:
Published in | Genome Biology Vol. 23; no. 1; p. 28 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central
19.01.2022
BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified.
To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits.
cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future. |
---|---|
AbstractList | Abstract Background Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified. Results To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits. Conclusions cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future. Background Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified. Results To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits. Conclusions cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future. Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified.BACKGROUNDPlants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified.To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits.RESULTSTo uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits.cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future.CONCLUSIONScheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future. Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin remodeling is required for this cell fate transition, but how the process is regulated is not fully understood. Chromatin-enriched noncoding RNAs (cheRNAs) are thought to play important roles in maintaining chromatin state. However, whether cheRNAs participate in somatic cell regeneration in plants has not yet been clarified. To uncover the characteristics and functions of cheRNAs during somatic cell reprogramming in plants, we systematically investigate cheRNAs during callus induction, proliferation and regeneration in rice. We identify 2284 cheRNAs, most of which are novel long non-coding RNAs or small nucleolar RNAs. These cheRNAs, which are highly conserved across plant species, shuttle between chromatin and the nucleoplasm during somatic cell regeneration. They positively regulate the expression of neighboring genes via specific RNA motifs, which may interact with DNA motifs around cheRNA loci. Large-scale mutant analysis shows that cheRNAs are associated with plant size and seed morphology. Further detailed functional investigation of two che-lncRNAs demonstrates that their loss of function impairs cell dedifferentiation and plant regeneration, highlighting the functions of cheRNAs in regulating the expression of neighboring genes via specific motifs. These findings support cis- regulatory roles of cheRNAs in influencing a variety of rice traits. cheRNAs are a distinct subclass of regulatory non-coding RNAs that are required for somatic cell regeneration and regulate rice traits. Targeting cheRNAs has great potential for crop trait improvement and breeding in future. |
ArticleNumber | 28 |
Author | Huang, Jia-Hui Xiao, Shi Cheng, Yu Yang, Lu Lei, Meng-Qi Zhou, Yan-Fei Zhang, Yu-Chan Chen, Yue-Qin Zhao, Wen-Long Lian, Jian-Ping Yuan, Chao He, Rui-Rui Liu, Yu-Wei |
Author_xml | – sequence: 1 givenname: Yu-Chan surname: Zhang fullname: Zhang, Yu-Chan – sequence: 2 givenname: Yan-Fei surname: Zhou fullname: Zhou, Yan-Fei – sequence: 3 givenname: Yu surname: Cheng fullname: Cheng, Yu – sequence: 4 givenname: Jia-Hui surname: Huang fullname: Huang, Jia-Hui – sequence: 5 givenname: Jian-Ping surname: Lian fullname: Lian, Jian-Ping – sequence: 6 givenname: Lu surname: Yang fullname: Yang, Lu – sequence: 7 givenname: Rui-Rui surname: He fullname: He, Rui-Rui – sequence: 8 givenname: Meng-Qi surname: Lei fullname: Lei, Meng-Qi – sequence: 9 givenname: Yu-Wei surname: Liu fullname: Liu, Yu-Wei – sequence: 10 givenname: Chao surname: Yuan fullname: Yuan, Chao – sequence: 11 givenname: Wen-Long surname: Zhao fullname: Zhao, Wen-Long – sequence: 12 givenname: Shi surname: Xiao fullname: Xiao, Shi – sequence: 13 givenname: Yue-Qin surname: Chen fullname: Chen, Yue-Qin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35045887$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl1rFDEUHaRiP_QP-CABX3wZTSaZJPMilGJroSiIgm_hTnJnN8tsUpOdyoI_vtmdVto-iA8h9-Pcw0nuOa4OQgxYVa8Zfc-Ylh8y47Ttato05Uiq6-2z6ogJJWol6c-DB_FhdZzzilLWiUa-qA55S0WrtTqq_lxgiGusf3uHBAKM2-xzCRwZpmA3PpZSSUPcwC4hcSB2meK6ZKHGkLxdoiNFmI3OhwX59uU0Ex9IaSBxU9rV8h5uicVxJAkXGDDt2V5WzwcYM766u0-qH-efvp99rq--XlyenV7VVkqxqQF03ysprETKO8Gllr2jvcauFZ21SriBOuf6VvTIAVALRjXltrEwwKA7flJdzrwuwspcJ7-GtDURvNkXYloYSEXhiIbywbWWQ98CCGiavkclwGlJFVUcROH6OHNdT_0ancWwSTA-In3cCX5pFvHGaKWasrZC8O6OIMVfE-aNWfu8-xoIGKdsGim05qrt6H9AGyZbRbUs0LdPoKs4pbK8GUWFZoIV1JuH4v-qvvdDAegZYFPMOeFgrJ83X97iR8Oo2VnPzNYzxXpmbz2zLaPNk9F79n8M3QIVUN8L |
CitedBy_id | crossref_primary_10_1016_j_pbi_2022_102265 crossref_primary_10_1016_j_tplants_2024_01_006 crossref_primary_10_3390_genes15081079 crossref_primary_10_3390_plants13152112 crossref_primary_10_1007_s11240_024_02779_5 crossref_primary_10_1360_SSV_2024_0140 crossref_primary_10_1093_plcell_koad027 crossref_primary_10_1111_nph_19679 crossref_primary_10_3390_plants11233223 crossref_primary_10_1007_s00299_023_02992_0 crossref_primary_10_3389_fpls_2022_1049631 crossref_primary_10_1371_journal_pcbi_1011576 crossref_primary_10_1016_j_fmre_2023_02_020 crossref_primary_10_3390_cancers16030483 crossref_primary_10_1111_jipb_13420 crossref_primary_10_1016_j_celrep_2024_114137 |
Cites_doi | 10.1093/nar/gkaa910 10.1016/j.cell.2008.01.040 10.1016/j.devcel.2016.12.021 10.1105/tpc.012559 10.3390/ncrna7010012 10.1016/j.jplph.2020.153167 10.1093/nar/gkz037 10.1126/science.1197349 10.1038/s41467-020-14337-6 10.1242/dev.128.23.4681 10.1016/j.molcel.2019.12.015 10.1016/j.tplants.2017.11.009 10.1093/nar/gkg373 10.1038/s41467-020-19879-3 10.1007/s00709-013-0553-4 10.1016/j.molcel.2014.06.011 10.1016/j.bbagen.2007.11.005 10.1093/nar/gky025 10.1101/gr.3715005 10.1186/s13059-016-0878-3 10.1046/j.1365-313x.2000.00767.x 10.1093/nar/gkx382 10.1093/bioinformatics/btt656 10.1126/sciadv.aau7246 10.1093/bioinformatics/btq642 10.1016/j.chembiol.2016.09.011 10.1371/journal.pone.0021800 10.1093/nar/gkaa1076 10.1093/bioinformatics/btq033 10.1038/nbt.3968 10.1186/1939-8433-6-4 10.1038/s41467-021-23555-5 10.1038/s41467-018-04100-3 10.1089/cmb.2017.0096 10.1093/bioinformatics/btt593 10.1073/pnas.1419030111 10.15252/embr.202050107 10.1038/ng.848 10.1111/tpj.13381 10.3390/ijms20092079 10.1186/s13059-014-0512-1 10.1146/annurev-arplant-042110-103806 10.1093/mp/sss087 10.1016/j.tcb.2015.12.003 10.1111/j.1365-313X.2004.02145.x 10.1007/s11103-005-8532-6 10.1038/nature05917 10.1126/sciadv.aao2110 10.1101/gr.131342.111 10.1093/bioinformatics/bts635 10.1093/nar/gkl672 10.1007/s11103-006-9118-7 10.1093/bioinformatics/btv145 10.1146/annurev-arplant-093020-035446 10.1016/j.molcel.2012.08.021 10.1002/dvdy.10348 10.1093/nar/gkx428 10.1093/nar/gkx919 10.1093/pcp/pcs183 10.1093/nar/gkj016 10.1002/wrna.1435 10.1038/nmeth.1923 10.1093/nar/gkp335 10.1126/science.aai8550 10.1093/nar/gkw257 10.1016/j.bbagrm.2014.07.005 10.7554/eLife.00354 10.6026/97320630002005 10.1186/s12284-018-0220-7 10.1038/nsmb.3424 10.1016/j.cell.2006.11.016 10.1093/nar/gkj012 10.1038/s41467-018-07500-7 10.1016/j.celrep.2015.07.033 10.1007/s00122-021-03844-9 10.2307/3869792 10.1007/BF01674409 10.1038/s41588-018-0040-0 10.1038/s41467-018-05829-7 10.1093/bioinformatics/btr167 10.1093/bioinformatics/btp680 10.1038/ng843 10.1093/nar/gkw1135 10.1186/gb-2013-14-4-r36 10.1111/pbi.13215 10.1016/j.gpb.2018.11.003 10.1016/j.cell.2019.06.001 10.1038/s41467-020-15571-8 10.1016/B978-0-12-391498-9.00009-7 10.1038/35030169 10.1146/annurev-cellbio-100818-125218 10.1186/s13059-014-0550-8 10.1016/S1369526602000079 10.1038/s41576-019-0135-1 10.3389/fpls.2015.00635 10.1146/annurev.cellbio.18.040202.114836 10.1093/bioinformatics/btr355 10.1101/gr.130237.111 10.1093/nar/gkaa1047 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022 |
Copyright_xml | – notice: 2022. The Author(s). – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
DOI | 10.1186/s13059-022-02608-y |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1474-760X |
EndPage | 28 |
ExternalDocumentID | oai_doaj_org_article_03fd5c3ab5aa4a22bbe74ad8607073a4 PMC8772118 35045887 10_1186_s13059_022_02608_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 91940301, U1901202; 32070624 |
GroupedDBID | --- 0R~ 29H 4.4 53G 5GY 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML AAYXX ABUWG ACGFO ACGFS ACJQM ACPRK ADBBV ADUKV AEGXH AFKRA AFPKN AHBYD AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIAM AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION EBD EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK IAO IGS IHR ISR ITC KPI LK8 M1P M7P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO ROL RPM RSV SJN SOJ SV3 UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c664t-aa8bb764c6e03943686bd0b8e9549cc74df0dddb54be3aae8410803c2cafaf893 |
IEDL.DBID | DOA |
ISSN | 1474-760X 1474-7596 |
IngestDate | Wed Aug 27 01:33:55 EDT 2025 Thu Aug 21 13:43:22 EDT 2025 Fri Jul 11 14:43:55 EDT 2025 Mon Jul 21 09:18:25 EDT 2025 Fri Jul 25 11:54:41 EDT 2025 Mon Jul 21 06:06:08 EDT 2025 Tue Jul 01 03:10:49 EDT 2025 Thu Apr 24 23:02:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rice traits Somatic cell regeneration Chromatin-enriched noncoding RNAs |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-aa8bb764c6e03943686bd0b8e9549cc74df0dddb54be3aae8410803c2cafaf893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/03fd5c3ab5aa4a22bbe74ad8607073a4 |
PMID | 35045887 |
PQID | 2621048141 |
PQPubID | 2040232 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_03fd5c3ab5aa4a22bbe74ad8607073a4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8772118 proquest_miscellaneous_2648837590 proquest_miscellaneous_2621657086 proquest_journals_2621048141 pubmed_primary_35045887 crossref_citationtrail_10_1186_s13059_022_02608_y crossref_primary_10_1186_s13059_022_02608_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-19 |
PublicationDateYYYYMMDD | 2022-01-19 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Genome Biology |
PublicationTitleAlternate | Genome Biol |
PublicationYear | 2022 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | R Bevitori (2608_CR43) 2014; 251 IR Henderson (2608_CR4) 2007; 447 A Roberts (2608_CR71) 2011; 27 H Tafer (2608_CR96) 2010; 26 D Wagner (2608_CR2) 2003; 6 G Yu (2608_CR99) 2015; 31 JC Stein (2608_CR93) 2018; 50 Y Wang (2608_CR63) 2018; 9 JB Heo (2608_CR56) 2011; 331 AR Quinlan (2608_CR82) 2010; 26 J Goodrich (2608_CR3) 2002; 18 D GH (2608_CR11) 2016; 17 B Langmead (2608_CR77) 2012; 9 ZE Holmes (2608_CR66) 2020; 11 J Zhang (2608_CR40) 2006; 34 Y Hu (2608_CR23) 2020; 249 Y Liao (2608_CR79) 2014; 30 LJ van Enckevort (2608_CR38) 2005; 59 A Siepel (2608_CR94) 2005; 15 A Belcheva (2608_CR19) 1995; 44 K Schardon (2608_CR45) 2016; 354 G Seydoux (2608_CR53) 2006; 127 BA Sweeney (2608_CR21) 2021; 12 AT Wierzbicki (2608_CR9) 2021; 72 A Akhtar (2608_CR15) 2000; 407 Y Li (2608_CR33) 2016; 23 C Sallaud (2608_CR36) 2004; 39 L Mansueto (2608_CR42) 2017; 45 T Higuchi (2608_CR64) 2008; 1780 X Li (2608_CR29) 2019; 20 F He (2608_CR83) 2018; 11 R Xiao (2608_CR14) 2019; 178 A Kechin (2608_CR72) 2017; 24 K Lee (2608_CR7) 2018; 23 Y Yu (2608_CR10) 2019; 35 J Sun (2608_CR30) 2019; 17 AM Mas (2608_CR32) 2020; 21 JH Yang (2608_CR78) 2006; 34 W Zhang (2608_CR31) 2012; 22 I Kalvari (2608_CR76) 2021; 49 BA Lopez-Ruiz (2608_CR44) 2019; 20 M Wang (2608_CR87) 2019 JL Zimmerman (2608_CR49) 1993; 5 F Ramirez (2608_CR88) 2016; 44 TT Liu (2608_CR27) 2013; 6 C Fonouni-Farde (2608_CR18) 2021; 7 T Schubert (2608_CR26) 2012; 48 H Fang (2608_CR54) 2020; 11 JS Jeon (2608_CR39) 2000; 22 T Tian (2608_CR91) 2017; 45 J Jin (2608_CR20) 2021; 49 Y Kawahara (2608_CR69) 2013; 6 X Zhao (2608_CR62) 2018; 9 YJ Kang (2608_CR81) 2017; 45 CL Chen (2608_CR28) 2003; 31 D Zhao (2608_CR86) 2018; 46 A Miyao (2608_CR34) 2003; 15 C Maison (2608_CR16) 2002; 30 TL Bailey (2608_CR101) 2009; 37 G Droc (2608_CR37) 2006; 34 KD Birnbaum (2608_CR48) 2008; 132 F Ariel (2608_CR60) 2014; 55 G He (2608_CR1) 2011; 62 A Feher (2608_CR8) 2015; 1849 T Hung (2608_CR65) 2011; 43 Y Zhang (2608_CR68) 2021 J Zhang (2608_CR73) 2014; 30 S Acharya (2608_CR17) 2017; 8 X Li (2608_CR25) 2017; 35 DH Kim (2608_CR57) 2017; 40 F Supek (2608_CR92) 2011; 6 H Sakai (2608_CR75) 2013; 54 H Stroud (2608_CR50) 2013; 2 Y Xu (2608_CR5) 2016; 26 K Zhang (2608_CR84) 2017; 89 F Krueger (2608_CR89) 2011; 27 L Kumar (2608_CR90) 2007; 2 MS Werner (2608_CR12) 2015; 12 CC Kuo (2608_CR100) 2019; 47 YC Zhang (2608_CR97) 2014; 15 F Ariel (2608_CR61) 2020; 77 B Kim (2608_CR47) 2021; 134 L Williams (2608_CR51) 2003; 228 MI Love (2608_CR80) 2014; 15 Y Liu (2608_CR85) 2018; 46 D Kim (2608_CR70) 2013; 14 MS Werner (2608_CR13) 2017; 24 A Dobin (2608_CR74) 2013; 29 FA Buske (2608_CR98) 2012; 22 L Xu (2608_CR6) 2014; 108 T Csorba (2608_CR58) 2014; 111 S Kehr (2608_CR95) 2011; 27 A Miyao (2608_CR35) 2007; 63 A Bonetti (2608_CR24) 2020; 11 Y Tian (2608_CR59) 2019; 5 C De-la-Pena (2608_CR52) 2015; 6 B Zhou (2608_CR22) 2021; 49 CC Wang (2608_CR41) 2020; 18 E Ntini (2608_CR55) 2018; 9 Y Long (2608_CR67) 2017; 3 H Tanaka (2608_CR46) 2001; 128 |
References_xml | – volume: 49 start-page: D1489 issue: D1 year: 2021 ident: 2608_CR20 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa910 – volume: 132 start-page: 697 issue: 4 year: 2008 ident: 2608_CR48 publication-title: Cell. doi: 10.1016/j.cell.2008.01.040 – volume: 40 start-page: 302 issue: 3 year: 2017 ident: 2608_CR57 publication-title: Dev Cell. doi: 10.1016/j.devcel.2016.12.021 – volume: 15 start-page: 1771 issue: 8 year: 2003 ident: 2608_CR34 publication-title: Plant Cell. doi: 10.1105/tpc.012559 – volume-title: Evolution of heterochromatin and heterochromatin genes in the Oryza genomes reveals a new heterochromatin-euchromatin boundary [ChIP-Seq]. Datasets. Gene Expression Omnibus year: 2019 ident: 2608_CR87 – volume: 7 start-page: 12 issue: 1 year: 2021 ident: 2608_CR18 publication-title: Noncoding RNA doi: 10.3390/ncrna7010012 – volume: 249 start-page: 153167 year: 2020 ident: 2608_CR23 publication-title: J Plant Physiol. doi: 10.1016/j.jplph.2020.153167 – volume: 47 start-page: e32 issue: 6 year: 2019 ident: 2608_CR100 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz037 – volume: 331 start-page: 76 issue: 6013 year: 2011 ident: 2608_CR56 publication-title: Science. doi: 10.1126/science.1197349 – volume: 11 start-page: 1018 issue: 1 year: 2020 ident: 2608_CR24 publication-title: Nat Commun. doi: 10.1038/s41467-020-14337-6 – volume: 128 start-page: 4681 issue: 23 year: 2001 ident: 2608_CR46 publication-title: Development (Cambridge, England) doi: 10.1242/dev.128.23.4681 – volume: 77 start-page: 1055 issue: 5 year: 2020 ident: 2608_CR61 publication-title: Mol Cell. doi: 10.1016/j.molcel.2019.12.015 – volume: 23 start-page: 235 issue: 3 year: 2018 ident: 2608_CR7 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.11.009 – volume: 31 start-page: 2601 issue: 10 year: 2003 ident: 2608_CR28 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg373 – volume: 11 start-page: 6053 issue: 1 year: 2020 ident: 2608_CR54 publication-title: Nat Commun. doi: 10.1038/s41467-020-19879-3 – volume: 251 start-page: 545 issue: 3 year: 2014 ident: 2608_CR43 publication-title: Protoplasma. doi: 10.1007/s00709-013-0553-4 – volume: 55 start-page: 383 issue: 3 year: 2014 ident: 2608_CR60 publication-title: Mol Cell. doi: 10.1016/j.molcel.2014.06.011 – volume: 1780 start-page: 274 issue: 2 year: 2008 ident: 2608_CR64 publication-title: BBA. doi: 10.1016/j.bbagen.2007.11.005 – volume: 46 start-page: 2380 issue: 5 year: 2018 ident: 2608_CR86 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky025 – volume: 15 start-page: 1034 issue: 8 year: 2005 ident: 2608_CR94 publication-title: Genome Res. doi: 10.1101/gr.3715005 – volume: 17 start-page: 28 issue: 1 year: 2016 ident: 2608_CR11 publication-title: Genome Biol doi: 10.1186/s13059-016-0878-3 – volume: 22 start-page: 561 issue: 6 year: 2000 ident: 2608_CR39 publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00767.x – volume: 45 start-page: W122 issue: W1 year: 2017 ident: 2608_CR91 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx382 – volume: 30 start-page: 923 issue: 7 year: 2014 ident: 2608_CR79 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btt656 – volume: 5 start-page: eaau7246 issue: 4 year: 2019 ident: 2608_CR59 publication-title: Sci Adv doi: 10.1126/sciadv.aau7246 – volume: 27 start-page: 279 issue: 2 year: 2011 ident: 2608_CR95 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq642 – volume: 23 start-page: 1325 issue: 11 year: 2016 ident: 2608_CR33 publication-title: Cell Chem Biol. doi: 10.1016/j.chembiol.2016.09.011 – volume: 6 start-page: e21800 issue: 7 year: 2011 ident: 2608_CR92 publication-title: PLoS One. doi: 10.1371/journal.pone.0021800 – volume: 49 start-page: D86 issue: D1 year: 2021 ident: 2608_CR22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1076 – volume: 26 start-page: 841 issue: 6 year: 2010 ident: 2608_CR82 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btq033 – volume: 35 start-page: 940 issue: 10 year: 2017 ident: 2608_CR25 publication-title: Nat Biotechnol. doi: 10.1038/nbt.3968 – volume: 6 start-page: 4 issue: 1 year: 2013 ident: 2608_CR69 publication-title: Rice (N Y) doi: 10.1186/1939-8433-6-4 – volume: 12 start-page: 3494 issue: 1 year: 2021 ident: 2608_CR21 publication-title: Nat Commun. doi: 10.1038/s41467-021-23555-5 – volume: 9 start-page: 1636 issue: 1 year: 2018 ident: 2608_CR55 publication-title: Nat Commun. doi: 10.1038/s41467-018-04100-3 – volume: 24 start-page: 1138 issue: 11 year: 2017 ident: 2608_CR72 publication-title: J Comput Biol. doi: 10.1089/cmb.2017.0096 – volume: 30 start-page: 614 issue: 5 year: 2014 ident: 2608_CR73 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btt593 – volume: 111 start-page: 16160 issue: 45 year: 2014 ident: 2608_CR58 publication-title: Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1419030111 – volume: 21 start-page: e50107 issue: 3 year: 2020 ident: 2608_CR32 publication-title: EMBO Rep doi: 10.15252/embr.202050107 – volume: 43 start-page: 621 issue: 7 year: 2011 ident: 2608_CR65 publication-title: Nat Genet. doi: 10.1038/ng.848 – volume: 89 start-page: 264 issue: 2 year: 2017 ident: 2608_CR84 publication-title: Plant J. doi: 10.1111/tpj.13381 – volume: 20 start-page: 2079 issue: 9 year: 2019 ident: 2608_CR44 publication-title: Int J Mol Sci doi: 10.3390/ijms20092079 – volume: 15 start-page: 512 issue: 12 year: 2014 ident: 2608_CR97 publication-title: Genome Biol. doi: 10.1186/s13059-014-0512-1 – volume: 62 start-page: 411 issue: 1 year: 2011 ident: 2608_CR1 publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-042110-103806 – volume: 6 start-page: 830 issue: 3 year: 2013 ident: 2608_CR27 publication-title: Mol Plant. doi: 10.1093/mp/sss087 – volume: 26 start-page: 272 issue: 4 year: 2016 ident: 2608_CR5 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2015.12.003 – volume: 39 start-page: 450 issue: 3 year: 2004 ident: 2608_CR36 publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02145.x – volume: 59 start-page: 99 issue: 1 year: 2005 ident: 2608_CR38 publication-title: Plant Mol Biol. doi: 10.1007/s11103-005-8532-6 – volume: 447 start-page: 418 issue: 7143 year: 2007 ident: 2608_CR4 publication-title: Nature. doi: 10.1038/nature05917 – volume: 3 start-page: eaao2110 issue: 9 year: 2017 ident: 2608_CR67 publication-title: Sci Adv doi: 10.1126/sciadv.aao2110 – volume: 22 start-page: 151 issue: 1 year: 2012 ident: 2608_CR31 publication-title: Genome Res. doi: 10.1101/gr.131342.111 – volume: 29 start-page: 15 issue: 1 year: 2013 ident: 2608_CR74 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts635 – volume: 34 start-page: 5112 issue: 18 year: 2006 ident: 2608_CR78 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl672 – volume: 63 start-page: 625 issue: 5 year: 2007 ident: 2608_CR35 publication-title: Plant Mol Biol. doi: 10.1007/s11103-006-9118-7 – volume: 31 start-page: 2382 issue: 14 year: 2015 ident: 2608_CR99 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv145 – volume: 72 start-page: 245 issue: 1 year: 2021 ident: 2608_CR9 publication-title: Annu Rev Plant Biol. doi: 10.1146/annurev-arplant-093020-035446 – volume: 48 start-page: 434 issue: 3 year: 2012 ident: 2608_CR26 publication-title: Mol Cell. doi: 10.1016/j.molcel.2012.08.021 – volume-title: Genome-wide analysis and functional annotation of chromatin-enriched noncoding RNAs in rice during somatic cell regeneration. Datasets. NCBI year: 2021 ident: 2608_CR68 – volume: 228 start-page: 113 issue: 1 year: 2003 ident: 2608_CR51 publication-title: Dev Dyn. doi: 10.1002/dvdy.10348 – volume: 45 start-page: W12 issue: W1 year: 2017 ident: 2608_CR81 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx428 – volume: 46 start-page: D1157 issue: D1 year: 2018 ident: 2608_CR85 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx919 – volume: 54 start-page: e6 issue: 2 year: 2013 ident: 2608_CR75 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcs183 – volume: 34 start-page: D745 issue: Database issue year: 2006 ident: 2608_CR40 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj016 – volume: 8 start-page: e1435 issue: 6 year: 2017 ident: 2608_CR17 publication-title: Wiley Interdiscip Rev RNA doi: 10.1002/wrna.1435 – volume: 9 start-page: 357 issue: 4 year: 2012 ident: 2608_CR77 publication-title: Nat Methods. doi: 10.1038/nmeth.1923 – volume: 37 start-page: W202 issue: Web Server issu year: 2009 ident: 2608_CR101 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp335 – volume: 354 start-page: 1594 issue: 6319 year: 2016 ident: 2608_CR45 publication-title: Science. doi: 10.1126/science.aai8550 – volume: 44 start-page: W160 issue: W1 year: 2016 ident: 2608_CR88 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw257 – volume: 1849 start-page: 385 issue: 4 year: 2015 ident: 2608_CR8 publication-title: BBA. doi: 10.1016/j.bbagrm.2014.07.005 – volume: 2 start-page: e00354 year: 2013 ident: 2608_CR50 publication-title: eLife. doi: 10.7554/eLife.00354 – volume: 2 start-page: 5 issue: 1 year: 2007 ident: 2608_CR90 publication-title: Bioinformation. doi: 10.6026/97320630002005 – volume: 11 start-page: 27 issue: 1 year: 2018 ident: 2608_CR83 publication-title: Rice (N Y) doi: 10.1186/s12284-018-0220-7 – volume: 24 start-page: 596 issue: 7 year: 2017 ident: 2608_CR13 publication-title: Nat Struct Mol Biol. doi: 10.1038/nsmb.3424 – volume: 127 start-page: 891 issue: 5 year: 2006 ident: 2608_CR53 publication-title: Cell. doi: 10.1016/j.cell.2006.11.016 – volume: 34 start-page: D736 issue: Database issue year: 2006 ident: 2608_CR37 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj012 – volume: 9 start-page: 5056 issue: 1 year: 2018 ident: 2608_CR62 publication-title: Nat Commun. doi: 10.1038/s41467-018-07500-7 – volume: 12 start-page: 1089 issue: 7 year: 2015 ident: 2608_CR12 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.07.033 – volume: 134 start-page: 2587 issue: 8 year: 2021 ident: 2608_CR47 publication-title: Theor Appl Genet. doi: 10.1007/s00122-021-03844-9 – volume: 5 start-page: 1411 issue: 10 year: 1993 ident: 2608_CR49 publication-title: Plant Cell. doi: 10.2307/3869792 – volume: 44 start-page: S86 issue: Suppl 1 year: 1995 ident: 2608_CR19 publication-title: Inflamm Res. doi: 10.1007/BF01674409 – volume: 50 start-page: 285 issue: 2 year: 2018 ident: 2608_CR93 publication-title: Nat Genet. doi: 10.1038/s41588-018-0040-0 – volume: 9 start-page: 3516 issue: 1 year: 2018 ident: 2608_CR63 publication-title: Nat Commun. doi: 10.1038/s41467-018-05829-7 – volume: 27 start-page: 1571 issue: 11 year: 2011 ident: 2608_CR89 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr167 – volume: 26 start-page: 610 issue: 5 year: 2010 ident: 2608_CR96 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btp680 – volume: 30 start-page: 329 issue: 3 year: 2002 ident: 2608_CR16 publication-title: Nat Genet. doi: 10.1038/ng843 – volume: 45 start-page: D1075 issue: D1 year: 2017 ident: 2608_CR42 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1135 – volume: 14 start-page: R36 issue: 4 year: 2013 ident: 2608_CR70 publication-title: Genome Biol. doi: 10.1186/gb-2013-14-4-r36 – volume: 18 start-page: 14 issue: 1 year: 2020 ident: 2608_CR41 publication-title: Plant Biotechnol J. doi: 10.1111/pbi.13215 – volume: 17 start-page: 140 issue: 2 year: 2019 ident: 2608_CR30 publication-title: Genom Proteom Bioinf. doi: 10.1016/j.gpb.2018.11.003 – volume: 178 start-page: 107 issue: 1 year: 2019 ident: 2608_CR14 publication-title: Cell. doi: 10.1016/j.cell.2019.06.001 – volume: 11 start-page: 1805 issue: 1 year: 2020 ident: 2608_CR66 publication-title: Nat Commun. doi: 10.1038/s41467-020-15571-8 – volume: 108 start-page: 1 year: 2014 ident: 2608_CR6 publication-title: Curr Top Dev Biol. doi: 10.1016/B978-0-12-391498-9.00009-7 – volume: 407 start-page: 405 issue: 6802 year: 2000 ident: 2608_CR15 publication-title: Nature. doi: 10.1038/35030169 – volume: 35 start-page: 407 issue: 1 year: 2019 ident: 2608_CR10 publication-title: Annu Rev Cell Dev Biol. doi: 10.1146/annurev-cellbio-100818-125218 – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 2608_CR80 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 6 start-page: 20 issue: 1 year: 2003 ident: 2608_CR2 publication-title: Curr Opin Plant Biol. doi: 10.1016/S1369526602000079 – volume: 20 start-page: 503 issue: 9 year: 2019 ident: 2608_CR29 publication-title: Nat Rev Genet. doi: 10.1038/s41576-019-0135-1 – volume: 6 start-page: 635 year: 2015 ident: 2608_CR52 publication-title: Front Plant Sci. doi: 10.3389/fpls.2015.00635 – volume: 18 start-page: 707 issue: 1 year: 2002 ident: 2608_CR3 publication-title: Annu Rev Cell Dev Biol. doi: 10.1146/annurev.cellbio.18.040202.114836 – volume: 27 start-page: 2325 issue: 17 year: 2011 ident: 2608_CR71 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btr355 – volume: 22 start-page: 1372 issue: 7 year: 2012 ident: 2608_CR98 publication-title: Genome Res. doi: 10.1101/gr.130237.111 – volume: 49 start-page: D192 issue: D1 year: 2021 ident: 2608_CR76 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1047 |
SSID | ssj0019426 ssj0017866 |
Score | 2.4696574 |
Snippet | Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global chromatin... Background Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global... BACKGROUND: Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration. Global... Abstract Background Plants have the remarkable ability to generate callus, a pluripotent cell mass that acquires competence for subsequent tissue regeneration.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 28 |
SubjectTerms | Annotations Callus cell dedifferentiation Cell division Cell fate chromatin Chromatin - genetics Chromatin remodeling Chromatin-enriched noncoding RNAs DNA Epigenetics Gene expression genome genome-wide association study Genomes Mammals mutants Non-coding RNA Nucleoli Oryza - genetics Oryza - metabolism Plant Breeding Pluripotency Proteins Rice Rice traits RNA RNA, Long Noncoding - genetics RNA, Untranslated - genetics seed morphology Somatic cell regeneration somatic cells species subclass tissue repair Transfer RNA |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYJvEq5t0jR5klM8D8F7EA_2LUw-ereg7bndQxb8482k2eqK7FvTTMu0M0lmkpnfEPK61q0OtVWM29oz0dTAbOeAgQbLK4hOUYv5zp_P5Om5-LRoFnnDbcxhlds5MU3UfnC4R35Uy-icCFWJ6u3VD4ZVo_B0NZfQuEluIXQZanW7mB2uqlVoq-SGFvWUaoQBiI2W2wwaJY_GOJE3mmFgO0JsKbbZWaUSmP__LNB_Ayn_WplO7pG72aSkx5MO3Cc3Qv-A3J6KTG4ekl8fQz98D-zn0gcKGYMkXniKa9q0FRib_TAdytOho-5yNaAl27OoXRgr6mk_9G7AdY5-OTse6bKniEZEpyxHOiZyR_EYgK7CRcKyxrc9IucnH76-P2W55gJzUoo1A1DWtlI4GUquEZ5eWl9aFfA40LlW-K703ttG2MABghIYpMhd7aCDLho_j8lB5Cg8JdRpJQOAE0qAcKW1pQUbukp2vnFWq4JU239sXAYkx7oY30xyTJQ0k1xMlItJcjGbgryZn7ma4Dj2Ur9D0c2UCKWdbgyrC5NHpik58sPBNgAC6tra0ArwSiIQEgdRkMOt4E0e36P5o40FeTV3x5GJ_xn6MFxPNBhYpOQ-mjiB8qiOZUGeTLo0c8ublEbcFqTd0bKdz9nt6ZeXCSFctejYq2f7WX9O7tRJ5ytW6UNysF5dhxfRxFrbl2kc_Qai5CaM priority: 102 providerName: ProQuest |
Title | Genome-wide analysis and functional annotation of chromatin-enriched noncoding RNAs in rice during somatic cell regeneration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35045887 https://www.proquest.com/docview/2621048141 https://www.proquest.com/docview/2621657086 https://www.proquest.com/docview/2648837590 https://pubmed.ncbi.nlm.nih.gov/PMC8772118 https://doaj.org/article/03fd5c3ab5aa4a22bbe74ad8607073a4 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96Ivgifls9jwi-Sbi2SfPxeCt3HoKLLB4svpTJR70FbWV3D1nwjzeTdJdbkfPFl9I205JkJpmZZOYXQt7URplQW824rT0TTQ3Mdg4YGLC8gugUKcx3_jiV5xfiw7yZXzvqC2PCMjxw7rjjkne-cRxsAyCgrq0NSoDXEnFqOCQk0Kjzts7UuH9gouLZpshoebyKM3VjGEauI4aWZps9NZTQ-v9mYv4ZKXlN9Zw9IPdHm5Ge5Lo-JLdC_4jczadIbh6TX-9DP3wP7OfCBwojyEi88RSVVl7ri4_9kHfd6dBRd7kc0FTtWRQfDAb1tB96N6Aio7PpyYoueopwQzSnMdJVIncU1_npMnxNYNX4tyfk4uz087tzNh6qwJyUYs0AtLVKCidDyQ3iz0vrS6sD7vc5p4TvSu-9bYQNHCBogVGI3NUOOuiidfOUHMQaheeEOqNlAHBCCxCutLa0YENXSeSYNbog1baPWzcijuPBF9_a5Hlo2Wa-tJEvbeJLuynI2903PzLexo3UE2TdjhKxstOLKEHtKEHtvySoIIdbxrfjAF61tYy-sNCVqAryelcchx72M_RhuMo0GDmk5U00cYbkqjFlQZ5lWdrVljcpT1gVRO1J2V5z9kv6xWWCANcKPXf94n-0_yW5V6eRUbHKHJKD9fIqvIqW1toekdtqro7Incnp9NPsKA2xeJ1NvvwGKIIupA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxJtAASPBCVlNHMdxDgiVR9nSdg-olXoz40falSApu1tVK_Gb-I144mRhEdpbb0k8iZzMZB72zDeEvORVWXluFMsNd0wUHJipLTCowOQZhKCoxHrnw7EcHYvPJ8XJBvk11MJgWuWgEztF7VqLa-TbXIbgRKhMZG_PfzDsGoW7q0MLjSgW-35xGUK22Zu9D4G_rzjf_Xj0fsT6rgLMSinmDEAZU0phpU_zCgHYpXGpUR43vKwthatT55wphPE5gFcC0_Byyy3UUCsEXwoq_1owvCkGe-XJMsDLSoW-UX9SCR5LmzDhsajkULGj5PYsGI6iYphIj5Beii1WrGLXPOB_Hu-_iZt_WcLd2-RW78LSnShzd8iGb-6S67Gp5eIe-fnJN-13zy4nzlPoMU_CgaNoQ-PSYzht2pgEQNua2rNpi55zw4I0Y26qo03b2BbtKv0y3pnRSUMR_YjGqko668gtxW0HOvWnHXY2Pu0-Ob4Sbjwgm2FG_hGhtlLSA1ihBAibGpMaML7OZO0KayqVkGz4xtr2AOjYh-Ob7gIhJXXkiw580R1f9CIhr5f3nEf4j7XU75B1S0qE7u4utNNT3WsCneY4nxxMASCAc2N8KcApicBLOYiEbA2M170-mek_0p-QF8vhoAnwO0Pj24tIg4lMSq6jCQo7D-KYJuRhlKXlbPOiK1suE1KuSNnK66yONJOzDpFclbiQoB6vn_pzcmN0dHigD_bG-0_ITd7Jf8ayaotszqcX_mlw7-bmWfdPUfL1qn_i36mPZRU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-wide+analysis+and+functional+annotation+of+chromatin-enriched+noncoding+RNAs+in+rice+during+somatic+cell+regeneration&rft.jtitle=Genome+biology&rft.au=Zhang%2C+Yu-Chan&rft.au=Zhou%2C+Yan-Fei&rft.au=Cheng%2C+Yu&rft.au=Huang%2C+Jia-Hui&rft.date=2022-01-19&rft.issn=1474-760X&rft.eissn=1474-760X&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1186%2Fs13059-022-02608-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13059_022_02608_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-760X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-760X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-760X&client=summon |