Capturing the nature of events and event context using hierarchical event descriptors (HED)
•Events represent experiences or processes that unfold in time, often having distinct phases.•Event markers are identified time points usually associated with a phase transition of an event.•The critical linkage of experimental data to external reality and processes is achieved by creating appropria...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 245; p. 118766 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.12.2021
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2021.118766 |
Cover
Loading…
Abstract | •Events represent experiences or processes that unfold in time, often having distinct phases.•Event markers are identified time points usually associated with a phase transition of an event.•The critical linkage of experimental data to external reality and processes is achieved by creating appropriate event markers and associating these markers with informative metadata.•The HED (Hierarchical event Descriptor) system provides a framework and tools for making this association in a machine-actionable, analysis-ready way.•Without appropriate event design (appropriate event markers and informative annotation) neuroimaging data will not be usable to its full potential by the broader community.
Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645).
[Display omitted] |
---|---|
AbstractList | Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645).Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645). Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645). Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools ( hedtags.org ) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset ( bids.neuroimaging.io ). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset ( openneuro.org , ds003645 ). •Events represent experiences or processes that unfold in time, often having distinct phases.•Event markers are identified time points usually associated with a phase transition of an event.•The critical linkage of experimental data to external reality and processes is achieved by creating appropriate event markers and associating these markers with informative metadata.•The HED (Hierarchical event Descriptor) system provides a framework and tools for making this association in a machine-actionable, analysis-ready way.•Without appropriate event design (appropriate event markers and informative annotation) neuroimaging data will not be usable to its full potential by the broader community. Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645). [Display omitted] |
ArticleNumber | 118766 |
Author | Appelhoff, Stefan Robbins, Kay Truong, Dung Makeig, Scott Delorme, Arnaud |
AuthorAffiliation | b Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States a Department of Computer Science, University of Texas San Antonio San Antonio, TX, United States c Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany d Paul Sabatier University in Toulouse, Toulouse, France |
AuthorAffiliation_xml | – name: c Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany – name: a Department of Computer Science, University of Texas San Antonio San Antonio, TX, United States – name: d Paul Sabatier University in Toulouse, Toulouse, France – name: b Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States |
Author_xml | – sequence: 1 givenname: Kay surname: Robbins fullname: Robbins, Kay email: Kay.Robbins@utsa.edu organization: Department of Computer Science, University of Texas San Antonio San Antonio, TX, United States – sequence: 2 givenname: Dung surname: Truong fullname: Truong, Dung organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States – sequence: 3 givenname: Stefan surname: Appelhoff fullname: Appelhoff, Stefan organization: Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany – sequence: 4 givenname: Arnaud surname: Delorme fullname: Delorme, Arnaud organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States – sequence: 5 givenname: Scott surname: Makeig fullname: Makeig, Scott organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34848298$$D View this record in MEDLINE/PubMed https://hal.science/hal-03876965$$DView record in HAL |
BookMark | eNqNks1v0zAYhyM0xD7gX0CRuGyHFn-m9gWxjUEnVeICJw6W47xpXVK72E7F_nscMjrWU09xnMfP67zv77w4cd5BUZQYTTHC1fv11EEfvN3oJUwJIniKsZhV1YviDCPJJ5LPyMmw5nQiMJanxXmMa4SQxEy8Kk4pE0wQKc6KH7d6m_pg3bJMKyidzi9Q-raEHbgUS-2acVka7xL8TmUfB3hlIehgVtbo7hFoIJpgt8mHWF7O7z5dvS5etrqL8ObxeVF8_3z37XY-WXz9cn97vZiYqmJpItumaRmmhlIuEFQctGG0whQTJCjBGjONNK1ZjTU3RGtE2llTC66pRJLV9KK4H72N12u1Dbkt4UF5bdXfDR-WSodkTQeqqmjbGswlk4S13NQaakQr0KxGhs8guz6Mrm1fb6Ax-ceC7p5Jn39xdqWWfqeEJFwilgVXo2B1cGx-vVDDHqJ5UrLiO5zZy8diwf_qISa1sdFA12kHvo-KVIgTigVDGX13gK59H1xua6YwZwJRPhR_-__t9_X_zTsDYgRM8DEGaPcIRmqIllqrp2ipIVpqjNZTZ_ZHjU06WT_0wXbHCG5GAeQs7HJ-VDQWnIHGBjApD8seI_l4IDGddUMKf8LDcYo_lgMGaw |
CitedBy_id | crossref_primary_10_1038_s41597_024_04282_0 crossref_primary_10_1038_s41597_024_03559_8 crossref_primary_10_3389_fgene_2023_1086802 crossref_primary_10_1016_j_neuroimage_2022_119438 crossref_primary_10_1038_s41597_023_02614_0 crossref_primary_10_1093_database_baac096 crossref_primary_10_1523_ENEURO_0287_24_2024 |
Cites_doi | 10.1353/ppp.2011.0049 10.3389/fninf.2016.00042 10.1016/j.neuroimage.2011.08.050 10.3389/fnhum.2011.00076 10.1523/JNEUROSCI.2968-18.2019 10.1016/0013-4694(75)90003-6 10.3389/fnins.2019.00300 10.3758/BF03206077 10.1016/j.jbiomech.2020.109832 10.1016/j.ijpsycho.2008.11.008 10.1038/sdata.2015.1 10.1016/j.clinph.2019.03.027 10.1016/j.cogbrainres.2004.09.006 10.1038/s41597-019-0105-7 10.1038/sdata.2018.110 10.1016/j.jneumeth.2003.10.009 10.3389/fninf.2018.00102 10.1038/s41598-019-54074-5 10.1016/j.clinph.2017.07.418 10.1016/j.tins.2021.04.006 10.1073/pnas.1109304108 10.1007/s13534-018-00093-6 10.1038/sdata.2016.44 10.1038/s41597-019-0104-8 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Copyright Elsevier Limited Dec 15, 2021 Attribution |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Dec 15, 2021 – notice: Attribution |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.neuroimage.2021.118766 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Psychology |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 118766 |
ExternalDocumentID | oai_doaj_org_article_663ffc1594924f5cbaeb036ea4b0c57e PMC8925904 oai_HAL_hal_03876965v1 34848298 10_1016_j_neuroimage_2021_118766 S1053811921010387 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: RF1 MH125934 – fundername: NIBIB NIH HHS grantid: R01 EB023297 – fundername: NIMH NIH HHS grantid: R24 MH120037 – fundername: NINDS NIH HHS grantid: R01 NS047293 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 6I. AACTN AADPK AAFTH AAIAV AAQFI ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR NCXOZ SNS ZA5 29N 53G AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGHFR AGQPQ AGRNS AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF EJD FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ R2- RIG SEW WUQ XPP ZMT 0SF CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c664t-9fddf413c33580e65eac436131208321a14a0a3b4b1a5c2aa02f7db85a39094b3 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Wed Aug 27 01:24:34 EDT 2025 Thu Aug 21 13:41:41 EDT 2025 Fri May 09 12:11:26 EDT 2025 Thu Sep 04 23:59:00 EDT 2025 Wed Aug 13 09:11:28 EDT 2025 Wed Feb 19 02:25:41 EST 2025 Tue Jul 01 03:02:21 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Fri Feb 23 02:40:24 EST 2024 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HED-3G Event annotation Events HED EEG Time series BIDS Hierarchical event descriptors MEG |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021. Published by Elsevier Inc. Attribution: http://creativecommons.org/licenses/by This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-9fddf413c33580e65eac436131208321a14a0a3b4b1a5c2aa02f7db85a39094b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 PMCID: PMC8925904 Data curation: DT, KR, AD Writing – original draft: KR, SM, DT, SA, AD Conceptualization: KR, SM, DT Writing – review & editing: KR, SM, DT, SA, AD Software: KR, DT, AD, SA Methodology: KR, SM, DT Visualization: SM, KR Author contributions |
ORCID | 0000-0002-0799-3557 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1053811921010387 |
PMID | 34848298 |
PQID | 2615480354 |
PQPubID | 2031077 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_663ffc1594924f5cbaeb036ea4b0c57e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8925904 hal_primary_oai_HAL_hal_03876965v1 proquest_miscellaneous_2605231840 proquest_journals_2615480354 pubmed_primary_34848298 crossref_primary_10_1016_j_neuroimage_2021_118766 crossref_citationtrail_10_1016_j_neuroimage_2021_118766 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118766 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118766 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko, Handwerker, Hanke, Keator, Li, Michael, Maumet, Nichols, Nichols, Pellman, Poldrack (bib0012) 2016; 3 Squires, Petuchowski, Wickens, Donchin (bib0026) 1977; 22 Shultz, Klin, Jones (bib0025) 2011; 108 Casson (bib0007) 2019; 9 Robbins, Truong, Jones, Callanan, Makeig (bib0023) 2021 Shapiro (bib0024) 2019 Boedhoe, Heymans, Schmaal, Abe, Alonso, Ameis, Anticevic, Arnold, Batistuzzo, Benedetti, Beucke, Bollettini, Bose, Brem, Calvo, Calvo, Cheng, Cho, Ciullo, Twisk (bib0006) 2019; 12 Stacchi, Ramon, Lao, Caldara (bib0027) 2019; 39 Mishra, Likitlersuang, Wilmer, Cohan, Germine, DeGutis (bib0019) 2019; 9 Martínez-Cancino, Delorme, Truong, Artoni, Kreutz-Delgado, Sivagnanam, Yoshimoto, Majumdar, Makeig (bib0018) 2020 Holdgraf, Appelhoff, Bickel, Bouchard, D'Ambrosio, David, Devinsky, Dichter, Flinker, Foster, Gorgolewski, Groen, Groppe, Gunduz, Hamilton, Honey, Jas, Knight, Lachaux, Hermes (bib0015) 2019; 6 Courchesne, Hillyard, Galambos (bib0009) 1975; 39 Debener, Makeig, Delorme, Engel (bib0010) 2005; 22 Bigdely-Shamlo, Cockfield, Makeig, Rognon, La Valle, Miyakoshi, Robbins (bib0003) 2016; 10 Henson, Abdulrahman, Flandin, Litvak (bib0013) 2019; 13 Beniczky, Aurlien, Brøgger, Hirsch, Schomer, Trinka, Pressler, Wennberg, Visser, Eisermann, Diehl, Lesser, Kaplan, Nguyen The Tich, Lee, Martins-da-Silva, Stefan, Neufeld, Rubboli, Herman (bib0001) 2017; 128 Murashko, Shmukler (bib0020) 2019; 130 Berman, Horovitz, Morel, Hallett (bib0002) 2012; 59 Bigdely-Shamlo, Kreutz-Delgado, Robbins, Miyakoshi, Westerfield, Bel-Bahar, Kothe, Hsi, Makeig (bib0004) 2013 Jas, Jones, Hämäläinen (bib0016) 2021 Vitali, Perkins (bib0028) 2020; 106 Makeig, Gramann, Jung, Sejnowski, Poizner (bib0017) 2009; 73 Wakeman, Henson (bib0029) 2015; 2 Niso, Gorgolewski, Bock, Brooks, Flandin, Gramfort, Henson, Jas, Litvak, Moreau, Oostenveld, Schoffelen, Tadel, Wexler, Baillet (bib0021) 2018; 5 Pernet, Appelhoff, Gorgolewski, Flandin, Phillips, Delorme, Oostenveld (bib0022) 2019; 6 Bigdely-Shamlo, Touryan, Ojeda, Kothe, Mullen, Robbins (bib0005) 2019 Delorme, Truong, Martinez- Cancino, Pernet, Sivagnanam, Yoshimoto, Poldrack, Majumdar, Makeig (bib0011) 2020 Delorme, Makeig (bib30) 2004; 134 Henson, Wakeman, Litvak, Friston (bib0014) 2011; 5 Costafreda (bib0008) 2012; 18 Bigdely-Shamlo (10.1016/j.neuroimage.2021.118766_bib0005) 2019 Martínez-Cancino (10.1016/j.neuroimage.2021.118766_bib0018) 2020 Berman (10.1016/j.neuroimage.2021.118766_bib0002) 2012; 59 Delorme (10.1016/j.neuroimage.2021.118766_bib30) 2004; 134 Costafreda (10.1016/j.neuroimage.2021.118766_bib0008) 2012; 18 Robbins (10.1016/j.neuroimage.2021.118766_bib0023) 2021 Holdgraf (10.1016/j.neuroimage.2021.118766_bib0015) 2019; 6 Debener (10.1016/j.neuroimage.2021.118766_bib0010) 2005; 22 Murashko (10.1016/j.neuroimage.2021.118766_bib0020) 2019; 130 Casson (10.1016/j.neuroimage.2021.118766_bib0007) 2019; 9 Henson (10.1016/j.neuroimage.2021.118766_bib0014) 2011; 5 Mishra (10.1016/j.neuroimage.2021.118766_bib0019) 2019; 9 Beniczky (10.1016/j.neuroimage.2021.118766_bib0001) 2017; 128 Henson (10.1016/j.neuroimage.2021.118766_bib0013) 2019; 13 Squires (10.1016/j.neuroimage.2021.118766_bib0026) 1977; 22 Makeig (10.1016/j.neuroimage.2021.118766_bib0017) 2009; 73 Bigdely-Shamlo (10.1016/j.neuroimage.2021.118766_bib0004) 2013 Shultz (10.1016/j.neuroimage.2021.118766_bib0025) 2011; 108 Boedhoe (10.1016/j.neuroimage.2021.118766_bib0006) 2019; 12 Wakeman (10.1016/j.neuroimage.2021.118766_bib0029) 2015; 2 Shapiro (10.1016/j.neuroimage.2021.118766_bib0024) 2019 Pernet (10.1016/j.neuroimage.2021.118766_bib0022) 2019; 6 Stacchi (10.1016/j.neuroimage.2021.118766_bib0027) 2019; 39 Vitali (10.1016/j.neuroimage.2021.118766_bib0028) 2020; 106 Gorgolewski (10.1016/j.neuroimage.2021.118766_bib0012) 2016; 3 Jas (10.1016/j.neuroimage.2021.118766_bib0016) 2021 Bigdely-Shamlo (10.1016/j.neuroimage.2021.118766_bib0003) 2016; 10 Delorme (10.1016/j.neuroimage.2021.118766_bib0011) 2020 Niso (10.1016/j.neuroimage.2021.118766_bib0021) 2018; 5 Courchesne (10.1016/j.neuroimage.2021.118766_bib0009) 1975; 39 |
References_xml | – volume: 6 start-page: 103 year: 2019 ident: bib0022 article-title: EEG-BIDS, an extension to the brain imaging data structure for electroencephalography publication-title: Sci. Data – volume: 10 year: 2016 ident: bib0003 article-title: Hierarchical event descriptors (HED): semi-structured tagging for real-world events in large-scale EEG publication-title: Front. Neuroinform. – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib30 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods – volume: 59 start-page: 1441 year: 2012 end-page: 1450 ident: bib0002 article-title: Neural correlates of blink suppression and the buildup of a natural bodily urge publication-title: Neuroimage – year: 2020 ident: bib0011 article-title: Tools for Importing and Evaluating BIDS-EEG Formatted Data publication-title: . 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-8, 2021 – volume: 12 year: 2019 ident: bib0006 article-title: An empirical comparison of meta- and mega-analysis with data from the ENIGMA obsessive-compulsive disorder working group publication-title: Front. Neuroinform. – year: 2021 ident: bib0023 – start-page: 1 year: 2013 end-page: 4 ident: bib0004 article-title: Hierarchical Event Descriptor (HED) tags for analysis of event-related EEG studies publication-title: 2013 IEEE Global Conference on Signal and Information Processing – volume: 2 year: 2015 ident: bib0029 article-title: A multi-subject, multi-modal human neuroimaging dataset publication-title: Sci. Data – volume: 73 start-page: 95 year: 2009 end-page: 100 ident: bib0017 article-title: Linking brain, mind and behavior publication-title: Int. J. Psychophysiol. – volume: 13 year: 2019 ident: bib0013 article-title: Multimodal integration of M/EEG and f/MRI Data in SPM12 publication-title: Front. Neurosci. – year: 2020 ident: bib0018 article-title: The open EEGLAB portal interface:high-performance computing with EEGLAB publication-title: Neuroimage – volume: 22 start-page: 31 year: 1977 end-page: 40 ident: bib0026 article-title: The effects of stimulus sequence on event related potentials: a comparison of visual and auditory sequences publication-title: Percept. Psychophys. – volume: 108 start-page: 21270 year: 2011 end-page: 21275 ident: bib0025 article-title: Inhibition of eye blinking reveals subjective perceptions of stimulus salience publication-title: Proc. Natl. Acad. Sci. – volume: 5 year: 2011 ident: bib0014 article-title: A parametric empirical Bayesian framework for the eeg/meg inverse problem: generative models for multi-subject and multi-modal integration publication-title: Front. Hum. Neurosci. – year: 2019 ident: bib0005 article-title: Automated EEG mega-analysis II: cognitive aspects of event related features publication-title: Neuroimage – volume: 9 start-page: 53 year: 2019 end-page: 71 ident: bib0007 article-title: Wearable EEG and beyond publication-title: Biomed. Eng. Lett. – volume: 6 start-page: 102 year: 2019 ident: bib0015 article-title: IEEG-BIDS, extending the brain imaging data structure specification to human intracranial electrophysiology publication-title: Sci. Data – volume: 5 year: 2018 ident: bib0021 article-title: MEG-BIDS, the brain imaging data structure extended to magnetoencephalography publication-title: Sci. Data – volume: 106 year: 2020 ident: bib0028 article-title: Determining anatomical frames via inertial motion capture: a survey of methods publication-title: J. Biomech. – volume: 18 start-page: 275 year: 2012 end-page: 277 ident: bib0008 article-title: Meta-analysis, mega-analysis, and task analysis in fMRI research publication-title: Philosophy, Psychiatry, Psychol. – year: 2021 ident: bib0016 article-title: Whole-head OPM-MEG enables noninvasive assessment of functional connectivity publication-title: Trends Neurosci. – volume: 22 start-page: 309 year: 2005 end-page: 321 ident: bib0010 article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis publication-title: Cognitive Brain Research – volume: 3 year: 2016 ident: bib0012 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci Data – volume: 39 start-page: 4113 year: 2019 end-page: 4123 ident: bib0027 article-title: Neural representations of faces are tuned to eye movements publication-title: J. Neurosci. – volume: 9 start-page: 17884 year: 2019 ident: bib0019 article-title: Gender differences in familiar face recognition and the influence of sociocultural gender inequality publication-title: Sci. Rep. – volume: 128 start-page: 2334 year: 2017 end-page: 2346 ident: bib0001 article-title: Standardized computer-based organized reporting of EEG: SCORE – Second version publication-title: Clin. Neurophysiol. – volume: 39 start-page: 131 year: 1975 end-page: 143 ident: bib0009 article-title: Stimulus novelty, task relevance and the visual evoked potential in man publication-title: Electroencephalogr Clin Neurophysiol – volume: 130 start-page: 986 year: 2019 end-page: 996 ident: bib0020 article-title: EEG correlates of face recognition in patients with schizophrenia spectrum disorders: a systematic review publication-title: Clin. Neurophysiol. – year: 2019 ident: bib0024 article-title: Embodied Cognition – volume: 18 start-page: 275 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2021.118766_bib0008 article-title: Meta-analysis, mega-analysis, and task analysis in fMRI research publication-title: Philosophy, Psychiatry, Psychol. doi: 10.1353/ppp.2011.0049 – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2021.118766_bib0003 article-title: Hierarchical event descriptors (HED): semi-structured tagging for real-world events in large-scale EEG publication-title: Front. Neuroinform. doi: 10.3389/fninf.2016.00042 – volume: 59 start-page: 1441 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2021.118766_bib0002 article-title: Neural correlates of blink suppression and the buildup of a natural bodily urge publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.050 – volume: 5 year: 2011 ident: 10.1016/j.neuroimage.2021.118766_bib0014 article-title: A parametric empirical Bayesian framework for the eeg/meg inverse problem: generative models for multi-subject and multi-modal integration publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2011.00076 – volume: 39 start-page: 4113 issue: 21 year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0027 article-title: Neural representations of faces are tuned to eye movements publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2968-18.2019 – volume: 39 start-page: 131 issue: 2 year: 1975 ident: 10.1016/j.neuroimage.2021.118766_bib0009 article-title: Stimulus novelty, task relevance and the visual evoked potential in man publication-title: Electroencephalogr Clin Neurophysiol doi: 10.1016/0013-4694(75)90003-6 – volume: 13 year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0013 article-title: Multimodal integration of M/EEG and f/MRI Data in SPM12 publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00300 – volume: 22 start-page: 31 issue: 1 year: 1977 ident: 10.1016/j.neuroimage.2021.118766_bib0026 article-title: The effects of stimulus sequence on event related potentials: a comparison of visual and auditory sequences publication-title: Percept. Psychophys. doi: 10.3758/BF03206077 – volume: 106 year: 2020 ident: 10.1016/j.neuroimage.2021.118766_bib0028 article-title: Determining anatomical frames via inertial motion capture: a survey of methods publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109832 – volume: 73 start-page: 95 issue: 2 year: 2009 ident: 10.1016/j.neuroimage.2021.118766_bib0017 article-title: Linking brain, mind and behavior publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2008.11.008 – year: 2020 ident: 10.1016/j.neuroimage.2021.118766_bib0011 article-title: Tools for Importing and Evaluating BIDS-EEG Formatted Data – volume: 2 year: 2015 ident: 10.1016/j.neuroimage.2021.118766_bib0029 article-title: A multi-subject, multi-modal human neuroimaging dataset publication-title: Sci. Data doi: 10.1038/sdata.2015.1 – volume: 130 start-page: 986 issue: 6 year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0020 article-title: EEG correlates of face recognition in patients with schizophrenia spectrum disorders: a systematic review publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2019.03.027 – volume: 22 start-page: 309 issue: 3 year: 2005 ident: 10.1016/j.neuroimage.2021.118766_bib0010 article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis publication-title: Cognitive Brain Research doi: 10.1016/j.cogbrainres.2004.09.006 – volume: 6 start-page: 102 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0015 article-title: IEEG-BIDS, extending the brain imaging data structure specification to human intracranial electrophysiology publication-title: Sci. Data doi: 10.1038/s41597-019-0105-7 – year: 2020 ident: 10.1016/j.neuroimage.2021.118766_bib0018 article-title: The open EEGLAB portal interface:high-performance computing with EEGLAB publication-title: Neuroimage – volume: 5 year: 2018 ident: 10.1016/j.neuroimage.2021.118766_bib0021 article-title: MEG-BIDS, the brain imaging data structure extended to magnetoencephalography publication-title: Sci. Data doi: 10.1038/sdata.2018.110 – year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0024 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2021.118766_bib30 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 12 year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0006 article-title: An empirical comparison of meta- and mega-analysis with data from the ENIGMA obsessive-compulsive disorder working group publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00102 – volume: 9 start-page: 17884 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0019 article-title: Gender differences in familiar face recognition and the influence of sociocultural gender inequality publication-title: Sci. Rep. doi: 10.1038/s41598-019-54074-5 – volume: 128 start-page: 2334 issue: 11 year: 2017 ident: 10.1016/j.neuroimage.2021.118766_bib0001 article-title: Standardized computer-based organized reporting of EEG: SCORE – Second version publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.07.418 – year: 2021 ident: 10.1016/j.neuroimage.2021.118766_bib0016 article-title: Whole-head OPM-MEG enables noninvasive assessment of functional connectivity publication-title: Trends Neurosci. doi: 10.1016/j.tins.2021.04.006 – volume: 108 start-page: 21270 issue: 52 year: 2011 ident: 10.1016/j.neuroimage.2021.118766_bib0025 article-title: Inhibition of eye blinking reveals subjective perceptions of stimulus salience publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1109304108 – volume: 9 start-page: 53 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0007 article-title: Wearable EEG and beyond publication-title: Biomed. Eng. Lett. doi: 10.1007/s13534-018-00093-6 – year: 2021 ident: 10.1016/j.neuroimage.2021.118766_bib0023 – year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0005 article-title: Automated EEG mega-analysis II: cognitive aspects of event related features publication-title: Neuroimage – start-page: 1 year: 2013 ident: 10.1016/j.neuroimage.2021.118766_bib0004 article-title: Hierarchical Event Descriptor (HED) tags for analysis of event-related EEG studies publication-title: 2013 IEEE Global Conference on Signal and Information Processing – volume: 3 issue: 1 year: 2016 ident: 10.1016/j.neuroimage.2021.118766_bib0012 article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments publication-title: Sci Data doi: 10.1038/sdata.2016.44 – volume: 6 start-page: 103 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2021.118766_bib0022 article-title: EEG-BIDS, an extension to the brain imaging data structure for electroencephalography publication-title: Sci. Data doi: 10.1038/s41597-019-0104-8 |
SSID | ssj0009148 |
Score | 2.451579 |
Snippet | •Events represent experiences or processes that unfold in time, often having distinct phases.•Event markers are identified time points usually associated with... Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report... Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 118766 |
SubjectTerms | Annotations Automation Behavior BIDS Brain mapping Case studies Cognitive science Data analysis Datasets Datasets as Topic EEG Electroencephalography - methods Event annotation Events Experiments Facial Recognition - physiology Functional magnetic resonance imaging Functional Neuroimaging - methods HED HED-3G Hierarchical event descriptors Humans Magnetoencephalography - methods Medical imaging MEG Memory Metadata Neuroimaging Neurosciences - methods Phase transitions Recording sessions Research Design Symmetry Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagB8QF8SZQkEEc4BBIYjuJxamUVitEOVGpEgfLT7oIslV3y-9nxnbSBg7sgdsq8WQdz2Qe8ZdvCHnJm0ZbF3QZNOMlt16XkgtWCq1dFSqubWS8OfrcLo75xxNxcqXVF2LCEj1wWri3EBFDAAHJoVIIwhrtDXhdr7mprOg8et9KVmMxNdLtQpafcTsJzRXZIZc_4RmFmrCp32CX7ciMeBmMImf_LCZdP0Vw5N-Z558AyisR6fA2uZVTSbqXbuEOueaHu-TGUd4sv0e-7uuzTfwKkUKWRxOFJ10FGkmb1lQPLv2kiFcHJ00RBP-NYnfsuL8A6ssDnE_eZXW-pq8WBx9e3yfHhwdf9hdl7qVQ2rblm1IG5wIELMtw39O3AhwuZxDL66bCZkW65rrSzHBTa2EbrasmdM70QjMJFaBhD8jOsBr8I0KdA51AXmK71nEjuDHSM2MM72A9ms4UpBsXVdlMNI79Ln6oEVH2XV2qQ6E6VFJHQepJ8iyRbWwh8x71No1Huux4AIxIZSNS_zKigshR62r8IhV8KFxoucUE3k2yOWtJ2ciW0i_AyGazX-x9UngMgQWtbMWvuiC7ow2q7GLWCkpf5Opjghfk-XQanAPu-OjBry5wDL71xyK-IA-TyU5_xXjP-0b2oK6ZMc_mMj8zLE8jAXkvoWiu-OP_sfRPyE1cDkQI1WKX7GzOL_xTyPM25ll8pH8DO1JUCA priority: 102 providerName: Directory of Open Access Journals – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbarYS4IN6kFGQQBziETWI7D3FallbLo71ApUocLNux2yCarHa3_H5mEidL4LISt6zjyU48k3nI428IecWTRJnSqdApxkNurAoLLlgolCojF3FlWsSb07N0cc4_XYiLPTLvz8JgWaW3_Z1Nb621H5n61Zwuq2r6FSIDcDeI54W9CvJsnxwkrEjFhBzMPn5enG2xd2PenYgDHpDAF_R0ZV4tbGR1DR8vJItJ_Bbbb7eQiVsv1YL5j5zV_hVWTf4bkv5dWfmHqzq5S-74GJPOute4R_ZsfZ_cOvW76A_I97labtrjiRTCP9phe9LG0RbNaU1VXXaXFAvZwXpTrI6_pNg2u914ALn6CaXtzE6zWtPXi-MPbx6S85Pjb_NF6JsshCZN-SYsXFk68GSG4YaoTQVYYs7AycdJhF2MVMxVpJjmOlbCJEpFictKnQvFCkgNNXtEJnVT2yeEliWELxCwmCwtuRZc68IyrTXPYD2STAck6xdVGo9Ajo0wfsq-1OyH3IpDojhkJ46AxAPlskPh2IHmPcptmI842u1As7qUXpEkMOwcqGPBIQ91wmhlNfh0q7iOjMhsQIpe6rI_qgrGFR5U7cDAu4F2pNI7Ur8EJRtxv5h9kTiGyp6Cov-KA3LU66D0tmctISdGED8meEBeDLfBauBWkKptc4NzcDsAs_uAPO5UdvgrxnOeJ0UO4hop84iX8Z26umqRyfMCsumIH_7Xmz8lt_EX1gzF4ohMNqsb-wwiv41-7r_s36jUWRw priority: 102 providerName: Elsevier |
Title | Capturing the nature of events and event context using hierarchical event descriptors (HED) |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921010387 https://dx.doi.org/10.1016/j.neuroimage.2021.118766 https://www.ncbi.nlm.nih.gov/pubmed/34848298 https://www.proquest.com/docview/2615480354 https://www.proquest.com/docview/2605231840 https://hal.science/hal-03876965 https://pubmed.ncbi.nlm.nih.gov/PMC8925904 https://doaj.org/article/663ffc1594924f5cbaeb036ea4b0c57e |
Volume | 245 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELboroS4IN4bWCqDOMAhSx52HuKAuktX5bEVQqxUiYPlV3aLICltlyO_nRnHSSlIqKdWid1MM-N5eMbfEPKMJYnUppJhJVMWMm1lWDKehlxKE1URk9oh3pxNs8k5ezfjM7_htvJllZ1OdIraNBr3yF-Cp4_QZClnrxc_QuwahdlV30JjQPYddBnIcz7LN6C7MWuPwsHDCxjgK3na-i6HFzn_DqsWosQkPsK-2w4rcWOeHIr_lpUaXGK55L--6N8llX_YqNNb5KZ3LumolYbb5Jqt75DrZz59fpd8OZGLtTuXSMHvoy2oJ20q6mCcVlTWpv1KsYId1DbFsvgLiv2yXcYBGOoHGNvqm2a5os8n4zcv7pHz0_Hnk0nouyuEOsvYOiwrYyowYTrFTKjNOKhgloJ1j5MI2xfJmMlIpoqpWHKdSBklVW5UwWVaQkyo0vtkr25qe0CoMeC3gKei88wwxZlSpU2VUiyH95HkKiB591KF9tDj2AHjm-hqzL6KDTsEskO07AhI3M9ctPAbO8w5Rr714xFA211olhfCr0cBBFcVyGHJIACtuFbSKjDmVjIVaZ7bgJQd10V3RhW0KvzQfAcCXvVzvR_T-ic7zn4KQrZF_WT0QeA1LDXIyoz_jANy2Mmg8EpnJTZLJCBP-tugLjAHJGvbXOEYzANgWB-QB63I9o9KWcGKpCyAXVvCvEXL9p16fukgyYsSwuiIPfw_WY_IDfyjWA0U80Oyt15e2cfg063VkAyOfsVDt3yHZH_09v1kCp_H4-nHT0O3T_IbY5tRnQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF61qQS8IO4aCiwIJHgw9bHrQwihHqlSmkQItVIlHpa93AaBHZIUxJ_iNzLjtRMCEspL3yx71x7vjL-d9cx-Q8gzFkVSm0L6hYyZz7SVfs547HMpTVAETOqa8WYwTHon7N0pP10jv9q9MJhW2WJiDdSm0viPfBs8faQmizl7O_7mY9UojK62JTScWRzZnz9gyTZ9c7gP-n0eRQfd472e31QV8HWSsJmfF8YUAN06xgigTThAD4thVgujAMv2yJDJQMaKqVByHUkZREVqVMZlnMNaSMVw33WywXBHa4ds7HaH7z8saH5D5jbfwetmYZg3uUMuo6xmqBx9BZyAdWkUvsJK3zU742JCrOsGLM2L6-eYoPmv9_t3Eucfs-LBDXK9cWfpjrO_m2TNlrfIlUETsL9NPu7J8azeCUnB06SORpRWBa2Jo6ZUlsYdUsyZh4mCYiL-GcUK3XWMA0yoaWCsQ7hqMqUvet39l3fIyaWM_F3SKavSbhJqDHhK4BvpNDFMcaZUbmOlFEthPKJUeSRtB1Xohuwca258EW1W22exUIdAdQinDo-E855jR_ixQp9d1Nu8PVJ21yeqyZloEECAwEUBlp8zWPIWXCtpFbgPVjIVaJ5aj-St1kW7KxZwHG40WkGA1_O-jefkPKIVez8FI1uSvrfTF3gOkxuSPOHfQ49stTYoGpibisVH6ZEn88sAUBh1kqWtLrANRh7wR4JH7jmTnT8qZhnLojwDdS0Z85Isy1fK0XlNgp7lsHAP2P3_i_WYXO0dD_qifzg8ekCu4UtjLlLIt0hnNrmwD8GjnKlHzWdMyafLRo7f5L6J3w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IU28IL4JDDAIJHgIS2I7H0IIjXVVxz7EA5Mq7cH4K1sRJKXtQPxr_HXcxUlLQUJ92VuV2OnFd_75nPv5jpBnPEmUsaUKS8V4yI1TYcEFC4VSNiojrkyT8eboOB2c8PdDMVwjv7qzMEir7DCxAWpbG_xGvg2ePqYmY4Jvly0t4kOv_3b8LcQKUhhp7cppeBM5cD9_wPZt-ma_B7p-niT9vY-7g7CtMBCaNOWzsCitLQHGDcNooEsFwBBnsMLFSYQlfFTMVaSY5jpWwiRKRUmZWZ0LxQrYF2kGz10nVzIGXhXMpWyYLRL-xtwfw4MXz-O4aFlEnlvW5KocfQXEgB1qEr_Cmt9NnsbF0thUEFhaIdfPkar5rx_8N53zj_Wxf51cax1buuMt8QZZc9VNsnnUhu5vkdNdNZ41ZyIp-JzUJxSldUmbFFJTqirrf1Jkz8O4U6Tkn1Gs1d1EO8CY2gbWeayrJ1P6YrDXe3mbnFzKuN8hG1VduXuEWgs-E3hJJkst14JrXTimteYZjEeS6YBk3aBK06Y9x-obX2THb_ssF-qQqA7p1RGQeN5z7FN_rNDnHept3h6TdzcX6smZbLFAgsBlCXOg4LD5LYXRymlwJJziOjIicwEpOq3L7nwsIDo8aLSCAK_nfVsfyvtGK_Z-Cka2JP1g51DiNaQ5pEUqvscB2epsULaAN5WL6RmQJ_PbAFUYf1KVqy-wDcYg8JNCQO56k53_FeM5z5MiB3UtGfOSLMt3qtF5kw49L2ALH_H7_xfrMdkEvJCH-8cHD8hVfGckJcVii2zMJhfuIbiWM_2omcOUfLps0PgNks-Mpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capturing+the+nature+of+events+and+event+context+using+hierarchical+event+descriptors+%28HED%29&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Robbins%2C+Kay&rft.au=Truong%2C+Dung&rft.au=Appelhoff%2C+Stefan&rft.au=Delorme%2C+Arnaud&rft.date=2021-12-15&rft.pub=Elsevier&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=245&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118766&rft_id=info%3Apmid%2F34848298&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03876965v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |