Capturing the nature of events and event context using hierarchical event descriptors (HED)

•Events represent experiences or processes that unfold in time, often having distinct phases.•Event markers are identified time points usually associated with a phase transition of an event.•The critical linkage of experimental data to external reality and processes is achieved by creating appropria...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 245; p. 118766
Main Authors Robbins, Kay, Truong, Dung, Appelhoff, Stefan, Delorme, Arnaud, Makeig, Scott
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.12.2021
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2021.118766

Cover

Loading…
Abstract •Events represent experiences or processes that unfold in time, often having distinct phases.•Event markers are identified time points usually associated with a phase transition of an event.•The critical linkage of experimental data to external reality and processes is achieved by creating appropriate event markers and associating these markers with informative metadata.•The HED (Hierarchical event Descriptor) system provides a framework and tools for making this association in a machine-actionable, analysis-ready way.•Without appropriate event design (appropriate event markers and informative annotation) neuroimaging data will not be usable to its full potential by the broader community. Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645). [Display omitted]
AbstractList Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645).Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645).
Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645).
Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools ( hedtags.org ) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset ( bids.neuroimaging.io ). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset ( openneuro.org , ds003645 ).
•Events represent experiences or processes that unfold in time, often having distinct phases.•Event markers are identified time points usually associated with a phase transition of an event.•The critical linkage of experimental data to external reality and processes is achieved by creating appropriate event markers and associating these markers with informative metadata.•The HED (Hierarchical event Descriptor) system provides a framework and tools for making this association in a machine-actionable, analysis-ready way.•Without appropriate event design (appropriate event markers and informative annotation) neuroimaging data will not be usable to its full potential by the broader community. Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis. A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools (hedtags.org) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset (bids.neuroimaging.io). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made available an accompanying HED-annotated BIDS-formated edition of the MEEG data of the Wakeman and Henson dataset (openneuro.org, ds003645). [Display omitted]
ArticleNumber 118766
Author Appelhoff, Stefan
Robbins, Kay
Truong, Dung
Makeig, Scott
Delorme, Arnaud
AuthorAffiliation b Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States
a Department of Computer Science, University of Texas San Antonio San Antonio, TX, United States
c Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
d Paul Sabatier University in Toulouse, Toulouse, France
AuthorAffiliation_xml – name: c Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
– name: a Department of Computer Science, University of Texas San Antonio San Antonio, TX, United States
– name: d Paul Sabatier University in Toulouse, Toulouse, France
– name: b Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States
Author_xml – sequence: 1
  givenname: Kay
  surname: Robbins
  fullname: Robbins, Kay
  email: Kay.Robbins@utsa.edu
  organization: Department of Computer Science, University of Texas San Antonio San Antonio, TX, United States
– sequence: 2
  givenname: Dung
  surname: Truong
  fullname: Truong, Dung
  organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States
– sequence: 3
  givenname: Stefan
  surname: Appelhoff
  fullname: Appelhoff, Stefan
  organization: Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
– sequence: 4
  givenname: Arnaud
  surname: Delorme
  fullname: Delorme, Arnaud
  organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States
– sequence: 5
  givenname: Scott
  surname: Makeig
  fullname: Makeig, Scott
  organization: Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, California, 92903-0559, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34848298$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03876965$$DView record in HAL
BookMark eNqNks1v0zAYhyM0xD7gX0CRuGyHFn-m9gWxjUEnVeICJw6W47xpXVK72E7F_nscMjrWU09xnMfP67zv77w4cd5BUZQYTTHC1fv11EEfvN3oJUwJIniKsZhV1YviDCPJJ5LPyMmw5nQiMJanxXmMa4SQxEy8Kk4pE0wQKc6KH7d6m_pg3bJMKyidzi9Q-raEHbgUS-2acVka7xL8TmUfB3hlIehgVtbo7hFoIJpgt8mHWF7O7z5dvS5etrqL8ObxeVF8_3z37XY-WXz9cn97vZiYqmJpItumaRmmhlIuEFQctGG0whQTJCjBGjONNK1ZjTU3RGtE2llTC66pRJLV9KK4H72N12u1Dbkt4UF5bdXfDR-WSodkTQeqqmjbGswlk4S13NQaakQr0KxGhs8guz6Mrm1fb6Ax-ceC7p5Jn39xdqWWfqeEJFwilgVXo2B1cGx-vVDDHqJ5UrLiO5zZy8diwf_qISa1sdFA12kHvo-KVIgTigVDGX13gK59H1xua6YwZwJRPhR_-__t9_X_zTsDYgRM8DEGaPcIRmqIllqrp2ipIVpqjNZTZ_ZHjU06WT_0wXbHCG5GAeQs7HJ-VDQWnIHGBjApD8seI_l4IDGddUMKf8LDcYo_lgMGaw
CitedBy_id crossref_primary_10_1038_s41597_024_04282_0
crossref_primary_10_1038_s41597_024_03559_8
crossref_primary_10_3389_fgene_2023_1086802
crossref_primary_10_1016_j_neuroimage_2022_119438
crossref_primary_10_1038_s41597_023_02614_0
crossref_primary_10_1093_database_baac096
crossref_primary_10_1523_ENEURO_0287_24_2024
Cites_doi 10.1353/ppp.2011.0049
10.3389/fninf.2016.00042
10.1016/j.neuroimage.2011.08.050
10.3389/fnhum.2011.00076
10.1523/JNEUROSCI.2968-18.2019
10.1016/0013-4694(75)90003-6
10.3389/fnins.2019.00300
10.3758/BF03206077
10.1016/j.jbiomech.2020.109832
10.1016/j.ijpsycho.2008.11.008
10.1038/sdata.2015.1
10.1016/j.clinph.2019.03.027
10.1016/j.cogbrainres.2004.09.006
10.1038/s41597-019-0105-7
10.1038/sdata.2018.110
10.1016/j.jneumeth.2003.10.009
10.3389/fninf.2018.00102
10.1038/s41598-019-54074-5
10.1016/j.clinph.2017.07.418
10.1016/j.tins.2021.04.006
10.1073/pnas.1109304108
10.1007/s13534-018-00093-6
10.1038/sdata.2016.44
10.1038/s41597-019-0104-8
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Copyright Elsevier Limited Dec 15, 2021
Attribution
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Dec 15, 2021
– notice: Attribution
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.neuroimage.2021.118766
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database (ProQuest)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest One Psychology





Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 118766
ExternalDocumentID oai_doaj_org_article_663ffc1594924f5cbaeb036ea4b0c57e
PMC8925904
oai_HAL_hal_03876965v1
34848298
10_1016_j_neuroimage_2021_118766
S1053811921010387
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: RF1 MH125934
– fundername: NIBIB NIH HHS
  grantid: R01 EB023297
– fundername: NIMH NIH HHS
  grantid: R24 MH120037
– fundername: NINDS NIH HHS
  grantid: R01 NS047293
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
AAQFI
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
NCXOZ
SNS
ZA5
29N
53G
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AGHFR
AGQPQ
AGRNS
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EJD
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
R2-
RIG
SEW
WUQ
XPP
ZMT
0SF
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c664t-9fddf413c33580e65eac436131208321a14a0a3b4b1a5c2aa02f7db85a39094b3
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Wed Aug 27 01:24:34 EDT 2025
Thu Aug 21 13:41:41 EDT 2025
Fri May 09 12:11:26 EDT 2025
Thu Sep 04 23:59:00 EDT 2025
Wed Aug 13 09:11:28 EDT 2025
Wed Feb 19 02:25:41 EST 2025
Tue Jul 01 03:02:21 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Fri Feb 23 02:40:24 EST 2024
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HED-3G
Event annotation
Events
HED
EEG
Time series
BIDS
Hierarchical event descriptors
MEG
Language English
License This is an open access article under the CC BY license.
Copyright © 2021. Published by Elsevier Inc.
Attribution: http://creativecommons.org/licenses/by
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-9fddf413c33580e65eac436131208321a14a0a3b4b1a5c2aa02f7db85a39094b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMCID: PMC8925904
Data curation: DT, KR, AD
Writing – original draft: KR, SM, DT, SA, AD
Conceptualization: KR, SM, DT
Writing – review & editing: KR, SM, DT, SA, AD
Software: KR, DT, AD, SA
Methodology: KR, SM, DT
Visualization: SM, KR
Author contributions
ORCID 0000-0002-0799-3557
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1053811921010387
PMID 34848298
PQID 2615480354
PQPubID 2031077
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_663ffc1594924f5cbaeb036ea4b0c57e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8925904
hal_primary_oai_HAL_hal_03876965v1
proquest_miscellaneous_2605231840
proquest_journals_2615480354
pubmed_primary_34848298
crossref_primary_10_1016_j_neuroimage_2021_118766
crossref_citationtrail_10_1016_j_neuroimage_2021_118766
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2021_118766
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2021_118766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Gorgolewski, Auer, Calhoun, Craddock, Das, Duff, Flandin, Ghosh, Glatard, Halchenko, Handwerker, Hanke, Keator, Li, Michael, Maumet, Nichols, Nichols, Pellman, Poldrack (bib0012) 2016; 3
Squires, Petuchowski, Wickens, Donchin (bib0026) 1977; 22
Shultz, Klin, Jones (bib0025) 2011; 108
Casson (bib0007) 2019; 9
Robbins, Truong, Jones, Callanan, Makeig (bib0023) 2021
Shapiro (bib0024) 2019
Boedhoe, Heymans, Schmaal, Abe, Alonso, Ameis, Anticevic, Arnold, Batistuzzo, Benedetti, Beucke, Bollettini, Bose, Brem, Calvo, Calvo, Cheng, Cho, Ciullo, Twisk (bib0006) 2019; 12
Stacchi, Ramon, Lao, Caldara (bib0027) 2019; 39
Mishra, Likitlersuang, Wilmer, Cohan, Germine, DeGutis (bib0019) 2019; 9
Martínez-Cancino, Delorme, Truong, Artoni, Kreutz-Delgado, Sivagnanam, Yoshimoto, Majumdar, Makeig (bib0018) 2020
Holdgraf, Appelhoff, Bickel, Bouchard, D'Ambrosio, David, Devinsky, Dichter, Flinker, Foster, Gorgolewski, Groen, Groppe, Gunduz, Hamilton, Honey, Jas, Knight, Lachaux, Hermes (bib0015) 2019; 6
Courchesne, Hillyard, Galambos (bib0009) 1975; 39
Debener, Makeig, Delorme, Engel (bib0010) 2005; 22
Bigdely-Shamlo, Cockfield, Makeig, Rognon, La Valle, Miyakoshi, Robbins (bib0003) 2016; 10
Henson, Abdulrahman, Flandin, Litvak (bib0013) 2019; 13
Beniczky, Aurlien, Brøgger, Hirsch, Schomer, Trinka, Pressler, Wennberg, Visser, Eisermann, Diehl, Lesser, Kaplan, Nguyen The Tich, Lee, Martins-da-Silva, Stefan, Neufeld, Rubboli, Herman (bib0001) 2017; 128
Murashko, Shmukler (bib0020) 2019; 130
Berman, Horovitz, Morel, Hallett (bib0002) 2012; 59
Bigdely-Shamlo, Kreutz-Delgado, Robbins, Miyakoshi, Westerfield, Bel-Bahar, Kothe, Hsi, Makeig (bib0004) 2013
Jas, Jones, Hämäläinen (bib0016) 2021
Vitali, Perkins (bib0028) 2020; 106
Makeig, Gramann, Jung, Sejnowski, Poizner (bib0017) 2009; 73
Wakeman, Henson (bib0029) 2015; 2
Niso, Gorgolewski, Bock, Brooks, Flandin, Gramfort, Henson, Jas, Litvak, Moreau, Oostenveld, Schoffelen, Tadel, Wexler, Baillet (bib0021) 2018; 5
Pernet, Appelhoff, Gorgolewski, Flandin, Phillips, Delorme, Oostenveld (bib0022) 2019; 6
Bigdely-Shamlo, Touryan, Ojeda, Kothe, Mullen, Robbins (bib0005) 2019
Delorme, Truong, Martinez- Cancino, Pernet, Sivagnanam, Yoshimoto, Poldrack, Majumdar, Makeig (bib0011) 2020
Delorme, Makeig (bib30) 2004; 134
Henson, Wakeman, Litvak, Friston (bib0014) 2011; 5
Costafreda (bib0008) 2012; 18
Bigdely-Shamlo (10.1016/j.neuroimage.2021.118766_bib0005) 2019
Martínez-Cancino (10.1016/j.neuroimage.2021.118766_bib0018) 2020
Berman (10.1016/j.neuroimage.2021.118766_bib0002) 2012; 59
Delorme (10.1016/j.neuroimage.2021.118766_bib30) 2004; 134
Costafreda (10.1016/j.neuroimage.2021.118766_bib0008) 2012; 18
Robbins (10.1016/j.neuroimage.2021.118766_bib0023) 2021
Holdgraf (10.1016/j.neuroimage.2021.118766_bib0015) 2019; 6
Debener (10.1016/j.neuroimage.2021.118766_bib0010) 2005; 22
Murashko (10.1016/j.neuroimage.2021.118766_bib0020) 2019; 130
Casson (10.1016/j.neuroimage.2021.118766_bib0007) 2019; 9
Henson (10.1016/j.neuroimage.2021.118766_bib0014) 2011; 5
Mishra (10.1016/j.neuroimage.2021.118766_bib0019) 2019; 9
Beniczky (10.1016/j.neuroimage.2021.118766_bib0001) 2017; 128
Henson (10.1016/j.neuroimage.2021.118766_bib0013) 2019; 13
Squires (10.1016/j.neuroimage.2021.118766_bib0026) 1977; 22
Makeig (10.1016/j.neuroimage.2021.118766_bib0017) 2009; 73
Bigdely-Shamlo (10.1016/j.neuroimage.2021.118766_bib0004) 2013
Shultz (10.1016/j.neuroimage.2021.118766_bib0025) 2011; 108
Boedhoe (10.1016/j.neuroimage.2021.118766_bib0006) 2019; 12
Wakeman (10.1016/j.neuroimage.2021.118766_bib0029) 2015; 2
Shapiro (10.1016/j.neuroimage.2021.118766_bib0024) 2019
Pernet (10.1016/j.neuroimage.2021.118766_bib0022) 2019; 6
Stacchi (10.1016/j.neuroimage.2021.118766_bib0027) 2019; 39
Vitali (10.1016/j.neuroimage.2021.118766_bib0028) 2020; 106
Gorgolewski (10.1016/j.neuroimage.2021.118766_bib0012) 2016; 3
Jas (10.1016/j.neuroimage.2021.118766_bib0016) 2021
Bigdely-Shamlo (10.1016/j.neuroimage.2021.118766_bib0003) 2016; 10
Delorme (10.1016/j.neuroimage.2021.118766_bib0011) 2020
Niso (10.1016/j.neuroimage.2021.118766_bib0021) 2018; 5
Courchesne (10.1016/j.neuroimage.2021.118766_bib0009) 1975; 39
References_xml – volume: 6
  start-page: 103
  year: 2019
  ident: bib0022
  article-title: EEG-BIDS, an extension to the brain imaging data structure for electroencephalography
  publication-title: Sci. Data
– volume: 10
  year: 2016
  ident: bib0003
  article-title: Hierarchical event descriptors (HED): semi-structured tagging for real-world events in large-scale EEG
  publication-title: Front. Neuroinform.
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib30
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– volume: 59
  start-page: 1441
  year: 2012
  end-page: 1450
  ident: bib0002
  article-title: Neural correlates of blink suppression and the buildup of a natural bodily urge
  publication-title: Neuroimage
– year: 2020
  ident: bib0011
  article-title: Tools for Importing and Evaluating BIDS-EEG Formatted Data
  publication-title: . 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) May 4-8, 2021
– volume: 12
  year: 2019
  ident: bib0006
  article-title: An empirical comparison of meta- and mega-analysis with data from the ENIGMA obsessive-compulsive disorder working group
  publication-title: Front. Neuroinform.
– year: 2021
  ident: bib0023
– start-page: 1
  year: 2013
  end-page: 4
  ident: bib0004
  article-title: Hierarchical Event Descriptor (HED) tags for analysis of event-related EEG studies
  publication-title: 2013 IEEE Global Conference on Signal and Information Processing
– volume: 2
  year: 2015
  ident: bib0029
  article-title: A multi-subject, multi-modal human neuroimaging dataset
  publication-title: Sci. Data
– volume: 73
  start-page: 95
  year: 2009
  end-page: 100
  ident: bib0017
  article-title: Linking brain, mind and behavior
  publication-title: Int. J. Psychophysiol.
– volume: 13
  year: 2019
  ident: bib0013
  article-title: Multimodal integration of M/EEG and f/MRI Data in SPM12
  publication-title: Front. Neurosci.
– year: 2020
  ident: bib0018
  article-title: The open EEGLAB portal interface:high-performance computing with EEGLAB
  publication-title: Neuroimage
– volume: 22
  start-page: 31
  year: 1977
  end-page: 40
  ident: bib0026
  article-title: The effects of stimulus sequence on event related potentials: a comparison of visual and auditory sequences
  publication-title: Percept. Psychophys.
– volume: 108
  start-page: 21270
  year: 2011
  end-page: 21275
  ident: bib0025
  article-title: Inhibition of eye blinking reveals subjective perceptions of stimulus salience
  publication-title: Proc. Natl. Acad. Sci.
– volume: 5
  year: 2011
  ident: bib0014
  article-title: A parametric empirical Bayesian framework for the eeg/meg inverse problem: generative models for multi-subject and multi-modal integration
  publication-title: Front. Hum. Neurosci.
– year: 2019
  ident: bib0005
  article-title: Automated EEG mega-analysis II: cognitive aspects of event related features
  publication-title: Neuroimage
– volume: 9
  start-page: 53
  year: 2019
  end-page: 71
  ident: bib0007
  article-title: Wearable EEG and beyond
  publication-title: Biomed. Eng. Lett.
– volume: 6
  start-page: 102
  year: 2019
  ident: bib0015
  article-title: IEEG-BIDS, extending the brain imaging data structure specification to human intracranial electrophysiology
  publication-title: Sci. Data
– volume: 5
  year: 2018
  ident: bib0021
  article-title: MEG-BIDS, the brain imaging data structure extended to magnetoencephalography
  publication-title: Sci. Data
– volume: 106
  year: 2020
  ident: bib0028
  article-title: Determining anatomical frames via inertial motion capture: a survey of methods
  publication-title: J. Biomech.
– volume: 18
  start-page: 275
  year: 2012
  end-page: 277
  ident: bib0008
  article-title: Meta-analysis, mega-analysis, and task analysis in fMRI research
  publication-title: Philosophy, Psychiatry, Psychol.
– year: 2021
  ident: bib0016
  article-title: Whole-head OPM-MEG enables noninvasive assessment of functional connectivity
  publication-title: Trends Neurosci.
– volume: 22
  start-page: 309
  year: 2005
  end-page: 321
  ident: bib0010
  article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis
  publication-title: Cognitive Brain Research
– volume: 3
  year: 2016
  ident: bib0012
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci Data
– volume: 39
  start-page: 4113
  year: 2019
  end-page: 4123
  ident: bib0027
  article-title: Neural representations of faces are tuned to eye movements
  publication-title: J. Neurosci.
– volume: 9
  start-page: 17884
  year: 2019
  ident: bib0019
  article-title: Gender differences in familiar face recognition and the influence of sociocultural gender inequality
  publication-title: Sci. Rep.
– volume: 128
  start-page: 2334
  year: 2017
  end-page: 2346
  ident: bib0001
  article-title: Standardized computer-based organized reporting of EEG: SCORE – Second version
  publication-title: Clin. Neurophysiol.
– volume: 39
  start-page: 131
  year: 1975
  end-page: 143
  ident: bib0009
  article-title: Stimulus novelty, task relevance and the visual evoked potential in man
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 130
  start-page: 986
  year: 2019
  end-page: 996
  ident: bib0020
  article-title: EEG correlates of face recognition in patients with schizophrenia spectrum disorders: a systematic review
  publication-title: Clin. Neurophysiol.
– year: 2019
  ident: bib0024
  article-title: Embodied Cognition
– volume: 18
  start-page: 275
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118766_bib0008
  article-title: Meta-analysis, mega-analysis, and task analysis in fMRI research
  publication-title: Philosophy, Psychiatry, Psychol.
  doi: 10.1353/ppp.2011.0049
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118766_bib0003
  article-title: Hierarchical event descriptors (HED): semi-structured tagging for real-world events in large-scale EEG
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2016.00042
– volume: 59
  start-page: 1441
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2021.118766_bib0002
  article-title: Neural correlates of blink suppression and the buildup of a natural bodily urge
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.050
– volume: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118766_bib0014
  article-title: A parametric empirical Bayesian framework for the eeg/meg inverse problem: generative models for multi-subject and multi-modal integration
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2011.00076
– volume: 39
  start-page: 4113
  issue: 21
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0027
  article-title: Neural representations of faces are tuned to eye movements
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2968-18.2019
– volume: 39
  start-page: 131
  issue: 2
  year: 1975
  ident: 10.1016/j.neuroimage.2021.118766_bib0009
  article-title: Stimulus novelty, task relevance and the visual evoked potential in man
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(75)90003-6
– volume: 13
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0013
  article-title: Multimodal integration of M/EEG and f/MRI Data in SPM12
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00300
– volume: 22
  start-page: 31
  issue: 1
  year: 1977
  ident: 10.1016/j.neuroimage.2021.118766_bib0026
  article-title: The effects of stimulus sequence on event related potentials: a comparison of visual and auditory sequences
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03206077
– volume: 106
  year: 2020
  ident: 10.1016/j.neuroimage.2021.118766_bib0028
  article-title: Determining anatomical frames via inertial motion capture: a survey of methods
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109832
– volume: 73
  start-page: 95
  issue: 2
  year: 2009
  ident: 10.1016/j.neuroimage.2021.118766_bib0017
  article-title: Linking brain, mind and behavior
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2008.11.008
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118766_bib0011
  article-title: Tools for Importing and Evaluating BIDS-EEG Formatted Data
– volume: 2
  year: 2015
  ident: 10.1016/j.neuroimage.2021.118766_bib0029
  article-title: A multi-subject, multi-modal human neuroimaging dataset
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.1
– volume: 130
  start-page: 986
  issue: 6
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0020
  article-title: EEG correlates of face recognition in patients with schizophrenia spectrum disorders: a systematic review
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2019.03.027
– volume: 22
  start-page: 309
  issue: 3
  year: 2005
  ident: 10.1016/j.neuroimage.2021.118766_bib0010
  article-title: What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis
  publication-title: Cognitive Brain Research
  doi: 10.1016/j.cogbrainres.2004.09.006
– volume: 6
  start-page: 102
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0015
  article-title: IEEG-BIDS, extending the brain imaging data structure specification to human intracranial electrophysiology
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0105-7
– year: 2020
  ident: 10.1016/j.neuroimage.2021.118766_bib0018
  article-title: The open EEGLAB portal interface:high-performance computing with EEGLAB
  publication-title: Neuroimage
– volume: 5
  year: 2018
  ident: 10.1016/j.neuroimage.2021.118766_bib0021
  article-title: MEG-BIDS, the brain imaging data structure extended to magnetoencephalography
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.110
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0024
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2021.118766_bib30
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 12
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0006
  article-title: An empirical comparison of meta- and mega-analysis with data from the ENIGMA obsessive-compulsive disorder working group
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2018.00102
– volume: 9
  start-page: 17884
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0019
  article-title: Gender differences in familiar face recognition and the influence of sociocultural gender inequality
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54074-5
– volume: 128
  start-page: 2334
  issue: 11
  year: 2017
  ident: 10.1016/j.neuroimage.2021.118766_bib0001
  article-title: Standardized computer-based organized reporting of EEG: SCORE – Second version
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.07.418
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118766_bib0016
  article-title: Whole-head OPM-MEG enables noninvasive assessment of functional connectivity
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2021.04.006
– volume: 108
  start-page: 21270
  issue: 52
  year: 2011
  ident: 10.1016/j.neuroimage.2021.118766_bib0025
  article-title: Inhibition of eye blinking reveals subjective perceptions of stimulus salience
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1109304108
– volume: 9
  start-page: 53
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0007
  article-title: Wearable EEG and beyond
  publication-title: Biomed. Eng. Lett.
  doi: 10.1007/s13534-018-00093-6
– year: 2021
  ident: 10.1016/j.neuroimage.2021.118766_bib0023
– year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0005
  article-title: Automated EEG mega-analysis II: cognitive aspects of event related features
  publication-title: Neuroimage
– start-page: 1
  year: 2013
  ident: 10.1016/j.neuroimage.2021.118766_bib0004
  article-title: Hierarchical Event Descriptor (HED) tags for analysis of event-related EEG studies
  publication-title: 2013 IEEE Global Conference on Signal and Information Processing
– volume: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2021.118766_bib0012
  article-title: The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.44
– volume: 6
  start-page: 103
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2021.118766_bib0022
  article-title: EEG-BIDS, an extension to the brain imaging data structure for electroencephalography
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0104-8
SSID ssj0009148
Score 2.451579
Snippet •Events represent experiences or processes that unfold in time, often having distinct phases.•Event markers are identified time points usually associated with...
Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report...
Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities including fMRI. Choices about which events to report...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118766
SubjectTerms Annotations
Automation
Behavior
BIDS
Brain mapping
Case studies
Cognitive science
Data analysis
Datasets
Datasets as Topic
EEG
Electroencephalography - methods
Event annotation
Events
Experiments
Facial Recognition - physiology
Functional magnetic resonance imaging
Functional Neuroimaging - methods
HED
HED-3G
Hierarchical event descriptors
Humans
Magnetoencephalography - methods
Medical imaging
MEG
Memory
Metadata
Neuroimaging
Neurosciences - methods
Phase transitions
Recording sessions
Research Design
Symmetry
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagB8QF8SZQkEEc4BBIYjuJxamUVitEOVGpEgfLT7oIslV3y-9nxnbSBg7sgdsq8WQdz2Qe8ZdvCHnJm0ZbF3QZNOMlt16XkgtWCq1dFSqubWS8OfrcLo75xxNxcqXVF2LCEj1wWri3EBFDAAHJoVIIwhrtDXhdr7mprOg8et9KVmMxNdLtQpafcTsJzRXZIZc_4RmFmrCp32CX7ciMeBmMImf_LCZdP0Vw5N-Z558AyisR6fA2uZVTSbqXbuEOueaHu-TGUd4sv0e-7uuzTfwKkUKWRxOFJ10FGkmb1lQPLv2kiFcHJ00RBP-NYnfsuL8A6ssDnE_eZXW-pq8WBx9e3yfHhwdf9hdl7qVQ2rblm1IG5wIELMtw39O3AhwuZxDL66bCZkW65rrSzHBTa2EbrasmdM70QjMJFaBhD8jOsBr8I0KdA51AXmK71nEjuDHSM2MM72A9ms4UpBsXVdlMNI79Ln6oEVH2XV2qQ6E6VFJHQepJ8iyRbWwh8x71No1Huux4AIxIZSNS_zKigshR62r8IhV8KFxoucUE3k2yOWtJ2ciW0i_AyGazX-x9UngMgQWtbMWvuiC7ow2q7GLWCkpf5Opjghfk-XQanAPu-OjBry5wDL71xyK-IA-TyU5_xXjP-0b2oK6ZMc_mMj8zLE8jAXkvoWiu-OP_sfRPyE1cDkQI1WKX7GzOL_xTyPM25ll8pH8DO1JUCA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbarYS4IN6kFGQQBziETWI7D3FallbLo71ApUocLNux2yCarHa3_H5mEidL4LISt6zjyU48k3nI428IecWTRJnSqdApxkNurAoLLlgolCojF3FlWsSb07N0cc4_XYiLPTLvz8JgWaW3_Z1Nb621H5n61Zwuq2r6FSIDcDeI54W9CvJsnxwkrEjFhBzMPn5enG2xd2PenYgDHpDAF_R0ZV4tbGR1DR8vJItJ_Bbbb7eQiVsv1YL5j5zV_hVWTf4bkv5dWfmHqzq5S-74GJPOute4R_ZsfZ_cOvW76A_I97labtrjiRTCP9phe9LG0RbNaU1VXXaXFAvZwXpTrI6_pNg2u914ALn6CaXtzE6zWtPXi-MPbx6S85Pjb_NF6JsshCZN-SYsXFk68GSG4YaoTQVYYs7AycdJhF2MVMxVpJjmOlbCJEpFictKnQvFCkgNNXtEJnVT2yeEliWELxCwmCwtuRZc68IyrTXPYD2STAck6xdVGo9Ajo0wfsq-1OyH3IpDojhkJ46AxAPlskPh2IHmPcptmI842u1As7qUXpEkMOwcqGPBIQ91wmhlNfh0q7iOjMhsQIpe6rI_qgrGFR5U7cDAu4F2pNI7Ur8EJRtxv5h9kTiGyp6Cov-KA3LU66D0tmctISdGED8meEBeDLfBauBWkKptc4NzcDsAs_uAPO5UdvgrxnOeJ0UO4hop84iX8Z26umqRyfMCsumIH_7Xmz8lt_EX1gzF4ohMNqsb-wwiv41-7r_s36jUWRw
  priority: 102
  providerName: Elsevier
Title Capturing the nature of events and event context using hierarchical event descriptors (HED)
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811921010387
https://dx.doi.org/10.1016/j.neuroimage.2021.118766
https://www.ncbi.nlm.nih.gov/pubmed/34848298
https://www.proquest.com/docview/2615480354
https://www.proquest.com/docview/2605231840
https://hal.science/hal-03876965
https://pubmed.ncbi.nlm.nih.gov/PMC8925904
https://doaj.org/article/663ffc1594924f5cbaeb036ea4b0c57e
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELboroS4IN4bWCqDOMAhSx52HuKAuktX5bEVQqxUiYPlV3aLICltlyO_nRnHSSlIqKdWid1MM-N5eMbfEPKMJYnUppJhJVMWMm1lWDKehlxKE1URk9oh3pxNs8k5ezfjM7_htvJllZ1OdIraNBr3yF-Cp4_QZClnrxc_QuwahdlV30JjQPYddBnIcz7LN6C7MWuPwsHDCxjgK3na-i6HFzn_DqsWosQkPsK-2w4rcWOeHIr_lpUaXGK55L--6N8llX_YqNNb5KZ3LumolYbb5Jqt75DrZz59fpd8OZGLtTuXSMHvoy2oJ20q6mCcVlTWpv1KsYId1DbFsvgLiv2yXcYBGOoHGNvqm2a5os8n4zcv7pHz0_Hnk0nouyuEOsvYOiwrYyowYTrFTKjNOKhgloJ1j5MI2xfJmMlIpoqpWHKdSBklVW5UwWVaQkyo0vtkr25qe0CoMeC3gKei88wwxZlSpU2VUiyH95HkKiB591KF9tDj2AHjm-hqzL6KDTsEskO07AhI3M9ctPAbO8w5Rr714xFA211olhfCr0cBBFcVyGHJIACtuFbSKjDmVjIVaZ7bgJQd10V3RhW0KvzQfAcCXvVzvR_T-ic7zn4KQrZF_WT0QeA1LDXIyoz_jANy2Mmg8EpnJTZLJCBP-tugLjAHJGvbXOEYzANgWB-QB63I9o9KWcGKpCyAXVvCvEXL9p16fukgyYsSwuiIPfw_WY_IDfyjWA0U80Oyt15e2cfg063VkAyOfsVDt3yHZH_09v1kCp_H4-nHT0O3T_IbY5tRnQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF61qQS8IO4aCiwIJHgw9bHrQwihHqlSmkQItVIlHpa93AaBHZIUxJ_iNzLjtRMCEspL3yx71x7vjL-d9cx-Q8gzFkVSm0L6hYyZz7SVfs547HMpTVAETOqa8WYwTHon7N0pP10jv9q9MJhW2WJiDdSm0viPfBs8faQmizl7O_7mY9UojK62JTScWRzZnz9gyTZ9c7gP-n0eRQfd472e31QV8HWSsJmfF8YUAN06xgigTThAD4thVgujAMv2yJDJQMaKqVByHUkZREVqVMZlnMNaSMVw33WywXBHa4ds7HaH7z8saH5D5jbfwetmYZg3uUMuo6xmqBx9BZyAdWkUvsJK3zU742JCrOsGLM2L6-eYoPmv9_t3Eucfs-LBDXK9cWfpjrO_m2TNlrfIlUETsL9NPu7J8azeCUnB06SORpRWBa2Jo6ZUlsYdUsyZh4mCYiL-GcUK3XWMA0yoaWCsQ7hqMqUvet39l3fIyaWM_F3SKavSbhJqDHhK4BvpNDFMcaZUbmOlFEthPKJUeSRtB1Xohuwca258EW1W22exUIdAdQinDo-E855jR_ixQp9d1Nu8PVJ21yeqyZloEECAwEUBlp8zWPIWXCtpFbgPVjIVaJ5aj-St1kW7KxZwHG40WkGA1_O-jefkPKIVez8FI1uSvrfTF3gOkxuSPOHfQ49stTYoGpibisVH6ZEn88sAUBh1kqWtLrANRh7wR4JH7jmTnT8qZhnLojwDdS0Z85Isy1fK0XlNgp7lsHAP2P3_i_WYXO0dD_qifzg8ekCu4UtjLlLIt0hnNrmwD8GjnKlHzWdMyafLRo7f5L6J3w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe2IU28IL4JDDAIJHgIS2I7H0IIjXVVxz7EA5Mq7cH4K1sRJKXtQPxr_HXcxUlLQUJ92VuV2OnFd_75nPv5jpBnPEmUsaUKS8V4yI1TYcEFC4VSNiojrkyT8eboOB2c8PdDMVwjv7qzMEir7DCxAWpbG_xGvg2ePqYmY4Jvly0t4kOv_3b8LcQKUhhp7cppeBM5cD9_wPZt-ma_B7p-niT9vY-7g7CtMBCaNOWzsCitLQHGDcNooEsFwBBnsMLFSYQlfFTMVaSY5jpWwiRKRUmZWZ0LxQrYF2kGz10nVzIGXhXMpWyYLRL-xtwfw4MXz-O4aFlEnlvW5KocfQXEgB1qEr_Cmt9NnsbF0thUEFhaIdfPkar5rx_8N53zj_Wxf51cax1buuMt8QZZc9VNsnnUhu5vkdNdNZ41ZyIp-JzUJxSldUmbFFJTqirrf1Jkz8O4U6Tkn1Gs1d1EO8CY2gbWeayrJ1P6YrDXe3mbnFzKuN8hG1VduXuEWgs-E3hJJkst14JrXTimteYZjEeS6YBk3aBK06Y9x-obX2THb_ssF-qQqA7p1RGQeN5z7FN_rNDnHept3h6TdzcX6smZbLFAgsBlCXOg4LD5LYXRymlwJJziOjIicwEpOq3L7nwsIDo8aLSCAK_nfVsfyvtGK_Z-Cka2JP1g51DiNaQ5pEUqvscB2epsULaAN5WL6RmQJ_PbAFUYf1KVqy-wDcYg8JNCQO56k53_FeM5z5MiB3UtGfOSLMt3qtF5kw49L2ALH_H7_xfrMdkEvJCH-8cHD8hVfGckJcVii2zMJhfuIbiWM_2omcOUfLps0PgNks-Mpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capturing+the+nature+of+events+and+event+context+using+hierarchical+event+descriptors+%28HED%29&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Robbins%2C+Kay&rft.au=Truong%2C+Dung&rft.au=Appelhoff%2C+Stefan&rft.au=Delorme%2C+Arnaud&rft.date=2021-12-15&rft.pub=Elsevier&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=245&rft_id=info:doi/10.1016%2Fj.neuroimage.2021.118766&rft_id=info%3Apmid%2F34848298&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03876965v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon