Temperature and light intensity effects on photodegradation of high-density polyethylene

The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date...

Full description

Saved in:
Bibliographic Details
Published inPolymer degradation and stability Vol. 165; pp. 153 - 160
Main Authors Fairbrother, Andrew, Hsueh, Hsiang-Chun, Kim, Jae Hyun, Jacobs, Deborah, Perry, Lakesha, Goodwin, David, White, Christopher, Watson, Stephanie, Sung, Li-Piin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.07.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m−2, 61 W m−2, 38 W m−2, 15 W m−2, 8 W m−2, and 0 W m−2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials. [Display omitted] •Accelerated and natural weathering of high-density polyethylene showed an abrupt transition to brittle mechanical failure.•Accelerated weathering at various temperatures and ultraviolet light intensities.•Kinetic and dose-damage relationships for mechanical, chemical, and structural properties were determined.
AbstractList The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m , 61 W m , 38 W m , 15 W m , 8 W m , and 0 W m ). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials.
The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m−2, 61 W m−2, 38 W m−2, 15 W m−2, 8 W m−2, and 0 W m−2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials.
The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m −2 , 61 W m −2 , 38 W m −2 , 15 W m −2 , 8 W m −2 , and 0 W m −2 ). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials.
The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m−2, 61 W m−2, 38 W m−2, 15 W m−2, 8 W m−2, and 0 W m−2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials. [Display omitted] •Accelerated and natural weathering of high-density polyethylene showed an abrupt transition to brittle mechanical failure.•Accelerated weathering at various temperatures and ultraviolet light intensities.•Kinetic and dose-damage relationships for mechanical, chemical, and structural properties were determined.
The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m-2, 61 W m-2, 38 W m-2, 15 W m-2, 8 W m-2, and 0 W m-2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials.The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m-2, 61 W m-2, 38 W m-2, 15 W m-2, 8 W m-2, and 0 W m-2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials.
Author Kim, Jae Hyun
Fairbrother, Andrew
Perry, Lakesha
Sung, Li-Piin
Jacobs, Deborah
Watson, Stephanie
Hsueh, Hsiang-Chun
Goodwin, David
White, Christopher
Author_xml – sequence: 1
  givenname: Andrew
  orcidid: 0000-0001-6038-7532
  surname: Fairbrother
  fullname: Fairbrother, Andrew
  email: andrew.fairbrother@nist.gov
– sequence: 2
  givenname: Hsiang-Chun
  surname: Hsueh
  fullname: Hsueh, Hsiang-Chun
– sequence: 3
  givenname: Jae Hyun
  surname: Kim
  fullname: Kim, Jae Hyun
– sequence: 4
  givenname: Deborah
  surname: Jacobs
  fullname: Jacobs, Deborah
– sequence: 5
  givenname: Lakesha
  surname: Perry
  fullname: Perry, Lakesha
– sequence: 6
  givenname: David
  surname: Goodwin
  fullname: Goodwin, David
– sequence: 7
  givenname: Christopher
  surname: White
  fullname: White, Christopher
– sequence: 8
  givenname: Stephanie
  surname: Watson
  fullname: Watson, Stephanie
– sequence: 9
  givenname: Li-Piin
  surname: Sung
  fullname: Sung, Li-Piin
  email: li-piin.sung@nist.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39440157$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9r3DAQxUVJaTZpv0IxlEIv3uqPZVuHUsLSpoVAL3voTcjSeK3FlraSHNhvX212E5q9NLoIND-9ecy8K3ThvAOEPhK8JJjUn7fLnR_3k4FNUCYm1S0pJmKJ-RJj-gotSNuwkjJKLtACk4qUTBB8ia5i3OJ8Kk7eoEsmqgoT3izQ7zVMOwgqzQEK5Uwx2s2QCusSuGjTvoC-B51i4V2xG3zyx8Yq2fzg-2LIeGlO7MEZpGE_goO36HWvxgjvTvc1Wn__tl79KO9-3f5c3dyVuq6rVIq-qxTDvGsYU52oNcl-eyF414mu6wzlda0w5y1VvCbUAOPEtJpCr02ranaNvh5ld3M3gdHgUlCj3AU7qbCXXln5vOLsIDf-XhJSiaphJCt8OikE_2eGmORko4ZxVA78HCUjRDS0EkL8F6W0rQWuGswz-uEM3fo5uDyJTPG2oazFNFPv_3X_ZPtxPxn4cgR08DEG6J8QguUhD3Irz_IgD3mQmEv80GB19l_b9LC8PAw7vljl9qgCeZH3FoKM2oLTYGzI4ZDG2xcq_QWnvODM
CitedBy_id crossref_primary_10_1134_S1995421223700260
crossref_primary_10_1002_pol_20230109
crossref_primary_10_1021_acsapm_3c00129
crossref_primary_10_1088_1742_6596_2419_1_012020
crossref_primary_10_1002_app_50373
crossref_primary_10_1016_j_marpolbul_2022_113806
crossref_primary_10_1016_j_chemosphere_2025_144256
crossref_primary_10_1016_j_jhazmat_2023_131151
crossref_primary_10_1016_j_scitotenv_2023_164629
crossref_primary_10_1016_j_scitotenv_2021_147979
crossref_primary_10_1039_D4EN01197J
crossref_primary_10_1016_j_envpol_2022_119628
crossref_primary_10_1021_acs_est_3c01430
crossref_primary_10_1039_D2RA00470D
crossref_primary_10_1039_D2TA09523H
crossref_primary_10_1080_01496395_2021_1972010
crossref_primary_10_1016_j_iswcr_2020_08_006
crossref_primary_10_1016_j_ibiod_2023_105581
crossref_primary_10_1016_j_envadv_2025_100628
crossref_primary_10_1016_j_chemosphere_2024_143695
crossref_primary_10_1007_s13726_024_01348_z
crossref_primary_10_1016_j_petsci_2023_03_001
crossref_primary_10_1016_j_scitotenv_2023_162717
crossref_primary_10_1002_advs_202205675
crossref_primary_10_1007_s11356_024_35741_1
crossref_primary_10_1016_j_jhazmat_2024_136438
crossref_primary_10_1016_j_polymdegradstab_2025_111276
crossref_primary_10_1016_j_ecoenv_2022_113933
crossref_primary_10_1002_pat_5486
crossref_primary_10_1007_s10311_023_01664_5
crossref_primary_10_1038_s41529_024_00501_6
crossref_primary_10_3390_ma15030742
crossref_primary_10_3799_dqkx_2021_103
crossref_primary_10_1021_acs_est_3c10825
crossref_primary_10_1016_j_scp_2023_101320
crossref_primary_10_1021_acsami_3c02564
crossref_primary_10_3390_mi12080907
crossref_primary_10_3390_polym14101958
crossref_primary_10_1038_s41598_024_57999_8
crossref_primary_10_1016_j_polymdegradstab_2023_110589
crossref_primary_10_1016_j_envpol_2024_123502
crossref_primary_10_1177_08927057231191460
crossref_primary_10_1016_j_scitotenv_2023_168539
crossref_primary_10_1016_j_scitotenv_2024_177361
crossref_primary_10_1016_j_polymdegradstab_2021_109752
crossref_primary_10_1016_j_envpol_2023_122926
crossref_primary_10_1016_j_polymdegradstab_2023_110478
crossref_primary_10_1016_j_scitotenv_2023_164177
crossref_primary_10_1007_s11629_024_8623_y
crossref_primary_10_1016_j_chemosphere_2024_143993
crossref_primary_10_1039_D4EM00799A
crossref_primary_10_37394_232033_2023_1_21
crossref_primary_10_1016_j_clay_2020_105767
crossref_primary_10_1016_j_lwt_2024_116842
crossref_primary_10_2478_auoc_2022_0023
crossref_primary_10_1016_j_marpolbul_2025_117758
crossref_primary_10_1016_j_polymdegradstab_2020_109443
crossref_primary_10_3390_molecules29245987
crossref_primary_10_1016_j_jenvman_2024_121704
crossref_primary_10_1007_s10924_021_02351_8
crossref_primary_10_1515_polyeng_2020_0071
crossref_primary_10_1016_j_jhazmat_2023_132911
crossref_primary_10_1016_j_envpol_2020_116028
crossref_primary_10_1016_j_scitotenv_2022_156369
crossref_primary_10_1177_0734242X231219654
crossref_primary_10_1021_acs_est_0c07718
crossref_primary_10_1007_s10965_021_02457_6
crossref_primary_10_1016_j_envres_2023_117345
crossref_primary_10_1016_j_nxmate_2025_100562
crossref_primary_10_1021_acs_est_2c01549
crossref_primary_10_1016_j_marpolbul_2023_114818
crossref_primary_10_1007_s11356_023_28736_x
crossref_primary_10_1016_j_polymdegradstab_2020_109098
crossref_primary_10_1016_j_jclepro_2024_142783
crossref_primary_10_3390_polym13020271
crossref_primary_10_1007_s11356_022_22599_4
crossref_primary_10_1021_acs_est_0c00712
crossref_primary_10_1364_OE_515800
crossref_primary_10_1016_j_emcon_2024_100454
crossref_primary_10_1016_j_scitotenv_2025_178720
crossref_primary_10_1007_s43630_020_00001_x
crossref_primary_10_1002_app_53446
crossref_primary_10_1016_j_envpol_2021_116554
crossref_primary_10_1088_1742_6596_2419_1_012069
crossref_primary_10_3390_electronics8090929
crossref_primary_10_1021_acs_est_2c05346
crossref_primary_10_1021_acs_iecr_3c04426
crossref_primary_10_2139_ssrn_4070228
crossref_primary_10_1016_j_hazadv_2022_100088
crossref_primary_10_1016_j_scitotenv_2021_152572
crossref_primary_10_3390_insects16020165
crossref_primary_10_3390_polym14122307
crossref_primary_10_1002_cjoc_202200527
crossref_primary_10_3390_app12115388
crossref_primary_10_1021_acs_est_4c05022
crossref_primary_10_3923_jest_2019_213_220
crossref_primary_10_1016_j_mtcomm_2023_106505
crossref_primary_10_1016_j_apr_2024_102319
crossref_primary_10_1007_s11270_023_06784_w
crossref_primary_10_1016_j_scitotenv_2022_159774
crossref_primary_10_3390_recycling6010022
crossref_primary_10_1016_j_mtcomm_2023_107314
crossref_primary_10_1016_j_cej_2022_134622
crossref_primary_10_1007_s10965_025_04324_0
crossref_primary_10_1177_14777606211019420
crossref_primary_10_1002_pol_20230322
crossref_primary_10_1007_s11629_023_8259_3
crossref_primary_10_21205_deufmd_2020226620
crossref_primary_10_1126_science_adj4036
crossref_primary_10_1016_j_trechm_2022_06_005
crossref_primary_10_1021_acsestengg_1c00253
crossref_primary_10_1007_s11783_023_1700_6
crossref_primary_10_1039_D2CS00689H
crossref_primary_10_1016_j_polymer_2021_124440
crossref_primary_10_1002_pen_26493
crossref_primary_10_35812_CelluloseChemTechnol_2023_57_54
crossref_primary_10_3390_agriculture11040330
crossref_primary_10_1021_acs_est_4c08909
crossref_primary_10_1016_j_ecoenv_2024_117020
crossref_primary_10_3390_polym16162249
crossref_primary_10_1016_j_compositesa_2025_108814
crossref_primary_10_1007_s41742_024_00615_4
crossref_primary_10_1016_j_bej_2023_109133
crossref_primary_10_1016_j_scitotenv_2022_154035
crossref_primary_10_1016_j_marpolbul_2021_112701
crossref_primary_10_3390_ma16020674
crossref_primary_10_1016_j_iswcr_2025_02_006
crossref_primary_10_1177_09673911211047682
crossref_primary_10_1016_j_polymdegradstab_2020_109364
crossref_primary_10_1016_j_polymdegradstab_2022_109963
crossref_primary_10_1016_j_aej_2021_03_024
crossref_primary_10_1016_j_seppur_2024_128314
crossref_primary_10_1016_j_apr_2023_101869
crossref_primary_10_1016_j_scitotenv_2022_157498
crossref_primary_10_1016_j_chemosphere_2022_136669
crossref_primary_10_1016_j_marpolbul_2023_115331
crossref_primary_10_1007_s11356_025_36138_4
crossref_primary_10_1016_j_scitotenv_2023_164361
crossref_primary_10_1680_jgein_24_00059
crossref_primary_10_1016_j_scitotenv_2024_175827
crossref_primary_10_1016_j_trac_2024_117566
Cites_doi 10.1002/pen.760320808
10.1016/0141-3910(90)90094-N
10.1063/1.1808916
10.1007/BF01082132
10.1002/(SICI)1097-4628(19960411)60:2<153::AID-APP2>3.0.CO;2-R
10.1002/app.1994.070530404
10.1016/j.polymdegradstab.2013.12.038
10.1016/S0141-3910(00)00039-2
10.1016/0141-3910(87)90061-9
10.1002/pen.760201009
10.1016/0032-3861(89)90269-3
10.1016/S0038-092X(03)00005-7
10.1016/S0141-3910(96)00213-3
10.1016/j.crci.2006.07.008
10.1016/S0141-3910(02)00338-5
10.1016/j.polymdegradstab.2013.07.017
10.1002/pen.11674
10.1016/S0014-3057(00)00251-2
10.1016/j.porgcoat.2003.08.002
10.1016/S0141-3910(98)00191-8
10.1016/j.polymdegradstab.2008.02.009
10.1002/pol.1972.150100412
10.1016/S0032-3861(00)00073-2
10.1016/S0141-3910(97)00056-6
10.1016/S0141-3910(97)00059-1
10.1002/pen.760210106
10.1016/0014-3057(80)90095-6
10.1007/BF01115695
10.1002/pol.1968.150061019
10.1016/j.polymdegradstab.2005.09.012
10.1002/pen.760060317
10.1016/S0141-3910(98)00059-7
10.1002/pola.1992.080301025
10.1016/j.polymdegradstab.2008.11.005
10.1016/j.polymdegradstab.2006.03.024
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Jul 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Jul 2019
DBID AAYXX
CITATION
NPM
7SR
8FD
JG9
7S9
L.6
7X8
5PM
DOI 10.1016/j.polymdegradstab.2019.05.002
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList PubMed
AGRICOLA


MEDLINE - Academic
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1873-2321
EndPage 160
ExternalDocumentID PMC11494731
39440157
10_1016_j_polymdegradstab_2019_05_002
S0141391019301545
Genre Journal Article
GeographicLocations Florida
GeographicLocations_xml – name: Florida
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSK
SSM
SSZ
T5K
WH7
WUQ
XPP
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
NPM
7SR
8FD
JG9
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c664t-9fb4a305b733ab96c1391f995bb9bbbd2566a05582a5612de351d8c2efcd8a63
IEDL.DBID .~1
ISSN 0141-3910
IngestDate Thu Aug 21 18:31:09 EDT 2025
Mon Jul 21 10:46:19 EDT 2025
Thu Jul 10 22:21:27 EDT 2025
Fri Jul 25 08:37:58 EDT 2025
Mon Jul 21 05:56:08 EDT 2025
Tue Jul 01 02:29:49 EDT 2025
Thu Apr 24 23:10:46 EDT 2025
Fri Feb 23 02:32:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Photodegradation
Polyethylene
Kinetics
Reciprocity
Environmental degradation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c664t-9fb4a305b733ab96c1391f995bb9bbbd2566a05582a5612de351d8c2efcd8a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6038-7532
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/11494731
PMID 39440157
PQID 2258723802
PQPubID 2045418
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11494731
proquest_miscellaneous_3119724999
proquest_miscellaneous_2286904705
proquest_journals_2258723802
pubmed_primary_39440157
crossref_primary_10_1016_j_polymdegradstab_2019_05_002
crossref_citationtrail_10_1016_j_polymdegradstab_2019_05_002
elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2019_05_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Polymer degradation and stability
PublicationTitleAlternate Polym Degrad Stab
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Chin, Byrd, Embree, Garver, Dickens, Finn, Martin (bib33) 2004; 75
Philippart, Sinturel, Gardette (bib27) 1997; 58
Martin, Chin, Nguyen (bib29) 2003; 47
Becerra, d'Almeida (bib40) 2017; 25
Carrasco, Pages, Pascual, Colom (bib19) 2001; 37
bib35
La Mantia (bib20) 1977; 23
Vasile, Pascu (bib8) 2005
Khelidj, Colin, Audouin, Verdu, Monchy-Leroy, Prunier (bib25) 2006; 91
Kollmann, Wood (bib31) 1980; 20
Hardcastle (bib45) 2015
Rabek (bib2) 1995
Akay, Tincer, Ergöz (bib11) 1980; 16
Hsueh, Kim, Orski, Fairbrother, Jacobs, Perry, Hunston, White, Sung (bib41) 2018
Pickett, Gibson, Gardner (bib36) 2008; 93
Gugumus (bib12) 1990; 27
Bigger, Scheirs, Delatycki (bib26) 1992; 30
(bib32) 2014
Tidjani (bib5) 2000; 68
Philippart, Sinturel, Arnaud, Gardette (bib28) 1999; 64
Heacock, Mallory, Gay (bib10) 1968; 6
Andrady (bib37) 1997
Moss (bib47) 1959
Gardette, Perthue, Gardette, Janecska, Földes, Pukánszky, Therias (bib6) 2013; 98
Chin, Nguyen, Byrd, Martin (bib30) 2005; 2
Gulmine, Janissek, Heise, Akcelrud (bib50) 2003; 79
Geetha, Torikai, Nagaya, Fueki (bib49) 1987; 19
Hsuan, Schroeder, Rowe, Müller, Greenwood, Cazzuffi, Koerner (bib9) 2008
Pabiot, Verdu (bib21) 1981; 21
Satoto, Subowo, Yusiasih, Takane, Watanabe, Hatakeyama (bib48) 1997; 56
Cruz-Pinto, Carvalho, Ferreira (bib14) 1994; 216
Jordens, Wilkes, Janzen, Rohlfing, Welch (bib24) 2000; 41
White (bib1) 2006; 9
Winslow, Hellman, Matreyek, Stills (bib15) 1966; 6
Gugumus (bib44) 1999; 63
Hadis, Leprince, Shortall, Devaux, Leloup, Palin (bib46) 2011; 39
Salvalaggio, Bagatin, Fornaroli, Fanutti, Palmery, Battistel (bib39) 2006; 91
Tong, White (bib17) 1997; 37
Achimsky, Audouin, Verdu, Rychly, Matisova-Rychla (bib43) 1997; 58
Francois-Heude, Richaud, Desnoux, Colin (bib7) 2014; 100
Pickett, Sargent (bib42) 2009; 94
Zerbi, Gallino, Del Fanti, Baini (bib38) 1989; 30
Carrasco, Surina, Colom (bib18) 1996; 60
Schoolenberg (bib23) 1988; 23
Hamid, Amin, Maadhah (bib3) 2000
Carvalho, Cruz-Pinto (bib13) 1992; 32
Lustiger, Corneliussen (bib22) 1987; 22
Jabarin, Lofgren (bib4) 1994; 53
Blais, Carlsson, Wiles (bib16) 1972; 10
Gueymard, Myers, Emery (bib34) 2002; 73
Carvalho (10.1016/j.polymdegradstab.2019.05.002_bib13) 1992; 32
Heacock (10.1016/j.polymdegradstab.2019.05.002_bib10) 1968; 6
Chin (10.1016/j.polymdegradstab.2019.05.002_bib30) 2005; 2
Cruz-Pinto (10.1016/j.polymdegradstab.2019.05.002_bib14) 1994; 216
Moss (10.1016/j.polymdegradstab.2019.05.002_bib47) 1959
Jabarin (10.1016/j.polymdegradstab.2019.05.002_bib4) 1994; 53
Kollmann (10.1016/j.polymdegradstab.2019.05.002_bib31) 1980; 20
Becerra (10.1016/j.polymdegradstab.2019.05.002_bib40) 2017; 25
Winslow (10.1016/j.polymdegradstab.2019.05.002_bib15) 1966; 6
Satoto (10.1016/j.polymdegradstab.2019.05.002_bib48) 1997; 56
Francois-Heude (10.1016/j.polymdegradstab.2019.05.002_bib7) 2014; 100
Akay (10.1016/j.polymdegradstab.2019.05.002_bib11) 1980; 16
Carrasco (10.1016/j.polymdegradstab.2019.05.002_bib19) 2001; 37
Tong (10.1016/j.polymdegradstab.2019.05.002_bib17) 1997; 37
Pickett (10.1016/j.polymdegradstab.2019.05.002_bib36) 2008; 93
Achimsky (10.1016/j.polymdegradstab.2019.05.002_bib43) 1997; 58
Khelidj (10.1016/j.polymdegradstab.2019.05.002_bib25) 2006; 91
Schoolenberg (10.1016/j.polymdegradstab.2019.05.002_bib23) 1988; 23
Pickett (10.1016/j.polymdegradstab.2019.05.002_bib42) 2009; 94
Salvalaggio (10.1016/j.polymdegradstab.2019.05.002_bib39) 2006; 91
Rabek (10.1016/j.polymdegradstab.2019.05.002_bib2) 1995
Jordens (10.1016/j.polymdegradstab.2019.05.002_bib24) 2000; 41
Andrady (10.1016/j.polymdegradstab.2019.05.002_bib37) 1997
Martin (10.1016/j.polymdegradstab.2019.05.002_bib29) 2003; 47
Carrasco (10.1016/j.polymdegradstab.2019.05.002_bib18) 1996; 60
La Mantia (10.1016/j.polymdegradstab.2019.05.002_bib20) 1977; 23
Lustiger (10.1016/j.polymdegradstab.2019.05.002_bib22) 1987; 22
Hsuan (10.1016/j.polymdegradstab.2019.05.002_bib9) 2008
Gardette (10.1016/j.polymdegradstab.2019.05.002_bib6) 2013; 98
Vasile (10.1016/j.polymdegradstab.2019.05.002_bib8) 2005
Blais (10.1016/j.polymdegradstab.2019.05.002_bib16) 1972; 10
Philippart (10.1016/j.polymdegradstab.2019.05.002_bib27) 1997; 58
Geetha (10.1016/j.polymdegradstab.2019.05.002_bib49) 1987; 19
Hamid (10.1016/j.polymdegradstab.2019.05.002_bib3) 2000
Chin (10.1016/j.polymdegradstab.2019.05.002_bib33) 2004; 75
Pabiot (10.1016/j.polymdegradstab.2019.05.002_bib21) 1981; 21
Zerbi (10.1016/j.polymdegradstab.2019.05.002_bib38) 1989; 30
(10.1016/j.polymdegradstab.2019.05.002_bib32) 2014
Gulmine (10.1016/j.polymdegradstab.2019.05.002_bib50) 2003; 79
White (10.1016/j.polymdegradstab.2019.05.002_bib1) 2006; 9
Gugumus (10.1016/j.polymdegradstab.2019.05.002_bib12) 1990; 27
Tidjani (10.1016/j.polymdegradstab.2019.05.002_bib5) 2000; 68
Bigger (10.1016/j.polymdegradstab.2019.05.002_bib26) 1992; 30
Philippart (10.1016/j.polymdegradstab.2019.05.002_bib28) 1999; 64
Hadis (10.1016/j.polymdegradstab.2019.05.002_bib46) 2011; 39
Hardcastle (10.1016/j.polymdegradstab.2019.05.002_bib45) 2015
Gugumus (10.1016/j.polymdegradstab.2019.05.002_bib44) 1999; 63
Hsueh (10.1016/j.polymdegradstab.2019.05.002_bib41) 2018
Gueymard (10.1016/j.polymdegradstab.2019.05.002_bib34) 2002; 73
References_xml – volume: 37
  start-page: 1457
  year: 2001
  end-page: 1464
  ident: bib19
  article-title: Artificial aging of high-density polyethylene by ultraviolet irradiation
  publication-title: Eur. Polym. J.
– volume: 41
  start-page: 7175
  year: 2000
  end-page: 7192
  ident: bib24
  article-title: The influence of molecular weight and thermal history on the thermal, rheological, and mechanical properties of metallocene-catalyzed linear polyethylenes
  publication-title: Polymer
– volume: 100
  start-page: 10
  year: 2014
  end-page: 20
  ident: bib7
  article-title: Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation
  publication-title: Polym. Degrad. Stabil.
– volume: 25
  start-page: 327
  year: 2017
  ident: bib40
  article-title: UV effects on the tensile and creep behaviour of HDPE
  publication-title: Polym. Polym. Compos.
– volume: 56
  start-page: 275
  year: 1997
  end-page: 279
  ident: bib48
  article-title: Weathering of high-density polyethylene in different latitudes
  publication-title: Polym. Degrad. Stabil.
– volume: 6
  start-page: 273
  year: 1966
  end-page: 278
  ident: bib15
  article-title: Autoxidation of semicrystalline polyethylene
  publication-title: Polym. Eng. Sci.
– start-page: 47
  year: 1997
  end-page: 94
  ident: bib37
  article-title: Wavelength sensitivity in polymer photodegradation
  publication-title: Polym. Anal. Polym. Phys
– year: 2000
  ident: bib3
  article-title: Handbook of Polymer Degradation
– volume: 30
  start-page: 2324
  year: 1989
  end-page: 2327
  ident: bib38
  article-title: Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy
  publication-title: Polymer
– volume: 75
  start-page: 4951
  year: 2004
  end-page: 4959
  ident: bib33
  article-title: Accelerated UV weathering device based on integrating sphere technology
  publication-title: Rev. Sci. Instrum.
– volume: 58
  start-page: 261
  year: 1997
  end-page: 268
  ident: bib27
  article-title: Influence of light intensity on the photooxidation of polypropylene
  publication-title: Polym. Degrad. Stabil.
– volume: 39
  start-page: 549
  year: 2011
  end-page: 557
  ident: bib46
  article-title: High irradiance curing and anomalies of exposure reciprocity law in resin-based materials
  publication-title: J. Dent.
– volume: 91
  start-page: 2775
  year: 2006
  end-page: 2785
  ident: bib39
  article-title: Multi-component analysis of low-density polyethylene oxidative degradation
  publication-title: Polym. Degrad. Stabil.
– start-page: 165
  year: 2015
  end-page: 184
  ident: bib45
  article-title: Ultra-accelerated weathering II: considerations for accelerated data-based weathering service life predictions
  publication-title: Serv. Life Predict. Exter. Plast.
– volume: 60
  start-page: 153
  year: 1996
  end-page: 159
  ident: bib18
  article-title: FTIR and DSC study of HDPE structural changes and mechanical properties variation when exposed to weathering aging during Canadian winter
  publication-title: J. Appl. Polym. Sci.
– year: 2014
  ident: bib32
  publication-title: ASTM D638-14 Standard Test Method for Tensile Properties of Plastics, West Conshohocken, PA
– volume: 47
  start-page: 292
  year: 2003
  end-page: 311
  ident: bib29
  article-title: Reciprocity law experiments in polymeric photodegradation: a critical review
  publication-title: Prog. Org. Coating
– volume: 73
  start-page: 443
  year: 2002
  end-page: 467
  ident: bib34
  article-title: Proposed reference irradiance spectra for solar energy systems testing
  publication-title: Sol. Energy
– year: 1959
  ident: bib47
  article-title: Optical Properties of Semiconductors
– volume: 21
  start-page: 32
  year: 1981
  end-page: 38
  ident: bib21
  article-title: The change in mechanical behavior of linear polymers during photochemical aging
  publication-title: Polym. Eng. Sci.
– volume: 216
  start-page: 113
  year: 1994
  end-page: 133
  ident: bib14
  article-title: The kinetics and mechanism of polyethylene photo-oxidation
  publication-title: Macromol. Mater. Eng.
– volume: 22
  start-page: 2470
  year: 1987
  end-page: 2476
  ident: bib22
  article-title: The role of crazes in the crack growth of polyethylene
  publication-title: J. Mater. Sci.
– volume: 10
  start-page: 1077
  year: 1972
  end-page: 1092
  ident: bib16
  article-title: Surface changes during polypropylene photo-oxidation: a study by infrared spectroscopy and electron microscopy
  publication-title: J. Polym. Sci. Part Polym. Chem.
– volume: 37
  start-page: 321
  year: 1997
  end-page: 328
  ident: bib17
  article-title: Residual stress distribution modification caused by weathering in polypropylene and polystyrene
  publication-title: Polym. Eng. Sci.
– volume: 9
  start-page: 1396
  year: 2006
  end-page: 1408
  ident: bib1
  article-title: Polymer ageing: physics, chemistry or engineering? Time to reflect
  publication-title: Compt. Rendus Chem.
– volume: 2
  start-page: 499
  year: 2005
  end-page: 508
  ident: bib30
  article-title: Validation of the reciprocity law for coating photodegradation
  publication-title: JCT Res
– volume: 63
  start-page: 41
  year: 1999
  end-page: 52
  ident: bib44
  article-title: Effect of temperature on the lifetime of stabilized and unstabilized PP films
  publication-title: Polym. Degrad. Stabil
– volume: 30
  start-page: 2277
  year: 1992
  end-page: 2280
  ident: bib26
  article-title: Effect of light intensity on the photooxidation kinetics of high-density polyethylene
  publication-title: J. Polym. Sci. Part Polym. Chem.
– ident: bib35
  article-title: ASTM G173 - 03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface NO_PDF
– volume: 64
  start-page: 213
  year: 1999
  end-page: 225
  ident: bib28
  article-title: Influence of the exposure parameters on the mechanism of photooxidation of polypropylene
  publication-title: Polym. Degrad. Stabil.
– volume: 94
  start-page: 189
  year: 2009
  end-page: 195
  ident: bib42
  article-title: Sample temperatures during outdoor and laboratory weathering exposures
  publication-title: Polym. Degrad. Stabil.
– volume: 20
  start-page: 684
  year: 1980
  end-page: 687
  ident: bib31
  article-title: The effect of variations in light intensity on the photo-oxidation of polypropylene
  publication-title: Polym. Eng. Sci.
– volume: 68
  start-page: 465
  year: 2000
  end-page: 469
  ident: bib5
  article-title: Comparison of formation of oxidation products during photo-oxidation of linear low density polyethylene under different natural and accelerated weathering conditions
  publication-title: Polym. Degrad. Stabil.
– volume: 19
  start-page: 279
  year: 1987
  end-page: 292
  ident: bib49
  article-title: Photo-oxidative degradation of polyethylene: effect of polymer characteristics on chemical changes and mechanical properties. Part 1—quenched polyethylene
  publication-title: Polym. Degrad. Stabil.
– volume: 6
  start-page: 2921
  year: 1968
  end-page: 2934
  ident: bib10
  article-title: Photodegradation of polyethylene film
  publication-title: J. Polym. Sci. Part Polym. Chem.
– volume: 23
  start-page: 699
  year: 1977
  end-page: 702
  ident: bib20
  article-title: Natural weathering of low density polyethylene—I: structural modifications
  publication-title: Radiat. Phys. Chem.
– volume: 91
  start-page: 1598
  year: 2006
  end-page: 1605
  ident: bib25
  article-title: Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part II. Low temperature thermal oxidation
  publication-title: Polym. Degrad. Stabil.
– volume: 79
  start-page: 385
  year: 2003
  end-page: 397
  ident: bib50
  article-title: Degradation profile of polyethylene after artificial accelerated weathering
  publication-title: Polym. Degrad. Stabil.
– volume: 93
  start-page: 1597
  year: 2008
  end-page: 1606
  ident: bib36
  article-title: Effects of irradiation conditions on the weathering of engineering thermoplastics
  publication-title: Polym. Degrad. Stabil.
– year: 1995
  ident: bib2
  article-title: Polymer Photodegradation: Mechanisms and Experimental Methods
– volume: 27
  start-page: 19
  year: 1990
  end-page: 34
  ident: bib12
  article-title: Contribution to the photolysis of hydroperoxides in polyethylene
  publication-title: Polym. Degrad. Stabil.
– year: 2018
  ident: bib41
  article-title: Mechanisms for Tensile Failure of Photodegraded High-Density Polyethylene, in Preparation
– volume: 32
  start-page: 567
  year: 1992
  end-page: 572
  ident: bib13
  article-title: The kinetics of photo-oxidation of low-density polyethylene films
  publication-title: Polym. Eng. Sci.
– year: 2005
  ident: bib8
  article-title: Practical Guide to Polyethylene
– volume: 98
  start-page: 2383
  year: 2013
  end-page: 2390
  ident: bib6
  article-title: Photo-and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content
  publication-title: Polym. Degrad. Stabil.
– volume: 16
  start-page: 601
  year: 1980
  end-page: 605
  ident: bib11
  article-title: A study of degradation of low density polyethylene under natural weathering conditions
  publication-title: Eur. Polym. J.
– volume: 53
  start-page: 411
  year: 1994
  end-page: 423
  ident: bib4
  article-title: Photooxidative effects on properties and structure of high-density polyethylene
  publication-title: J. Appl. Polym. Sci.
– volume: 23
  start-page: 1580
  year: 1988
  end-page: 1590
  ident: bib23
  article-title: A fracture mechanics approach to the effects of UV-degradation on polypropylene
  publication-title: J. Mater. Sci.
– year: 2008
  ident: bib9
  article-title: Long-term performance and lifetime prediction of geosynthetics
  publication-title: Proc. 4th Eur. Conf. Geosynth. Edinb. Sept. Keynote Pap.
– volume: 58
  start-page: 283
  year: 1997
  end-page: 289
  ident: bib43
  article-title: On a transition at 80 °C in polypropylene oxidation kinetics
  publication-title: Polym. Degrad. Stabil
– volume: 32
  start-page: 567
  year: 1992
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib13
  article-title: The kinetics of photo-oxidation of low-density polyethylene films
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760320808
– volume: 27
  start-page: 19
  year: 1990
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib12
  article-title: Contribution to the photolysis of hydroperoxides in polyethylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/0141-3910(90)90094-N
– volume: 75
  start-page: 4951
  year: 2004
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib33
  article-title: Accelerated UV weathering device based on integrating sphere technology
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1808916
– volume: 22
  start-page: 2470
  year: 1987
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib22
  article-title: The role of crazes in the crack growth of polyethylene
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01082132
– volume: 60
  start-page: 153
  year: 1996
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib18
  article-title: FTIR and DSC study of HDPE structural changes and mechanical properties variation when exposed to weathering aging during Canadian winter
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/(SICI)1097-4628(19960411)60:2<153::AID-APP2>3.0.CO;2-R
– year: 2000
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib3
– volume: 53
  start-page: 411
  year: 1994
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib4
  article-title: Photooxidative effects on properties and structure of high-density polyethylene
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1994.070530404
– volume: 100
  start-page: 10
  year: 2014
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib7
  article-title: Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2013.12.038
– volume: 68
  start-page: 465
  year: 2000
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib5
  article-title: Comparison of formation of oxidation products during photo-oxidation of linear low density polyethylene under different natural and accelerated weathering conditions
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(00)00039-2
– volume: 19
  start-page: 279
  year: 1987
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib49
  article-title: Photo-oxidative degradation of polyethylene: effect of polymer characteristics on chemical changes and mechanical properties. Part 1—quenched polyethylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/0141-3910(87)90061-9
– volume: 23
  start-page: 699
  issue: 1984
  year: 1977
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib20
  article-title: Natural weathering of low density polyethylene—I: structural modifications
  publication-title: Radiat. Phys. Chem.
– volume: 20
  start-page: 684
  year: 1980
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib31
  article-title: The effect of variations in light intensity on the photo-oxidation of polypropylene
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760201009
– volume: 30
  start-page: 2324
  year: 1989
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib38
  article-title: Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy
  publication-title: Polymer
  doi: 10.1016/0032-3861(89)90269-3
– volume: 2
  start-page: 499
  year: 2005
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib30
  article-title: Validation of the reciprocity law for coating photodegradation
  publication-title: JCT Res
– volume: 73
  start-page: 443
  year: 2002
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib34
  article-title: Proposed reference irradiance spectra for solar energy systems testing
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(03)00005-7
– volume: 56
  start-page: 275
  year: 1997
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib48
  article-title: Weathering of high-density polyethylene in different latitudes
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(96)00213-3
– volume: 9
  start-page: 1396
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib1
  article-title: Polymer ageing: physics, chemistry or engineering? Time to reflect
  publication-title: Compt. Rendus Chem.
  doi: 10.1016/j.crci.2006.07.008
– year: 2014
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib32
– volume: 25
  start-page: 327
  year: 2017
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib40
  article-title: UV effects on the tensile and creep behaviour of HDPE
  publication-title: Polym. Polym. Compos.
– volume: 79
  start-page: 385
  year: 2003
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib50
  article-title: Degradation profile of polyethylene after artificial accelerated weathering
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(02)00338-5
– start-page: 165
  year: 2015
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib45
  article-title: Ultra-accelerated weathering II: considerations for accelerated data-based weathering service life predictions
– volume: 98
  start-page: 2383
  year: 2013
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib6
  article-title: Photo-and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2013.07.017
– year: 1995
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib2
– volume: 37
  start-page: 321
  year: 1997
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib17
  article-title: Residual stress distribution modification caused by weathering in polypropylene and polystyrene
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.11674
– volume: 37
  start-page: 1457
  year: 2001
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib19
  article-title: Artificial aging of high-density polyethylene by ultraviolet irradiation
  publication-title: Eur. Polym. J.
  doi: 10.1016/S0014-3057(00)00251-2
– volume: 47
  start-page: 292
  year: 2003
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib29
  article-title: Reciprocity law experiments in polymeric photodegradation: a critical review
  publication-title: Prog. Org. Coating
  doi: 10.1016/j.porgcoat.2003.08.002
– volume: 39
  start-page: 549
  year: 2011
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib46
  article-title: High irradiance curing and anomalies of exposure reciprocity law in resin-based materials
  publication-title: J. Dent.
– volume: 64
  start-page: 213
  year: 1999
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib28
  article-title: Influence of the exposure parameters on the mechanism of photooxidation of polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(98)00191-8
– year: 2008
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib9
  article-title: Long-term performance and lifetime prediction of geosynthetics
– volume: 93
  start-page: 1597
  year: 2008
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib36
  article-title: Effects of irradiation conditions on the weathering of engineering thermoplastics
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2008.02.009
– volume: 10
  start-page: 1077
  year: 1972
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib16
  article-title: Surface changes during polypropylene photo-oxidation: a study by infrared spectroscopy and electron microscopy
  publication-title: J. Polym. Sci. Part Polym. Chem.
  doi: 10.1002/pol.1972.150100412
– volume: 41
  start-page: 7175
  year: 2000
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib24
  article-title: The influence of molecular weight and thermal history on the thermal, rheological, and mechanical properties of metallocene-catalyzed linear polyethylenes
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00073-2
– year: 1959
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib47
– volume: 58
  start-page: 261
  year: 1997
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib27
  article-title: Influence of light intensity on the photooxidation of polypropylene
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/S0141-3910(97)00056-6
– volume: 58
  start-page: 283
  year: 1997
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib43
  article-title: On a transition at 80 °C in polypropylene oxidation kinetics
  publication-title: Polym. Degrad. Stabil
  doi: 10.1016/S0141-3910(97)00059-1
– volume: 21
  start-page: 32
  year: 1981
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib21
  article-title: The change in mechanical behavior of linear polymers during photochemical aging
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760210106
– year: 2005
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib8
– volume: 216
  start-page: 113
  year: 1994
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib14
  article-title: The kinetics and mechanism of polyethylene photo-oxidation
  publication-title: Macromol. Mater. Eng.
– volume: 16
  start-page: 601
  year: 1980
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib11
  article-title: A study of degradation of low density polyethylene under natural weathering conditions
  publication-title: Eur. Polym. J.
  doi: 10.1016/0014-3057(80)90095-6
– volume: 23
  start-page: 1580
  year: 1988
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib23
  article-title: A fracture mechanics approach to the effects of UV-degradation on polypropylene
  publication-title: J. Mater. Sci.
  doi: 10.1007/BF01115695
– year: 2018
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib41
– volume: 6
  start-page: 2921
  year: 1968
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib10
  article-title: Photodegradation of polyethylene film
  publication-title: J. Polym. Sci. Part Polym. Chem.
  doi: 10.1002/pol.1968.150061019
– volume: 91
  start-page: 1598
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib25
  article-title: Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part II. Low temperature thermal oxidation
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2005.09.012
– volume: 6
  start-page: 273
  year: 1966
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib15
  article-title: Autoxidation of semicrystalline polyethylene
  publication-title: Polym. Eng. Sci.
  doi: 10.1002/pen.760060317
– volume: 63
  start-page: 41
  year: 1999
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib44
  article-title: Effect of temperature on the lifetime of stabilized and unstabilized PP films
  publication-title: Polym. Degrad. Stabil
  doi: 10.1016/S0141-3910(98)00059-7
– volume: 30
  start-page: 2277
  year: 1992
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib26
  article-title: Effect of light intensity on the photooxidation kinetics of high-density polyethylene
  publication-title: J. Polym. Sci. Part Polym. Chem.
  doi: 10.1002/pola.1992.080301025
– volume: 94
  start-page: 189
  year: 2009
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib42
  article-title: Sample temperatures during outdoor and laboratory weathering exposures
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2008.11.005
– volume: 91
  start-page: 2775
  year: 2006
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib39
  article-title: Multi-component analysis of low-density polyethylene oxidative degradation
  publication-title: Polym. Degrad. Stabil.
  doi: 10.1016/j.polymdegradstab.2006.03.024
– start-page: 47
  year: 1997
  ident: 10.1016/j.polymdegradstab.2019.05.002_bib37
  article-title: Wavelength sensitivity in polymer photodegradation
SSID ssj0000451
Score 2.6273892
Snippet The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms activation energy
crystal structure
Embrittlement
Environmental degradation
Exposure
financial economics
Florida
Fourier transform infrared spectroscopy
Fourier transforms
High density polyethylenes
Irradiance
Kinetics
laboratory experimentation
light intensity
Luminous intensity
Mechanical properties
Organic chemistry
Oxidation
Photodegradation
photolysis
Polyethylene
Polymers
polyolefin
Polyolefins
Property damage
Reciprocity
Stiffness
Temperature
Temperature effects
thermoplastics
Ultraviolet radiation
Title Temperature and light intensity effects on photodegradation of high-density polyethylene
URI https://dx.doi.org/10.1016/j.polymdegradstab.2019.05.002
https://www.ncbi.nlm.nih.gov/pubmed/39440157
https://www.proquest.com/docview/2258723802
https://www.proquest.com/docview/2286904705
https://www.proquest.com/docview/3119724999
https://pubmed.ncbi.nlm.nih.gov/PMC11494731
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQFBeC6UyEhzTzSa2E0scqFZUC4ieFmlvlh076qIlWdH00Au_nZnY2e4WkCpxTDyJYs_Y89n5ZgbgrclMrSY-TXhlJJ1WpUnpcV45I6XiKisyQbHDX8_k7Bv_vBCLPZgOsTBEq4xrf1jT-9U63hnH0Ryvl8sx0ZIQvqBJqbwHAhTBzguy8uNf1zQPyp8SaIyThKTvwrtrjte6XV39cJSVwV1QhAJ6Q3W8dcryFz_1Jw69Safc8k-nj-BhBJbsJHz7Y9jzzQHcmw713A7gwVbqwSewmHsEzCGhMjONYyvapbNlYLR3VywSPVjbsPV527Xh-3s9srZmlOY4cVGWOuhR4-jB_FOYn36cT2dJrLKQVFLyLlG15QZnvS3y3FglKxrUWilhrbLWOsRE0qRClJmhSprO52LiyirzdeVKI_NnsN-0jX8BrBCIXkxt8QW4qZNKcUJXiABsrriRxQjeD0Oqq5iBnAphrPRANfuub2hEk0Z0KjRqZARy8_g6pOK47YMfBv3pHdvS6DZu-4rDQe86TvILjUthSTXbqPnNphm1Sv9cTOPbS5Khkl-8SMW_ZfK-9httPUfwPJjSpoMUt4zWjWNX7hjZRoDSg--2NMvzPk047nQVL_LJy__v_iu4T1eBIncI-93PS_8awVhnj_rZdgR3Tj59mZ39BggIORA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTmLbA4IBo2OAkeAxNE1sJ5Z4YKqYOrb1qUh9s-zE0Yq6pNqyh_333CVO1w6QJvEa_5DtO999ds7fAXwykSnU0IUBz4yk26owSB3uq9xIqbiKkkjQ2-GLiRz_5D9mYrYFo-4tDIVVetvf2vTGWvsvA7-ag-V8PqCwJIQvqFIqboDAE9gmdirRg-3j07Px5N4gc9GmJeTDgBo8hc_3YV7LanF3lRMxQ35DjxTQIaovaxctf3FVf0LRhxGVay7q5Dk889iSHbfDfwFbrtyHnVGX0m0f9tbYB1_CbOoQM7ecysyUOVvQQZ3N26D2-o75WA9WlWx5WdVVO_5GlKwqGDEdB7mvSxN0KHR0Yu4VTE--T0fjwCdaCDIpeR2ownKDG98mcWyskhmta6GUsFZZa3OERdKEQqSRoWSauYvFME-zyBVZnhoZv4ZeWZXuDbBEIIAxhcUO8FwnleIEsBAE2FhxI5M-fO2WVGeehJxyYSx0F232Sz-QiCaJ6FBolEgf5Kr5smXjeGzDb5389IZ6afQcj-3iqJO79vv8RqM1TCltGxV_XBWjVOm3iylddUt1KOsXT0Lx7zpxk_6NTp99OGhVaTVBerqMCo5rl24o2aoCMYRvlpTzy4YpHA-7iifx8PD_p_8BdsbTi3N9fjo5ewu7VNJGLR9Br76-de8Qm9X2vd97vwGVETvC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+and+light+intensity+effects+on+photodegradation+of+high-density+polyethylene&rft.jtitle=Polymer+degradation+and+stability&rft.au=Fairbrother%2C+Andrew&rft.au=Hsueh%2C+Hsiang-Chun&rft.au=Kim%2C+Jae+Hyun&rft.au=Jacobs%2C+Deborah&rft.date=2019-07-01&rft.issn=0141-3910&rft.volume=165&rft.spage=153&rft.epage=160&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2019.05.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymdegradstab_2019_05_002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon