Temperature and light intensity effects on photodegradation of high-density polyethylene
The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date...
Saved in:
Published in | Polymer degradation and stability Vol. 165; pp. 153 - 160 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.07.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m−2, 61 W m−2, 38 W m−2, 15 W m−2, 8 W m−2, and 0 W m−2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials.
[Display omitted]
•Accelerated and natural weathering of high-density polyethylene showed an abrupt transition to brittle mechanical failure.•Accelerated weathering at various temperatures and ultraviolet light intensities.•Kinetic and dose-damage relationships for mechanical, chemical, and structural properties were determined. |
---|---|
AbstractList | The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m
, 61 W m
, 38 W m
, 15 W m
, 8 W m
, and 0 W m
). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials. The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m−2, 61 W m−2, 38 W m−2, 15 W m−2, 8 W m−2, and 0 W m−2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials. The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m −2 , 61 W m −2 , 38 W m −2 , 15 W m −2 , 8 W m −2 , and 0 W m −2 ). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials. The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m−2, 61 W m−2, 38 W m−2, 15 W m−2, 8 W m−2, and 0 W m−2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials. [Display omitted] •Accelerated and natural weathering of high-density polyethylene showed an abrupt transition to brittle mechanical failure.•Accelerated weathering at various temperatures and ultraviolet light intensities.•Kinetic and dose-damage relationships for mechanical, chemical, and structural properties were determined. The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m-2, 61 W m-2, 38 W m-2, 15 W m-2, 8 W m-2, and 0 W m-2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials.The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected system failure. A better understanding of their degradation kinetics aids the improvement of materials and systems. However, most work to date on many polymeric materials focuses on only one or a few exposure conditions which are pertinent to typical environmental ambients. Here the model polyolefin system of high-density polyethylene (HDPE) was exposed under controlled laboratory conditions to a range of temperatures (30 °C, 40 °C, 50 °C) and ultraviolet (UV) light intensities (153 W m-2, 61 W m-2, 38 W m-2, 15 W m-2, 8 W m-2, and 0 W m-2). Changes to the mechanical, chemical, and structural properties were monitored by uniaxial tensile testing and Fourier-transform infrared spectroscopy (FTIR), which showed that the rapid embrittlement of HDPE was concurrent with increases in yield strength, stiffness, oxidation, and crystallinity. The rates of change tended to increase under more aggressive exposure conditions, and the photothermal activation energies and UV dose-damage relationships for these properties were determined. A comparison to HDPE under outdoor exposure in southern Florida shows a similar magnitude of material change up to the point of embrittlement, despite the differences in spectral irradiance and the constantly changing outdoor conditions. These results quantify the effect of temperature and UV light intensity on the photodegradation of HDPE and can be utilized to develop stabilization strategies for these and related thermoplastic materials. |
Author | Kim, Jae Hyun Fairbrother, Andrew Perry, Lakesha Sung, Li-Piin Jacobs, Deborah Watson, Stephanie Hsueh, Hsiang-Chun Goodwin, David White, Christopher |
Author_xml | – sequence: 1 givenname: Andrew orcidid: 0000-0001-6038-7532 surname: Fairbrother fullname: Fairbrother, Andrew email: andrew.fairbrother@nist.gov – sequence: 2 givenname: Hsiang-Chun surname: Hsueh fullname: Hsueh, Hsiang-Chun – sequence: 3 givenname: Jae Hyun surname: Kim fullname: Kim, Jae Hyun – sequence: 4 givenname: Deborah surname: Jacobs fullname: Jacobs, Deborah – sequence: 5 givenname: Lakesha surname: Perry fullname: Perry, Lakesha – sequence: 6 givenname: David surname: Goodwin fullname: Goodwin, David – sequence: 7 givenname: Christopher surname: White fullname: White, Christopher – sequence: 8 givenname: Stephanie surname: Watson fullname: Watson, Stephanie – sequence: 9 givenname: Li-Piin surname: Sung fullname: Sung, Li-Piin email: li-piin.sung@nist.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39440157$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9r3DAQxUVJaTZpv0IxlEIv3uqPZVuHUsLSpoVAL3voTcjSeK3FlraSHNhvX212E5q9NLoIND-9ecy8K3ThvAOEPhK8JJjUn7fLnR_3k4FNUCYm1S0pJmKJ-RJj-gotSNuwkjJKLtACk4qUTBB8ia5i3OJ8Kk7eoEsmqgoT3izQ7zVMOwgqzQEK5Uwx2s2QCusSuGjTvoC-B51i4V2xG3zyx8Yq2fzg-2LIeGlO7MEZpGE_goO36HWvxgjvTvc1Wn__tl79KO9-3f5c3dyVuq6rVIq-qxTDvGsYU52oNcl-eyF414mu6wzlda0w5y1VvCbUAOPEtJpCr02ranaNvh5ld3M3gdHgUlCj3AU7qbCXXln5vOLsIDf-XhJSiaphJCt8OikE_2eGmORko4ZxVA78HCUjRDS0EkL8F6W0rQWuGswz-uEM3fo5uDyJTPG2oazFNFPv_3X_ZPtxPxn4cgR08DEG6J8QguUhD3Irz_IgD3mQmEv80GB19l_b9LC8PAw7vljl9qgCeZH3FoKM2oLTYGzI4ZDG2xcq_QWnvODM |
CitedBy_id | crossref_primary_10_1134_S1995421223700260 crossref_primary_10_1002_pol_20230109 crossref_primary_10_1021_acsapm_3c00129 crossref_primary_10_1088_1742_6596_2419_1_012020 crossref_primary_10_1002_app_50373 crossref_primary_10_1016_j_marpolbul_2022_113806 crossref_primary_10_1016_j_chemosphere_2025_144256 crossref_primary_10_1016_j_jhazmat_2023_131151 crossref_primary_10_1016_j_scitotenv_2023_164629 crossref_primary_10_1016_j_scitotenv_2021_147979 crossref_primary_10_1039_D4EN01197J crossref_primary_10_1016_j_envpol_2022_119628 crossref_primary_10_1021_acs_est_3c01430 crossref_primary_10_1039_D2RA00470D crossref_primary_10_1039_D2TA09523H crossref_primary_10_1080_01496395_2021_1972010 crossref_primary_10_1016_j_iswcr_2020_08_006 crossref_primary_10_1016_j_ibiod_2023_105581 crossref_primary_10_1016_j_envadv_2025_100628 crossref_primary_10_1016_j_chemosphere_2024_143695 crossref_primary_10_1007_s13726_024_01348_z crossref_primary_10_1016_j_petsci_2023_03_001 crossref_primary_10_1016_j_scitotenv_2023_162717 crossref_primary_10_1002_advs_202205675 crossref_primary_10_1007_s11356_024_35741_1 crossref_primary_10_1016_j_jhazmat_2024_136438 crossref_primary_10_1016_j_polymdegradstab_2025_111276 crossref_primary_10_1016_j_ecoenv_2022_113933 crossref_primary_10_1002_pat_5486 crossref_primary_10_1007_s10311_023_01664_5 crossref_primary_10_1038_s41529_024_00501_6 crossref_primary_10_3390_ma15030742 crossref_primary_10_3799_dqkx_2021_103 crossref_primary_10_1021_acs_est_3c10825 crossref_primary_10_1016_j_scp_2023_101320 crossref_primary_10_1021_acsami_3c02564 crossref_primary_10_3390_mi12080907 crossref_primary_10_3390_polym14101958 crossref_primary_10_1038_s41598_024_57999_8 crossref_primary_10_1016_j_polymdegradstab_2023_110589 crossref_primary_10_1016_j_envpol_2024_123502 crossref_primary_10_1177_08927057231191460 crossref_primary_10_1016_j_scitotenv_2023_168539 crossref_primary_10_1016_j_scitotenv_2024_177361 crossref_primary_10_1016_j_polymdegradstab_2021_109752 crossref_primary_10_1016_j_envpol_2023_122926 crossref_primary_10_1016_j_polymdegradstab_2023_110478 crossref_primary_10_1016_j_scitotenv_2023_164177 crossref_primary_10_1007_s11629_024_8623_y crossref_primary_10_1016_j_chemosphere_2024_143993 crossref_primary_10_1039_D4EM00799A crossref_primary_10_37394_232033_2023_1_21 crossref_primary_10_1016_j_clay_2020_105767 crossref_primary_10_1016_j_lwt_2024_116842 crossref_primary_10_2478_auoc_2022_0023 crossref_primary_10_1016_j_marpolbul_2025_117758 crossref_primary_10_1016_j_polymdegradstab_2020_109443 crossref_primary_10_3390_molecules29245987 crossref_primary_10_1016_j_jenvman_2024_121704 crossref_primary_10_1007_s10924_021_02351_8 crossref_primary_10_1515_polyeng_2020_0071 crossref_primary_10_1016_j_jhazmat_2023_132911 crossref_primary_10_1016_j_envpol_2020_116028 crossref_primary_10_1016_j_scitotenv_2022_156369 crossref_primary_10_1177_0734242X231219654 crossref_primary_10_1021_acs_est_0c07718 crossref_primary_10_1007_s10965_021_02457_6 crossref_primary_10_1016_j_envres_2023_117345 crossref_primary_10_1016_j_nxmate_2025_100562 crossref_primary_10_1021_acs_est_2c01549 crossref_primary_10_1016_j_marpolbul_2023_114818 crossref_primary_10_1007_s11356_023_28736_x crossref_primary_10_1016_j_polymdegradstab_2020_109098 crossref_primary_10_1016_j_jclepro_2024_142783 crossref_primary_10_3390_polym13020271 crossref_primary_10_1007_s11356_022_22599_4 crossref_primary_10_1021_acs_est_0c00712 crossref_primary_10_1364_OE_515800 crossref_primary_10_1016_j_emcon_2024_100454 crossref_primary_10_1016_j_scitotenv_2025_178720 crossref_primary_10_1007_s43630_020_00001_x crossref_primary_10_1002_app_53446 crossref_primary_10_1016_j_envpol_2021_116554 crossref_primary_10_1088_1742_6596_2419_1_012069 crossref_primary_10_3390_electronics8090929 crossref_primary_10_1021_acs_est_2c05346 crossref_primary_10_1021_acs_iecr_3c04426 crossref_primary_10_2139_ssrn_4070228 crossref_primary_10_1016_j_hazadv_2022_100088 crossref_primary_10_1016_j_scitotenv_2021_152572 crossref_primary_10_3390_insects16020165 crossref_primary_10_3390_polym14122307 crossref_primary_10_1002_cjoc_202200527 crossref_primary_10_3390_app12115388 crossref_primary_10_1021_acs_est_4c05022 crossref_primary_10_3923_jest_2019_213_220 crossref_primary_10_1016_j_mtcomm_2023_106505 crossref_primary_10_1016_j_apr_2024_102319 crossref_primary_10_1007_s11270_023_06784_w crossref_primary_10_1016_j_scitotenv_2022_159774 crossref_primary_10_3390_recycling6010022 crossref_primary_10_1016_j_mtcomm_2023_107314 crossref_primary_10_1016_j_cej_2022_134622 crossref_primary_10_1007_s10965_025_04324_0 crossref_primary_10_1177_14777606211019420 crossref_primary_10_1002_pol_20230322 crossref_primary_10_1007_s11629_023_8259_3 crossref_primary_10_21205_deufmd_2020226620 crossref_primary_10_1126_science_adj4036 crossref_primary_10_1016_j_trechm_2022_06_005 crossref_primary_10_1021_acsestengg_1c00253 crossref_primary_10_1007_s11783_023_1700_6 crossref_primary_10_1039_D2CS00689H crossref_primary_10_1016_j_polymer_2021_124440 crossref_primary_10_1002_pen_26493 crossref_primary_10_35812_CelluloseChemTechnol_2023_57_54 crossref_primary_10_3390_agriculture11040330 crossref_primary_10_1021_acs_est_4c08909 crossref_primary_10_1016_j_ecoenv_2024_117020 crossref_primary_10_3390_polym16162249 crossref_primary_10_1016_j_compositesa_2025_108814 crossref_primary_10_1007_s41742_024_00615_4 crossref_primary_10_1016_j_bej_2023_109133 crossref_primary_10_1016_j_scitotenv_2022_154035 crossref_primary_10_1016_j_marpolbul_2021_112701 crossref_primary_10_3390_ma16020674 crossref_primary_10_1016_j_iswcr_2025_02_006 crossref_primary_10_1177_09673911211047682 crossref_primary_10_1016_j_polymdegradstab_2020_109364 crossref_primary_10_1016_j_polymdegradstab_2022_109963 crossref_primary_10_1016_j_aej_2021_03_024 crossref_primary_10_1016_j_seppur_2024_128314 crossref_primary_10_1016_j_apr_2023_101869 crossref_primary_10_1016_j_scitotenv_2022_157498 crossref_primary_10_1016_j_chemosphere_2022_136669 crossref_primary_10_1016_j_marpolbul_2023_115331 crossref_primary_10_1007_s11356_025_36138_4 crossref_primary_10_1016_j_scitotenv_2023_164361 crossref_primary_10_1680_jgein_24_00059 crossref_primary_10_1016_j_scitotenv_2024_175827 crossref_primary_10_1016_j_trac_2024_117566 |
Cites_doi | 10.1002/pen.760320808 10.1016/0141-3910(90)90094-N 10.1063/1.1808916 10.1007/BF01082132 10.1002/(SICI)1097-4628(19960411)60:2<153::AID-APP2>3.0.CO;2-R 10.1002/app.1994.070530404 10.1016/j.polymdegradstab.2013.12.038 10.1016/S0141-3910(00)00039-2 10.1016/0141-3910(87)90061-9 10.1002/pen.760201009 10.1016/0032-3861(89)90269-3 10.1016/S0038-092X(03)00005-7 10.1016/S0141-3910(96)00213-3 10.1016/j.crci.2006.07.008 10.1016/S0141-3910(02)00338-5 10.1016/j.polymdegradstab.2013.07.017 10.1002/pen.11674 10.1016/S0014-3057(00)00251-2 10.1016/j.porgcoat.2003.08.002 10.1016/S0141-3910(98)00191-8 10.1016/j.polymdegradstab.2008.02.009 10.1002/pol.1972.150100412 10.1016/S0032-3861(00)00073-2 10.1016/S0141-3910(97)00056-6 10.1016/S0141-3910(97)00059-1 10.1002/pen.760210106 10.1016/0014-3057(80)90095-6 10.1007/BF01115695 10.1002/pol.1968.150061019 10.1016/j.polymdegradstab.2005.09.012 10.1002/pen.760060317 10.1016/S0141-3910(98)00059-7 10.1002/pola.1992.080301025 10.1016/j.polymdegradstab.2008.11.005 10.1016/j.polymdegradstab.2006.03.024 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV Jul 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Jul 2019 |
DBID | AAYXX CITATION NPM 7SR 8FD JG9 7S9 L.6 7X8 5PM |
DOI | 10.1016/j.polymdegradstab.2019.05.002 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1873-2321 |
EndPage | 160 |
ExternalDocumentID | PMC11494731 39440157 10_1016_j_polymdegradstab_2019_05_002 S0141391019301545 |
Genre | Journal Article |
GeographicLocations | Florida |
GeographicLocations_xml | – name: Florida |
GrantInformation_xml | – fundername: Intramural NIST DOC grantid: 9999-NIST |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SDF SDG SDP SES SEW SMS SPC SPCBC SSK SSM SSZ T5K WH7 WUQ XPP ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS NPM 7SR 8FD JG9 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c664t-9fb4a305b733ab96c1391f995bb9bbbd2566a05582a5612de351d8c2efcd8a63 |
IEDL.DBID | .~1 |
ISSN | 0141-3910 |
IngestDate | Thu Aug 21 18:31:09 EDT 2025 Mon Jul 21 10:46:19 EDT 2025 Thu Jul 10 22:21:27 EDT 2025 Fri Jul 25 08:37:58 EDT 2025 Mon Jul 21 05:56:08 EDT 2025 Tue Jul 01 02:29:49 EDT 2025 Thu Apr 24 23:10:46 EDT 2025 Fri Feb 23 02:32:32 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Photodegradation Polyethylene Kinetics Reciprocity Environmental degradation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c664t-9fb4a305b733ab96c1391f995bb9bbbd2566a05582a5612de351d8c2efcd8a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6038-7532 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11494731 |
PMID | 39440157 |
PQID | 2258723802 |
PQPubID | 2045418 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11494731 proquest_miscellaneous_3119724999 proquest_miscellaneous_2286904705 proquest_journals_2258723802 pubmed_primary_39440157 crossref_primary_10_1016_j_polymdegradstab_2019_05_002 crossref_citationtrail_10_1016_j_polymdegradstab_2019_05_002 elsevier_sciencedirect_doi_10_1016_j_polymdegradstab_2019_05_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Polymer degradation and stability |
PublicationTitleAlternate | Polym Degrad Stab |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Chin, Byrd, Embree, Garver, Dickens, Finn, Martin (bib33) 2004; 75 Philippart, Sinturel, Gardette (bib27) 1997; 58 Martin, Chin, Nguyen (bib29) 2003; 47 Becerra, d'Almeida (bib40) 2017; 25 Carrasco, Pages, Pascual, Colom (bib19) 2001; 37 bib35 La Mantia (bib20) 1977; 23 Vasile, Pascu (bib8) 2005 Khelidj, Colin, Audouin, Verdu, Monchy-Leroy, Prunier (bib25) 2006; 91 Kollmann, Wood (bib31) 1980; 20 Hardcastle (bib45) 2015 Rabek (bib2) 1995 Akay, Tincer, Ergöz (bib11) 1980; 16 Hsueh, Kim, Orski, Fairbrother, Jacobs, Perry, Hunston, White, Sung (bib41) 2018 Pickett, Gibson, Gardner (bib36) 2008; 93 Gugumus (bib12) 1990; 27 Bigger, Scheirs, Delatycki (bib26) 1992; 30 (bib32) 2014 Tidjani (bib5) 2000; 68 Philippart, Sinturel, Arnaud, Gardette (bib28) 1999; 64 Heacock, Mallory, Gay (bib10) 1968; 6 Andrady (bib37) 1997 Moss (bib47) 1959 Gardette, Perthue, Gardette, Janecska, Földes, Pukánszky, Therias (bib6) 2013; 98 Chin, Nguyen, Byrd, Martin (bib30) 2005; 2 Gulmine, Janissek, Heise, Akcelrud (bib50) 2003; 79 Geetha, Torikai, Nagaya, Fueki (bib49) 1987; 19 Hsuan, Schroeder, Rowe, Müller, Greenwood, Cazzuffi, Koerner (bib9) 2008 Pabiot, Verdu (bib21) 1981; 21 Satoto, Subowo, Yusiasih, Takane, Watanabe, Hatakeyama (bib48) 1997; 56 Cruz-Pinto, Carvalho, Ferreira (bib14) 1994; 216 Jordens, Wilkes, Janzen, Rohlfing, Welch (bib24) 2000; 41 White (bib1) 2006; 9 Winslow, Hellman, Matreyek, Stills (bib15) 1966; 6 Gugumus (bib44) 1999; 63 Hadis, Leprince, Shortall, Devaux, Leloup, Palin (bib46) 2011; 39 Salvalaggio, Bagatin, Fornaroli, Fanutti, Palmery, Battistel (bib39) 2006; 91 Tong, White (bib17) 1997; 37 Achimsky, Audouin, Verdu, Rychly, Matisova-Rychla (bib43) 1997; 58 Francois-Heude, Richaud, Desnoux, Colin (bib7) 2014; 100 Pickett, Sargent (bib42) 2009; 94 Zerbi, Gallino, Del Fanti, Baini (bib38) 1989; 30 Carrasco, Surina, Colom (bib18) 1996; 60 Schoolenberg (bib23) 1988; 23 Hamid, Amin, Maadhah (bib3) 2000 Carvalho, Cruz-Pinto (bib13) 1992; 32 Lustiger, Corneliussen (bib22) 1987; 22 Jabarin, Lofgren (bib4) 1994; 53 Blais, Carlsson, Wiles (bib16) 1972; 10 Gueymard, Myers, Emery (bib34) 2002; 73 Carvalho (10.1016/j.polymdegradstab.2019.05.002_bib13) 1992; 32 Heacock (10.1016/j.polymdegradstab.2019.05.002_bib10) 1968; 6 Chin (10.1016/j.polymdegradstab.2019.05.002_bib30) 2005; 2 Cruz-Pinto (10.1016/j.polymdegradstab.2019.05.002_bib14) 1994; 216 Moss (10.1016/j.polymdegradstab.2019.05.002_bib47) 1959 Jabarin (10.1016/j.polymdegradstab.2019.05.002_bib4) 1994; 53 Kollmann (10.1016/j.polymdegradstab.2019.05.002_bib31) 1980; 20 Becerra (10.1016/j.polymdegradstab.2019.05.002_bib40) 2017; 25 Winslow (10.1016/j.polymdegradstab.2019.05.002_bib15) 1966; 6 Satoto (10.1016/j.polymdegradstab.2019.05.002_bib48) 1997; 56 Francois-Heude (10.1016/j.polymdegradstab.2019.05.002_bib7) 2014; 100 Akay (10.1016/j.polymdegradstab.2019.05.002_bib11) 1980; 16 Carrasco (10.1016/j.polymdegradstab.2019.05.002_bib19) 2001; 37 Tong (10.1016/j.polymdegradstab.2019.05.002_bib17) 1997; 37 Pickett (10.1016/j.polymdegradstab.2019.05.002_bib36) 2008; 93 Achimsky (10.1016/j.polymdegradstab.2019.05.002_bib43) 1997; 58 Khelidj (10.1016/j.polymdegradstab.2019.05.002_bib25) 2006; 91 Schoolenberg (10.1016/j.polymdegradstab.2019.05.002_bib23) 1988; 23 Pickett (10.1016/j.polymdegradstab.2019.05.002_bib42) 2009; 94 Salvalaggio (10.1016/j.polymdegradstab.2019.05.002_bib39) 2006; 91 Rabek (10.1016/j.polymdegradstab.2019.05.002_bib2) 1995 Jordens (10.1016/j.polymdegradstab.2019.05.002_bib24) 2000; 41 Andrady (10.1016/j.polymdegradstab.2019.05.002_bib37) 1997 Martin (10.1016/j.polymdegradstab.2019.05.002_bib29) 2003; 47 Carrasco (10.1016/j.polymdegradstab.2019.05.002_bib18) 1996; 60 La Mantia (10.1016/j.polymdegradstab.2019.05.002_bib20) 1977; 23 Lustiger (10.1016/j.polymdegradstab.2019.05.002_bib22) 1987; 22 Hsuan (10.1016/j.polymdegradstab.2019.05.002_bib9) 2008 Gardette (10.1016/j.polymdegradstab.2019.05.002_bib6) 2013; 98 Vasile (10.1016/j.polymdegradstab.2019.05.002_bib8) 2005 Blais (10.1016/j.polymdegradstab.2019.05.002_bib16) 1972; 10 Philippart (10.1016/j.polymdegradstab.2019.05.002_bib27) 1997; 58 Geetha (10.1016/j.polymdegradstab.2019.05.002_bib49) 1987; 19 Hamid (10.1016/j.polymdegradstab.2019.05.002_bib3) 2000 Chin (10.1016/j.polymdegradstab.2019.05.002_bib33) 2004; 75 Pabiot (10.1016/j.polymdegradstab.2019.05.002_bib21) 1981; 21 Zerbi (10.1016/j.polymdegradstab.2019.05.002_bib38) 1989; 30 (10.1016/j.polymdegradstab.2019.05.002_bib32) 2014 Gulmine (10.1016/j.polymdegradstab.2019.05.002_bib50) 2003; 79 White (10.1016/j.polymdegradstab.2019.05.002_bib1) 2006; 9 Gugumus (10.1016/j.polymdegradstab.2019.05.002_bib12) 1990; 27 Tidjani (10.1016/j.polymdegradstab.2019.05.002_bib5) 2000; 68 Bigger (10.1016/j.polymdegradstab.2019.05.002_bib26) 1992; 30 Philippart (10.1016/j.polymdegradstab.2019.05.002_bib28) 1999; 64 Hadis (10.1016/j.polymdegradstab.2019.05.002_bib46) 2011; 39 Hardcastle (10.1016/j.polymdegradstab.2019.05.002_bib45) 2015 Gugumus (10.1016/j.polymdegradstab.2019.05.002_bib44) 1999; 63 Hsueh (10.1016/j.polymdegradstab.2019.05.002_bib41) 2018 Gueymard (10.1016/j.polymdegradstab.2019.05.002_bib34) 2002; 73 |
References_xml | – volume: 37 start-page: 1457 year: 2001 end-page: 1464 ident: bib19 article-title: Artificial aging of high-density polyethylene by ultraviolet irradiation publication-title: Eur. Polym. J. – volume: 41 start-page: 7175 year: 2000 end-page: 7192 ident: bib24 article-title: The influence of molecular weight and thermal history on the thermal, rheological, and mechanical properties of metallocene-catalyzed linear polyethylenes publication-title: Polymer – volume: 100 start-page: 10 year: 2014 end-page: 20 ident: bib7 article-title: Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation publication-title: Polym. Degrad. Stabil. – volume: 25 start-page: 327 year: 2017 ident: bib40 article-title: UV effects on the tensile and creep behaviour of HDPE publication-title: Polym. Polym. Compos. – volume: 56 start-page: 275 year: 1997 end-page: 279 ident: bib48 article-title: Weathering of high-density polyethylene in different latitudes publication-title: Polym. Degrad. Stabil. – volume: 6 start-page: 273 year: 1966 end-page: 278 ident: bib15 article-title: Autoxidation of semicrystalline polyethylene publication-title: Polym. Eng. Sci. – start-page: 47 year: 1997 end-page: 94 ident: bib37 article-title: Wavelength sensitivity in polymer photodegradation publication-title: Polym. Anal. Polym. Phys – year: 2000 ident: bib3 article-title: Handbook of Polymer Degradation – volume: 30 start-page: 2324 year: 1989 end-page: 2327 ident: bib38 article-title: Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy publication-title: Polymer – volume: 75 start-page: 4951 year: 2004 end-page: 4959 ident: bib33 article-title: Accelerated UV weathering device based on integrating sphere technology publication-title: Rev. Sci. Instrum. – volume: 58 start-page: 261 year: 1997 end-page: 268 ident: bib27 article-title: Influence of light intensity on the photooxidation of polypropylene publication-title: Polym. Degrad. Stabil. – volume: 39 start-page: 549 year: 2011 end-page: 557 ident: bib46 article-title: High irradiance curing and anomalies of exposure reciprocity law in resin-based materials publication-title: J. Dent. – volume: 91 start-page: 2775 year: 2006 end-page: 2785 ident: bib39 article-title: Multi-component analysis of low-density polyethylene oxidative degradation publication-title: Polym. Degrad. Stabil. – start-page: 165 year: 2015 end-page: 184 ident: bib45 article-title: Ultra-accelerated weathering II: considerations for accelerated data-based weathering service life predictions publication-title: Serv. Life Predict. Exter. Plast. – volume: 60 start-page: 153 year: 1996 end-page: 159 ident: bib18 article-title: FTIR and DSC study of HDPE structural changes and mechanical properties variation when exposed to weathering aging during Canadian winter publication-title: J. Appl. Polym. Sci. – year: 2014 ident: bib32 publication-title: ASTM D638-14 Standard Test Method for Tensile Properties of Plastics, West Conshohocken, PA – volume: 47 start-page: 292 year: 2003 end-page: 311 ident: bib29 article-title: Reciprocity law experiments in polymeric photodegradation: a critical review publication-title: Prog. Org. Coating – volume: 73 start-page: 443 year: 2002 end-page: 467 ident: bib34 article-title: Proposed reference irradiance spectra for solar energy systems testing publication-title: Sol. Energy – year: 1959 ident: bib47 article-title: Optical Properties of Semiconductors – volume: 21 start-page: 32 year: 1981 end-page: 38 ident: bib21 article-title: The change in mechanical behavior of linear polymers during photochemical aging publication-title: Polym. Eng. Sci. – volume: 216 start-page: 113 year: 1994 end-page: 133 ident: bib14 article-title: The kinetics and mechanism of polyethylene photo-oxidation publication-title: Macromol. Mater. Eng. – volume: 22 start-page: 2470 year: 1987 end-page: 2476 ident: bib22 article-title: The role of crazes in the crack growth of polyethylene publication-title: J. Mater. Sci. – volume: 10 start-page: 1077 year: 1972 end-page: 1092 ident: bib16 article-title: Surface changes during polypropylene photo-oxidation: a study by infrared spectroscopy and electron microscopy publication-title: J. Polym. Sci. Part Polym. Chem. – volume: 37 start-page: 321 year: 1997 end-page: 328 ident: bib17 article-title: Residual stress distribution modification caused by weathering in polypropylene and polystyrene publication-title: Polym. Eng. Sci. – volume: 9 start-page: 1396 year: 2006 end-page: 1408 ident: bib1 article-title: Polymer ageing: physics, chemistry or engineering? Time to reflect publication-title: Compt. Rendus Chem. – volume: 2 start-page: 499 year: 2005 end-page: 508 ident: bib30 article-title: Validation of the reciprocity law for coating photodegradation publication-title: JCT Res – volume: 63 start-page: 41 year: 1999 end-page: 52 ident: bib44 article-title: Effect of temperature on the lifetime of stabilized and unstabilized PP films publication-title: Polym. Degrad. Stabil – volume: 30 start-page: 2277 year: 1992 end-page: 2280 ident: bib26 article-title: Effect of light intensity on the photooxidation kinetics of high-density polyethylene publication-title: J. Polym. Sci. Part Polym. Chem. – ident: bib35 article-title: ASTM G173 - 03 Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface NO_PDF – volume: 64 start-page: 213 year: 1999 end-page: 225 ident: bib28 article-title: Influence of the exposure parameters on the mechanism of photooxidation of polypropylene publication-title: Polym. Degrad. Stabil. – volume: 94 start-page: 189 year: 2009 end-page: 195 ident: bib42 article-title: Sample temperatures during outdoor and laboratory weathering exposures publication-title: Polym. Degrad. Stabil. – volume: 20 start-page: 684 year: 1980 end-page: 687 ident: bib31 article-title: The effect of variations in light intensity on the photo-oxidation of polypropylene publication-title: Polym. Eng. Sci. – volume: 68 start-page: 465 year: 2000 end-page: 469 ident: bib5 article-title: Comparison of formation of oxidation products during photo-oxidation of linear low density polyethylene under different natural and accelerated weathering conditions publication-title: Polym. Degrad. Stabil. – volume: 19 start-page: 279 year: 1987 end-page: 292 ident: bib49 article-title: Photo-oxidative degradation of polyethylene: effect of polymer characteristics on chemical changes and mechanical properties. Part 1—quenched polyethylene publication-title: Polym. Degrad. Stabil. – volume: 6 start-page: 2921 year: 1968 end-page: 2934 ident: bib10 article-title: Photodegradation of polyethylene film publication-title: J. Polym. Sci. Part Polym. Chem. – volume: 23 start-page: 699 year: 1977 end-page: 702 ident: bib20 article-title: Natural weathering of low density polyethylene—I: structural modifications publication-title: Radiat. Phys. Chem. – volume: 91 start-page: 1598 year: 2006 end-page: 1605 ident: bib25 article-title: Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part II. Low temperature thermal oxidation publication-title: Polym. Degrad. Stabil. – volume: 79 start-page: 385 year: 2003 end-page: 397 ident: bib50 article-title: Degradation profile of polyethylene after artificial accelerated weathering publication-title: Polym. Degrad. Stabil. – volume: 93 start-page: 1597 year: 2008 end-page: 1606 ident: bib36 article-title: Effects of irradiation conditions on the weathering of engineering thermoplastics publication-title: Polym. Degrad. Stabil. – year: 1995 ident: bib2 article-title: Polymer Photodegradation: Mechanisms and Experimental Methods – volume: 27 start-page: 19 year: 1990 end-page: 34 ident: bib12 article-title: Contribution to the photolysis of hydroperoxides in polyethylene publication-title: Polym. Degrad. Stabil. – year: 2018 ident: bib41 article-title: Mechanisms for Tensile Failure of Photodegraded High-Density Polyethylene, in Preparation – volume: 32 start-page: 567 year: 1992 end-page: 572 ident: bib13 article-title: The kinetics of photo-oxidation of low-density polyethylene films publication-title: Polym. Eng. Sci. – year: 2005 ident: bib8 article-title: Practical Guide to Polyethylene – volume: 98 start-page: 2383 year: 2013 end-page: 2390 ident: bib6 article-title: Photo-and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content publication-title: Polym. Degrad. Stabil. – volume: 16 start-page: 601 year: 1980 end-page: 605 ident: bib11 article-title: A study of degradation of low density polyethylene under natural weathering conditions publication-title: Eur. Polym. J. – volume: 53 start-page: 411 year: 1994 end-page: 423 ident: bib4 article-title: Photooxidative effects on properties and structure of high-density polyethylene publication-title: J. Appl. Polym. Sci. – volume: 23 start-page: 1580 year: 1988 end-page: 1590 ident: bib23 article-title: A fracture mechanics approach to the effects of UV-degradation on polypropylene publication-title: J. Mater. Sci. – year: 2008 ident: bib9 article-title: Long-term performance and lifetime prediction of geosynthetics publication-title: Proc. 4th Eur. Conf. Geosynth. Edinb. Sept. Keynote Pap. – volume: 58 start-page: 283 year: 1997 end-page: 289 ident: bib43 article-title: On a transition at 80 °C in polypropylene oxidation kinetics publication-title: Polym. Degrad. Stabil – volume: 32 start-page: 567 year: 1992 ident: 10.1016/j.polymdegradstab.2019.05.002_bib13 article-title: The kinetics of photo-oxidation of low-density polyethylene films publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760320808 – volume: 27 start-page: 19 year: 1990 ident: 10.1016/j.polymdegradstab.2019.05.002_bib12 article-title: Contribution to the photolysis of hydroperoxides in polyethylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/0141-3910(90)90094-N – volume: 75 start-page: 4951 year: 2004 ident: 10.1016/j.polymdegradstab.2019.05.002_bib33 article-title: Accelerated UV weathering device based on integrating sphere technology publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1808916 – volume: 22 start-page: 2470 year: 1987 ident: 10.1016/j.polymdegradstab.2019.05.002_bib22 article-title: The role of crazes in the crack growth of polyethylene publication-title: J. Mater. Sci. doi: 10.1007/BF01082132 – volume: 60 start-page: 153 year: 1996 ident: 10.1016/j.polymdegradstab.2019.05.002_bib18 article-title: FTIR and DSC study of HDPE structural changes and mechanical properties variation when exposed to weathering aging during Canadian winter publication-title: J. Appl. Polym. Sci. doi: 10.1002/(SICI)1097-4628(19960411)60:2<153::AID-APP2>3.0.CO;2-R – year: 2000 ident: 10.1016/j.polymdegradstab.2019.05.002_bib3 – volume: 53 start-page: 411 year: 1994 ident: 10.1016/j.polymdegradstab.2019.05.002_bib4 article-title: Photooxidative effects on properties and structure of high-density polyethylene publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1994.070530404 – volume: 100 start-page: 10 year: 2014 ident: 10.1016/j.polymdegradstab.2019.05.002_bib7 article-title: Influence of temperature, UV-light wavelength and intensity on polypropylene photothermal oxidation publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2013.12.038 – volume: 68 start-page: 465 year: 2000 ident: 10.1016/j.polymdegradstab.2019.05.002_bib5 article-title: Comparison of formation of oxidation products during photo-oxidation of linear low density polyethylene under different natural and accelerated weathering conditions publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(00)00039-2 – volume: 19 start-page: 279 year: 1987 ident: 10.1016/j.polymdegradstab.2019.05.002_bib49 article-title: Photo-oxidative degradation of polyethylene: effect of polymer characteristics on chemical changes and mechanical properties. Part 1—quenched polyethylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/0141-3910(87)90061-9 – volume: 23 start-page: 699 issue: 1984 year: 1977 ident: 10.1016/j.polymdegradstab.2019.05.002_bib20 article-title: Natural weathering of low density polyethylene—I: structural modifications publication-title: Radiat. Phys. Chem. – volume: 20 start-page: 684 year: 1980 ident: 10.1016/j.polymdegradstab.2019.05.002_bib31 article-title: The effect of variations in light intensity on the photo-oxidation of polypropylene publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760201009 – volume: 30 start-page: 2324 year: 1989 ident: 10.1016/j.polymdegradstab.2019.05.002_bib38 article-title: Structural depth profiling in polyethylene films by multiple internal reflection infra-red spectroscopy publication-title: Polymer doi: 10.1016/0032-3861(89)90269-3 – volume: 2 start-page: 499 year: 2005 ident: 10.1016/j.polymdegradstab.2019.05.002_bib30 article-title: Validation of the reciprocity law for coating photodegradation publication-title: JCT Res – volume: 73 start-page: 443 year: 2002 ident: 10.1016/j.polymdegradstab.2019.05.002_bib34 article-title: Proposed reference irradiance spectra for solar energy systems testing publication-title: Sol. Energy doi: 10.1016/S0038-092X(03)00005-7 – volume: 56 start-page: 275 year: 1997 ident: 10.1016/j.polymdegradstab.2019.05.002_bib48 article-title: Weathering of high-density polyethylene in different latitudes publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(96)00213-3 – volume: 9 start-page: 1396 year: 2006 ident: 10.1016/j.polymdegradstab.2019.05.002_bib1 article-title: Polymer ageing: physics, chemistry or engineering? Time to reflect publication-title: Compt. Rendus Chem. doi: 10.1016/j.crci.2006.07.008 – year: 2014 ident: 10.1016/j.polymdegradstab.2019.05.002_bib32 – volume: 25 start-page: 327 year: 2017 ident: 10.1016/j.polymdegradstab.2019.05.002_bib40 article-title: UV effects on the tensile and creep behaviour of HDPE publication-title: Polym. Polym. Compos. – volume: 79 start-page: 385 year: 2003 ident: 10.1016/j.polymdegradstab.2019.05.002_bib50 article-title: Degradation profile of polyethylene after artificial accelerated weathering publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(02)00338-5 – start-page: 165 year: 2015 ident: 10.1016/j.polymdegradstab.2019.05.002_bib45 article-title: Ultra-accelerated weathering II: considerations for accelerated data-based weathering service life predictions – volume: 98 start-page: 2383 year: 2013 ident: 10.1016/j.polymdegradstab.2019.05.002_bib6 article-title: Photo-and thermal-oxidation of polyethylene: comparison of mechanisms and influence of unsaturation content publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2013.07.017 – year: 1995 ident: 10.1016/j.polymdegradstab.2019.05.002_bib2 – volume: 37 start-page: 321 year: 1997 ident: 10.1016/j.polymdegradstab.2019.05.002_bib17 article-title: Residual stress distribution modification caused by weathering in polypropylene and polystyrene publication-title: Polym. Eng. Sci. doi: 10.1002/pen.11674 – volume: 37 start-page: 1457 year: 2001 ident: 10.1016/j.polymdegradstab.2019.05.002_bib19 article-title: Artificial aging of high-density polyethylene by ultraviolet irradiation publication-title: Eur. Polym. J. doi: 10.1016/S0014-3057(00)00251-2 – volume: 47 start-page: 292 year: 2003 ident: 10.1016/j.polymdegradstab.2019.05.002_bib29 article-title: Reciprocity law experiments in polymeric photodegradation: a critical review publication-title: Prog. Org. Coating doi: 10.1016/j.porgcoat.2003.08.002 – volume: 39 start-page: 549 year: 2011 ident: 10.1016/j.polymdegradstab.2019.05.002_bib46 article-title: High irradiance curing and anomalies of exposure reciprocity law in resin-based materials publication-title: J. Dent. – volume: 64 start-page: 213 year: 1999 ident: 10.1016/j.polymdegradstab.2019.05.002_bib28 article-title: Influence of the exposure parameters on the mechanism of photooxidation of polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(98)00191-8 – year: 2008 ident: 10.1016/j.polymdegradstab.2019.05.002_bib9 article-title: Long-term performance and lifetime prediction of geosynthetics – volume: 93 start-page: 1597 year: 2008 ident: 10.1016/j.polymdegradstab.2019.05.002_bib36 article-title: Effects of irradiation conditions on the weathering of engineering thermoplastics publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2008.02.009 – volume: 10 start-page: 1077 year: 1972 ident: 10.1016/j.polymdegradstab.2019.05.002_bib16 article-title: Surface changes during polypropylene photo-oxidation: a study by infrared spectroscopy and electron microscopy publication-title: J. Polym. Sci. Part Polym. Chem. doi: 10.1002/pol.1972.150100412 – volume: 41 start-page: 7175 year: 2000 ident: 10.1016/j.polymdegradstab.2019.05.002_bib24 article-title: The influence of molecular weight and thermal history on the thermal, rheological, and mechanical properties of metallocene-catalyzed linear polyethylenes publication-title: Polymer doi: 10.1016/S0032-3861(00)00073-2 – year: 1959 ident: 10.1016/j.polymdegradstab.2019.05.002_bib47 – volume: 58 start-page: 261 year: 1997 ident: 10.1016/j.polymdegradstab.2019.05.002_bib27 article-title: Influence of light intensity on the photooxidation of polypropylene publication-title: Polym. Degrad. Stabil. doi: 10.1016/S0141-3910(97)00056-6 – volume: 58 start-page: 283 year: 1997 ident: 10.1016/j.polymdegradstab.2019.05.002_bib43 article-title: On a transition at 80 °C in polypropylene oxidation kinetics publication-title: Polym. Degrad. Stabil doi: 10.1016/S0141-3910(97)00059-1 – volume: 21 start-page: 32 year: 1981 ident: 10.1016/j.polymdegradstab.2019.05.002_bib21 article-title: The change in mechanical behavior of linear polymers during photochemical aging publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760210106 – year: 2005 ident: 10.1016/j.polymdegradstab.2019.05.002_bib8 – volume: 216 start-page: 113 year: 1994 ident: 10.1016/j.polymdegradstab.2019.05.002_bib14 article-title: The kinetics and mechanism of polyethylene photo-oxidation publication-title: Macromol. Mater. Eng. – volume: 16 start-page: 601 year: 1980 ident: 10.1016/j.polymdegradstab.2019.05.002_bib11 article-title: A study of degradation of low density polyethylene under natural weathering conditions publication-title: Eur. Polym. J. doi: 10.1016/0014-3057(80)90095-6 – volume: 23 start-page: 1580 year: 1988 ident: 10.1016/j.polymdegradstab.2019.05.002_bib23 article-title: A fracture mechanics approach to the effects of UV-degradation on polypropylene publication-title: J. Mater. Sci. doi: 10.1007/BF01115695 – year: 2018 ident: 10.1016/j.polymdegradstab.2019.05.002_bib41 – volume: 6 start-page: 2921 year: 1968 ident: 10.1016/j.polymdegradstab.2019.05.002_bib10 article-title: Photodegradation of polyethylene film publication-title: J. Polym. Sci. Part Polym. Chem. doi: 10.1002/pol.1968.150061019 – volume: 91 start-page: 1598 year: 2006 ident: 10.1016/j.polymdegradstab.2019.05.002_bib25 article-title: Oxidation of polyethylene under irradiation at low temperature and low dose rate. Part II. Low temperature thermal oxidation publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2005.09.012 – volume: 6 start-page: 273 year: 1966 ident: 10.1016/j.polymdegradstab.2019.05.002_bib15 article-title: Autoxidation of semicrystalline polyethylene publication-title: Polym. Eng. Sci. doi: 10.1002/pen.760060317 – volume: 63 start-page: 41 year: 1999 ident: 10.1016/j.polymdegradstab.2019.05.002_bib44 article-title: Effect of temperature on the lifetime of stabilized and unstabilized PP films publication-title: Polym. Degrad. Stabil doi: 10.1016/S0141-3910(98)00059-7 – volume: 30 start-page: 2277 year: 1992 ident: 10.1016/j.polymdegradstab.2019.05.002_bib26 article-title: Effect of light intensity on the photooxidation kinetics of high-density polyethylene publication-title: J. Polym. Sci. Part Polym. Chem. doi: 10.1002/pola.1992.080301025 – volume: 94 start-page: 189 year: 2009 ident: 10.1016/j.polymdegradstab.2019.05.002_bib42 article-title: Sample temperatures during outdoor and laboratory weathering exposures publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2008.11.005 – volume: 91 start-page: 2775 year: 2006 ident: 10.1016/j.polymdegradstab.2019.05.002_bib39 article-title: Multi-component analysis of low-density polyethylene oxidative degradation publication-title: Polym. Degrad. Stabil. doi: 10.1016/j.polymdegradstab.2006.03.024 – start-page: 47 year: 1997 ident: 10.1016/j.polymdegradstab.2019.05.002_bib37 article-title: Wavelength sensitivity in polymer photodegradation |
SSID | ssj0000451 |
Score | 2.6273892 |
Snippet | The photodegradation of polymers poses a serious challenge to their outdoor application, and results in significant financial loss due to early or unexpected... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 153 |
SubjectTerms | activation energy crystal structure Embrittlement Environmental degradation Exposure financial economics Florida Fourier transform infrared spectroscopy Fourier transforms High density polyethylenes Irradiance Kinetics laboratory experimentation light intensity Luminous intensity Mechanical properties Organic chemistry Oxidation Photodegradation photolysis Polyethylene Polymers polyolefin Polyolefins Property damage Reciprocity Stiffness Temperature Temperature effects thermoplastics Ultraviolet radiation |
Title | Temperature and light intensity effects on photodegradation of high-density polyethylene |
URI | https://dx.doi.org/10.1016/j.polymdegradstab.2019.05.002 https://www.ncbi.nlm.nih.gov/pubmed/39440157 https://www.proquest.com/docview/2258723802 https://www.proquest.com/docview/2286904705 https://www.proquest.com/docview/3119724999 https://pubmed.ncbi.nlm.nih.gov/PMC11494731 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxQFBeC6UyEhzTzSa2E0scqFZUC4ieFmlvlh076qIlWdH00Au_nZnY2e4WkCpxTDyJYs_Y89n5ZgbgrclMrSY-TXhlJJ1WpUnpcV45I6XiKisyQbHDX8_k7Bv_vBCLPZgOsTBEq4xrf1jT-9U63hnH0Ryvl8sx0ZIQvqBJqbwHAhTBzguy8uNf1zQPyp8SaIyThKTvwrtrjte6XV39cJSVwV1QhAJ6Q3W8dcryFz_1Jw69Safc8k-nj-BhBJbsJHz7Y9jzzQHcmw713A7gwVbqwSewmHsEzCGhMjONYyvapbNlYLR3VywSPVjbsPV527Xh-3s9srZmlOY4cVGWOuhR4-jB_FOYn36cT2dJrLKQVFLyLlG15QZnvS3y3FglKxrUWilhrbLWOsRE0qRClJmhSprO52LiyirzdeVKI_NnsN-0jX8BrBCIXkxt8QW4qZNKcUJXiABsrriRxQjeD0Oqq5iBnAphrPRANfuub2hEk0Z0KjRqZARy8_g6pOK47YMfBv3pHdvS6DZu-4rDQe86TvILjUthSTXbqPnNphm1Sv9cTOPbS5Khkl-8SMW_ZfK-9httPUfwPJjSpoMUt4zWjWNX7hjZRoDSg--2NMvzPk047nQVL_LJy__v_iu4T1eBIncI-93PS_8awVhnj_rZdgR3Tj59mZ39BggIORA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTmLbA4IBo2OAkeAxNE1sJ5Z4YKqYOrb1qUh9s-zE0Yq6pNqyh_333CVO1w6QJvEa_5DtO999ds7fAXwykSnU0IUBz4yk26owSB3uq9xIqbiKkkjQ2-GLiRz_5D9mYrYFo-4tDIVVetvf2vTGWvsvA7-ag-V8PqCwJIQvqFIqboDAE9gmdirRg-3j07Px5N4gc9GmJeTDgBo8hc_3YV7LanF3lRMxQ35DjxTQIaovaxctf3FVf0LRhxGVay7q5Dk889iSHbfDfwFbrtyHnVGX0m0f9tbYB1_CbOoQM7ecysyUOVvQQZ3N26D2-o75WA9WlWx5WdVVO_5GlKwqGDEdB7mvSxN0KHR0Yu4VTE--T0fjwCdaCDIpeR2ownKDG98mcWyskhmta6GUsFZZa3OERdKEQqSRoWSauYvFME-zyBVZnhoZv4ZeWZXuDbBEIIAxhcUO8FwnleIEsBAE2FhxI5M-fO2WVGeehJxyYSx0F232Sz-QiCaJ6FBolEgf5Kr5smXjeGzDb5389IZ6afQcj-3iqJO79vv8RqM1TCltGxV_XBWjVOm3iylddUt1KOsXT0Lx7zpxk_6NTp99OGhVaTVBerqMCo5rl24o2aoCMYRvlpTzy4YpHA-7iifx8PD_p_8BdsbTi3N9fjo5ewu7VNJGLR9Br76-de8Qm9X2vd97vwGVETvC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+and+light+intensity+effects+on+photodegradation+of+high-density+polyethylene&rft.jtitle=Polymer+degradation+and+stability&rft.au=Fairbrother%2C+Andrew&rft.au=Hsueh%2C+Hsiang-Chun&rft.au=Kim%2C+Jae+Hyun&rft.au=Jacobs%2C+Deborah&rft.date=2019-07-01&rft.issn=0141-3910&rft.volume=165&rft.spage=153&rft.epage=160&rft_id=info:doi/10.1016%2Fj.polymdegradstab.2019.05.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_polymdegradstab_2019_05_002 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-3910&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-3910&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-3910&client=summon |